1
|
de Oliveira Whitaker C, de Oliveira TLR, Ferreira ALP, Nouér SA, Chamon RC, Dos Santos KRN. Clonal shift and impact of azithromycin use on antimicrobial resistance of Staphylococcus aureus isolated from bloodstream infection during the COVID-19 pandemic. Sci Rep 2025; 15:597. [PMID: 39753666 PMCID: PMC11699283 DOI: 10.1038/s41598-024-84307-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Accepted: 12/23/2024] [Indexed: 01/06/2025] Open
Abstract
Staphylococcus aureus is a relevant pathogen in bloodstream infections (BSI), and the emergency of the COVID-19 pandemic increased its antimicrobial resistance. S. aureus isolates from BSI (September/2019 - March/2021) were analyzed phenotypically and molecularly, in addition to the clinical features of the patients. Of 88 S. aureus isolates recovered from 85 patients, 25 were isolated before the pandemic and 63 during it, and 16 were from patients with COVID-19. A rate of 45.5% of methicillin-resistant isolates (MRSA) were found, and 5% of them were ceftaroline susceptible dose-dependent. Daptomycin non-susceptibility was observed in 9.1% of isolates. The USA800/ST5/SCCmecIV lineage was prevalent among MRSA isolates (41.8%). Besides, 30.2% of the isolates were associated with community-associated MRSA (CA-MRSA) genotypes. There was a significant impact on the resistance rates for cefoxitin, clindamycin and erythromycin among S. aureus isolates from BSI in COVID-19 patients and association with the previous use of azithromycin by them (p < 0.05). A clonal alternation and an increase in the emergence of CA-MRSA lineages were also found, highlighting the importance of constant microbiological surveillance.
Collapse
Affiliation(s)
- Carolina de Oliveira Whitaker
- Departamento de Microbiologia Médica, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, 21951-902, Brazil
| | - Tamara Lopes Rocha de Oliveira
- Departamento de Microbiologia Médica, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, 21951-902, Brazil
| | - Adriana Lúcia Pires Ferreira
- Departamento de Doenças Infecciosas e Parasitárias, Hospital Universitário Clementino Fraga Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, 21951-913, Brazil
| | - Simone Aranha Nouér
- Departamento de Doenças Infecciosas e Parasitárias, Hospital Universitário Clementino Fraga Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, 21951-913, Brazil
| | - Raiane Cardoso Chamon
- Departamento de Patologia, Universidade Federal Fluminense, Niterói, Rio de Janeiro, 24070-090, Brazil.
| | - Kátia Regina Netto Dos Santos
- Departamento de Microbiologia Médica, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, 21951-902, Brazil.
| |
Collapse
|
2
|
Chen X, Sun H, Wang W, Wang H, Tan R, Zhu T. SarZ inhibits the hemolytic activity through regulation of phenol soluble modulins in Staphylococcus epidermidis. Front Cell Infect Microbiol 2024; 14:1476287. [PMID: 39628668 PMCID: PMC11612630 DOI: 10.3389/fcimb.2024.1476287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Accepted: 10/17/2024] [Indexed: 12/06/2024] Open
Abstract
Background Staphylococcus epidermidis is an important conditionally pathogenic bacterium. SarZ, belonging to the SarA family protein, has been demonstrated in S. aureus to promote the expression of invasive virulence factors while inhibiting biofilm formation. However, the regulatory role of SarZ on S. epidermidis virulence is not completely understood. Results In this study, we successfully deleted the sarZ gene by allelic replacement in S. epidermidis. The sarZ mutant strain exhibited remarkably increased hemolytic activity and drastically impaired biofilm formation, suggesting that SarZ is key regulator of virulence in S. epidermidis. Through butanol extraction of the spent medium and HPLC-MS/MS analysis, production of phenol soluble modulins (PSMs) possessing cytolytic effect was found to be elevated significantly in the mutant. Subsequent qRT-PCR experiments demonstrated that expression of the psm genes, especially the β-type, was upregulated dramatically in the mutant. Meanwhile, transcription of icaA gene responsible for biofilm formation was sharply diminished. The sarZ psmβ double mutant was further generated and displayed a significantly decreased hemolytic activity compared with the sarZ mutant. EMSA assays implied that recombinant SarZ protein can directly bind to the promoter regions of the psmβ and ica operon. DNase I footprinting assays further pinpointed two SarZ-binding sites on the psmβ operon promoter. Conclusion Taken together, the results confirmed that SarZ is a pivotal regulator of virulence in S. epidermidis and might respectively regulate the hemolytic activity and biofilm formation mainly by directly controlling the transcription of psm genes, particularly the β-type, and the ica operon.
