1
|
Yang Z, Wang H, Keebler R, Lovelace A, Chen HC, Kvitko B, Swingle B. Environmental alkalization suppresses deployment of virulence strategies in Pseudomonas syringae pv. tomato DC3000. J Bacteriol 2024:e0008624. [PMID: 39445803 DOI: 10.1128/jb.00086-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 10/05/2024] [Indexed: 10/25/2024] Open
Abstract
Plant pathogenic bacteria encounter a drastic increase in apoplastic pH during the early stages of plant immunity. The effects of alkalization on pathogen-host interactions have not been comprehensively characterized. Here, we used a global transcriptomic approach to assess the impact of environmental alkalization on Pseudomonas syringae pv. tomato DC3000 in vitro. In addition to the Type 3 Secretion System, we found expression of genes encoding other virulence factors such as iron uptake and coronatine biosynthesis to be strongly affected by environmental alkalization. We also found that the activity of AlgU, an important regulator of virulence gene expression, was induced at pH 5.5 and suppressed at pH 7.8, which are pH levels that this pathogen would likely experience before and during pattern-triggered immunity, respectively. This pH-dependent control requires the presence of periplasmic proteases, AlgW and MucP, that function as part of the environmental sensing system that activates AlgU in specific conditions. This is the first example of pH-dependency of AlgU activity, suggesting a regulatory pathway model where pH affects the proteolysis-dependent activation of AlgU. These results contribute to deeper understanding of the role apoplastic pH has on host-pathogen interactions.IMPORTANCEPlant pathogenic bacteria, like Pseudomonas syringae, encounter many environmental changes including oxidative stress and alkalization during plant immunity, but the ecological effects of the individual responses are not well understood. In this study, we found that transcription of many previously characterized virulence factors in P. syringae pv. tomato DC3000 is downregulated by the level of environmental alkalization these bacteria encounter during the early stages of plant immune activation. We also report for the first time the sigma factor AlgU is post-translationally activated by low environmental pH through its natural activation pathway, which partially accounts for the expression Type 3 Secretion System virulence genes at acidic pH. The results of this study demonstrate the importance of extracellular pH on global regulation of virulence-related gene transcription in plant pathogenic bacteria.
Collapse
Affiliation(s)
- Zichu Yang
- Plant Pathology and Plant-Microbe Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, New York, USA
| | - Haibi Wang
- Plant Pathology and Plant-Microbe Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, New York, USA
| | - Robert Keebler
- Plant Pathology and Plant-Microbe Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, New York, USA
| | - Amelia Lovelace
- The Sainsbury Laboratory, Norwich Research Park, Norwich, United Kingdom
| | - Hsiao-Chun Chen
- Department of Plant Pathology, University of Georgia, Athens, Georgia, USA
| | - Brian Kvitko
- Department of Plant Pathology, University of Georgia, Athens, Georgia, USA
- The Plant Center, University of Georgia, Athens, Georgia, USA
| | - Bryan Swingle
- Plant Pathology and Plant-Microbe Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, New York, USA
- United States Department of Agriculture-Agricultural Research Service, Emerging Pests and Pathogens Research Unit, Robert W. Holley Center, Ithaca, New York, USA
| |
Collapse
|
2
|
Comerford I, McColl SR. Atypical chemokine receptors in the immune system. Nat Rev Immunol 2024; 24:753-769. [PMID: 38714818 DOI: 10.1038/s41577-024-01025-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/18/2024] [Indexed: 05/10/2024]
Abstract
Leukocyte migration is a fundamental component of innate and adaptive immune responses as it governs the recruitment and localization of these motile cells, which is crucial for immune cell priming, effector functions, memory responses and immune regulation. This complex cellular trafficking system is controlled to a large extent via highly regulated production of secreted chemokines and the restricted expression of their membrane-tethered G-protein-coupled receptors. The activity of chemokines and their receptors is also regulated by a subfamily of molecules known as atypical chemokine receptors (ACKRs), which are chemokine receptor-like molecules that do not couple to the classical signalling pathways that promote cell migration in response to chemokine ligation. There has been a great deal of progress in understanding the biology of these receptors and their functions in the immune system in the past decade. Here, we describe the contribution of the various ACKRs to innate and adaptive immune responses, focussing specifically on recent progress. This includes recent findings that have defined the role for ACKRs in sculpting extracellular chemokine gradients, findings that broaden the spectrum of chemokine ligands recognized by these receptors, candidate new additions to ACKR family, and our increasing understanding of the role of these receptors in shaping the migration of innate and adaptive immune cells.
Collapse
Affiliation(s)
- Iain Comerford
- The Chemokine Biology Laboratory, School of Molecular & Biomedical Science, The University of Adelaide, Adelaide, South Australia, Australia.
| | - Shaun R McColl
- The Chemokine Biology Laboratory, School of Molecular & Biomedical Science, The University of Adelaide, Adelaide, South Australia, Australia
| |
Collapse
|
3
|
Li Y, Han S, Gao H. Heme homeostasis and its regulation by hemoproteins in bacteria. MLIFE 2024; 3:327-342. [PMID: 39359680 PMCID: PMC11442138 DOI: 10.1002/mlf2.12120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 02/08/2024] [Accepted: 02/23/2024] [Indexed: 10/04/2024]
Abstract
Heme is an important cofactor and a regulatory molecule involved in various physiological processes in virtually all living cellular organisms, and it can also serve as the primary iron source for many bacteria, particularly pathogens. However, excess heme is cytotoxic to cells. In order to meet physiological needs while preventing deleterious effects, bacteria have evolved sophisticated cellular mechanisms to maintain heme homeostasis. Recent advances in technologies have shaped our understanding of the molecular mechanisms that govern the biological processes crucial to heme homeostasis, including synthesis, acquisition, utilization, degradation, trafficking, and efflux, as well as their regulation. Central to these mechanisms is the regulation of the heme, by the heme, and for the heme. In this review, we present state-of-the-art findings covering the biochemical, physiological, and structural characterization of important, newly identified hemoproteins/systems involved in heme homeostasis.
Collapse
Affiliation(s)
- Yingxi Li
- Institute of Microbiology and College of Life SciencesZhejiang UniversityHangzhouChina
| | - Sirui Han
- Institute of Microbiology and College of Life SciencesZhejiang UniversityHangzhouChina
| | - Haichun Gao
- Institute of Microbiology and College of Life SciencesZhejiang UniversityHangzhouChina
| |
Collapse
|
4
|
Sekar S, Schwarzbach S, Nega M, Bloes DA, Smeds E, Kretschmer D, Foster TJ, Heilbronner S. SLUSH peptides of the PSMβ family enable Staphylococcus lugdunensis to use erythrocytes as a sole source of nutrient iron. FASEB J 2024; 38:e23881. [PMID: 39166718 DOI: 10.1096/fj.202400335r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 07/08/2024] [Accepted: 07/31/2024] [Indexed: 08/23/2024]
Abstract
During infection, the host employs nutritional immunity to restrict access to iron. Staphylococcus lugdunensis has been recognized for its ability to utilize host-derived heme to overcome iron restriction. However, the mechanism behind this process involves the release of hemoglobin from erythrocytes, and the hemolytic factors of S. lugdunensis remain poorly understood. S. lugdunensis encodes four phenol-soluble modulins (PSMs), short peptides with hemolytic activity. The peptides SLUSH A, SLUSH B, and SLUSH C are β-type PSMs, and OrfX is an α-type PSM. Our study shows the SLUSH locus to be essential for the hemolytic phenotype of S. lugdunensis. All four peptides individually exhibited hemolytic activity against human and sheep erythrocytes, but synergism with sphingomyelinase was observed exclusively against sheep erythrocytes. Furthermore, our findings demonstrate that SLUSH is crucial for allowing the utilization of erythrocytes as the sole source of nutritional iron and confirm the transcriptional regulation of SLUSH by Agr. Additionally, our study reveals that SLUSH peptides stimulate the human immune system. Our analysis identifies SLUSH as a pivotal hemolytic factor of S. lugdunensis and demonstrates its concerted action with heme acquisition systems to overcome iron limitation in the presence of host erythrocytes.
Collapse
Affiliation(s)
- Sharmila Sekar
- Department of Infection Biology, Interfaculty Institute of Microbiology and Infection Medicine, University of Tübingen, Tübingen, Germany
- Cluster of Excellence EXC 2124 Controlling Microbes to Fight Infections, Tübingen, Germany
- Interfaculty Institute of Microbiology and Infection Medicine, Institute for Medical Microbiology and Hygiene, UKT Tübingen, Tübingen, Germany
| | - Selina Schwarzbach
- Department of Infection Biology, Interfaculty Institute of Microbiology and Infection Medicine, University of Tübingen, Tübingen, Germany
- Cluster of Excellence EXC 2124 Controlling Microbes to Fight Infections, Tübingen, Germany
- Interfaculty Institute of Microbiology and Infection Medicine, Institute for Medical Microbiology and Hygiene, UKT Tübingen, Tübingen, Germany
| | - Mulugeta Nega
- Department of Infection Biology, Interfaculty Institute of Microbiology and Infection Medicine, University of Tübingen, Tübingen, Germany
| | - Dominik Alexander Bloes
- Department of Infection Biology, Interfaculty Institute of Microbiology and Infection Medicine, University of Tübingen, Tübingen, Germany
- Interfaculty Institute of Microbiology and Infection Medicine, Institute for Medical Microbiology and Hygiene, UKT Tübingen, Tübingen, Germany
| | - Emanuel Smeds
- Lund Protein Production Platform, Department of Biology, Lund University, Lund, Sweden
| | - Dorothee Kretschmer
- Department of Infection Biology, Interfaculty Institute of Microbiology and Infection Medicine, University of Tübingen, Tübingen, Germany
- Cluster of Excellence EXC 2124 Controlling Microbes to Fight Infections, Tübingen, Germany
- Interfaculty Institute of Microbiology and Infection Medicine, Institute for Medical Microbiology and Hygiene, UKT Tübingen, Tübingen, Germany
| | - Timothy J Foster
- Trinity College Dublin, The Moyne Institute of Preventive Medicine, Dublin, Ireland
| | - Simon Heilbronner
- Department of Infection Biology, Interfaculty Institute of Microbiology and Infection Medicine, University of Tübingen, Tübingen, Germany
- Cluster of Excellence EXC 2124 Controlling Microbes to Fight Infections, Tübingen, Germany
- Interfaculty Institute of Microbiology and Infection Medicine, Institute for Medical Microbiology and Hygiene, UKT Tübingen, Tübingen, Germany
- German Center for Infection Research (DZIF), Tübingen, Germany
- Faculty of Biology, Microbiology, Ludwig Maximilians Universität München, Martinsried, Germany
| |
Collapse
|
5
|
Saha S, Khanppnavar B, Maharana J, Kim H, Carino CMC, Daly C, Houston S, Sharma S, Zaidi N, Dalal A, Mishra S, Ganguly M, Tiwari D, Kumari P, Jhingan GD, Yadav PN, Plouffe B, Inoue A, Chung KY, Banerjee R, Korkhov VM, Shukla AK. Molecular mechanism of distinct chemokine engagement and functional divergence of the human Duffy antigen receptor. Cell 2024; 187:4751-4769.e25. [PMID: 39089252 DOI: 10.1016/j.cell.2024.07.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 04/13/2024] [Accepted: 07/03/2024] [Indexed: 08/03/2024]
Abstract
The Duffy antigen receptor is a seven-transmembrane (7TM) protein expressed primarily at the surface of red blood cells and displays strikingly promiscuous binding to multiple inflammatory and homeostatic chemokines. It serves as the basis of the Duffy blood group system in humans and also acts as the primary attachment site for malarial parasite Plasmodium vivax and pore-forming toxins secreted by Staphylococcus aureus. Here, we comprehensively profile transducer coupling of this receptor, discover potential non-canonical signaling pathways, and determine the cryoelectron microscopy (cryo-EM) structure in complex with the chemokine CCL7. The structure reveals a distinct binding mode of chemokines, as reflected by relatively superficial binding and a partially formed orthosteric binding pocket. We also observe a dramatic shortening of TM5 and 6 on the intracellular side, which precludes the formation of the docking site for canonical signal transducers, thereby providing a possible explanation for the distinct pharmacological and functional phenotype of this receptor.
Collapse
Affiliation(s)
- Shirsha Saha
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kanpur 208016, India
| | - Basavraj Khanppnavar
- Laboratory of Biomolecular Research, Paul Scherrer Institute, Villigen, Switzerland; Institute of Molecular Biology and Biophysics, ETH Zurich, Zurich, Switzerland
| | - Jagannath Maharana
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kanpur 208016, India
| | - Heeryung Kim
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Carlo Marion C Carino
- Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3, Aoba, Aramaki, Aoba-ku, Sendai, Miyagi 980-8578, Japan
| | - Carole Daly
- Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, Belfast, UK
| | - Shane Houston
- Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, Belfast, UK
| | - Saloni Sharma
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kanpur 208016, India
| | - Nashrah Zaidi
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kanpur 208016, India
| | - Annu Dalal
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kanpur 208016, India
| | - Sudha Mishra
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kanpur 208016, India
| | - Manisankar Ganguly
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kanpur 208016, India
| | - Divyanshu Tiwari
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kanpur 208016, India
| | - Poonam Kumari
- Division of Neuroscience and Ageing Biology, CSIR-Central Drug Research Institute, Lucknow, India
| | | | - Prem N Yadav
- Division of Neuroscience and Ageing Biology, CSIR-Central Drug Research Institute, Lucknow, India
| | - Bianca Plouffe
- Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, Belfast, UK
| | - Asuka Inoue
- Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3, Aoba, Aramaki, Aoba-ku, Sendai, Miyagi 980-8578, Japan
| | - Ka Young Chung
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Ramanuj Banerjee
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kanpur 208016, India.
| | - Volodymyr M Korkhov
- Laboratory of Biomolecular Research, Paul Scherrer Institute, Villigen, Switzerland; Institute of Molecular Biology and Biophysics, ETH Zurich, Zurich, Switzerland.
| | - Arun K Shukla
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kanpur 208016, India.
| |
Collapse
|
6
|
Kim SO, Park I, Vernet T, Moreau C, Hong S, Park TH. Duffy Antigen Receptor for Chemokines (DARC) Nanodisc-Based Biosensor for Detection of Staphylococcal Bicomponent Pore-Forming Leukocidins. ACS APPLIED MATERIALS & INTERFACES 2024; 16:37390-37400. [PMID: 39007843 DOI: 10.1021/acsami.4c02079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
Staphylococcus aureus (S. aureus) is an opportunistic infectious pathogen, which causes a high mortality rate during bloodstream infections. The early detection of virulent strains in patients' blood samples is of medical interest for rapid diagnosis. The main virulent factors identified in patient isolates include leukocidins that bind to specific membrane receptors and lyse immune cells and erythrocytes. Duffy antigen receptor for chemokines (DARC) on the surface of specific cells is a main target of leukocidins such as gamma-hemolysin AB (HlgAB) and leukocidin ED (LukED). Among them, HlgAB is a conserved and critical leukocidin that binds to DARC and forms pores on the cell membranes, leading to cell lysis. Current methods are based on ELISA or bacterial culture, which takes hours to days. For detecting HlgAB with faster response and higher sensitivity, we developed a biosensor that combines single-walled carbon nanotube field effect transistors (swCNT-FETs) with immobilized DARC receptors as biosensing elements. DARC was purified from a bacterial expression system and successfully reconstituted into nanodiscs that preserve binding capability for HlgAB. Dynamic light scattering (DLS) and scanning electron microscopy (SEM) showed an increase of the DARC-containing nanodisc size in the presence of HlgAB, indicating the formation of HlgAB prepore or pore complexes. We demonstrate that this sensor can specifically detect the leukocidins HlgA and HlgAB in a quantitative manner within the dynamic range of 1 fM to 100 pM with an LOD of 0.122 fM and an LOQ of 0.441 fM. The sensor was challenged with human serum spiked with HlgAB as simulated clinical samples. After dilution for decreasing nonspecific binding, it selectively detected the toxin with a similar detection range and apparent dissociation constant as in the buffer. This biosensor was demonstrated with remarkable sensitivity to detect HlgAB rapidly and has the potential as a tool for fundamental research and clinical applications, although this sensor cannot differentiate between HlgAB and LukED as both have the same receptor.
