1
|
Tuladhar ET, Shrestha S, Vernon S, Droit L, Mihindukulasuriya KA, Tamang M, Karki L, Elong Ngono A, Jha B, Awal BK, Chalise BS, Jha R, Shresta S, Wang D, Manandhar KD. Gemykibivirus detection in acute encephalitis patients from Nepal. mSphere 2024; 9:e0021924. [PMID: 38904383 PMCID: PMC11287993 DOI: 10.1128/msphere.00219-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 05/08/2024] [Indexed: 06/22/2024] Open
Abstract
Acute encephalitis syndrome (AES) causes significant morbidity and mortality worldwide. In Nepal, Japanese encephalitis virus (JEV) accounts for ~5-20% of AES cases, but ~75% of AES cases are of unknown etiology. We identified a gemykibivirus in CSF collected in 2020 from an 8-year-old male patient with AES using metagenomic next-generation sequencing. Gemykibiviruses are single stranded, circular DNA viruses in the family Genomoviridae. The complete genome of 2,211 nucleotides was sequenced, which shared 98.69% nucleotide identity to its closest relative, Human associated gemykibivirus 2 isolate SAfia-449D. Two real-time PCR assays were designed, and screening of 337 cerebrospinal fluid (CSF) and 164 serum samples from AES patients in Nepal collected in 2020 and 2022 yielded 11 CSF and 1 serum sample that were positive in both PCR assays. Complete genomes of seven of the positives were sequenced. These results identify a potential candidate etiologic agent of encephalitis in Nepal. IMPORTANCE Viral encephalitis is a devastating disease, but unfortunately, worldwide, the causative virus in many cases is unknown. Therefore, it is important to identify viruses that could be responsible for cases of human encephalitis. Here, using metagenomic sequencing of CSF, we identified a gemykibivirus in a male child from Nepal with acute encephalitis syndrome (AES). We subsequently detected gemykibivirus DNA in CSF or serum of 12 more encephalitis patients by real-time PCR. The virus genomes we identified are highly similar to gemykibiviruses previously detected in CSF of three encephalitis patients from Sri Lanka. These results raise the possibility that gemykibivirus could be an underrecognized human pathogen.
Collapse
Affiliation(s)
- Eans Tara Tuladhar
- Tribhuvan University Central Department of Biotechnology, Kathmandu, Nepal
| | - Smita Shrestha
- Tribhuvan University Central Department of Biotechnology, Kathmandu, Nepal
| | - Susan Vernon
- Washington University School of Medicine in St. Louis, St. Louis, Missouri, USA
| | - Lindsay Droit
- Washington University School of Medicine in St. Louis, St. Louis, Missouri, USA
| | | | - Mamta Tamang
- Tribhuvan University Central Department of Biotechnology, Kathmandu, Nepal
| | - Lata Karki
- Tribhuvan University Central Department of Biotechnology, Kathmandu, Nepal
| | | | - Bimlesh Jha
- National Public Health Laboratory, Kathmandu, Nepal
| | | | | | - Runa Jha
- National Public Health Laboratory, Kathmandu, Nepal
| | - Sujan Shresta
- La Jolla Institute for Immunology, San Diego, California, USA
| | - David Wang
- Washington University School of Medicine in St. Louis, St. Louis, Missouri, USA
| | | |
Collapse
|
2
|
Paietta EN, Kraberger S, Lund MC, Vargas KL, Custer JM, Ehmke E, Yoder AD, Varsani A. Diverse Circular DNA Viral Communities in Blood, Oral, and Fecal Samples of Captive Lemurs. Viruses 2024; 16:1099. [PMID: 39066262 PMCID: PMC11281440 DOI: 10.3390/v16071099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 07/01/2024] [Accepted: 07/03/2024] [Indexed: 07/28/2024] Open
Abstract
Few studies have addressed viral diversity in lemurs despite their unique evolutionary history on the island of Madagascar and high risk of extinction. Further, while a large number of studies on animal viromes focus on fecal samples, understanding viral diversity across multiple sample types and seasons can reveal complex viral community structures within and across species. Groups of captive lemurs at the Duke Lemur Center (Durham, NC, USA), a conservation and research center, provide an opportunity to build foundational knowledge on lemur-associated viromes. We sampled individuals from seven lemur species, i.e., collared lemur (Eulemur collaris), crowned lemur (Eulemur coronatus), blue-eyed black lemur (Eulemur flavifrons), ring-tailed lemur (Lemur catta), Coquerel's sifaka (Propithecus coquereli), black-and-white ruffed lemur (Varecia variegata variegata), and red ruffed lemur (Varecia rubra), across two lemur families (Lemuridae, Indriidae). Fecal, blood, and saliva samples were collected from Coquerel's sifaka and black-and-white ruffed lemur individuals across two sampling seasons to diversify virome biogeography and temporal sampling. Using viral metagenomic workflows, the complete genomes of anelloviruses (n = 4), cressdnaviruses (n = 47), caudoviruses (n = 15), inoviruses (n = 34), and microviruses (n = 537) were determined from lemur blood, feces, and saliva. Many virus genomes, especially bacteriophages, identified in this study were present across multiple lemur species. Overall, the work presented here uses a viral metagenomics approach to investigate viral communities inhabiting the blood, oral cavity, and feces of healthy captive lemurs.