Collapse
Affiliation(s)
- Xiao Chen
- Department of Medical Microbiology and Immunology, Wannan Medical College, Wuhu, China
| | - Huiru Sun
- Department of Pharmacy, Wannan Medical College, Wuhu, China
| | - Wei Wang
- Department of Pharmacy, Wannan Medical College, Wuhu, China
| | - Han Wang
- Department of Pharmacy, Wannan Medical College, Wuhu, China
| | - Runan Tan
- Department of Medical Microbiology and Immunology, Wannan Medical College, Wuhu, China
| | - Tao Zhu
- Department of Medical Microbiology and Immunology, Wannan Medical College, Wuhu, China
| |
Collapse
|
3
|
González-Machado C, Alonso-Calleja C, Capita R. Prevalence and types of methicillin-resistant Staphylococcus aureus (MRSA) in meat and meat products from retail outlets and in samples of animal origin collected in farms, slaughterhouses and meat processing facilities. A review. Food Microbiol 2024; 123:104580. [PMID: 39038886 DOI: 10.1016/j.fm.2024.104580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 06/01/2024] [Accepted: 06/03/2024] [Indexed: 07/24/2024]
Abstract
Methicillin-resistant Staphylococcus aureus (MRSA) is a frequent cause of nosocomial and community infections, in some cases severe and difficult to treat. In addition, there are strains of MRSA that are specifically associated with food-producing animals. For this reason, in recent years special attention has been paid to the role played by foodstuffs of animal origin in infections by this microorganism. With the aim of gaining knowledge on the prevalence and types of MRSA in meat and meat products, a review was undertaken of work published on this topic since 2001, a total of 259 publications, 185 relating to meat samples from retail outlets and 74 to samples of animal origin collected in farms, slaughterhouses and meat processing facilities. Strains of MRSA were detected in 84.3% reports (156 out of 185) from retail outlets and 86.5% reports (64 out of 74) from farms, slaughterhouses and meat processing facilities, although in most of the research this microorganism was detected in under 20% of samples from retail outlets, and under 10% in those from farms, slaughterhouses and meat processing facilities. The meat and meat products most often contaminated with MRSA were pork and chicken. In addition to the mecA gene, it is crucial to take into consideration the mecB and mecC genes, so as to avoid misidentification of strains as MSSA (methicillin-susceptible Staphylococcus aureus). The great variety of methods used for the determination of MRSA highlights the need to develop a standardized protocol for the study of this microorganism in foods.
Collapse
Affiliation(s)
- Camino González-Machado
- Department of Food Hygiene and Technology, Veterinary Faculty, University of León, E-24071, León, Spain; Institute of Food Science and Technology, University of León, E-24071, León, Spain
| | - Carlos Alonso-Calleja
- Department of Food Hygiene and Technology, Veterinary Faculty, University of León, E-24071, León, Spain; Institute of Food Science and Technology, University of León, E-24071, León, Spain
| | - Rosa Capita
- Department of Food Hygiene and Technology, Veterinary Faculty, University of León, E-24071, León, Spain; Institute of Food Science and Technology, University of León, E-24071, León, Spain.