Collapse
Affiliation(s)
- So-Ong Kim
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea
| | - Inkyoung Park
- Department of Physics and Astronomy, Institute of Applied Physics, Seoul National University, Seoul 08826, Republic of Korea
| | - Thierry Vernet
- Univ. Grenoble Alpes, CNRS, CEA, IBS, Grenoble F-38000, France
| | | | - Seunghun Hong
- Department of Physics and Astronomy, Institute of Applied Physics, Seoul National University, Seoul 08826, Republic of Korea
| | - Tai Hyun Park
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea
- Department of Nutritional Science and Food Management, Ewha Womans University, Seoul 03760, Republic of Korea
| |
Collapse
|
7
|
Barber MF, Fitzgerald JR. Mechanisms of host adaptation by bacterial pathogens. FEMS Microbiol Rev 2024; 48:fuae019. [PMID: 39003250 PMCID: PMC11308195 DOI: 10.1093/femsre/fuae019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 07/02/2024] [Accepted: 07/24/2024] [Indexed: 07/15/2024] Open
Abstract
The emergence of new infectious diseases poses a major threat to humans, animals, and broader ecosystems. Defining factors that govern the ability of pathogens to adapt to new host species is therefore a crucial research imperative. Pathogenic bacteria are of particular concern, given dwindling treatment options amid the continued expansion of antimicrobial resistance. In this review, we summarize recent advancements in the understanding of bacterial host species adaptation, with an emphasis on pathogens of humans and related mammals. We focus particularly on molecular mechanisms underlying key steps of bacterial host adaptation including colonization, nutrient acquisition, and immune evasion, as well as suggest key areas for future investigation. By developing a greater understanding of the mechanisms of host adaptation in pathogenic bacteria, we may uncover new strategies to target these microbes for the treatment and prevention of infectious diseases in humans, animals, and the broader environment.
Collapse
Affiliation(s)
- Matthew F Barber
- Institute of Ecology and Evolution, University of Oregon, Eugene, OR 97403, United States
- Department of Biology, University of Oregon, Eugene, OR 97403, United States
| | - J Ross Fitzgerald
- The Roslin Institute, University of Edinburgh, Midlothian, EH25 9RG, United Kingdom
| |
Collapse
|
8
|
Lê-Bury P, Echenique-Rivera H, Pizarro-Cerdá J, Dussurget O. Determinants of bacterial survival and proliferation in blood. FEMS Microbiol Rev 2024; 48:fuae013. [PMID: 38734892 PMCID: PMC11163986 DOI: 10.1093/femsre/fuae013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 04/29/2024] [Accepted: 05/10/2024] [Indexed: 05/13/2024] Open
Abstract
Bloodstream infection is a major public health concern associated with high mortality and high healthcare costs worldwide. Bacteremia can trigger fatal sepsis whose prevention, diagnosis, and management have been recognized as a global health priority by the World Health Organization. Additionally, infection control is increasingly threatened by antimicrobial resistance, which is the focus of global action plans in the framework of a One Health response. In-depth knowledge of the infection process is needed to develop efficient preventive and therapeutic measures. The pathogenesis of bloodstream infection is a dynamic process resulting from the invasion of the vascular system by bacteria, which finely regulate their metabolic pathways and virulence factors to overcome the blood immune defenses and proliferate. In this review, we highlight our current understanding of determinants of bacterial survival and proliferation in the bloodstream and discuss their interactions with the molecular and cellular components of blood.
Collapse
Affiliation(s)
- Pierre Lê-Bury
- Institut Pasteur, Université Paris Cité, CNRS UMR6047, Yersinia Research Unit, 28 rue du Dr Roux, 75015 Paris, France
- Université Paris-Saclay, Inserm, CEA, Center for Immunology of Viral, Autoimmune, Hematological and Bacterial Diseases (IMVA-HB/IDMIT), 18 route du Panorama, 92260 Fontenay-aux-Roses, France
| | - Hebert Echenique-Rivera
- Institut Pasteur, Université Paris Cité, CNRS UMR6047, Yersinia Research Unit, 28 rue du Dr Roux, 75015 Paris, France
| | - Javier Pizarro-Cerdá
- Institut Pasteur, Université Paris Cité, CNRS UMR6047, Yersinia Research Unit, 28 rue du Dr Roux, 75015 Paris, France
- Institut Pasteur, Université Paris Cité, Yersinia National Reference Laboratory, WHO Collaborating Research & Reference Centre for Plague FRA-146, 28 rue du Dr Roux, 75015 Paris, France
| | - Olivier Dussurget
- Institut Pasteur, Université Paris Cité, CNRS UMR6047, Yersinia Research Unit, 28 rue du Dr Roux, 75015 Paris, France
| |
Collapse
|
9
|
Nagarajan A, Scoggin K, Gupta J, Aminian M, Adams LG, Kirby M, Threadgill D, Andrews-Polymenis H. Collaborative Cross mice have diverse phenotypic responses to infection with Methicillin-resistant Staphylococcus aureus USA300. PLoS Genet 2024; 20:e1011229. [PMID: 38696518 PMCID: PMC11108197 DOI: 10.1371/journal.pgen.1011229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 05/21/2024] [Accepted: 03/18/2024] [Indexed: 05/04/2024] Open
Abstract
Staphylococcus aureus (S. aureus) is an opportunistic pathogen causing diseases ranging from mild skin infections to life threatening conditions, including endocarditis, pneumonia, and sepsis. To identify host genes modulating this host-pathogen interaction, we infected 25 Collaborative Cross (CC) mouse strains with methicillin-resistant S. aureus (MRSA) and monitored disease progression for seven days using a surgically implanted telemetry system. CC strains varied widely in their response to intravenous MRSA infection. We identified eight 'susceptible' CC strains with high bacterial load, tissue damage, and reduced survival. Among the surviving strains, six with minimal colonization were classified as 'resistant', while the remaining six tolerated higher organ colonization ('tolerant'). The kidney was the most heavily colonized organ, but liver, spleen and lung colonization were better correlated with reduced survival. Resistant strains had higher pre-infection circulating neutrophils and lower post-infection tissue damage compared to susceptible and tolerant strains. We identified four CC strains with sexual dimorphism: all females survived the study period while all males met our euthanasia criteria earlier. In these CC strains, males had more baseline circulating monocytes and red blood cells. We identified several CC strains that may be useful as new models for endocarditis, myocarditis, pneumonia, and resistance to MRSA infection. Quantitative Trait Locus (QTL) analysis identified two significant loci, on Chromosomes 18 and 3, involved in early susceptibility and late survival after infection. We prioritized Npc1 and Ifi44l genes as the strongest candidates influencing survival using variant analysis and mRNA expression data from kidneys within these intervals.
Collapse
Affiliation(s)
- Aravindh Nagarajan
- Interdisciplinary Program in Genetics and Genomics, Texas A&M University, College Station, Texas, United States of America
- Department of Microbial Pathogenesis and Immunology, Texas A&M University, College Station, Texas, United States of America
| | - Kristin Scoggin
- Interdisciplinary Program in Genetics and Genomics, Texas A&M University, College Station, Texas, United States of America
- Department of Molecular and Cellular Medicine, Texas A&M University, College Station, Texas, United States of America
| | - Jyotsana Gupta
- Department of Microbial Pathogenesis and Immunology, Texas A&M University, College Station, Texas, United States of America
| | - Manuchehr Aminian
- Department of Mathematics, Colorado State University, Fort Collins, Colorado, United States of America
- Department of Mathematics and Statistics, California State Polytechnic University, Pomona, California, United States of America
| | - L. Garry Adams
- Department of Veterinary Pathobiology, Texas A&M University, College Station, Texas, United States of America
| | - Michael Kirby
- Department of Mathematics, Colorado State University, Fort Collins, Colorado, United States of America
| | - David Threadgill
- Interdisciplinary Program in Genetics and Genomics, Texas A&M University, College Station, Texas, United States of America
- Department of Molecular and Cellular Medicine, Texas A&M University, College Station, Texas, United States of America
- Texas A&M Institute for Genome Sciences and Society, Texas A&M University, College Station, Texas, United States of America
- Department of Biochemistry & Biophysics and Department of Nutrition, Texas A&M University, College Station, Texas, United States of America
| | - Helene Andrews-Polymenis
- Interdisciplinary Program in Genetics and Genomics, Texas A&M University, College Station, Texas, United States of America
- Department of Microbial Pathogenesis and Immunology, Texas A&M University, College Station, Texas, United States of America
| |
Collapse
|
10
|
Das S, Malik M, Dastidar DG, Roy R, Paul P, Sarkar S, Chakraborty P, Maity A, Dasgupta M, Gupta AD, Chatterjee S, Sarker RK, Maiti D, Tribedi P. Piperine, a phytochemical prevents the biofilm city of methicillin-resistant Staphylococcus aureus: A biochemical approach to understand the underlying mechanism. Microb Pathog 2024; 189:106601. [PMID: 38423404 DOI: 10.1016/j.micpath.2024.106601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 02/21/2024] [Indexed: 03/02/2024]
Abstract
Methicillin-resistant Staphylococcus aureus (MRSA), a drug-resistant human pathogen causes several nosocomial as well as community-acquired infections involving biofilm machinery. Hence, it has gained a wide interest within the scientific community to impede biofilm-induced MRSA-associated health complications. The current study focuses on the utilization of a natural bioactive compound called piperine to control the biofilm development of MRSA. Quantitative assessments like crystal violet, total protein recovery, and fluorescein-di-acetate (FDA) hydrolysis assays, demonstrated that piperine (8 and 16 μg/mL) could effectively compromise the biofilm formation of MRSA. Light and scanning electron microscopic image analysis confirmed the same. Further investigation revealed that piperine could reduce extracellular polysaccharide production by down-regulating the expression of icaA gene. Besides, piperine could reduce the cell-surface hydrophobicity of MRSA, a crucial factor of biofilm formation. Moreover, the introduction of piperine could interfere with microbial motility indicating the interaction of piperine with the quorum-sensing components. A molecular dynamics study showed a stable binding between piperine and AgrA protein (regulator of quorum sensing) suggesting the possible meddling of piperine in quorum-sensing of MRSA. Additionally, the exposure to piperine led to the accumulation of intracellular reactive oxygen species (ROS) and potentially heightened cell membrane permeability in inhibiting microbial biofilm formation. Besides, piperine could reduce the secretion of diverse virulence factors from MRSA. Further exploration revealed that piperine interacted with extracellular DNA (e-DNA), causing disintegration by weakening the biofilm architecture. Conclusively, this study suggests that piperine could be a potential antibiofilm molecule against MRSA-associated biofilm infections.
Collapse
Affiliation(s)
- Sharmistha Das
- Microbial Ecology Research Laboratory, Department of Biotechnology, The Neotia University, Sarisha, West Bengal, 743368, India.
| | - Moumita Malik
- Microbial Ecology Research Laboratory, Department of Biotechnology, The Neotia University, Sarisha, West Bengal, 743368, India.
| | - Debabrata Ghosh Dastidar
- Guru Nanak Institute of Pharmaceutical Science and Technology, 157/F Nilgunj Road, Panihati, Kolkata, West Bengal, 700114, India.
| | - Ritwik Roy
- Microbial Ecology Research Laboratory, Department of Biotechnology, The Neotia University, Sarisha, West Bengal, 743368, India.
| | - Payel Paul
- Microbial Ecology Research Laboratory, Department of Biotechnology, The Neotia University, Sarisha, West Bengal, 743368, India.
| | - Sarita Sarkar
- Microbial Ecology Research Laboratory, Department of Biotechnology, The Neotia University, Sarisha, West Bengal, 743368, India.
| | - Poulomi Chakraborty
- Microbial Ecology Research Laboratory, Department of Biotechnology, The Neotia University, Sarisha, West Bengal, 743368, India.
| | - Alakesh Maity
- Microbial Ecology Research Laboratory, Department of Biotechnology, The Neotia University, Sarisha, West Bengal, 743368, India.
| | - Monikankana Dasgupta
- Microbial Ecology Research Laboratory, Department of Biotechnology, The Neotia University, Sarisha, West Bengal, 743368, India.
| | - Anirban Das Gupta
- Microbial Ecology Research Laboratory, Department of Biotechnology, The Neotia University, Sarisha, West Bengal, 743368, India.
| | - Sudipta Chatterjee
- Microbial Ecology Research Laboratory, Department of Biotechnology, The Neotia University, Sarisha, West Bengal, 743368, India.
| | - Ranojit Kumar Sarker
- Microbial Ecology Research Laboratory, Department of Biotechnology, The Neotia University, Sarisha, West Bengal, 743368, India.
| | - Debasish Maiti
- Department of Human Physiology, Tripura University, Suryamaninagar, Agartala, Tripura, 799022, India.
| | - Prosun Tribedi
- Microbial Ecology Research Laboratory, Department of Biotechnology, The Neotia University, Sarisha, West Bengal, 743368, India.
| |
Collapse
|
11
|
Zhu Z, Hu Z, Li S, Fang R, Ono HK, Hu DL. Molecular Characteristics and Pathogenicity of Staphylococcus aureus Exotoxins. Int J Mol Sci 2023; 25:395. [PMID: 38203566 PMCID: PMC10778951 DOI: 10.3390/ijms25010395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 12/24/2023] [Accepted: 12/26/2023] [Indexed: 01/12/2024] Open
Abstract
Staphylococcus aureus stands as one of the most pervasive pathogens given its morbidity and mortality worldwide due to its roles as an infectious agent that causes a wide variety of diseases ranging from moderately severe skin infections to fatal pneumonia and sepsis. S. aureus produces a variety of exotoxins that serve as important virulence factors in S. aureus-related infectious diseases and food poisoning in both humans and animals. For example, staphylococcal enterotoxins (SEs) produced by S. aureus induce staphylococcal foodborne poisoning; toxic shock syndrome toxin-1 (TSST-1), as a typical superantigen, induces toxic shock syndrome; hemolysins induce cell damage in erythrocytes and leukocytes; and exfoliative toxin induces staphylococcal skin scalded syndrome. Recently, Panton-Valentine leucocidin, a cytotoxin produced by community-associated methicillin-resistant S. aureus (CA-MRSA), has been reported, and new types of SEs and staphylococcal enterotoxin-like toxins (SEls) were discovered and reported successively. This review addresses the progress of and novel insights into the molecular structure, biological activities, and pathogenicity of both the classic and the newly identified exotoxins produced by S. aureus.
Collapse
Affiliation(s)
- Zhihao Zhu
- Department of Zoonoses, Kitasato University School of Veterinary Medicine, Towada 034-8628, Japan; (Z.Z.); (Z.H.); (H.K.O.)