Collapse
Affiliation(s)
| | - Simona Kraberger
- The Biodesign Center for Fundamental and Applied Microbiomics, Center for Evolution and Medicine and School of Life Sciences, Arizona State University, Tempe, AZ 85287, USA
| | - Michael C. Lund
- The Biodesign Center for Fundamental and Applied Microbiomics, Center for Evolution and Medicine and School of Life Sciences, Arizona State University, Tempe, AZ 85287, USA
| | - Karla L. Vargas
- The Biodesign Center for Fundamental and Applied Microbiomics, Center for Evolution and Medicine and School of Life Sciences, Arizona State University, Tempe, AZ 85287, USA
| | - Joy M. Custer
- The Biodesign Center for Fundamental and Applied Microbiomics, Center for Evolution and Medicine and School of Life Sciences, Arizona State University, Tempe, AZ 85287, USA
| | - Erin Ehmke
- Duke Lemur Center, Duke University, Durham, NC 27708, USA
| | - Anne D. Yoder
- Department of Biology, Duke University, Durham, NC 27708, USA
| | - Arvind Varsani
- The Biodesign Center for Fundamental and Applied Microbiomics, Center for Evolution and Medicine and School of Life Sciences, Arizona State University, Tempe, AZ 85287, USA
- Structural Biology Research Unit, Department of Integrative Biomedical Sciences, University of Cape Town, Cape Town 7925, South Africa
| |
Collapse
|
3
|
Mohebbi A, Kiani SJ, Khanaliha K, Donyavi T, Emtiazi N, Sharifian K, Mohebbi M, Gholami A, Behnezhad F, Abbasi-Kolli M, Dehghani-Dehej F, Bokharaei-Salim F. Dental complications as a potential indicator of Redondovirus infection: a cross-sectional study. BMC Infect Dis 2024; 24:673. [PMID: 38969993 PMCID: PMC11225247 DOI: 10.1186/s12879-024-09523-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 06/17/2024] [Indexed: 07/07/2024] Open
Abstract
BACKGROUND Redondoviridae is a newly discovered virus family linked to oral and respiratory conditions in people, while there is still debate about whether it is also coinfected with other respiratory viruses. This study aimed to determine the frequency of Redondovirus (ReDoV) in nasopharyngeal samples and to investigate any possible links to SARS-CoV-2 infections. METHODS A polymerase chain reaction (PCR) test was conducted on 731 nasopharyngeal samples from individuals referred to medical centers in Tehran, Iran, for SARS-CoV-2 testing to investigate the prevalence of ReDoV. An oral interview was performed to complete information on dental issues and the individuals' demographics, symptoms, and vaccination history. RESULTS The prevalence of ReDoV was 25.99%, and 15.26% had a coinfection with SARS-CoV-2. No notable correlation was found regarding ReDoVs and SARS-CoV-2 infections (p > 0.05). Women had a higher ReDoV positivity rate of 18.47% compared to men at 7.52% (p = 0.12), and there was no significant correlation between age groups and ReDoV presence. Nonetheless, a significant association was noted between ReDoVs and dental/gum issues (p < 0.0001, OR: 13.0326). A phylogenetic analysis showed that ReDoVs originated from various human-related clusters. CONCLUSIONS These results highlight the potential for detecting ReDoVs in nasopharyngeal samples of people with gum or dental issues. Additionally, conducting more ReDoV epidemiological research and proposing oral health as a possible marker for ReDoV infections is important.