| |
Collapse
|
4
|
Lubkin A, Bernard-Raichon L, DuMont AL, Valero Jimenez AM, Putzel GG, Gago J, Zwack EE, Olusanya O, Boguslawski KM, Dallari S, Dyzenhaus S, Herrmann C, Ilmain JK, Isom GL, Pawline M, Perault AI, Perelman S, Sause WE, Shahi I, St. John A, Tierce R, Zheng X, Zhou C, Noval MG, O'Keeffe A, Podkowik M, Gonzales S, Inglima K, Desvignes L, Hochman SE, Stapleford KA, Thorpe LE, Pironti A, Shopsin B, Cadwell K, Dittmann M, Torres VJ. SARS-CoV-2 infection predisposes patients to coinfection with Staphylococcus aureus. mBio 2024; 15:e0166724. [PMID: 39037272 PMCID: PMC11323729 DOI: 10.1128/mbio.01667-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 06/27/2024] [Indexed: 07/23/2024] Open
Abstract
Severe COVID-19 has been associated with coinfections with bacterial and fungal pathogens. Notably, patients with COVID-19 who develop Staphylococcus aureus bacteremia exhibit higher rates of mortality than those infected with either pathogen alone. To understand this clinical scenario, we collected and examined S. aureus blood and respiratory isolates from a hospital in New York City during the early phase of the pandemic from both SARS-CoV-2+ and SARS-CoV-2- patients. Whole genome sequencing of these S. aureus isolates revealed broad phylogenetic diversity in both patient groups, suggesting that SARS-CoV-2 coinfection was not associated with a particular S. aureus lineage. Phenotypic characterization of the contemporary collection of S. aureus isolates from SARS-CoV-2+ and SARS-CoV-2- patients revealed no notable differences in several virulence traits examined. However, we noted a trend toward overrepresentation of S. aureus bloodstream strains with low cytotoxicity in the SARS-CoV-2+ group. We observed that patients coinfected with SARS-CoV-2 and S. aureus were more likely to die during the acute phase of infection when the coinfecting S. aureus strain exhibited high or low cytotoxicity. To further investigate the relationship between SARS-CoV-2 and S. aureus infections, we developed a murine coinfection model. These studies revealed that infection with SARS-CoV-2 renders mice susceptible to subsequent superinfection with low cytotoxicity S. aureus. Thus, SARS-CoV-2 infection sensitizes the host to coinfections, including S. aureus isolates with low intrinsic virulence. IMPORTANCE The COVID-19 pandemic has had an enormous impact on healthcare across the globe. Patients who were severely infected with SARS-CoV-2, the virus causing COVID-19, sometimes became infected with other pathogens, which is termed coinfection. If the coinfecting pathogen is the bacterium Staphylococcus aureus, there is an increased risk of patient death. We collected S. aureus strains that coinfected patients with SARS-CoV-2 to study the disease outcome caused by the interaction of these two important pathogens. We found that both in patients and in mice, coinfection with an S. aureus strain lacking toxicity resulted in more severe disease during the early phase of infection, compared with infection with either pathogen alone. Thus, SARS-CoV-2 infection can directly increase the severity of S. aureus infection.
Collapse
Affiliation(s)
- Ashira Lubkin
- Department of Microbiology, New York University Grossman School of Medicine, New York, New York, USA
| | - Lucie Bernard-Raichon
- Department of Microbiology, New York University Grossman School of Medicine, New York, New York, USA
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Ashley L. DuMont
- Department of Microbiology, New York University Grossman School of Medicine, New York, New York, USA
| | - Ana Mayela Valero Jimenez
- Department of Microbiology, New York University Grossman School of Medicine, New York, New York, USA
| | - Gregory G. Putzel
- Department of Microbiology, New York University Grossman School of Medicine, New York, New York, USA
- Antimicrobial-Resistant Pathogens Program, Microbial Genomics Core Lab, New York University Langone Health, New York, New York, USA
| | - Juan Gago
- Department of Population Health, New York University Grossman School of Medicine, New York, New York, USA
| | - Erin E. Zwack
- Department of Microbiology, New York University Grossman School of Medicine, New York, New York, USA
| | - Olufolakemi Olusanya
- Department of Microbiology, New York University Grossman School of Medicine, New York, New York, USA
- Antimicrobial-Resistant Pathogens Program, Microbial Genomics Core Lab, New York University Langone Health, New York, New York, USA
| | - Kristina M. Boguslawski
- Department of Microbiology, New York University Grossman School of Medicine, New York, New York, USA
| | - Simone Dallari
- Department of Microbiology, New York University Grossman School of Medicine, New York, New York, USA
| | - Sophie Dyzenhaus
- Department of Microbiology, New York University Grossman School of Medicine, New York, New York, USA
| | - Christin Herrmann
- Department of Microbiology, New York University Grossman School of Medicine, New York, New York, USA
| | - Juliana K. Ilmain
- Department of Microbiology, New York University Grossman School of Medicine, New York, New York, USA
| | - Georgia L. Isom
- Department of Microbiology, New York University Grossman School of Medicine, New York, New York, USA
| | - Miranda Pawline
- Department of Microbiology, New York University Grossman School of Medicine, New York, New York, USA
- Department of Medicine, NYU Grossman School of Medicine, New York, New York, USA
| | - Andrew I. Perault
- Department of Microbiology, New York University Grossman School of Medicine, New York, New York, USA
- Antimicrobial-Resistant Pathogens Program, Microbial Genomics Core Lab, New York University Langone Health, New York, New York, USA