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China;
| | - Zuo Hu
- Department of Zoonoses, Kitasato University School of Veterinary Medicine, Towada 034-8628, Japan; (Z.Z.); (Z.H.); (H.K.O.)
| | - Shaowen Li
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China;
| | - Rendong Fang
- Joint International Research Laboratory of Animal Health and Animal Food Safety, College of Veterinary Medicine, Southwest University, Chongqing 400715, China;
| | - Hisaya K. Ono
- Department of Zoonoses, Kitasato University School of Veterinary Medicine, Towada 034-8628, Japan; (Z.Z.); (Z.H.); (H.K.O.)
| | - Dong-Liang Hu
- Department of Zoonoses, Kitasato University School of Veterinary Medicine, Towada 034-8628, Japan; (Z.Z.); (Z.H.); (H.K.O.)
| |
Collapse
|
12
|
Ilmain JK, Perelman SS, Panepinto MC, Irnov I, Coudray N, Samhadaneh N, Pironti A, Ueberheide B, Ekiert DC, Bhabha G, Torres VJ. Unlatching of the stem domains in the Staphylococcus aureus pore-forming leukocidin LukAB influences toxin oligomerization. J Biol Chem 2023; 299:105321. [PMID: 37802313 PMCID: PMC10665946 DOI: 10.1016/j.jbc.2023.105321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 09/22/2023] [Accepted: 09/27/2023] [Indexed: 10/08/2023] Open
Abstract
Staphylococcus aureus (S. aureus) is a serious global pathogen that causes a diverse range of invasive diseases. S. aureus utilizes a family of pore-forming toxins, known as bi-component leukocidins, to evade the host immune response and promote infection. Among these is LukAB (leukocidin A/leukocidin B), a toxin that assembles into an octameric β-barrel pore in the target cell membrane, resulting in host cell death. The established cellular receptor for LukAB is CD11b of the Mac-1 complex. Here, we show that hydrogen voltage-gated channel 1 is also required for the cytotoxicity of all major LukAB variants. We demonstrate that while each receptor is sufficient to recruit LukAB to the plasma membrane, both receptors are required for maximal lytic activity. Why LukAB requires two receptors, and how each of these receptors contributes to pore-formation remains unknown. To begin to resolve this, we performed an alanine scanning mutagenesis screen to identify mutations that allow LukAB to maintain cytotoxicity without CD11b. We discovered 30 mutations primarily localized in the stem domains of LukA and LukB that enable LukAB to exhibit full cytotoxicity in the absence of CD11b. Using crosslinking, electron microscopy, and hydroxyl radical protein footprinting, we show these mutations increase the solvent accessibility of the stem domain, priming LukAB for oligomerization. Together, our data support a model in which CD11b binding unlatches the membrane penetrating stem domains of LukAB, and this change in flexibility promotes toxin oligomerization.
Collapse
Affiliation(s)
- Juliana K Ilmain
- Department of Microbiology, New York University Grossman School of Medicine, New York, New York, USA
| | - Sofya S Perelman
- Department of Microbiology, New York University Grossman School of Medicine, New York, New York, USA
| | - Maria C Panepinto
- Proteomics Laboratory, Division of Advanced Research Technologies, New York University Grossman School of Medicine, New York, New York, USA
| | - Irnov Irnov
- Department of Microbiology, New York University Grossman School of Medicine, New York, New York, USA
| | - Nicolas Coudray
- Applied Bioinformatics Laboratories, New York University Grossman School of Medicine, New York, New York, USA; Department of Cell Biology, New York University Grossman School of Medicine, New York, New York, USA
| | - Nora Samhadaneh
- Antimicrobial-Resistant Pathogens Program, New York University Langone Health, New York, New York, USA
| | - Alejandro Pironti
- Department of Microbiology, New York University Grossman School of Medicine, New York, New York, USA; Antimicrobial-Resistant Pathogens Program, New York University Langone Health, New York, New York, USA
| | - Beatrix Ueberheide
- Proteomics Laboratory, Division of Advanced Research Technologies, New York University Grossman School of Medicine, New York, New York, USA; Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, New York, New York, USA; Department of Neurology, Center for Cognitive Neurology, New York University Grossman School of Medicine, New York, New York, USA
| | - Damian C Ekiert
- Department of Microbiology, New York University Grossman School of Medicine, New York, New York, USA; Department of Cell Biology, New York University Grossman School of Medicine, New York, New York, USA; Antimicrobial-Resistant Pathogens Program, New York University Langone Health, New York, New York, USA
| | - Gira Bhabha
- Department of Cell Biology, New York University Grossman School of Medicine, New York, New York, USA; Antimicrobial-Resistant Pathogens Program, New York University Langone Health, New York, New York, USA
| | - Victor J Torres
- Department of Microbiology, New York University Grossman School of Medicine, New York, New York, USA; Department of Host-Microbe Interactions, St Jude Children's Research Hospital, Memphis, Tennessee, USA.
| |
Collapse
|
13
|
He J, Yang X, Yang K, Xu H, Chen C, Wang J, Zeng J. TPST2-mediated receptor tyrosine sulfation enhances leukocidin cytotoxicity and S. aureus infection. Front Immunol 2023; 14:1242330. [PMID: 37671153 PMCID: PMC10476081 DOI: 10.3389/fimmu.2023.1242330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 07/31/2023] [Indexed: 09/07/2023] Open
Abstract
Background An essential fact underlying the severity of Staphylococcus aureus (S. aureus) infection is the bicomponent leukocidins released by the pathogen to target and lyse host phagocytes through specific binding cell membrane receptors. However, little is known about the impact of post-transcriptional modification of receptors on the leukocidin binding. Method In this study, we used small interfering RNA library (Horizon/Dharmacon) to screen potential genes that affect leukocidin binding on receptors. The cell permeability was investigated through flow cytometry measuring the internalization of 4',6-diamidino-2-phenylindole. Expression of C5a anaphylatoxin chemotactic receptor 1 (C5aR1), sulfated C5aR1 in, and binding of 6x-His-tagged Hemolysin C (HlgC) and Panton-Valentine leukocidin (PVL) slow-component to THP-1 cell lines was detected and analyzed via flow cytometry. Bacterial burden and Survival analysis experiment was conducted in WT and myeloid TPST-cko C57BL/6N mice. Results After short hairpin RNA (shRNA) knockdown of TPST2 gene in THP-1, HL-60, and RAW264.7, the cytotoxicity of HlgAB, HlgCB, and Panton-Valentine leukocidin on THP-1 or HL-60 cells was decreased significantly, and the cytotoxicity of HlgAB on RAW264.7 cells was also decreased significantly. Knockdown of TPST2 did not affect the C5aR1 expression but downregulated cell surface C5aR1 tyrosine sulfation on THP-1. In addition, we found that the binding of HlgC and LukS-PV on cell surface receptor C5aR1 was impaired in C5aR1+TPST2- and C5aR1-TPST2- cells. Phagocyte knockout of TPST2 protects mice from S. aureus infection and improves the survival of mice infected with S. aureus. Conclusion These results indicate that phagocyte TPST2 mediates the bicomponent leukocidin cytotoxicity by promoting cell membrane receptor sulfation modification that facilitates its binding to leukocidin S component.
Collapse
Affiliation(s)
- Jie He
- Division of Pulmonary and Critical Care Medicine, Clinical Medical College and The First Affiliated Hospital of Chengdu Medical College, Chengdu, China
| | - Xianggui Yang
- Department of Laboratory Medicine, Clinical Medical College and The First Affiliated Hospital of Chengdu Medical College, Chengdu, China
| | - Kai Yang
- Division of Pulmonary and Critical Care Medicine, Clinical Medical College and The First Affiliated Hospital of Chengdu Medical College, Chengdu, China
| | | | | | | | - Jun Zeng
- Division of Pulmonary and Critical Care Medicine, Clinical Medical College and The First Affiliated Hospital of Chengdu Medical College, Chengdu, China
| |
Collapse
|
14
|
Hsieh RC, Liu R, Burgin DJ, Otto M. Understanding mechanisms of virulence in MRSA: implications for antivirulence treatment strategies. Expert Rev Anti Infect Ther 2023; 21:911-928. [PMID: 37501364 DOI: 10.1080/14787210.2023.2242585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 07/26/2023] [Indexed: 07/29/2023]
Abstract
INTRODUCTION Methicillin-resistant Staphylococcus aureus (MRSA) is a widespread pathogen, often causing recurrent and deadly infections in the hospital and community. Many S. aureus virulence factors have been suggested as potential targets for antivirulence therapy to decrease the threat of diminishing antibiotic availability. Antivirulence methods hold promise due to their adjunctive and prophylactic potential and decreased risk for selective pressure. AREAS COVERED This review describes the dominant virulence mechanisms exerted by MRSA and antivirulence therapeutics that are currently undergoing testing in clinical or preclinical stages. We also discuss the advantages and downsides of several investigational antivirulence approaches, including the targeting of bacterial transporters, host-directed therapy, and quorum-sensing inhibitors. For this review, a systematic search of literature on PubMed, Google Scholar, and Web of Science for relevant search terms was performed in April and May 2023. EXPERT OPINION Vaccine and antibody strategies have failed in clinical trials and could benefit from more basic science-informed approaches. Antivirulence-targeting approaches need to be set up better to meet the requirements of drug development, rather than only providing limited results to provide 'proof-of-principle' translational value of pathogenesis research. Nevertheless, there is great potential of such strategies and potential particular promise for novel probiotic approaches.
Collapse
Affiliation(s)
- Roger C Hsieh
- Pathogen Molecular Genetics Section, Laboratory of Bacteriology, National Institute of Allergy and Infectious Diseases (NIAID), U.S. National Institutes of Health (NIH), Bethesda, Maryland, USA
| | - Ryan Liu
- Pathogen Molecular Genetics Section, Laboratory of Bacteriology, National Institute of Allergy and Infectious Diseases (NIAID), U.S. National Institutes of Health (NIH), Bethesda, Maryland, USA
| | - Dylan J Burgin
- Pathogen Molecular Genetics Section, Laboratory of Bacteriology, National Institute of Allergy and Infectious Diseases (NIAID), U.S. National Institutes of Health (NIH), Bethesda, Maryland, USA
| | - Michael Otto
- Pathogen Molecular Genetics Section, Laboratory of Bacteriology, National Institute of Allergy and Infectious Diseases (NIAID), U.S. National Institutes of Health (NIH), Bethesda, Maryland, USA
| |
Collapse
|
15
|
Wang M, Wang Y, Wang M, Liu M, Cheng A. Heme acquisition and tolerance in Gram-positive model bacteria: An orchestrated balance. Heliyon 2023; 9:e18233. [PMID: 37501967 PMCID: PMC10368836 DOI: 10.1016/j.heliyon.2023.e18233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 06/26/2023] [Accepted: 07/12/2023] [Indexed: 07/29/2023] Open
Abstract
As a nutrient, heme is important for various cellular processes of organism. Bacteria can obtain heme via heme biosynthesis or/and uptake of exogenous heme from the host. On the other side, absorption of excess heme is cytotoxic to bacteria. Thus, bacteria have developed systems to relieve heme toxicity and contribute to the maintenance of heme homeostasis. In the past decades, the mechanisms underlying heme acquisition and tolerance have been well studied in Gram-positive model bacteria, such as Staphylococcus, Streptococcus and other Gram-positive bacteria. Here, we review the elaborate mechanisms by which these bacteria acquire heme and resist heme toxicity. Since both the heme utilization system and the heme tolerance system contribute to bacterial virulence, this review is not only helpful for a comprehensive understanding of the heme homeostasis mechanism in Gram-positive bacteria but also provides a theoretical basis for the development of antimicrobial agents.
Collapse
Affiliation(s)
- Mengying Wang
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Chengdu 611130, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu 611130, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu 611130, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Yuwei Wang
- Mianyang Academy of Agricultural Sciences, Institute of Livestock Research, Mianyang 621023, China
| | - Mingshu Wang
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Chengdu 611130, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu 611130, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu 611130, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Mafeng Liu
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Chengdu 611130, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu 611130, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu 611130, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Anchun Cheng
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Chengdu 611130, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu 611130, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu 611130, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| |
Collapse
|
16
|
Buckley PT, Chan R, Fernandez J, Luo J, Lacey KA, DuMont AL, O'Malley A, Brezski RJ, Zheng S, Malia T, Whitaker B, Zwolak A, Payne A, Clark D, Sigg M, Lacy ER, Kornilova A, Kwok D, McCarthy S, Wu B, Morrow B, Nemeth-Seay J, Petley T, Wu S, Strohl WR, Lynch AS, Torres VJ. Multivalent human antibody-centyrin fusion protein to prevent and treat Staphylococcus aureus infections. Cell Host Microbe 2023; 31:751-765.e11. [PMID: 37098341 DOI: 10.1016/j.chom.2023.04.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 02/12/2023] [Accepted: 04/03/2023] [Indexed: 04/27/2023]
Abstract
Treating and preventing infections by antimicrobial-resistant bacterial pathogens is a worldwide problem. Pathogens such as Staphylococcus aureus produce an array of virulence determinants, making it difficult to identify single targets for the development of vaccines or monoclonal therapies. We described a human-derived anti-S. aureus monoclonal antibody (mAb)-centyrin fusion protein ("mAbtyrin") that simultaneously targets multiple bacterial adhesins, resists proteolysis by bacterial protease GluV8, avoids Fc engagement by S. aureus IgG-binding proteins SpA and Sbi, and neutralizes pore-forming leukocidins via fusion with anti-toxin centyrins, while maintaining Fc- and complement-mediated functions. Compared with the parental mAb, mAbtyrin protected human phagocytes and boosted phagocyte-mediated killing. The mAbtyrin also reduced pathology, reduced bacterial burden, and protected from different types of infections in preclinical animal models. Finally, mAbtyrin synergized with vancomycin, enhancing pathogen clearance in an animal model of bacteremia. Altogether, these data establish the potential of multivalent mAbs for treating and preventing S. aureus diseases.
Collapse
Affiliation(s)
- Peter T Buckley
- Janssen Research & Development, 1400 McKean Road, Spring House, PA, USA.
| | - Rita Chan
- Department of Microbiology, New York University Grossman School of Medicine, Alexandria Center for Life Science, 430 East 29th Street, New York, NY 10016, USA
| | - Jeffrey Fernandez
- Janssen Research & Development, 1400 McKean Road, Spring House, PA, USA
| | - Jinquan Luo
- Janssen Research & Development, 1400 McKean Road, Spring House, PA, USA
| | - Keenan A Lacey
- Department of Microbiology, New York University Grossman School of Medicine, Alexandria Center for Life Science, 430 East 29th Street, New York, NY 10016, USA
| | - Ashley L DuMont
- Department of Microbiology, New York University Grossman School of Medicine, Alexandria Center for Life Science, 430 East 29th Street, New York, NY 10016, USA
| | - Aidan O'Malley
- Department of Microbiology, New York University Grossman School of Medicine, Alexandria Center for Life Science, 430 East 29th Street, New York, NY 10016, USA
| | - Randall J Brezski
- Janssen Research & Development, 1400 McKean Road, Spring House, PA, USA
| | - Songmao Zheng
- Janssen Research & Development, 1400 McKean Road, Spring House, PA, USA
| | - Thomas Malia
- Janssen Research & Development, 1400 McKean Road, Spring House, PA, USA
| | - Brian Whitaker
- Janssen Research & Development, 1400 McKean Road, Spring House, PA, USA
| | - Adam Zwolak
- Janssen Research & Development, 1400 McKean Road, Spring House, PA, USA
| | - Angela Payne
- Janssen Research & Development, 1400 McKean Road, Spring House, PA, USA
| | - Desmond Clark
- Janssen Research & Development, 1400 McKean Road, Spring House, PA, USA
| | - Martin Sigg
- Janssen Research & Development, 1400 McKean Road, Spring House, PA, USA
| | - Eilyn R Lacy
- Janssen Research & Development, 1400 McKean Road, Spring House, PA, USA
| | - Anna Kornilova
- Janssen Research & Development, 1400 McKean Road, Spring House, PA, USA
| | - Debra Kwok
- Janssen Research & Development, 1400 McKean Road, Spring House, PA, USA
| | - Steve McCarthy
- Janssen Research & Development, 1400 McKean Road, Spring House, PA, USA
| | - Bingyuan Wu
- Janssen Research & Development, 1400 McKean Road, Spring House, PA, USA
| | - Brian Morrow
- Janssen Research & Development, 1400 McKean Road, Spring House, PA, USA
| | | | - Ted Petley
- Janssen Research & Development, 1400 McKean Road, Spring House, PA, USA
| | - Sam Wu
- Janssen Research & Development, 1400 McKean Road, Spring House, PA, USA
| | - William R Strohl
- Janssen Research & Development, 1400 McKean Road, Spring House, PA, USA
| | | | - Victor J Torres
- Department of Microbiology, New York University Grossman School of Medicine, Alexandria Center for Life Science, 430 East 29th Street, New York, NY 10016, USA; Antimicrobial-Resistant Pathogens Program, New York University Langone Health, Alexandria Center for Life Science, 430 East 29th Street, New York, NY 10016, USA.
| |
Collapse
|
17
|
Mishra S, Roy A, Dutta S. Cryo-EM-based structural insights into supramolecular assemblies of γ-hemolysin from S. aureus reveal the pore formation mechanism. Structure 2023:S0969-2126(23)00085-0. [PMID: 37019111 DOI: 10.1016/j.str.2023.03.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 01/31/2023] [Accepted: 03/10/2023] [Indexed: 04/07/2023]
Abstract
γ-Hemolysin (γ-HL) is a hemolytic and leukotoxic bicomponent β-pore-forming toxin (β-PFT), a potent virulence factor from the Staphylococcus aureus Newman strain. In this study, we performed single-particle cryoelectron microscopy (cryo-EM) of γ-HL in a lipid environment. We observed clustering and square lattice packing of octameric HlgAB pores on the membrane bilayer and an octahedral superassembly of octameric pore complexes that we resolved at resolution of 3.5 Å. Our atomic model further demonstrated the key residues involved in hydrophobic zipping between the rim domains of adjacent octameric complexes, providing additional structural stability in PFTs post oligomerization. We also observed extra densities at the octahedral and octameric interfaces, providing insights into the plausible lipid-binding residues involved for HlgA and HlgB components. Furthermore, the hitherto elusive N-terminal region of HlgA was also resolved in our cryo-EM map, and an overall mechanism of pore formation for bicomponent β-PFTs is proposed.