Collapse
Affiliation(s)
- Alireza Mohebbi
- Department of Virology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
- Vista Aria Rena Gene, Inc, Gorgan, Golestan Province, Iran
| | - Seyed Jalal Kiani
- Department of Virology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Khadijeh Khanaliha
- Research Center of Pediatric Infectious Diseases, Institute of Immunology and Infectious Diseases, Iran University of Medical Sciences, Tehran, Iran
| | - Tahereh Donyavi
- Department of Medical Biotechnology, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Nikoo Emtiazi
- Department of Pathology, Iran University of Medical Sciences, Tehran, Iran
| | - Kimia Sharifian
- Department of Virology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Maryam Mohebbi
- Department of Virology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Amytis Gholami
- Department of Virology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Farzane Behnezhad
- Department of Virology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mohammad Abbasi-Kolli
- Department of Virology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Farzaneh Dehghani-Dehej
- Department of Virology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Farah Bokharaei-Salim
- Department of Virology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
4
|
Ramos EDSF, Tozetto-Mendoza TR, Bortoletto P, Ferreira NE, Honorato L, Barbosa EMG, Luchs A, Linhares IM, Spandorfer SD, Leal E, da Costa AC, Witkin SS, Mendes-Correa MC. Characterization of CRESS-DNA viruses in human vaginal secretions: An exploratory metagenomic investigation. J Med Virol 2024; 96:e29750. [PMID: 38953413 DOI: 10.1002/jmv.29750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 05/16/2024] [Accepted: 06/09/2024] [Indexed: 07/04/2024]
Abstract
The Phylum Cressdnaviricota consists of a large number of circular Rep-encoding single-stranded (CRESS)-DNA viruses. Recently, metagenomic analyzes revealed their ubiquitous distribution in a diverse range of eukaryotes. Data relating to CRESS-DNA viruses in humans remains scarce. Our study investigated the presence and genetic diversity of CRESS-DNA viruses in human vaginal secretions. Vaginal swabs were collected from 28 women between 29 and 43 years old attending a fertility clinic in New York City. An exploratory metagenomic analysis was performed and detection of CRESS-DNA viruses was confirmed through analysis of near full-length sequences of the viral isolates. A phylogenetic tree was based on the REP open reading frame sequences of the CRESS-DNA virus genome. Eleven nearly complete CRESS-DNA viral genomes were identified in 16 (57.1%) women. There were no associations between the presence of these viruses and any demographic or clinical parameters. Phylogenetic analysis indicated that one of the sequences belonged to the genus Gemycircularvirus within the Genomoviridae family, while ten sequences represented previously unclassified species of CRESS-DNA viruses. Novel species of CRESS-DNA viruses are present in the vaginal tract of adult women. Although they be transient commensal agents, the potential clinical implications for their presence at this site cannot be dismissed.