| | - Sofya Perelman
- Department of Microbiology, New York University Grossman School of Medicine, New York, New York, USA
| | - William E. Sause
- Department of Microbiology, New York University Grossman School of Medicine, New York, New York, USA
| | - Ifrah Shahi
- Department of Microbiology, New York University Grossman School of Medicine, New York, New York, USA
| | - Amelia St. John
- Department of Microbiology, New York University Grossman School of Medicine, New York, New York, USA
| | - Rebecca Tierce
- Division of Comparative Medicine, New York University Langone Health, New York, New York, USA
| | - Xuhui Zheng
- Department of Microbiology, New York University Grossman School of Medicine, New York, New York, USA
| | - Chunyi Zhou
- Department of Microbiology, New York University Grossman School of Medicine, New York, New York, USA
- Department of Medicine, NYU Grossman School of Medicine, New York, New York, USA
| | - Maria G. Noval
- Department of Microbiology, New York University Grossman School of Medicine, New York, New York, USA
| | - Anna O'Keeffe
- Department of Microbiology, New York University Grossman School of Medicine, New York, New York, USA
| | - Magda Podkowik
- Department of Microbiology, New York University Grossman School of Medicine, New York, New York, USA
- Antimicrobial-Resistant Pathogens Program, Microbial Genomics Core Lab, New York University Langone Health, New York, New York, USA
| | - Sandra Gonzales
- Department of Microbiology, New York University Grossman School of Medicine, New York, New York, USA
| | - Kenneth Inglima
- Department of Medicine, NYU Grossman School of Medicine, New York, New York, USA
| | - Ludovic Desvignes
- Department of Medicine, NYU Grossman School of Medicine, New York, New York, USA
- High Containment Laboratories, Office of Science and Research, NYU Langone Health, New York, New York, USA
| | - Sarah E. Hochman
- Antimicrobial-Resistant Pathogens Program, Microbial Genomics Core Lab, New York University Langone Health, New York, New York, USA
- Department of Medicine, NYU Grossman School of Medicine, New York, New York, USA
| | - Kenneth A. Stapleford
- Department of Microbiology, New York University Grossman School of Medicine, New York, New York, USA
| | - Lorna E. Thorpe
- Department of Population Health, New York University Grossman School of Medicine, New York, New York, USA
| | - Alejandro Pironti
- Department of Microbiology, New York University Grossman School of Medicine, New York, New York, USA
- Antimicrobial-Resistant Pathogens Program, Microbial Genomics Core Lab, New York University Langone Health, New York, New York, USA
| | - Bo Shopsin
- Department of Microbiology, New York University Grossman School of Medicine, New York, New York, USA
- Antimicrobial-Resistant Pathogens Program, Microbial Genomics Core Lab, New York University Langone Health, New York, New York, USA
- Department of Medicine, NYU Grossman School of Medicine, New York, New York, USA
| | - Ken Cadwell
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Meike Dittmann
- Department of Microbiology, New York University Grossman School of Medicine, New York, New York, USA
| | - Victor J. Torres
- Department of Microbiology, New York University Grossman School of Medicine, New York, New York, USA
- Antimicrobial-Resistant Pathogens Program, Microbial Genomics Core Lab, New York University Langone Health, New York, New York, USA
| |
Collapse
|
5
|
Nagarajan A, Scoggin K, Gupta J, Aminian M, Adams LG, Kirby M, Threadgill D, Andrews-Polymenis H. Collaborative Cross mice have diverse phenotypic responses to infection with Methicillin-resistant Staphylococcus aureus USA300. PLoS Genet 2024; 20:e1011229. [PMID: 38696518 PMCID: PMC11108197 DOI: 10.1371/journal.pgen.1011229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 05/21/2024] [Accepted: 03/18/2024] [Indexed: 05/04/2024] Open
Abstract
Staphylococcus aureus (S. aureus) is an opportunistic pathogen causing diseases ranging from mild skin infections to life threatening conditions, including endocarditis, pneumonia, and sepsis. To identify host genes modulating this host-pathogen interaction, we infected 25 Collaborative Cross (CC) mouse strains with methicillin-resistant S. aureus (MRSA) and monitored disease progression for seven days using a surgically implanted telemetry system. CC strains varied widely in their response to intravenous MRSA infection. We identified eight 'susceptible' CC strains with high bacterial load, tissue damage, and reduced survival. Among the surviving strains, six with minimal colonization were classified as 'resistant', while the remaining six tolerated higher organ colonization ('tolerant'). The kidney was the most heavily colonized organ, but liver, spleen and lung colonization were better correlated with reduced survival. Resistant strains had higher pre-infection circulating neutrophils and lower post-infection tissue damage compared to susceptible and tolerant strains. We identified four CC strains with sexual dimorphism: all females survived the study period while all males met our euthanasia criteria earlier. In these CC strains, males had more baseline circulating monocytes and red blood cells. We identified several CC strains that may be useful as new models for endocarditis, myocarditis, pneumonia, and resistance to MRSA infection. Quantitative Trait Locus (QTL) analysis identified two significant loci, on Chromosomes 18 and 3, involved in early susceptibility and late survival after infection. We prioritized Npc1 and Ifi44l genes as the strongest candidates influencing survival using variant analysis and mRNA expression data from kidneys within these intervals.