Collapse
Affiliation(s)
- Suman Mishra
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore 560012, India
| | - Anupam Roy
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore 560012, India
| | - Somnath Dutta
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore 560012, India.
| |
Collapse
|
18
|
Crawford KS, Volkman BF. Prospects for targeting ACKR1 in cancer and other diseases. Front Immunol 2023; 14:1111960. [PMID: 37006247 PMCID: PMC10050359 DOI: 10.3389/fimmu.2023.1111960] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 03/03/2023] [Indexed: 03/17/2023] Open
Abstract
The chemokine network is comprised of a family of signal proteins that encode messages for cells displaying chemokine G-protein coupled receptors (GPCRs). The diversity of effects on cellular functions, particularly directed migration of different cell types to sites of inflammation, is enabled by different combinations of chemokines activating signal transduction cascades on cells displaying a combination of receptors. These signals can contribute to autoimmune disease or be hijacked in cancer to stimulate cancer progression and metastatic migration. Thus far, three chemokine receptor-targeting drugs have been approved for clinical use: Maraviroc for HIV, Plerixafor for hematopoietic stem cell mobilization, and Mogalizumab for cutaneous T-cell lymphoma. Numerous compounds have been developed to inhibit specific chemokine GPCRs, but the complexity of the chemokine network has precluded more widespread clinical implementation, particularly as anti-neoplastic and anti-metastatic agents. Drugs that block a single signaling axis may be rendered ineffective or cause adverse reactions because each chemokine and receptor often have multiple context-specific functions. The chemokine network is tightly regulated at multiple levels, including by atypical chemokine receptors (ACKRs) that control chemokine gradients independently of G-proteins. ACKRs have numerous functions linked to chemokine immobilization, movement through and within cells, and recruitment of alternate effectors like β-arrestins. Atypical chemokine receptor 1 (ACKR1), previously known as the Duffy antigen receptor for chemokines (DARC), is a key regulator that binds chemokines involved in inflammatory responses and cancer proliferation, angiogenesis, and metastasis. Understanding more about ACKR1 in different diseases and populations may contribute to the development of therapeutic strategies targeting the chemokine network.
Collapse
Affiliation(s)
- Kyler S. Crawford
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI, United States
| | | |
Collapse
|
19
|
Haag AF, Liljeroos L, Donato P, Pozzi C, Brignoli T, Bottomley MJ, Bagnoli F, Delany I. In Vivo Gene Expression Profiling of Staphylococcus aureus during Infection Informs Design of Stemless Leukocidins LukE and -D as Detoxified Vaccine Candidates. Microbiol Spectr 2023; 11:e0257422. [PMID: 36688711 PMCID: PMC9927290 DOI: 10.1128/spectrum.02574-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 01/02/2023] [Indexed: 01/24/2023] Open
Abstract
Staphylococcus aureus is a clinically important bacterial pathogen that has become resistant to treatment with most routinely used antibiotics. Alternative strategies, such as vaccination and phage therapy, are therefore actively being investigated to prevent or combat staphylococcal infections. Vaccination requires that vaccine targets are expressed at sufficient quantities during infection so that they can be targeted by the host's immune system. While our knowledge of in vitro expression levels of putative vaccine candidates is comprehensive, crucial in vivo expression data are scarce and promising vaccine candidates during in vitro assessment often prove ineffective in preventing S. aureus infection. Here, we show how a newly developed high-throughput quantitative reverse transcription-PCR (qRT-PCR) assay monitoring the expression of 84 staphylococcal genes encoding mostly virulence factors can inform the selection and design of effective vaccine candidates against staphylococcal infections. We show that this assay can accurately quantify mRNA expression levels of these genes in several host organs relying only on very limited amounts of bacterial mRNA in each sample. We selected two highly expressed genes, lukE and lukD, encoding pore-forming leukotoxins, to inform the design of detoxified recombinant proteins and showed that immunization with recombinant genetically detoxified LukED antigens conferred protection against staphylococcal skin infection in mice. Consequently, knowledge of in vivo-expressed virulence determinants can be successfully deployed to identify and select promising candidates for optimized design of effective vaccine antigens against S. aureus. Notably, this approach should be broadly applicable to numerous other pathogens. IMPORTANCE Vaccination is an attractive strategy for preventing bacterial infections in an age of increased antimicrobial resistance. However, vaccine development frequently suffers significant setbacks when candidate antigens that show promising results in in vitro experimentation fail to protect from disease. An alluring strategy is to focus resources on developing bacterial virulence factors that are expressed during disease establishment or maintenance and are critical for bacterial in-host survival as vaccine targets. While expression profiles of many virulence factors have been characterized in detail in vitro, our knowledge of their in vivo expression profiles is still scarce. Here, using a high-throughput qRT-PCR approach, we identified two highly expressed leukotoxins in a murine infection model and showed that genetically detoxified derivatives of these elicited a protective immune response in a murine skin infection model. Therefore, in vivo gene expression can inform the selection of promising candidates for the design of effective vaccine antigens.
Collapse
Affiliation(s)
- Andreas F. Haag
- GSK, Siena, Italy
- School of Medicine, University of St. Andrews, St. Andrews, United Kingdom
| | | | | | | | - Tarcisio Brignoli
- GSK, Siena, Italy
- School of Cellular and Molecular Medicine, University of Bristol, Bristol, United Kingdom
| | | | | | | |
Collapse
|
20
|
Francis D, Bhairaddy A, Joy A, Hari GV, Francis A. Secretory proteins in the orchestration of microbial virulence: The curious case of Staphylococcus aureus. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2023; 133:271-350. [PMID: 36707204 DOI: 10.1016/bs.apcsb.2022.10.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Microbial virulence showcases an excellent model for adaptive changes that enable an organism to survive and proliferate in a hostile environment and exploit host resources to its own benefit. In Staphylococcus aureus, an opportunistic pathogen of the human host, known for the diversity of the disease conditions it inflicts and the rapid evolution of antibiotic resistance, virulence is a consequence of having a highly plastic genome that is amenable to quick reprogramming and the ability to express a diverse arsenal of virulence factors. Virulence factors that are secreted to the host milieu effectively manipulate the host conditions to favor bacterial survival and growth. They assist in colonization, nutrient acquisition, immune evasion, and systemic spread. The structural and functional characteristics of the secreted virulence proteins have been shaped to assist S. aureus in thriving and disseminating effectively within the host environment and exploiting the host resources to its best benefit. With the aim of highlighting the importance of secreted virulence proteins in bacterial virulence, the present chapter provides a comprehensive account of the role of the major secreted proteins of S. aureus in orchestrating its virulence in the human host.
Collapse
Affiliation(s)
- Dileep Francis
- Department of Life Sciences, Kristu Jayanti College, Autonomous, Bengaluru, Karnataka, India.
| | - Anusha Bhairaddy
- Department of Life Sciences, Kristu Jayanti College, Autonomous, Bengaluru, Karnataka, India
| | - Atheene Joy
- Department of Life Sciences, Kristu Jayanti College, Autonomous, Bengaluru, Karnataka, India
| | | | - Ashik Francis
- Rajiv Gandhi Centre for Biotechnology, Trivandrum, Kerala, India
| |
Collapse
|
21
|
Cao J, Zhang H, He Z, Piao Z, Zong X, Sun B. Genotypic and Phenotypic Characterization of Some psms Hypervirulent Clinical Isolates of Staphylococcus aureus in a Tertiary Hospital in Hefei, Anhui. Infect Drug Resist 2023; 16:1471-1484. [PMID: 36949844 PMCID: PMC10025015 DOI: 10.2147/idr.s399688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 02/17/2023] [Indexed: 03/15/2023] Open
Abstract
Background Staphylococcus aureus is a highly successful pathogen that can cause various infectious diseases, from relatively mild skin infections to life-threatening severe systemic diseases. The widespread pathogenicity of S. aureus is mainly due to its ability to produce many virulence factors that help destroy various host cells, causing disease. Our primary goal in this study was to explore the genes of highly virulent strains, to identify genes closely associated with high virulence, and to provide ideas for the treatment of infection by highly virulent clinical strains. Results This study collected 221 clinical strains from The First Affiliated Hospital Of The University of Science and Technology of China (USTC); their hemolytic abilities were tested. Eight isolates were selected based on their highly hemolytic ability and tested their hemolytic activity again; their phenotypes and gene sequences were also explored. Whole-genome sequencing (WGS) showed six plasmids (pN315, pNE131, pSJH901, pSJH101, SAP106B, and MSSA476), eight antibiotic resistance genes [blaR1, blaI, blaZ, mecA, erm(C), erm(T), tet(38), and fosB-Saur] and seventy-two virulence related genes. Three highly virulent strains, namely X21111206, 21092239, and 21112607, were found according the Galleria mellonella infection model. Therefore, we selected 10 representative virulence genes for qRT-PCR: psmα, psmβ, hlgA, hlgB, hlgC, hla, clfA, clfB, spa, and sak. Among them, the expression levels of psmα and psmβ, the three isolates, were significantly higher than the positive control NCTC8325. Conclusion Significant differences appear in the expression of virulence genes in the highly virulent strains, particularly the psmα and psmβ, It may be that the high expression of psm gene is the cause of the high virulence of Staphylococcus aureus. We can reduce the pathogenicity of Staphylococcus aureus by inhibiting the expression of psm gene, which may provide a strong basis for psm as a new target for clinical treatment of S. aureus infection.
Collapse
Affiliation(s)
- Jiaxin Cao
- College of Life Science and Technology, Mudanjiang Normal University, Mudanjiang, People’s Republic of China
- School of Life Science and Medicine, University of Science and Technology of China, Hefei, People’s Republic of China
| | - Huimin Zhang
- College of Life Science and Technology, Mudanjiang Normal University, Mudanjiang, People’s Republic of China
- School of Life Science and Medicine, University of Science and Technology of China, Hefei, People’s Republic of China
| | - Zhien He
- School of Life Science and Medicine, University of Science and Technology of China, Hefei, People’s Republic of China
| | - Zhongwan Piao
- College of Life Science and Technology, Mudanjiang Normal University, Mudanjiang, People’s Republic of China
- Correspondence: Baolin Sun; Zhongwan Piao, Email ;
| | - Xianchun Zong
- College of Life Science and Technology, Mudanjiang Normal University, Mudanjiang, People’s Republic of China
| | - Baolin Sun
- College of Life Science and Technology, Mudanjiang Normal University, Mudanjiang, People’s Republic of China
- School of Life Science and Medicine, University of Science and Technology of China, Hefei, People’s Republic of China
- Correspondence: Baolin Sun; Zhongwan Piao, Email ;
| |
Collapse
|
22
|
Chen J, Chen J, Wang Z, Chen C, Zheng J, Yu Z, Deng Q, Zhao Y, Wen Z. 20S-ginsenoside Rg3 inhibits the biofilm formation and haemolytic activity of Staphylococcus aureus by inhibiting the SaeR/SaeS two-component system. J Med Microbiol 2022; 71. [DOI: 10.1099/jmm.0.001587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Introduction.
Staphylococcus aureus
is a major cause of chronic diseases and biofilm formation is a contributing factor. 20S-ginsenoside Rg3 (Rg3) is a natural product extracted from the traditional Chinese medicine red ginseng.
Gap statement. The effects of Rg3 on biofilm formation and haemolytic activity as well as its antibacterial mechanism against
S. aureus
have not been reported.
Aim. This study aimed to investigate the effects of Rg3 on biofilm formation and haemolytic activity as well as its antibacterial action against clinical
S. aureus
isolates.
Methodology. The effect of Rg3 on biofilm formation of clinical
S. aureus
isolates was studied by crystal violet staining. Haemolytic activity analysis was carried out. Furthermore, the influence of Rg3 on the proteome profile of
S. aureus
was studied by quantitative proteomics to clarify the mechanism underlying its antibacterial action and further verified by reverse transcription quantitative real-time polymerase chain reaction (RT-qPCR).
Results. Rg3 significantly inhibited biofilm formation and haemolytic activity in clinical
S. aureus
isolates. A total of 63 with >1.5-fold changes in expression were identified, including 34 upregulated proteins and 29 downregulated proteins. Based on bioinformatics analysis, the expression of several virulence factors and biofilm-related proteins, containing CopZ, CspA, SasG, SaeR/SaeS two-component system and SaeR/SaeS-regulated proteins, including leukocidin-like protein 2, immunoglobulin-binding protein G (Sbi) and fibrinogen-binding protein, in the
S. aureu
s of the Rg3-treated group was downregulated. RT-qPCR confirmed that Rg3 inhibited the regulation of SaeR/SaeS and decreased the transcriptional levels of the biofilm-related genes CopZ, CspA and SasG.
Conclusions. Rg3 reduces the formation of biofilm by reducing cell adhesion and aggregation. Further, Rg3 can inhibit the SaeR/SaeS two-component system, which acts as a crucial signal transduction system for the anti-virulence activity of Rg3 against clinical
S. aureus
isolates.