Collapse
Affiliation(s)
- Endrya do Socorro Foro Ramos
- Laboratório de diversidade Viral, Instituto de Ciências Biológicas, Departamento de Virologia, Universidade Federal do Pará, Belém, Pará, Brazil
| | - Tania Regina Tozetto-Mendoza
- Laboratório de Investigação Médica em Virologia (LIM52), Department of Infectology and Tropical Medicine, Instituto de Medicina Tropical de São Paulo, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Pietro Bortoletto
- Fertility department, Boston IVF-The Eugin Group, Waltham, Massachusetts, USA
- Medicine department, Harvard Medical School, Boston, Massachusetts, USA
- Department of Obstetrics and Gynecology, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA
| | - Noely Evangelista Ferreira
- Laboratório de Investigação Médica em Virologia (LIM52), Department of Infectology and Tropical Medicine, Instituto de Medicina Tropical de São Paulo, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Layla Honorato
- Laboratório de Investigação Médica em Virologia (LIM52), Department of Infectology and Tropical Medicine, Instituto de Medicina Tropical de São Paulo, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Erick Matheus Garcia Barbosa
- Laboratório de Investigação Médica em Virologia (LIM52), Department of Infectology and Tropical Medicine, Instituto de Medicina Tropical de São Paulo, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Adriana Luchs
- Virology department, Enteric Diseases Laboratory, Virology Center, Adolfo Lutz Institute, São Paulo, Sao Paulo, Brazil
| | - Iara M Linhares
- Department of Gynecology and Obstetrics, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Steven D Spandorfer
- Department of Gynecology and Obstetrics, Center for Reproductive Medicine and Infertility, Weill Cornell Medicine, New York City, New York, USA
| | - Elcio Leal
- Laboratório de diversidade Viral, Instituto de Ciências Biológicas, Departamento de Virologia, Universidade Federal do Pará, Belém, Pará, Brazil
| | - Antonio Charlys da Costa
- Laboratório de Investigação Médica em Virologia (LIM52), Department of Infectology and Tropical Medicine, Instituto de Medicina Tropical de São Paulo, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Steven S Witkin
- Laboratório de Investigação Médica em Virologia (LIM52), Department of Infectology and Tropical Medicine, Instituto de Medicina Tropical de São Paulo, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
- Department of Obstetrics and Gynecology, Weill Cornell Medicine, New York City, New York, USA
| | - Maria Cassia Mendes-Correa
- Laboratório de Investigação Médica em Virologia (LIM52), Department of Infectology and Tropical Medicine, Instituto de Medicina Tropical de São Paulo, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| |
Collapse
|
5
|
Duan J, Keeler E, McFarland A, Scott P, Collman RG, Bushman FD. The virome of the kitome: small circular virus-like genomes in laboratory reagents. Microbiol Resour Announc 2024; 13:e0126123. [PMID: 38591883 PMCID: PMC11080532 DOI: 10.1128/mra.01261-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 03/26/2024] [Indexed: 04/10/2024] Open
Abstract
In the course of studying the virome of protozoan parasites, we identified small circular genomes resembling viruses, which turned out to be contaminants from an RNA purification kit. We report their sequences here so others can detect possible contamination in their samples by aligning them to these targets.
Collapse
Affiliation(s)
- Jiayi Duan
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Emma Keeler
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Alexander McFarland
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Phillip Scott
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Ronald G. Collman
- Pulmonary and Critical Care Division, Department of Medicine, Center for Translational Lung Biology, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, USA
- Pulmonary and Critical Care Division, Department of Medicine, Lung Biology Institute, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, USA
| | - Frederic D. Bushman
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
6
|
Baker JL, Mark Welch JL, Kauffman KM, McLean JS, He X. The oral microbiome: diversity, biogeography and human health. Nat Rev Microbiol 2024; 22:89-104. [PMID: 37700024 PMCID: PMC11084736 DOI: 10.1038/s41579-023-00963-6] [Citation(s) in RCA: 37] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/04/2023] [Indexed: 09/14/2023]
Abstract
The human oral microbiota is highly diverse and has a complex ecology, comprising bacteria, microeukaryotes, archaea and viruses. These communities have elaborate and highly structured biogeography that shapes metabolic exchange on a local scale and results from the diverse microenvironments present in the oral cavity. The oral microbiota also interfaces with the immune system of the human host and has an important role in not only the health of the oral cavity but also systemic health. In this Review, we highlight recent advances including novel insights into the biogeography of several oral niches at the species level, as well as the ecological role of candidate phyla radiation bacteria and non-bacterial members of the oral microbiome. In addition, we summarize the relationship between the oral microbiota and the pathology of oral diseases and systemic diseases. Together, these advances move the field towards a more holistic understanding of the oral microbiota and its role in health, which in turn opens the door to the study of novel preventive and therapeutic strategies.
Collapse
Affiliation(s)
- Jonathon L Baker
- Oregon Health & Science University, Portland, OR, USA
- J. Craig Venter Institute, La Jolla, CA, USA
- UC San Diego School of Medicine, La Jolla, CA, USA
| | - Jessica L Mark Welch
- The Forsyth Institute, Cambridge, MA, USA
- Marine Biological Laboratory, Woods Hole, MA, USA
| | | | | | - Xuesong He
- The Forsyth Institute, Cambridge, MA, USA.