Collapse
Affiliation(s)
- Aravindh Nagarajan
- Interdisciplinary Program in Genetics and Genomics, Texas A&M University, College Station, Texas, United States of America
- Department of Microbial Pathogenesis and Immunology, Texas A&M University, College Station, Texas, United States of America
| | - Kristin Scoggin
- Interdisciplinary Program in Genetics and Genomics, Texas A&M University, College Station, Texas, United States of America
- Department of Molecular and Cellular Medicine, Texas A&M University, College Station, Texas, United States of America
| | - Jyotsana Gupta
- Department of Microbial Pathogenesis and Immunology, Texas A&M University, College Station, Texas, United States of America
| | - Manuchehr Aminian
- Department of Mathematics, Colorado State University, Fort Collins, Colorado, United States of America
- Department of Mathematics and Statistics, California State Polytechnic University, Pomona, California, United States of America
| | - L. Garry Adams
- Department of Veterinary Pathobiology, Texas A&M University, College Station, Texas, United States of America
| | - Michael Kirby
- Department of Mathematics, Colorado State University, Fort Collins, Colorado, United States of America
| | - David Threadgill
- Interdisciplinary Program in Genetics and Genomics, Texas A&M University, College Station, Texas, United States of America
- Department of Molecular and Cellular Medicine, Texas A&M University, College Station, Texas, United States of America
- Texas A&M Institute for Genome Sciences and Society, Texas A&M University, College Station, Texas, United States of America
- Department of Biochemistry & Biophysics and Department of Nutrition, Texas A&M University, College Station, Texas, United States of America
| | - Helene Andrews-Polymenis
- Interdisciplinary Program in Genetics and Genomics, Texas A&M University, College Station, Texas, United States of America
- Department of Microbial Pathogenesis and Immunology, Texas A&M University, College Station, Texas, United States of America
| |
Collapse
|
6
|
Podkowik M, Perault AI, Putzel G, Pountain A, Kim J, DuMont AL, Zwack EE, Ulrich RJ, Karagounis TK, Zhou C, Haag AF, Shenderovich J, Wasserman GA, Kwon J, Chen J, Richardson AR, Weiser JN, Nowosad CR, Lun DS, Parker D, Pironti A, Zhao X, Drlica K, Yanai I, Torres VJ, Shopsin B. Quorum-sensing agr system of Staphylococcus aureus primes gene expression for protection from lethal oxidative stress. eLife 2024; 12:RP89098. [PMID: 38687677 PMCID: PMC11060713 DOI: 10.7554/elife.89098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2024] Open
Abstract
The agr quorum-sensing system links Staphylococcus aureus metabolism to virulence, in part by increasing bacterial survival during exposure to lethal concentrations of H2O2, a crucial host defense against S. aureus. We now report that protection by agr surprisingly extends beyond post-exponential growth to the exit from stationary phase when the agr system is no longer turned on. Thus, agr can be considered a constitutive protective factor. Deletion of agr resulted in decreased ATP levels and growth, despite increased rates of respiration or fermentation at appropriate oxygen tensions, suggesting that Δagr cells undergo a shift towards a hyperactive metabolic state in response to diminished metabolic efficiency. As expected from increased respiratory gene expression, reactive oxygen species (ROS) accumulated more in the agr mutant than in wild-type cells, thereby explaining elevated susceptibility of Δagr strains to lethal H2O2 doses. Increased survival of wild-type agr cells during H2O2 exposure required sodA, which detoxifies superoxide. Additionally, pretreatment of S. aureus with respiration-reducing menadione protected Δagr cells from killing by H2O2. Thus, genetic deletion and pharmacologic experiments indicate that agr helps control endogenous ROS, thereby providing resilience against exogenous ROS. The long-lived 'memory' of agr-mediated protection, which is uncoupled from agr activation kinetics, increased hematogenous dissemination to certain tissues during sepsis in ROS-producing, wild-type mice but not ROS-deficient (Cybb-/-) mice. These results demonstrate the importance of protection that anticipates impending ROS-mediated immune attack. The ubiquity of quorum sensing suggests that it protects many bacterial species from oxidative damage.