Collapse
Affiliation(s)
- Junwen Chen
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Bio-medical Engineering, Shenzhen University Health Science Center, Shenzhen 518060, PR China
- Department of Infectious Diseases and Shenzhen Key Lab of Endogenous Infection, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen 518052, PR China
| | - Jinlian Chen
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Bio-medical Engineering, Shenzhen University Health Science Center, Shenzhen 518060, PR China
- Department of Infectious Diseases and Shenzhen Key Lab of Endogenous Infection, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen 518052, PR China
| | - Zhanwen Wang
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Bio-medical Engineering, Shenzhen University Health Science Center, Shenzhen 518060, PR China
- Department of Infectious Diseases and Shenzhen Key Lab of Endogenous Infection, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen 518052, PR China
| | - Chengchun Chen
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Bio-medical Engineering, Shenzhen University Health Science Center, Shenzhen 518060, PR China
- Department of Infectious Diseases and Shenzhen Key Lab of Endogenous Infection, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen 518052, PR China
| | - Jinxin Zheng
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Bio-medical Engineering, Shenzhen University Health Science Center, Shenzhen 518060, PR China
- Department of Infectious Diseases and Shenzhen Key Lab of Endogenous Infection, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen 518052, PR China
| | - Zhijian Yu
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Bio-medical Engineering, Shenzhen University Health Science Center, Shenzhen 518060, PR China
- Department of Infectious Diseases and Shenzhen Key Lab of Endogenous Infection, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen 518052, PR China
| | - Qiwen Deng
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Bio-medical Engineering, Shenzhen University Health Science Center, Shenzhen 518060, PR China
- Department of Infectious Diseases and Shenzhen Key Lab of Endogenous Infection, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen 518052, PR China
| | - Yuxi Zhao
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Bio-medical Engineering, Shenzhen University Health Science Center, Shenzhen 518060, PR China
- Department of Infectious Diseases and Shenzhen Key Lab of Endogenous Infection, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen 518052, PR China
| | - Zewen Wen
- Department of Infectious Diseases and Shenzhen Key Lab of Endogenous Infection, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen 518052, PR China
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Bio-medical Engineering, Shenzhen University Health Science Center, Shenzhen 518060, PR China
| |
Collapse
|
23
|
The Small RNA Teg41 Is a Pleiotropic Regulator of Virulence in Staphylococcus aureus. Infect Immun 2022; 90:e0023622. [PMID: 36214557 PMCID: PMC9670889 DOI: 10.1128/iai.00236-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Previously, our group demonstrated a role for the small RNA (sRNA) Teg41 in regulating production of the alpha phenol-soluble modulin toxins (αPSMs) in Staphylococcus aureus. Overexpressing Teg41 increased αPSM production while deleting the 3' end of Teg41 (Teg41Δ3' strain) resulted in a decrease in αPSM production, reduced hemolytic activity of S. aureus culture supernatants, and attenuated virulence in a murine abscess model of infection. In this study, we further explore the attenuation of virulence in the Teg41Δ3' strain. Using both localized and systemic models of infection, we demonstrate that the Teg41Δ3' strain is more severely attenuated than an ΔαPSM mutant, strongly suggesting that Teg41 influences more than the αPSMs. Proteomic and transcriptomic analysis of the wild-type and Teg41Δ3' strains reveals widespread alterations in transcript abundance and protein production in the absence of Teg41, confirming that Teg41 has pleiotropic effects in the cell. We go on to investigate the molecular mechanism underlying Teg41-mediated gene regulation. Surprisingly, results demonstrate that certain Teg41 target genes, including the αPSMs and βPSMs, are transcriptionally altered in the Teg41Δ3' strain, while other targets, specifically spa (encoding surface protein A), are regulated at the level of transcript stability. Collectively, these data demonstrate that Teg41 is a pleiotropic RNA regulator in S. aureus that influences expression of a variety of genes using multiple different mechanisms.
Collapse
|
24
|
Abstract
Methicillin-resistant Staphylococcus aureus (MRSA) is one of the most common causes of hospital-acquired pneumonia. To better manage patients with MRSA pneumonia, we require a greater understanding of the host-pathogen interactions during infection. MRSA research focuses on highly virulent and cytotoxic strains, which demonstrate robust phenotypes in animal models of infection. However, nosocomial infections are often caused by hospital-acquired MRSA (HA-MRSA) isolates that exhibit low cytotoxicity and few or no phenotypes in mice, thereby confounding mechanistic studies of pathogenesis. Consequently, virulence pathways utilized by HA-MRSA in nosocomial pneumonia are largely unknown. Here, we report that conditioning mice with broad-spectrum antibiotics lowers the barrier to pneumonia, thereby transforming otherwise avirulent HA-MRSA isolates into lethal pathogens. HA-MRSA isolates are avirulent in gnotobiotic mice, mimicking results in conventional animals. Thus, the observed enhanced susceptibility to infection in antibiotic-treated mice is not due to depletion of the microbiota. More generally, we found that antibiotic conditioning leads to increased susceptibility to infection by diverse antimicrobial-resistant (AMR) pathogens of low virulence. Treatment with antibiotics leads to dehydration and malnutrition, suggesting a potential role for these clinically relevant and reducible hospital complications in susceptibility to pathogens. In sum, the model described here mitigates the impact of low virulence in immunocompetent mice, providing a convenient model to gain fundamental insight into the pathogenesis of nosocomial pathogens.
Collapse
|
25
|
Lambey P, Otun O, Cong X, Hoh F, Brunel L, Verdié P, Grison CM, Peysson F, Jeannot S, Durroux T, Bechara C, Granier S, Leyrat C. Structural insights into recognition of chemokine receptors by Staphylococcus aureus leukotoxins. eLife 2022; 11:72555. [PMID: 35311641 PMCID: PMC9005193 DOI: 10.7554/elife.72555] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 03/19/2022] [Indexed: 11/18/2022] Open
Abstract
Staphylococcus aureus (SA) leukocidin ED (LukED) belongs to a family of bicomponent pore forming toxins that play important roles in SA immune evasion and nutrient acquisition. LukED targets specific G protein-coupled chemokine receptors to lyse human erythrocytes (red blood cells) and leukocytes (white blood cells). The first recognition step of receptors is critical for specific cell targeting and lysis. The structural and molecular bases for this mechanism are not well understood but could constitute essential information to guide antibiotic development. Here, we characterized the interaction of LukE with chemokine receptors ACKR1, CCR2, and CCR5 using a combination of structural, pharmacological, and computational approaches. First, crystal structures of LukE in complex with a small molecule mimicking sulfotyrosine side chain (p-cresyl sulfate) and with peptides containing sulfotyrosines issued from receptor sequences revealed the location of receptor sulfotyrosine binding sites in the toxins. Then, by combining previous and novel experimental data with protein docking, classical and accelerated weight histogram (AWH) molecular dynamics we propose models of the ACKR1-LukE and CCR5-LukE complexes. This work provides novel insights into chemokine receptor recognition by leukotoxins and suggests that the conserved sulfotyrosine binding pocket could be a target of choice for future drug development.
Collapse
Affiliation(s)
- Paul Lambey
- Institut de Génomique Fonctionnelle, Université de Montpellier, CNRS, INSERM, Montpellier, France
| | - Omolade Otun
- Institut de Génomique Fonctionnelle, Université de Montpellier, CNRS, INSERM, Montpellier, France
| | - Xiaojing Cong
- Institut de Génomique Fonctionnelle, Université de Montpellier, CNRS, INSERM, Montpellier, France
| | - François Hoh
- Institut des Biomolécules Max Mousseron (IBMM), Université de Montpellier, CNRS, INSERM, Montpellier, France
| | - Luc Brunel
- Institut des Biomolécules Max Mousseron (IBMM), Université de Montpellier, CNRS, INSERM, Montpellier, France
| | - Pascal Verdié
- Institut des Biomolécules Max Mousseron (IBMM), Université de Montpellier, CNRS, INSERM, Montpellier, France
| | - Claire M Grison
- Institut de Génomique Fonctionnelle, Université de Montpellier, CNRS, INSERM, Montpellier, France
| | - Fanny Peysson
- Institut de Génomique Fonctionnelle, Université de Montpellier, CNRS, INSERM, Montpellier, France
| | - Sylvain Jeannot
- Institut de Génomique Fonctionnelle, Université de Montpellier, CNRS, INSERM, Montpellier, France
| | - Thierry Durroux
- Institut de Génomique Fonctionnelle, Université de Montpellier, CNRS, INSERM, Montpellier, France
| | - Cherine Bechara
- Institut de Génomique Fonctionnelle, Université de Montpellier, CNRS, INSERM, Montpellier, France
| | - Sébastien Granier
- Institut de Génomique Fonctionnelle, Université de Montpellier, CNRS, INSERM, Montpellier, France
| | - Cédric Leyrat
- Institut de Génomique Fonctionnelle, Université de Montpellier, CNRS, INSERM, Montpellier, France
| |
Collapse
|
26
|
Boulouis C, Leeansyah E, Mairpady Shambat S, Norrby-Teglund A, Sandberg JK. Mucosa-Associated Invariant T Cell Hypersensitivity to Staphylococcus aureus Leukocidin ED and Its Modulation by Activation. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2022; 208:1170-1179. [PMID: 35140134 PMCID: PMC9012079 DOI: 10.4049/jimmunol.2100912] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Accepted: 12/21/2021] [Indexed: 06/14/2023]
Abstract
Mucosa-associated invariant T (MAIT) cells recognize bacterial riboflavin metabolite Ags presented by MHC class Ib-related protein (MR1) and play important roles in immune control of microbes that synthesize riboflavin. This includes the pathobiont Staphylococcus aureus, which can also express a range of virulence factors, including the secreted toxin leukocidin ED (LukED). In this study, we found that human MAIT cells are hypersensitive to LukED-mediated lysis and lost on exposure to the toxin, leaving a T cell population devoid of MAIT cells. The cytolytic effect of LukED on MAIT cells was rapid and occurred at toxin concentrations lower than those required for toxicity against conventional T cells. Furthermore, this coincided with high MAIT cell expression of CCR5, and loss of these cells was efficiently inhibited by the CCR5 inhibitor maraviroc. Interestingly, exposure and preactivation of MAIT cells with IL-12 and IL-18, or activation via TCR triggering, partially protected from LukED toxicity. Furthermore, analysis of NK cells indicated that LukED targeted the mature cytotoxic CD57+ NK cell subset in a CCR5-independent manner. Overall, these results indicate that LukED efficiently eliminates immune cells that can respond rapidly to S. aureus in an innate fashion without the need for clonal expansion, and that MAIT cells are exceptionally vulnerable to this toxin. Thus, the findings support a model where LukED secretion may allow S. aureus to avoid recognition by the rapid cell-mediated responses mediated by MAIT cells and NK cells.
Collapse
Affiliation(s)
- Caroline Boulouis
- Center for Infectious Medicine, Department of Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Edwin Leeansyah
- Center for Infectious Medicine, Department of Medicine, Karolinska Institutet, Stockholm, Sweden
- Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, People's Republic of China; and
- Precision Medicine and Healthcare Research Center, Tsinghua-Berkeley Shenzhen Institute, Tsinghua University, Shenzhen, People's Republic of China
| | | | - Anna Norrby-Teglund
- Center for Infectious Medicine, Department of Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Johan K Sandberg
- Center for Infectious Medicine, Department of Medicine, Karolinska Institutet, Stockholm, Sweden;
| |
Collapse
|
27
|
Ulhuq FR, Mariano G. Bacterial pore-forming toxins. MICROBIOLOGY (READING, ENGLAND) 2022; 168:001154. [PMID: 35333704 PMCID: PMC9558359 DOI: 10.1099/mic.0.001154] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 02/03/2022] [Indexed: 12/11/2022]
Abstract
Pore-forming toxins (PFTs) are widely distributed in both Gram-negative and Gram-positive bacteria. PFTs can act as virulence factors that bacteria utilise in dissemination and host colonisation or, alternatively, they can be employed to compete with rival microbes in polymicrobial niches. PFTs transition from a soluble form to become membrane-embedded by undergoing large conformational changes. Once inserted, they perforate the membrane, causing uncontrolled efflux of ions and/or nutrients and dissipating the protonmotive force (PMF). In some instances, target cells intoxicated by PFTs display additional effects as part of the cellular response to pore formation. Significant progress has been made in the mechanistic description of pore formation for the different PFTs families, but in several cases a complete understanding of pore structure remains lacking. PFTs have evolved recognition mechanisms to bind specific receptors that define their host tropism, although this can be remarkably diverse even within the same family. Here we summarise the salient features of PFTs and highlight where additional research is necessary to fully understand the mechanism of pore formation by members of this diverse group of protein toxins.
Collapse
Affiliation(s)
- Fatima R. Ulhuq
- Microbes in Health and Disease Theme, Newcastle University Biosciences Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Giuseppina Mariano
- Microbes in Health and Disease Theme, Newcastle University Biosciences Institute, Newcastle University, Newcastle upon Tyne, UK
| |
Collapse
|
28
|
Cheung GYC, Bae JS, Otto M. Pathogenicity and virulence of Staphylococcus aureus. Virulence 2021; 12:547-569. [PMID: 33522395 PMCID: PMC7872022 DOI: 10.1080/21505594.2021.1878688] [Citation(s) in RCA: 502] [Impact Index Per Article: 167.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2020] [Revised: 01/13/2021] [Accepted: 01/15/2021] [Indexed: 12/15/2022] Open
Abstract
Staphylococcus aureus is one of the most frequent worldwide causes of morbidity and mortality due to an infectious agent. This pathogen can cause a wide variety of diseases, ranging from moderately severe skin infections to fatal pneumonia and sepsis. Treatment of S. aureus infections is complicated by antibiotic resistance and a working vaccine is not available. There has been ongoing and increasing interest in the extraordinarily high number of toxins and other virulence determinants that S. aureus produces and how they impact disease. In this review, we will give an overview of how S. aureus initiates and maintains infection and discuss the main determinants involved. A more in-depth understanding of the function and contribution of S. aureus virulence determinants to S. aureus infection will enable us to develop anti-virulence strategies to counteract the lack of an anti-S. aureus vaccine and the ever-increasing shortage of working antibiotics against this important pathogen.
Collapse
Affiliation(s)
- Gordon Y. C. Cheung
- Pathogen Molecular Genetics Section, Laboratory of Bacteriology, National Institute of Allergy and Infectious Diseases, U.S. National Institutes of Health, Bethesda, Maryland, USA
| | - Justin S. Bae
- Pathogen Molecular Genetics Section, Laboratory of Bacteriology, National Institute of Allergy and Infectious Diseases, U.S. National Institutes of Health, Bethesda, Maryland, USA
| | - Michael Otto
- Pathogen Molecular Genetics Section, Laboratory of Bacteriology, National Institute of Allergy and Infectious Diseases, U.S. National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
29
|
Molecular insights into mechanisms of GPCR hijacking by Staphylococcus aureus. Proc Natl Acad Sci U S A 2021; 118:2108856118. [PMID: 34663701 DOI: 10.1073/pnas.2108856118] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/02/2021] [Indexed: 11/18/2022] Open
Abstract
Atypical chemokine receptor 1 (ACKR1) is a G protein-coupled receptor (GPCR) targeted by Staphylococcus aureus bicomponent pore-forming leukotoxins to promote bacterial growth and immune evasion. Here, we have developed an integrative molecular pharmacology and structural biology approach in order to characterize the effect of leukotoxins HlgA and HlgB on ACKR1 structure and function. Interestingly, using cell-based assays and native mass spectrometry, we found that both components HlgA and HlgB compete with endogenous chemokines through a direct binding with the extracellular domain of ACKR1. Unexpectedly, hydrogen/deuterium exchange mass spectrometry analysis revealed that toxin binding allosterically modulates the intracellular G protein-binding domain of the receptor, resulting in dissociation and/or changes in the architecture of ACKR1-Gαi1 protein complexes observed in living cells. Altogether, our study brings important molecular insights into the initial steps of leukotoxins targeting a host GPCR.