- Harvard School of Dental Medicine, Boston, MA, USA.
| |
Collapse
|
7
|
Cheng X, Luo T, Chu F, Feng B, Zhong S, Chen F, Dong J, Zeng W. Simultaneous detection and removal of mercury (II) using multifunctional fluorescent materials. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 905:167070. [PMID: 37714350 DOI: 10.1016/j.scitotenv.2023.167070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 09/02/2023] [Accepted: 09/12/2023] [Indexed: 09/17/2023]
Abstract
Environmental problems caused by mercury ions are increasing due to growing industrialization, poor enforcement, and inefficient pollutant treatment. Therefore, detecting and removing mercury from the ecological chain is of utmost significance. Currently, a wide range of small molecules and nanomaterials have made remarkable progress in the detection, detoxification, adsorption, and removal of mercury. In this review, we summarized the recent advances in the design and construction of multifunctional materials, detailed their sensing and removing mechanisms, and discussed with emphasis the advantages and disadvantages of different types of sensors. Finally, we elucidated the problems and challenges of current multifunctional materials and further pointed out the direction for the future development of related materials. This review is expected to provide a guideline for researchers to establish a robust strategy for the detection and removal of mercury ionsin the environment.
Collapse
Affiliation(s)
- Xiang Cheng
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, China; Hunan Key Laboratory of Diagnostic and Therapeutic Drug Research for Chronic Diseases, Central South University, Changsha 410013, China; The Molecular Imaging Research Center, Central South University, Changsha 410013, China
| | - Ting Luo
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, China; Hunan Key Laboratory of Diagnostic and Therapeutic Drug Research for Chronic Diseases, Central South University, Changsha 410013, China; The Molecular Imaging Research Center, Central South University, Changsha 410013, China
| | - Feiyi Chu
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, China; Hunan Key Laboratory of Diagnostic and Therapeutic Drug Research for Chronic Diseases, Central South University, Changsha 410013, China; The Molecular Imaging Research Center, Central South University, Changsha 410013, China
| | - Bin Feng
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, China; Hunan Key Laboratory of Diagnostic and Therapeutic Drug Research for Chronic Diseases, Central South University, Changsha 410013, China; The Molecular Imaging Research Center, Central South University, Changsha 410013, China
| | - Shibo Zhong
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, China; Hunan Key Laboratory of Diagnostic and Therapeutic Drug Research for Chronic Diseases, Central South University, Changsha 410013, China; The Molecular Imaging Research Center, Central South University, Changsha 410013, China
| | - Fei Chen
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, China; Hunan Key Laboratory of Diagnostic and Therapeutic Drug Research for Chronic Diseases, Central South University, Changsha 410013, China; The Molecular Imaging Research Center, Central South University, Changsha 410013, China
| | - Jie Dong
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, China; Hunan Key Laboratory of Diagnostic and Therapeutic Drug Research for Chronic Diseases, Central South University, Changsha 410013, China; The Molecular Imaging Research Center, Central South University, Changsha 410013, China
| | - Wenbin Zeng
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, China; Hunan Key Laboratory of Diagnostic and Therapeutic Drug Research for Chronic Diseases, Central South University, Changsha 410013, China; The Molecular Imaging Research Center, Central South University, Changsha 410013, China.
| |
Collapse
|
8
|
Schäffer DE, Li W, Elbasir A, Altieri DC, Long Q, Auslander N. Microbial gene expression analysis of healthy and cancerous esophagus uncovers bacterial biomarkers of clinical outcomes. ISME COMMUNICATIONS 2023; 3:128. [PMID: 38049632 PMCID: PMC10696091 DOI: 10.1038/s43705-023-00338-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 11/16/2023] [Accepted: 11/21/2023] [Indexed: 12/06/2023]
Abstract
Local microbiome shifts are implicated in the development and progression of gastrointestinal cancers, and in particular, esophageal carcinoma (ESCA), which is among the most aggressive malignancies. Short-read RNA sequencing (RNAseq) is currently the leading technology to study gene expression changes in cancer. However, using RNAseq to study microbial gene expression is challenging. Here, we establish a new tool to efficiently detect viral and bacterial expression in human tissues through RNAseq. This approach employs a neural network to predict reads of likely microbial origin, which are targeted for assembly into longer contigs, improving identification of microbial species and genes. This approach is applied to perform a systematic comparison of bacterial expression in ESCA and healthy esophagi. We uncover bacterial genera that are over or underabundant in ESCA vs healthy esophagi both before and after correction for possible covariates, including patient metadata. However, we find that bacterial taxonomies are not significantly associated with clinical outcomes. Strikingly, in contrast, dozens of microbial proteins were significantly associated with poor patient outcomes and in particular, proteins that perform mitochondrial functions and iron-sulfur coordination. We further demonstrate associations between these microbial proteins and dysregulated host pathways in ESCA patients. Overall, these results suggest possible influences of bacteria on the development of ESCA and uncover new prognostic biomarkers based on microbial genes. In addition, this study provides a framework for the analysis of other human malignancies whose development may be driven by pathogens.