Collapse
Affiliation(s)
- Magdalena Podkowik
- Department of Medicine, Division of Infectious Diseases, NYU Grossman School of MedicineNew YorkUnited States
- Antimicrobial-Resistant Pathogens Program, New York University School of MedicineNew YorkUnited States
| | - Andrew I Perault
- Antimicrobial-Resistant Pathogens Program, New York University School of MedicineNew YorkUnited States
- Department of Microbiology, NYU Grossman School of MedicineNew YorkUnited States
| | - Gregory Putzel
- Antimicrobial-Resistant Pathogens Program, New York University School of MedicineNew YorkUnited States
- Department of Microbiology, NYU Grossman School of MedicineNew YorkUnited States
- Microbial Computational Genomic Core Lab, NYU Grossman School of MedicineNew YorkUnited States
| | - Andrew Pountain
- Institute for Systems Genetics; NYU Grossman School of MedicineNew YorkUnited States
| | - Jisun Kim
- Department of Pathology, Immunology and Laboratory Medicine, Center for Immunity and Inflammation, Rutgers New Jersey Medical SchoolNewarkUnited States
| | - Ashley L DuMont
- Department of Medicine, Division of Infectious Diseases, NYU Grossman School of MedicineNew YorkUnited States
| | - Erin E Zwack
- Department of Microbiology, NYU Grossman School of MedicineNew YorkUnited States
| | - Robert J Ulrich
- Department of Medicine, Division of Infectious Diseases, NYU Grossman School of MedicineNew YorkUnited States
| | - Theodora K Karagounis
- Antimicrobial-Resistant Pathogens Program, New York University School of MedicineNew YorkUnited States
- Ronald O. Perelman Department of Dermatology; NYU Grossman School of MedicineNew YorkUnited States
| | - Chunyi Zhou
- Department of Medicine, Division of Infectious Diseases, NYU Grossman School of MedicineNew YorkUnited States
- Antimicrobial-Resistant Pathogens Program, New York University School of MedicineNew YorkUnited States
| | - Andreas F Haag
- School of Medicine, University of St AndrewsSt AndrewsUnited Kingdom
| | - Julia Shenderovich
- Antimicrobial-Resistant Pathogens Program, New York University School of MedicineNew YorkUnited States
- Department of Microbiology, NYU Grossman School of MedicineNew YorkUnited States
| | - Gregory A Wasserman
- Department of Surgery, Northwell Health Lenox Hill HospitalNew YorkUnited States
| | - Junbeom Kwon
- Department of Medicine, Division of Infectious Diseases, NYU Grossman School of MedicineNew YorkUnited States
| | - John Chen
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of SingaporeSingaporeSingapore
| | - Anthony R Richardson
- Department of Microbiology and Molecular Genetics, University of PittsburghPittsburghUnited States
| | - Jeffrey N Weiser
- Department of Microbiology, NYU Grossman School of MedicineNew YorkUnited States
| | - Carla R Nowosad
- Department of Pathology, NYU Grossman School of MedicineNew YorkUnited States
| | - Desmond S Lun
- Center for Computational and Integrative Biology and Department of Computer Science, Rutgers UniversityCamdenUnited States
| | - Dane Parker
- Department of Pathology, Immunology and Laboratory Medicine, Center for Immunity and Inflammation, Rutgers New Jersey Medical SchoolNewarkUnited States
| | - Alejandro Pironti
- Antimicrobial-Resistant Pathogens Program, New York University School of MedicineNew YorkUnited States
- Department of Microbiology, NYU Grossman School of MedicineNew YorkUnited States
- Microbial Computational Genomic Core Lab, NYU Grossman School of MedicineNew YorkUnited States
| | - Xilin Zhao
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen UniversityXiamenChina
| | - Karl Drlica
- Public Health Research Institute, New Jersey Medical School, Rutgers UniversityNew YprkUnited States