Collapse
|
30
|
Development of combination vaccine conferring optimal protection against six pore-forming toxins of Staphylococcus aureus. Infect Immun 2021; 89:e0034221. [PMID: 34227839 DOI: 10.1128/iai.00342-21] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In Gram-positive pathogen Staphylococcus aureus, pore-forming toxins (PFTs) such as leukocidins and hemolysins play prominent roles in staphylococcal pathogenesis by killing host immune cells and red blood cells (RBCs). However, it remains unknown which combination of toxin antigens would induce the broadest protective immune response against those toxins. In this study, by targeting six major staphylococcal PFTs (i.e., HlgAB, HlgCB, LukAB, LukED, LukSF-PV, and Hla), we generated ten recombinant toxins or toxin-subunits, three toxoids, and their rabbit antibodies. Using the cytolytic assay for RBCs and polymorphonuclear cells (PMNs), we determined the best combination of toxin antibodies conferring the broadest protection against those staphylococcal PFTs. Although anti-HlgA IgG (HlgA-IgG) showed low cross-reactivity to other toxin components, it was essential to protect rabbit and human RBCs and human PMNs. For the protection of rabbit RBCs, HlaH35L toxoid-IgG was also required, whereas, for human PMNs, LukS-IgG and LukAE323AB-IgG were essential too. When the toxin/toxoid antigens HlgA, LukS-PV, HlaH35L, and LukAE323AB were used to immunize rabbits, they increased rabbit survival; however, they did not block staphylococcal abscess formation in kidneys. Based on these results, we proposed that the combination of HlgA, LukS, HlaH35L, and LukAE323AB is the optimal vaccine component to protect human RBCs and PMNs from staphylococcal PFTs. We also concluded that a successful S. aureus vaccine requires not only those toxin antigens but also other antigens that can induce immune response blocking staphylococcal colonization.
Collapse
|
31
|
Guan Z, Liu Y, Liu C, Wang H, Feng J, Yang G. Staphylococcus aureus β-Hemolysin Up-Regulates the Expression of IFN-γ by Human CD56 bright NK Cells. Front Cell Infect Microbiol 2021; 11:658141. [PMID: 33854984 PMCID: PMC8039520 DOI: 10.3389/fcimb.2021.658141] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 03/11/2021] [Indexed: 01/12/2023] Open
Abstract
IFN-γ is produced upon stimulation with S. aureus and may play a detrimental role during infection. However, whether hemolysins play a role in the mechanism of IFN-γ production has not been fully characterized. In this study, we demonstrated that Hlb, one of the major hemolysins of S. aureus, upregulated IFN-γ production by CD56bright NK cells from human peripheral blood mononuclear cells (PBMCs). Further investigation showed that Hlb increased calcium influx and induced phosphorylation of ERK1/2. Either blocking calcium or specifically inhibiting phosphorylation of ERK1/2 decreased the production of IFN-γ induced by Hlb. Moreover, we found that this process was dependent on the sphingomyelinase activity of Hlb. Our findings revealed a novel mechanism of IFN-γ production in NK cells induced by Hlb, which may be involved in the pathogenesis of S. aureus.
Collapse
Affiliation(s)
- Zhangchun Guan
- Beijing Institute of Pharmacology and Toxicology, Beijing, China.,State Key Laboratory of Toxicology and Medical Countermeasures, Beijing, China
| | - Yu Liu
- Beijing Institute of Pharmacology and Toxicology, Beijing, China.,State Key Laboratory of Toxicology and Medical Countermeasures, Beijing, China
| | - Chenghua Liu
- Beijing Institute of Pharmacology and Toxicology, Beijing, China.,State Key Laboratory of Toxicology and Medical Countermeasures, Beijing, China
| | - Huiting Wang
- Beijing Institute of Pharmacology and Toxicology, Beijing, China.,State Key Laboratory of Toxicology and Medical Countermeasures, Beijing, China
| | - Jiannan Feng
- Beijing Institute of Pharmacology and Toxicology, Beijing, China.,State Key Laboratory of Toxicology and Medical Countermeasures, Beijing, China
| | - Guang Yang
- Beijing Institute of Pharmacology and Toxicology, Beijing, China.,State Key Laboratory of Toxicology and Medical Countermeasures, Beijing, China
| |
Collapse
|
32
|
Tam K, Lacey KA, Devlin JC, Coffre M, Sommerfield A, Chan R, O'Malley A, Koralov SB, Loke P, Torres VJ. Targeting leukocidin-mediated immune evasion protects mice from Staphylococcus aureus bacteremia. J Exp Med 2021; 217:151907. [PMID: 32602902 PMCID: PMC7478724 DOI: 10.1084/jem.20190541] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 04/05/2020] [Accepted: 05/08/2020] [Indexed: 12/14/2022] Open
Abstract
Staphylococcus aureus is responsible for various diseases in humans, and recurrent infections are commonly observed. S. aureus produces an array of bicomponent pore-forming toxins that target and kill leukocytes, known collectively as the leukocidins. The contribution of these leukocidins to impair the development of anti–S. aureus adaptive immunity and facilitate reinfection is unclear. Using a murine model of recurrent bacteremia, we demonstrate that infection with a leukocidin mutant results in increased levels of anti–S. aureus antibodies compared with mice infected with the WT parental strain, indicating that leukocidins negatively impact the generation of anti–S. aureus antibodies in vivo. We hypothesized that neutralizing leukocidin-mediated immune subversion by vaccination may shift this host-pathogen interaction in favor of the host. Leukocidin-immunized mice produce potent leukocidin-neutralizing antibodies and robust Th1 and Th17 responses, which collectively protect against bloodstream infections. Altogether, these results demonstrate that blocking leukocidin-mediated immune evasion can promote host protection against S. aureus bloodstream infection.
Collapse
Affiliation(s)
- Kayan Tam
- Department of Microbiology, New York University Grossman School of Medicine, New York, NY
| | - Keenan A Lacey
- Department of Microbiology, New York University Grossman School of Medicine, New York, NY
| | - Joseph C Devlin
- Department of Microbiology, New York University Grossman School of Medicine, New York, NY
| | - Maryaline Coffre
- Department of Pathology, New York University Grossman School of Medicine, New York, NY
| | - Alexis Sommerfield
- Department of Microbiology, New York University Grossman School of Medicine, New York, NY
| | - Rita Chan
- Department of Microbiology, New York University Grossman School of Medicine, New York, NY
| | - Aidan O'Malley
- Department of Microbiology, New York University Grossman School of Medicine, New York, NY
| | - Sergei B Koralov
- Department of Pathology, New York University Grossman School of Medicine, New York, NY
| | - P'ng Loke
- Department of Microbiology, New York University Grossman School of Medicine, New York, NY.,Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD
| | - Victor J Torres
- Department of Microbiology, New York University Grossman School of Medicine, New York, NY
| |
Collapse
|
33
|
Wang X, Koffi PF, English OF, Lee JC. Staphylococcus aureus Extracellular Vesicles: A Story of Toxicity and the Stress of 2020. Toxins (Basel) 2021; 13:toxins13020075. [PMID: 33498438 PMCID: PMC7909408 DOI: 10.3390/toxins13020075] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 01/14/2021] [Accepted: 01/15/2021] [Indexed: 12/22/2022] Open
Abstract
Staphylococcus aureus generates and releases extracellular vesicles (EVs) that package cytosolic, cell-wall associated, and membrane proteins, as well as glycopolymers and exoproteins, including alpha hemolysin, leukocidins, phenol-soluble modulins, superantigens, and enzymes. S. aureus EVs, but not EVs from pore-forming toxin-deficient strains, were cytolytic for a variety of mammalian cell types, but EV internalization was not essential for cytotoxicity. Because S. aureus is subject to various environmental stresses during its encounters with the host during infection, we assessed how these exposures affected EV production in vitro. Staphylococci grown at 37 °C or 40 °C did not differ in EV production, but cultures incubated at 30 °C yielded more EVs when grown to the same optical density. S. aureus cultivated in the presence of oxidative stress, in iron-limited media, or with subinhibitory concentrations of ethanol, showed greater EV production as determined by protein yield and quantitative immunoblots. In contrast, hyperosmotic stress or subinhibitory concentrations of erythromycin reduced S. aureus EV yield. EVs represent a novel S. aureus secretory system that is affected by a variety of stress responses and allows the delivery of biologically active pore-forming toxins and other virulence determinants to host cells.
Collapse
|
34
|
Vasquez MT, Lubkin A, Reyes-Robles T, Day CJ, Lacey KA, Jennings MP, Torres VJ. Identification of a domain critical for Staphylococcus aureus LukED receptor targeting and lysis of erythrocytes. J Biol Chem 2020; 295:17241-17250. [PMID: 33051210 PMCID: PMC7863875 DOI: 10.1074/jbc.ra120.015757] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2020] [Revised: 10/07/2020] [Indexed: 12/14/2022] Open
Abstract
Leukocidin ED (LukED) is a pore-forming toxin produced by Staphylococcus aureus, which lyses host cells and promotes virulence of the bacteria. LukED enables S. aureus to acquire iron by lysing erythrocytes, which depends on targeting the host receptor Duffy antigen receptor for chemokines (DARC). The toxin also targets DARC on the endothelium, contributing to the lethality observed during bloodstream infection in mice. LukED is comprised of two monomers: LukE and LukD. LukE binds to DARC and facilitates hemolysis, but the closely related Panton-Valentine leukocidin S (LukS-PV) does not bind to DARC and is not hemolytic. The interaction of LukE with DARC and the role this plays in hemolysis are incompletely characterized. To determine the domain(s) of LukE that are critical for DARC binding, we studied the hemolytic function of LukE-LukS-PV chimeras, in which areas of sequence divergence (divergence regions, or DRs) were swapped between the toxins. We found that two regions of LukE's rim domain contribute to hemolysis, namely residues 57-75 (DR1) and residues 182-196 (DR4). Interestingly, LukE DR1 is sufficient to render LukS-PV capable of DARC binding and hemolysis. Further, LukE, by binding DARC through DR1, promotes the recruitment of LukD to erythrocytes, likely by facilitating LukED oligomer formation. Finally, we show that LukE targets murine Darc through DR1 in vivo to cause host lethality. These findings expand our biochemical understanding of the LukE-DARC interaction and the role that this toxin-receptor pair plays in S. aureus pathophysiology.
Collapse
Affiliation(s)
- Marilyn T Vasquez
- Department of Microbiology, New York University Grossman School of Medicine, New York, New York, USA
| | - Ashira Lubkin
- Department of Microbiology, New York University Grossman School of Medicine, New York, New York, USA
| | - Tamara Reyes-Robles
- Department of Microbiology, New York University Grossman School of Medicine, New York, New York, USA
| | - Christopher J Day
- Institute for Glycomics, Griffith University, Gold Coast, Queensland, Australia
| | - Keenan A Lacey
- Department of Microbiology, New York University Grossman School of Medicine, New York, New York, USA
| | - Michael P Jennings
- Institute for Glycomics, Griffith University, Gold Coast, Queensland, Australia
| | - Victor J Torres
- Department of Microbiology, New York University Grossman School of Medicine, New York, New York, USA.
| |
Collapse
|
35
|
Nanocomposites with ornidazole—antibacterial and antiadhesive agents against Gram-positive and Gram-negative bacteria. APPLIED NANOSCIENCE 2020. [DOI: 10.1007/s13204-020-01260-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
AbstractAntimicrobial resistance of many microbial species can cause to thousands of deaths worldwide, in this regard new therapeutic strategies have to be invented. To address the question, we have prepared nanocomposites on the basis of pyrogenic silicon dioxide with ornidazole immobilized on the surface (ornidasil) and studied their antimicrobial properties and the therapeutic potential. It has also been shown, that in comparison with pure ornidazole the addition of ornidazole to nanocomposite composition can enhance the antimicrobial spectrum, including Gram-positive and Gram-negative bacteria. The most significant bactericidal effect has been reached after more than 24-h treatment with the nanocomposite. Antiadhesive properties of nanocomposite materials were studied using blood types OO+, AO+, BO+, AB+, the degree of bacterial adhesion was estimated using three indexes: average adhesion index, index of erythrocytes involvement, index of microbial adhesion. The effectiveness of the treatment with the nanocomposites obtained was studied on complicated wounds of various etiologies, in particular the wounds caused by diabetic foot syndrome.
Collapse
|
36
|
Bennett MR, Thomsen IP. Epidemiological and Clinical Evidence for the Role of Toxins in S. aureus Human Disease. Toxins (Basel) 2020; 12:toxins12060408. [PMID: 32575633 PMCID: PMC7354447 DOI: 10.3390/toxins12060408] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 06/12/2020] [Accepted: 06/15/2020] [Indexed: 12/21/2022] Open
Abstract
Staphylococcus aureus asymptomatically colonizes approximately 30–50% of the population and is a leading cause of bacteremia, bone/joint infections, and skin infections in the US. S. aureus has become a major public health threat due to antibiotic resistance and an increasing number of failed vaccine attempts. To develop new anti-staphylococcal preventive therapies, it will take a more thorough understanding of the current role S. aureus virulence factors play in contributing to human disease. This review focuses on the clinical association of individual toxins with S. aureus infection as well as attempted treatment options. Further understanding of these associations will increase understanding of toxins and their importance to S. aureus pathogenesis.
Collapse
Affiliation(s)
- Monique R. Bennett
- Department of Pediatrics, Vanderbilt University School of Medicine, Nashville, TN 37232, USA;
- Vanderbilt Vaccine Research Program, Nashville, TN 37232, USA
- Vanderbilt Institute for Infection, Immunology and Inflammation, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Isaac P. Thomsen
- Department of Pediatrics, Vanderbilt University School of Medicine, Nashville, TN 37232, USA;
- Vanderbilt Vaccine Research Program, Nashville, TN 37232, USA
- Vanderbilt Institute for Infection, Immunology and Inflammation, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Correspondence:
| |
Collapse
|
37
|
Jochim A, Adolf L, Belikova D, Schilling NA, Setyawati I, Chin D, Meyers S, Verhamme P, Heinrichs DE, Slotboom DJ, Heilbronner S. An ECF-type transporter scavenges heme to overcome iron-limitation in Staphylococcus lugdunensis. eLife 2020; 9:e57322. [PMID: 32515736 PMCID: PMC7299338 DOI: 10.7554/elife.57322] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Accepted: 06/09/2020] [Indexed: 01/03/2023] Open
Abstract
Energy-coupling factor type transporters (ECF) represent trace nutrient acquisition systems. Substrate binding components of ECF-transporters are membrane proteins with extraordinary affinity, allowing them to scavenge trace amounts of ligand. A number of molecules have been described as substrates of ECF-transporters, but an involvement in iron-acquisition is unknown. Host-induced iron limitation during infection represents an effective mechanism to limit bacterial proliferation. We identified the iron-regulated ECF-transporter Lha in the opportunistic bacterial pathogen Staphylococcus lugdunensis and show that the transporter is specific for heme. The recombinant substrate-specific subunit LhaS accepted heme from diverse host-derived hemoproteins. Using isogenic mutants and recombinant expression of Lha, we demonstrate that its function is independent of the canonical heme acquisition system Isd and allows proliferation on human cells as sources of nutrient iron. Our findings reveal a unique strategy of nutritional heme acquisition and provide the first example of an ECF-transporter involved in overcoming host-induced nutritional limitation.