Collapse
Affiliation(s)
- Daniel E Schäffer
- Computational Biology Department, Carnegie Mellon University, Pittsburgh, PA, 15213, USA
- The Wistar Institute, Philadelphia, PA, 19104, USA
- Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Wenrui Li
- University of Pennsylvania, Philadelphia, PA, USA
| | | | | | - Qi Long
- University of Pennsylvania, Philadelphia, PA, USA
| | - Noam Auslander
- The Wistar Institute, Philadelphia, PA, 19104, USA.
- Department of Cancer Biology, University of Pennsylvania, Philadelphia, PA, 19104, USA.
| |
Collapse
|
9
|
Wang H, Xu S, Li S, Su B, Sherrill-Mix S, Liang G. Virome in immunodeficiency: what we know currently. Chin Med J (Engl) 2023; 136:2647-2657. [PMID: 37914672 PMCID: PMC10684123 DOI: 10.1097/cm9.0000000000002899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Indexed: 11/03/2023] Open
Abstract
ABSTRACT Over the past few years, the human virome and its complex interactions with microbial communities and the immune system have gained recognition as a crucial factor in human health. Individuals with compromised immune function encounter distinctive challenges due to their heightened vulnerability to a diverse range of infectious diseases. This review aims to comprehensively explore and analyze the growing evidence regarding the role of the virome in immunocompromised disease status. By surveying the latest literature, we present a detailed overview of virome alterations observed in various immunodeficiency conditions. We then delve into the influence and mechanisms of these virome changes on the pathogenesis of specific diseases in immunocompromised individuals. Furthermore, this review explores the clinical relevance of virome studies in the context of immunodeficiency, highlighting the potential diagnostic and therapeutic gains from a better understanding of virome contributions to disease manifestations.
Collapse
Affiliation(s)
- Hu Wang
- Beijing Key Laboratory for HIV/AIDS Research, Clinical and Research Center for Infectious Diseases, Beijing Youan Hospital, Capital Medical University, Beijing 100069, China
| | - Siqi Xu
- Center for Infectious Disease Research, School of Medicine, Tsinghua University, Beijing 100084, China
- Tsinghua-Peking Center for Life Sciences, Beijing 100084, China
| | - Shuang Li
- Beijing Key Laboratory for HIV/AIDS Research, Clinical and Research Center for Infectious Diseases, Beijing Youan Hospital, Capital Medical University, Beijing 100069, China
| | - Bin Su
- Beijing Key Laboratory for HIV/AIDS Research, Clinical and Research Center for Infectious Diseases, Beijing Youan Hospital, Capital Medical University, Beijing 100069, China
| | - Scott Sherrill-Mix
- Department of Microbiology & Molecular Genetics, Michigan State University, East Lansing, MI 48824, USA
| | - Guanxiang Liang
- Center for Infectious Disease Research, School of Medicine, Tsinghua University, Beijing 100084, China
- Tsinghua-Peking Center for Life Sciences, Beijing 100084, China
| |
Collapse
|
10
|
Paietta EN, Kraberger S, Custer JM, Vargas KL, Espy C, Ehmke E, Yoder AD, Varsani A. Characterization of Diverse Anelloviruses, Cressdnaviruses, and Bacteriophages in the Human Oral DNA Virome from North Carolina (USA). Viruses 2023; 15:1821. [PMID: 37766228 PMCID: PMC10537320 DOI: 10.3390/v15091821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 08/22/2023] [Accepted: 08/23/2023] [Indexed: 09/29/2023] Open
Abstract
The diversity of viruses identified from the various niches of the human oral cavity-from saliva to dental plaques to the surface of the tongue-has accelerated in the age of metagenomics. This rapid expansion demonstrates that our understanding of oral viral diversity is incomplete, with only a few studies utilizing passive drool collection in conjunction with metagenomic sequencing methods. For this pilot study, we obtained 14 samples from healthy staff members working at the Duke Lemur Center (Durham, NC, USA) to determine the viral diversity that can be identified in passive drool samples from humans. The complete genomes of 3 anelloviruses, 9 cressdnaviruses, 4 Caudoviricetes large bacteriophages, 29 microviruses, and 19 inoviruses were identified in this study using high-throughput sequencing and viral metagenomic workflows. The results presented here expand our understanding of the vertebrate-infecting and microbe-infecting viral diversity of the human oral virome in North Carolina (USA).