Collapse
Affiliation(s)
- Angelika Jochim
- Interfaculty Institute of Microbiology and Infection Medicine, Department of Infection Biology, University of TübingenTübingenGermany
| | - Lea Adolf
- Interfaculty Institute of Microbiology and Infection Medicine, Department of Infection Biology, University of TübingenTübingenGermany
| | - Darya Belikova
- Interfaculty Institute of Microbiology and Infection Medicine, Department of Infection Biology, University of TübingenTübingenGermany
| | | | - Inda Setyawati
- Groningen Biomolecular Sciences and Biotechnology Institute, University of GroningenGroningenNetherlands
| | - Denny Chin
- Department of Microbiology and Immunology, University of Western OntarioLondonCanada
| | | | | | - David E Heinrichs
- Department of Microbiology and Immunology, University of Western OntarioLondonCanada
| | - Dirk J Slotboom
- Groningen Biomolecular Sciences and Biotechnology Institute, University of GroningenGroningenNetherlands
| | - Simon Heilbronner
- Interfaculty Institute of Microbiology and Infection Medicine, Department of Infection Biology, University of TübingenTübingenGermany
- German Centre for Infection Research (DZIF), Partner Site TübingenTübingenGermany
- (DFG) Cluster of Excellence EXC 2124 Controlling Microbes to Fight InfectionsTübingenGermany
| |
Collapse
|
38
|
Tromp AT, van Strijp JAG. Studying Staphylococcal Leukocidins: A Challenging Endeavor. Front Microbiol 2020; 11:611. [PMID: 32351474 PMCID: PMC7174503 DOI: 10.3389/fmicb.2020.00611] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Accepted: 03/19/2020] [Indexed: 01/01/2023] Open
Abstract
Staphylococcus aureus is a well-known colonizer of the human skin and nose, but also a human pathogen that causes a wide spectrum of diseases. It is well established that S. aureus secretes an arsenal of virulence factors that have evolved to circumvent the human immune system. A major group of S. aureus virulence factors is the bi-component β-barrel pore-forming toxins, also known as leukocidins. These pore-forming toxins target specific cells of the innate and adaptive immune system by interacting with specific receptors expressed on the cell membrane. Even though still heavily debated, clinical and epidemiological studies suggest the involvement of one of the bi-component toxin, Panton-Valentine Leukocidin (PVL), as an important factor contributing to the epidemic spread and increased virulence of CA-MRSA strains. However, the host- and cell-specificity of PVL and other leukocidins, and the lack of adequate in vivo models, fuels the controversy and impairs the appropriate assessment of their role in S. aureus pathophysiology. Currently, the mechanisms of pore-formation and the contribution of PVL and other leukocidins to S. aureus pathophysiology are incompletely understood. This review summarizes our current understanding of leukocidin pore-formation, knowledge gaps, and highlights recent findings identifying novel host-factors involved in the toxin-host interface. As a result, this review furthers emphasizes the complexity behind S. aureus leukocidin cytotoxicity and the challenges associated in the quest to study and understand these major virulence factors.
Collapse
Affiliation(s)
- Angelino T Tromp
- Department of Medical Microbiology, University Medical Center Utrecht, Utrecht, Netherlands
| | - Jos A G van Strijp
- Department of Medical Microbiology, University Medical Center Utrecht, Utrecht, Netherlands
| |
Collapse
|
39
|
Marchetti M, De Bei O, Bettati S, Campanini B, Kovachka S, Gianquinto E, Spyrakis F, Ronda L. Iron Metabolism at the Interface between Host and Pathogen: From Nutritional Immunity to Antibacterial Development. Int J Mol Sci 2020; 21:E2145. [PMID: 32245010 PMCID: PMC7139808 DOI: 10.3390/ijms21062145] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 03/16/2020] [Accepted: 03/17/2020] [Indexed: 02/08/2023] Open
Abstract
Nutritional immunity is a form of innate immunity widespread in both vertebrates and invertebrates. The term refers to a rich repertoire of mechanisms set up by the host to inhibit bacterial proliferation by sequestering trace minerals (mainly iron, but also zinc and manganese). This strategy, selected by evolution, represents an effective front-line defense against pathogens and has thus inspired the exploitation of iron restriction in the development of innovative antimicrobials or enhancers of antimicrobial therapy. This review focuses on the mechanisms of nutritional immunity, the strategies adopted by opportunistic human pathogen Staphylococcus aureus to circumvent it, and the impact of deletion mutants on the fitness, infectivity, and persistence inside the host. This information finally converges in an overview of the current development of inhibitors targeting the different stages of iron uptake, an as-yet unexploited target in the field of antistaphylococcal drug discovery.
Collapse
Affiliation(s)
- Marialaura Marchetti
- Interdepartmental Center Biopharmanet-TEC, University of Parma, 43124 Parma, Italy; (M.M.); (S.B.)
| | - Omar De Bei
- Department of Food and Drug, University of Parma, 43124 Parma, Italy; (O.D.B.); (B.C.)
| | - Stefano Bettati
- Interdepartmental Center Biopharmanet-TEC, University of Parma, 43124 Parma, Italy; (M.M.); (S.B.)
- Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy
- Institute of Biophysics, National Research Council, 56124 Pisa, Italy
- National Institute of Biostructures and Biosystems, 00136 Rome, Italy
| | - Barbara Campanini
- Department of Food and Drug, University of Parma, 43124 Parma, Italy; (O.D.B.); (B.C.)
| | - Sandra Kovachka
- Department of Drug Science and Technology, University of Turin, 10125 Turin, Italy; (S.K.); (E.G.); (F.S.)
| | - Eleonora Gianquinto
- Department of Drug Science and Technology, University of Turin, 10125 Turin, Italy; (S.K.); (E.G.); (F.S.)
| | - Francesca Spyrakis
- Department of Drug Science and Technology, University of Turin, 10125 Turin, Italy; (S.K.); (E.G.); (F.S.)
| | - Luca Ronda
- Interdepartmental Center Biopharmanet-TEC, University of Parma, 43124 Parma, Italy; (M.M.); (S.B.)
- Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy
- Institute of Biophysics, National Research Council, 56124 Pisa, Italy
| |
Collapse
|
40
|
Yang H, Xu S, Huang K, Xu X, Hu F, He C, Shu W, Wang Z, Gong F, Zhang C, Liu Q. Anti-staphylococcus Antibiotics Interfere With the Transcription of Leucocidin ED Gene in Staphylococcus aureus Strain Newman. Front Microbiol 2020; 11:265. [PMID: 32194524 PMCID: PMC7066085 DOI: 10.3389/fmicb.2020.00265] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2019] [Accepted: 02/05/2020] [Indexed: 11/13/2022] Open
Abstract
Antibiotics have been described to modulate bacterial virulence gene expression. This study aimed to assess the changes caused by anti-Staphylococcus agents in the transcription of leucocidin ED (lukED) gene of Staphylococcus aureus strain Newman in vitro and in vivo and to determine whether the altered expression is agr dependent. The bacteria were exposed to subinhibitory concentrations [1/2, 1/4, or 1/8 minimal inhibitory concentration (MIC)] of 11 antibiotics, and the expression of lukE and agr-effector RNAIII was determined using qRT-PCR. In vivo experiments were performed to evaluate the impact exerted by six representative antibiotics on the transcription of both genes. Molecular analysis showed that in vitro lukE transcription was dramatically promoted in the Newman strain exposed to sub-MICs of vancomycin, trimethoprim-sulfamethoxazole, clindamycin, gentamicin, daptomycin, and ciprofloxacin and considerably reduced when stimulated by cefazolin, erythromycin, rifampicin, tigecycline, and linezolid. In the murine abscess model, tigecycline significantly decreased the transcription of lukE and the bacterial numbers, whereas vancomycin increased them; although cefazolin increased the lukE expression (contrary to the in vitro effect), it had a remarkable role in reducing bacterial load. The correspondence analysis shows that RNAIII expression varied under seven of 11 antibiotics in vitro, and six drugs in vivo were consistent with lukE transcripts. In conclusion, our data show that anti-Staphylococcus antibiotics exert modulatory effects on lukE expression in vitro and/or in vivo, and the changed expression caused by some drugs may be involved with agr activity, thus providing a guide to choose appropriate agents to avoid promoting bacterial virulence in lukED-positive S. aureus infections.
Collapse
Affiliation(s)
- Han Yang
- Department of Clinical Laboratory, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Su Xu
- Institute of Antibiotics, Huashan Hospital, Fudan University, Shanghai, China
| | - Kaifeng Huang
- Department of Clinical Laboratory, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaogang Xu
- Institute of Antibiotics, Huashan Hospital, Fudan University, Shanghai, China
| | - Fupin Hu
- Institute of Antibiotics, Huashan Hospital, Fudan University, Shanghai, China
| | - Chunyan He
- Department of Clinical Laboratory, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wen Shu
- Department of Clinical Laboratory, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhiyan Wang
- Department of Cardiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Fang Gong
- Department of Clinical Laboratory, The Third Hospital Affiliated to Nantong University, Wuxi, China
| | - Chuanling Zhang
- Department of Clinical Laboratory, Xiaoshan Hospital, Hangzhou, China
| | - Qingzhong Liu
- Department of Clinical Laboratory, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
41
|
Chan R, Buckley PT, O'Malley A, Sause WE, Alonzo F, Lubkin A, Boguslawski KM, Payne A, Fernandez J, Strohl WR, Whitaker B, Lynch AS, Torres VJ. Identification of biologic agents to neutralize the bicomponent leukocidins of Staphylococcus aureus. Sci Transl Med 2020; 11:11/475/eaat0882. [PMID: 30651319 DOI: 10.1126/scitranslmed.aat0882] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2017] [Revised: 01/22/2018] [Accepted: 12/17/2018] [Indexed: 12/12/2022]
Abstract
A key aspect underlying the severity of infections caused by Staphylococcus aureus is the abundance of virulence factors that the pathogen uses to thwart critical components of the human immune response. One such mechanism involves the destruction of host immune cells by cytolytic toxins secreted by S. aureus, including five bicomponent leukocidins: PVL, HlgAB, HlgCB, LukED, and LukAB. Purified leukocidins can lyse immune cells ex vivo, and systemic injections of purified LukED or HlgAB can acutely kill mice. Here, we describe the generation and characterization of centyrins that bind S. aureus leukocidins with high affinity and protect primary human immune cells from toxin-mediated cytolysis. Centyrins are small protein scaffolds derived from the fibronectin type III-binding domain of the human protein tenascin-C. Although centyrins are potent in tissue culture assays, their short serum half-lives limit their efficacies in vivo. By extending the serum half-lives of centyrins through their fusion to an albumin-binding consensus domain, we demonstrate the in vivo efficacy of these biologics in a murine intoxication model and in models of both prophylactic and therapeutic treatment of live S. aureus systemic infections. These biologics that target S. aureus virulence factors have potential for treating and preventing serious staphylococcal infections.
Collapse
Affiliation(s)
- Rita Chan
- Department of Microbiology, New York University School of Medicine, Alexandria Center for Life Science, 430 East 29th Street, New York, NY 10016, USA
| | - Peter T Buckley
- Janssen Research & Development, 1400 McKean Road, Spring House, PA, 19477, USA
| | - Aidan O'Malley
- Department of Microbiology, New York University School of Medicine, Alexandria Center for Life Science, 430 East 29th Street, New York, NY 10016, USA
| | - William E Sause
- Department of Microbiology, New York University School of Medicine, Alexandria Center for Life Science, 430 East 29th Street, New York, NY 10016, USA
| | - Francis Alonzo
- Department of Microbiology, New York University School of Medicine, Alexandria Center for Life Science, 430 East 29th Street, New York, NY 10016, USA
| | - Ashira Lubkin
- Department of Microbiology, New York University School of Medicine, Alexandria Center for Life Science, 430 East 29th Street, New York, NY 10016, USA
| | - Kristina M Boguslawski
- Department of Microbiology, New York University School of Medicine, Alexandria Center for Life Science, 430 East 29th Street, New York, NY 10016, USA
| | - Angela Payne
- Janssen Research & Development, 1400 McKean Road, Spring House, PA, 19477, USA
| | - Jeffrey Fernandez
- Janssen Research & Development, 1400 McKean Road, Spring House, PA, 19477, USA
| | - William R Strohl
- Janssen Research & Development, 1400 McKean Road, Spring House, PA, 19477, USA
| | - Brian Whitaker
- Janssen Research & Development, 1400 McKean Road, Spring House, PA, 19477, USA
| | - Anthony Simon Lynch
- Janssen Research & Development, 1400 McKean Road, Spring House, PA, 19477, USA.
| | - Victor J Torres
- Department of Microbiology, New York University School of Medicine, Alexandria Center for Life Science, 430 East 29th Street, New York, NY 10016, USA.
| |
Collapse
|
42
|
Wang X, Eagen WJ, Lee JC. Orchestration of human macrophage NLRP3 inflammasome activation by Staphylococcus aureus extracellular vesicles. Proc Natl Acad Sci U S A 2020; 117:3174-3184. [PMID: 31988111 PMCID: PMC7022218 DOI: 10.1073/pnas.1915829117] [Citation(s) in RCA: 112] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Release of extracellular vesicles (EVs) is a common feature among eukaryotes, archaea, and bacteria. However, the biogenesis and downstream biological effects of EVs released from gram-positive bacteria remain poorly characterized. Here, we report that EVs purified from a community-associated methicillin-resistant Staphylococcus aureus strain were internalized into human macrophages in vitro and that this process was blocked by inhibition of the dynamin-dependent endocytic pathway. Human macrophages responded to S. aureus EVs by TLR2 signaling and activation of NLRP3 inflammasomes through K+ efflux, leading to the recruitment of ASC and activation of caspase-1. Cleavage of pro-interleukin (IL)-1β, pro-IL-18, and gasdermin-D by activated caspase-1 resulted in the cellular release of the mature cytokines IL-1β and IL-18 and induction of pyroptosis. Consistent with this result, a dose-dependent cytokine response was detected in the extracellular fluids of mice challenged intraperitoneally with S. aureus EVs. Pore-forming toxins associated with S. aureus EVs were critical for NLRP3-dependent caspase-1 activation of human macrophages, but not for TLR2 signaling. In contrast, EV-associated lipoproteins not only mediated TLR2 signaling to initiate the priming step of NLRP3 activation but also modulated EV biogenesis and the toxin content of EVs, resulting in alterations in IL-1β, IL-18, and caspase-1 activity. Collectively, our study describes mechanisms by which S. aureus EVs induce inflammasome activation and reveals an unexpected role of staphylococcal lipoproteins in EV biogenesis. EVs may serve as a novel secretory pathway for S. aureus to transport protected cargo in a concentrated form to host cells during infections to modulate cellular functions.
Collapse
Affiliation(s)
- Xiaogang Wang
- Division of Infectious Diseases, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115
| | - William J Eagen
- Division of Infectious Diseases, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115
| | - Jean C Lee
- Division of Infectious Diseases, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115
| |
Collapse
|
43
|
Host-Receptor Post-Translational Modifications Refine Staphylococcal Leukocidin Cytotoxicity. Toxins (Basel) 2020; 12:toxins12020106. [PMID: 32041354 PMCID: PMC7076806 DOI: 10.3390/toxins12020106] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2020] [Revised: 02/02/2020] [Accepted: 02/05/2020] [Indexed: 01/23/2023] Open
Abstract
Staphylococcal bi-component pore-forming toxins, also known as leukocidins, target and lyse human phagocytes in a receptor-dependent manner. S-components of the leukocidins Panton-Valentine leukocidin (PVL), γ-haemolysin AB (HlgAB) and CB (HlgCB), and leukocidin ED (LukED) specifically employ receptors that belong to the class of G-protein coupled receptors (GPCRs). Although these receptors share a common structural architecture, little is known about the conserved characteristics of the interaction between leukocidins and GPCRs. In this study, we investigated host cellular pathways contributing to susceptibility towards S. aureus leukocidin cytotoxicity. We performed a genome-wide CRISPR/Cas9 library screen for toxin-resistance in U937 cells sensitized to leukocidins by ectopic expression of different GPCRs. Our screen identifies post-translational modification (PTM) pathways involved in the sulfation and sialylation of the leukocidin-receptors. Subsequent validation experiments show differences in the impact of PTM moieties on leukocidin toxicity, highlighting an additional layer of refinement and divergence in the staphylococcal host-pathogen interface. Leukocidin receptors may serve as targets for anti-staphylococcal interventions and understanding toxin-receptor interactions will facilitate the development of innovative therapeutics. Variations in the genes encoding PTM pathways could provide insight into observed differences in susceptibility of humans to infections with S. aureus.
Collapse
|
44
|
Alfano DN, Bubeck Wardenburg J. Another Score for the Pore: S. aureus Leukocidins Take a Shot on the Endothelium. Cell Host Microbe 2019; 25:351-353. [PMID: 30870619 DOI: 10.1016/j.chom.2019.02.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Sepsis is a complex disease characterized by severe endothelial injury. In this issue of Cell Host & Microbe, Lubkin et al. (2019) reveal that an interaction between Staphylococcus aureus leukocidins and their cellular receptor DARC on endothelial cells leads to vascular injury, shedding light on pathogen-driven contributions to sepsis.