Collapse
Affiliation(s)
| | - Simona Kraberger
- The Biodesign Center for Fundamental and Applied Microbiomics, Center for Evolution and Medicine and School of Life Sciences, Arizona State University, Tempe, AZ 85287, USA
| | - Joy M. Custer
- The Biodesign Center for Fundamental and Applied Microbiomics, Center for Evolution and Medicine and School of Life Sciences, Arizona State University, Tempe, AZ 85287, USA
| | - Karla L. Vargas
- The Biodesign Center for Fundamental and Applied Microbiomics, Center for Evolution and Medicine and School of Life Sciences, Arizona State University, Tempe, AZ 85287, USA
| | - Claudia Espy
- Department of Biology, Duke University, Durham, NC 27708, USA
| | - Erin Ehmke
- Duke Lemur Center, Duke University, Durham, NC 27705, USA;
| | - Anne D. Yoder
- Department of Biology, Duke University, Durham, NC 27708, USA
| | - Arvind Varsani
- The Biodesign Center for Fundamental and Applied Microbiomics, Center for Evolution and Medicine and School of Life Sciences, Arizona State University, Tempe, AZ 85287, USA
- Structural Biology Research Unit, Department of Integrative Biomedical Sciences, University of Cape Town, Cape Town 7925, South Africa
| |
Collapse
|
11
|
Makoa-Meng M, Semmar R, Antezack A, Penant G, La Scola B, Monnet-Corti V, Colson P. Correlation of Redondovirus and Entamoeba gingivalis Detections in the Human Oral Cavity Suggests That This Amoeba Is Possibly the Redondovirus Host. Int J Mol Sci 2023; 24:ijms24076303. [PMID: 37047275 PMCID: PMC10094137 DOI: 10.3390/ijms24076303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 03/21/2023] [Accepted: 03/23/2023] [Indexed: 03/30/2023] Open
Abstract
The virome of the human oral cavity and the relationships between viruses and diseases such as periodontitis are scarcely deciphered. Redondoviruses were reported in the human oral cavity in 2019, including in periodontitis patients. Here, we aimed at detecting redondoviruses and at searching for a potential viral host in human saliva. Non-stimulated saliva was collected between December 2020 and June 2021. These samples were tested using real-time PCR regarding the presence of redondovirus and Entamoeba gingivalis DNA. Similarity searches were performed using BLAST against eukaryotic and prokaryotic sequences from GenBank. The redondovirus DNA was detected in 46% of the 28 human saliva samples. In addition, short fragments of redondovirus genomes were detected in silico within Entamoeba sequences. Finally, Entamoeba gingivalis DNA was detected in 46% of the 28 saliva samples, with a strong correlation between redondovirus DNA and E. gingivalis DNA detections, in 93% of the cases. Regarded together, these findings and previous ones strongly support the presence of redondoviruses in the human oral cavity and their association to E. gingivalis as their likely host.
Collapse
|
12
|
A host for redondoviruses. Nat Rev Microbiol 2023; 21:67. [PMID: 36513769 PMCID: PMC9746554 DOI: 10.1038/s41579-022-00844-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
This study identifies the eukaryotic commensal Entamoeba gingivalis as the main host for human-associated redondoviruses.
Collapse
|