Collapse
Affiliation(s)
- Danielle N Alfano
- Department of Pediatrics, Washington University School of Medicine, 660 S. Euclid Avenue, Box 8208, St. Louis, MO 63110, USA
| | - Juliane Bubeck Wardenburg
- Department of Pediatrics, Washington University School of Medicine, 660 S. Euclid Avenue, Box 8208, St. Louis, MO 63110, USA.
| |
Collapse
|
45
|
Keogh RA, Zapf RL, Trzeciak E, Null GG, Wiemels RE, Carroll RK. Novel Regulation of Alpha-Toxin and the Phenol-Soluble Modulins by Peptidyl-Prolyl cis/trans Isomerase Enzymes in Staphylococcus aureus. Toxins (Basel) 2019; 11:toxins11060343. [PMID: 31208155 PMCID: PMC6628628 DOI: 10.3390/toxins11060343] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 06/10/2019] [Accepted: 06/12/2019] [Indexed: 02/07/2023] Open
Abstract
Peptidyl-prolyl cis/trans isomerases (PPIases) are enzymes that catalyze the cis-to-trans isomerization around proline bonds, allowing proteins to fold into their correct confirmation. Previously, we identified two PPIase enzymes in Staphylococcus aureus (PpiB and PrsA) that are involved in the regulation of virulence determinants and have shown that PpiB contributes to S. aureus virulence in a murine abscess model of infection. Here, we further examine the role of these PPIases in S. aureus virulence and, in particular, their regulation of hemolytic toxins. Using murine abscess and systemic models of infection, we show that a ppiB mutant in a USA300 background is attenuated for virulence but that a prsA mutant is not. Deletion of the ppiB gene leads to decreased bacterial survival in macrophages and nasal epithelial cells, while there is no significant difference when prsA is deleted. Analysis of culture supernatants reveals that a ppiB mutant strain has reduced levels of the phenol-soluble modulins and that both ppiB and prsA mutants have reduced alpha-toxin activity. Finally, we perform immunoprecipitation to identify cellular targets of PpiB and PrsA. Results suggest a novel role for PpiB in S. aureus protein secretion. Collectively, our results demonstrate that PpiB and PrsA influence S. aureus toxins via distinct mechanisms, and that PpiB but not PrsA contributes to disease.
Collapse
Affiliation(s)
- Rebecca A Keogh
- Department of Biological Sciences, Ohio University, Athens, OH 45701, USA.
| | - Rachel L Zapf
- Department of Biological Sciences, Ohio University, Athens, OH 45701, USA.
| | - Emily Trzeciak
- Department of Biological Sciences, Ohio University, Athens, OH 45701, USA.
| | - Gillian G Null
- Department of Biological Sciences, Ohio University, Athens, OH 45701, USA.
| | - Richard E Wiemels
- Department of Biological Sciences, Ohio University, Athens, OH 45701, USA.
| | - Ronan K Carroll
- Department of Biological Sciences, Ohio University, Athens, OH 45701, USA.
- The Infectious and Tropical Disease Institute, Ohio University, Athens, OH 45701, USA.
| |
Collapse
|
46
|
The Role of Streptococcal and Staphylococcal Exotoxins and Proteases in Human Necrotizing Soft Tissue Infections. Toxins (Basel) 2019; 11:toxins11060332. [PMID: 31212697 PMCID: PMC6628391 DOI: 10.3390/toxins11060332] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Revised: 06/04/2019] [Accepted: 06/10/2019] [Indexed: 12/31/2022] Open
Abstract
Necrotizing soft tissue infections (NSTIs) are critical clinical conditions characterized by extensive necrosis of any layer of the soft tissue and systemic toxicity. Group A streptococci (GAS) and Staphylococcus aureus are two major pathogens associated with monomicrobial NSTIs. In the tissue environment, both Gram-positive bacteria secrete a variety of molecules, including pore-forming exotoxins, superantigens, and proteases with cytolytic and immunomodulatory functions. The present review summarizes the current knowledge about streptococcal and staphylococcal toxins in NSTIs with a special focus on their contribution to disease progression, tissue pathology, and immune evasion strategies.
Collapse
|
47
|
Abstract
Staphylococcus aureus has become a serious threat to human health. In addition to having increased antibiotic resistance, the bacterium is a master at adapting to its host by evading almost every facet of the immune system, the so-called immune evasion proteins. Many of these immune evasion proteins target neutrophils, the most important immune cells in clearing S. aureus infections. The neutrophil attacks pathogens via a plethora of strategies. Therefore, it is no surprise that S. aureus has evolved numerous immune evasion strategies at almost every level imaginable. In this review we discuss step by step the aspects of neutrophil-mediated killing of S. aureus, such as neutrophil activation, migration to the site of infection, bacterial opsonization, phagocytosis, and subsequent neutrophil-mediated killing. After each section we discuss how S. aureus evasion molecules are able to resist the neutrophil attack of these different steps. To date, around 40 immune evasion molecules of S. aureus are known, but its repertoire is still expanding due to the discovery of new evasion proteins and the addition of new functions to already identified evasion proteins. Interestingly, because the different parts of neutrophil attack are redundant, the evasion molecules display redundant functions as well. Knowing how and with which proteins S. aureus is evading the immune system is important in understanding the pathophysiology of this pathogen. This knowledge is crucial for the development of therapeutic approaches that aim to clear staphylococcal infections.
Collapse
|
48
|
Tam K, Torres VJ. Staphylococcus aureus Secreted Toxins and Extracellular Enzymes. Microbiol Spectr 2019; 7:10.1128/microbiolspec.GPP3-0039-2018. [PMID: 30873936 PMCID: PMC6422052 DOI: 10.1128/microbiolspec.gpp3-0039-2018] [Citation(s) in RCA: 203] [Impact Index Per Article: 40.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Indexed: 02/06/2023] Open
Abstract
Staphylococcus aureus is a formidable pathogen capable of causing infections in different sites of the body in a variety of vertebrate animals, including humans and livestock. A major contribution to the success of S. aureus as a pathogen is the plethora of virulence factors that manipulate the host's innate and adaptive immune responses. Many of these immune modulating virulence factors are secreted toxins, cofactors for activating host zymogens, and exoenzymes. Secreted toxins such as pore-forming toxins and superantigens are highly inflammatory and can cause leukocyte cell death by cytolysis and clonal deletion, respectively. Coagulases and staphylokinases are cofactors that hijack the host's coagulation system. Exoenzymes, including nucleases and proteases, cleave and inactivate various immune defense and surveillance molecules, such as complement factors, antimicrobial peptides, and surface receptors that are important for leukocyte chemotaxis. Additionally, some of these secreted toxins and exoenzymes can cause disruption of endothelial and epithelial barriers through cell lysis and cleavage of junction proteins. A unique feature when examining the repertoire of S. aureus secreted virulence factors is the apparent functional redundancy exhibited by the majority of the toxins and exoenzymes. However, closer examination of each virulence factor revealed that each has unique properties that have important functional consequences. This chapter provides a brief overview of our current understanding of the major secreted virulence factors critical for S. aureus pathogenesis.
Collapse
Affiliation(s)
- Kayan Tam
- Department of Microbiology, New York University School of Medicine, Alexandria Center for Life Science, New York, NY 10016
| | - Victor J Torres
- Department of Microbiology, New York University School of Medicine, Alexandria Center for Life Science, New York, NY 10016
| |
Collapse
|
49
|
Lubkin A, Lee WL, Alonzo F, Wang C, Aligo J, Keller M, Girgis NM, Reyes-Robles T, Chan R, O'Malley A, Buckley P, Vozhilla N, Vasquez MT, Su J, Sugiyama M, Yeung ST, Coffre M, Bajwa S, Chen E, Martin P, Kim SY, Loomis C, Worthen GS, Shopsin B, Khanna KM, Weinstock D, Lynch AS, Koralov SB, Loke P, Cadwell K, Torres VJ. Staphylococcus aureus Leukocidins Target Endothelial DARC to Cause Lethality in Mice. Cell Host Microbe 2019; 25:463-470.e9. [PMID: 30799265 DOI: 10.1016/j.chom.2019.01.015] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Revised: 12/24/2018] [Accepted: 01/23/2019] [Indexed: 01/16/2023]
Abstract
The pathogenesis of Staphylococcus aureus is thought to depend on the production of pore-forming leukocidins that kill leukocytes and lyse erythrocytes. Two leukocidins, Leukocidin ED (LukED) and γ-Hemolysin AB (HlgAB), are necessary and sufficient to kill mice upon infection and toxin challenge. We demonstrate that LukED and HlgAB cause vascular congestion and derangements in vascular fluid distribution that rapidly cause death in mice. The Duffy antigen receptor for chemokines (DARC) on endothelial cells, rather than leukocytes or erythrocytes, is the critical target for lethality. Consistent with this, LukED and HlgAB injure primary human endothelial cells in a DARC-dependent manner, and mice with DARC-deficient endothelial cells are resistant to toxin-mediated lethality. During bloodstream infection in mice, DARC targeting by S. aureus causes increased tissue damage, organ dysfunction, and host death. The potential for S. aureus leukocidins to manipulate vascular integrity highlights the importance of these virulence factors.
Collapse
Affiliation(s)
- Ashira Lubkin
- Department of Microbiology, New York University School of Medicine, New York, NY 10016, USA
| | - Warren L Lee
- Keenan Research Centre, St Michael's Hospital, 30 Bond Street, Toronto, ON M5B 1W8, Canada; Institute of Medical Sciences, University of Toronto, Toronto, ON, Canada.
| | - Francis Alonzo
- Department of Microbiology, New York University School of Medicine, New York, NY 10016, USA
| | - Changsen Wang
- Keenan Research Centre, St Michael's Hospital, 30 Bond Street, Toronto, ON M5B 1W8, Canada
| | - Jason Aligo
- Janssen Research & Development LLC, 1400 McKean Road, Spring House, PA 19477, USA
| | - Matthew Keller
- Department of Microbiology, New York University School of Medicine, New York, NY 10016, USA; Kimmel Center for Biology and Medicine at the Skirball Institute, New York University School of Medicine, New York, NY 10016, USA
| | - Natasha M Girgis
- Department of Microbiology, New York University School of Medicine, New York, NY 10016, USA
| | - Tamara Reyes-Robles
- Department of Microbiology, New York University School of Medicine, New York, NY 10016, USA
| | - Rita Chan
- Department of Microbiology, New York University School of Medicine, New York, NY 10016, USA
| | - Aidan O'Malley
- Department of Microbiology, New York University School of Medicine, New York, NY 10016, USA
| | - Peter Buckley
- Janssen Research & Development LLC, 1400 McKean Road, Spring House, PA 19477, USA
| | - Nikollaq Vozhilla
- Department of Microbiology, New York University School of Medicine, New York, NY 10016, USA
| | - Marilyn T Vasquez
- Department of Microbiology, New York University School of Medicine, New York, NY 10016, USA
| | - Johnny Su
- Keenan Research Centre, St Michael's Hospital, 30 Bond Street, Toronto, ON M5B 1W8, Canada
| | - Michael Sugiyama
- Keenan Research Centre, St Michael's Hospital, 30 Bond Street, Toronto, ON M5B 1W8, Canada
| | - Stephen T Yeung
- Department of Microbiology, New York University School of Medicine, New York, NY 10016, USA
| | - Maryaline Coffre
- Department of Pathology, New York University School of Medicine, New York, NY, USA
| | - Sofia Bajwa
- Department of Pathology, New York University School of Medicine, New York, NY, USA
| | - Eric Chen
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Patricia Martin
- Kimmel Center for Biology and Medicine at the Skirball Institute, New York University School of Medicine, New York, NY 10016, USA
| | - Sang Y Kim
- Department of Pathology, New York University School of Medicine, New York, NY, USA; Office of Collaborative Sciences, NYU School of Medicine, New York, NY, USA; Department of Pathology, NYU School of Medicine, New York, NY, USA
| | - Cynthia Loomis
- Department of Pathology, New York University School of Medicine, New York, NY, USA; Office of Collaborative Sciences, NYU School of Medicine, New York, NY, USA; Department of Pathology, NYU School of Medicine, New York, NY, USA
| | - G Scott Worthen
- Department of Pediatrics, University of Pennsylvania, Philadelphia, PA, USA; Division of Neonatology, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Bo Shopsin
- Department of Microbiology, New York University School of Medicine, New York, NY 10016, USA; Division of Infectious Diseases, Department of Medicine, NYU School of Medicine, New York, NY 10016, USA
| | - Kamal M Khanna
- Department of Microbiology, New York University School of Medicine, New York, NY 10016, USA
| | - Daniel Weinstock
- Janssen Research & Development LLC, 1400 McKean Road, Spring House, PA 19477, USA
| | - Anthony Simon Lynch
- Janssen Research & Development LLC, 1400 McKean Road, Spring House, PA 19477, USA
| | - Sergei B Koralov
- Department of Pathology, New York University School of Medicine, New York, NY, USA
| | - P'ng Loke
- Department of Microbiology, New York University School of Medicine, New York, NY 10016, USA
| | - Ken Cadwell
- Department of Microbiology, New York University School of Medicine, New York, NY 10016, USA; Kimmel Center for Biology and Medicine at the Skirball Institute, New York University School of Medicine, New York, NY 10016, USA
| | - Victor J Torres
- Department of Microbiology, New York University School of Medicine, New York, NY 10016, USA.
| |
Collapse
|
50
|
Mobasherizadeh S, Shojaei H, Azadi D, Havaei SA, Rostami S. Molecular characterization and genotyping of methicillin-resistant Staphylococcus aureus in nasal carriage of healthy Iranian children. J Med Microbiol 2019; 68:374-378. [PMID: 30698518 DOI: 10.1099/jmm.0.000924] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
PURPOSE Community-associated methicillin-resistant Staphylococcus aureus (CA-MRSA) has become a considerable public health concern in both developed and developing countries due to the rapid spread of this bacterium around the world, also the epidemiology of MRSA has changed, as the isolation of MRSA strains is not limited to health-care settings or patients with predisposing risk factors. Therefore, the objective of this study is to determine the genetic diversity and antibiotic resistance profile of CA-MRSA nasal carriage in Iranian children. METHODOLOGY A cross-sectional study was conducted from April 2013 to March 2014. A total of 25 CA-MRSA were isolated from the anterior nares of 410 preschool children with no risk factors. All MRSA isolates were characterized by detection of the Panton-Valentine leukocidin (pvl) and γ-hemolysin genes, staphylococcal cassette chromosome mec (SCCmec) typing and multi-locus sequence typing (MLST). RESULTS In 25 CA-MRSA isolates, Pvl and γ-hemolysin genes were detected in one (4%) and 18 (72 %) isolates; respectively. Overall, 92% (23/25) of isolates belonged to SCCmec type IV and 8% (2/25) of them had SCCmec type V profile. Using MLST, the 25 isolates were grouped into six clonal complexes (CC) and eight sequence types (ST) (CC5/ST6, CC22/ST22 and ST217, CC30/ST30 and ST1107, CC78/ST859, CC398/ST291 and CC97/ST405). The ST859/SCCmec IV (11/25, 44%) was the predominant clone among the isolates. ST859-MRSA-IV-pvl-negative (resistant to tetracycline) have successfully adapted to the Iranian preschool children population. CONCLUSION Our results suggest that the genomic diversity was observed among the CA-MRSA. In addition, the current study demonstrates that pvl is not a reliable marker for CA-MRSA in our region.
Collapse
Affiliation(s)
- Sina Mobasherizadeh
- 1 Nosocomial Infection Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Hasan Shojaei
- 2 Department of Microbiology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Davood Azadi
- 3 Department of Laboratory Sciences, Khomein University of Medical Sciences, Khomein, Iran
| | - Seyed Asghar Havaei
- 4 Infectious Diseases and Tropical Medicine Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Soodabeh Rostami
- 1 Nosocomial Infection Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|