- Department of Microbiology, Biochemistry & Molecular Genetics, New Jersey Medical School, Rutgers UniversityNewarkUnited States
| | - Itai Yanai
- Institute for Systems Genetics; NYU Grossman School of MedicineNew YorkUnited States
- Department of Biochemistry and Molecular Pharmacology, NYU Grossman School of MedicineNew YorkUnited States
| | - Victor J Torres
- Antimicrobial-Resistant Pathogens Program, New York University School of MedicineNew YorkUnited States
- Department of Microbiology, NYU Grossman School of MedicineNew YorkUnited States
| | - Bo Shopsin
- Department of Medicine, Division of Infectious Diseases, NYU Grossman School of MedicineNew YorkUnited States
- Antimicrobial-Resistant Pathogens Program, New York University School of MedicineNew YorkUnited States
- Department of Microbiology, NYU Grossman School of MedicineNew YorkUnited States
| |
Collapse
|
7
|
Wongdontree P, Millan-Oropeza A, Upfold J, Lavergne JP, Halpern D, Lambert C, Page A, Kénanian G, Grangeasse C, Henry C, Fouet A, Gloux K, Anba-Mondoloni J, Gruss A. Oxidative stress is intrinsic to staphylococcal adaptation to fatty acid synthesis antibiotics. iScience 2024; 27:109505. [PMID: 38577105 PMCID: PMC10993138 DOI: 10.1016/j.isci.2024.109505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 12/08/2023] [Accepted: 03/13/2024] [Indexed: 04/06/2024] Open
Abstract
Antibiotics inhibiting the fatty acid synthesis pathway (FASII) of the major pathogen Staphylococcus aureus reach their enzyme targets, but bacteria continue growth by using environmental fatty acids (eFAs) to produce phospholipids. We assessed the consequences and effectors of FASII-antibiotic (anti-FASII) adaptation. Anti-FASII induced lasting expression changes without genomic rearrangements. Several identified regulators affected the timing of adaptation outgrowth. Adaptation resulted in decreased expression of major virulence factors. Conversely, stress responses were globally increased and adapted bacteria were more resistant to peroxide killing. Importantly, pre-exposure to peroxide led to faster anti-FASII-adaptation by stimulating eFA incorporation. This adaptation differs from reports of peroxide-stimulated antibiotic efflux, which leads to tolerance. In vivo, anti-FASII-adapted S. aureus killed the insect host more slowly but continued multiplying. We conclude that staphylococcal adaptation to FASII antibiotics involves reprogramming, which decreases virulence and increases stress resistance. Peroxide, produced by the host to combat infection, favors anti-FASII adaptation.
Collapse
Affiliation(s)
- Paprapach Wongdontree
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, 78350 Jouy-en-Josas, France
| | - Aaron Millan-Oropeza
- PAPPSO Platform, Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, Jouy-en-Josas, France
| | - Jennifer Upfold
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, 78350 Jouy-en-Josas, France
| | - Jean-Pierre Lavergne
- Bacterial Pathogens and Protein Phosphorylation, Molecular Microbiology and Structural Biology, UMR 5086 - CNRS / Université de Lyon, Building IBCP, 7 Passage du Vercors, Lyon, France
| | - David Halpern
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, 78350 Jouy-en-Josas, France
| | - Clara Lambert
- Université Paris Cité, Institut Cochin, INSERM, U1016, CNRS, UMR8104, Paris, France
| | - Adeline Page
- Protein Science Facility, SFR BioSciences, CNRS, UMS3444, INSERM US8, Université de Lyon, Lyon, France
| | - Gérald Kénanian
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, 78350 Jouy-en-Josas, France
| | - Christophe Grangeasse
- Bacterial Pathogens and Protein Phosphorylation, Molecular Microbiology and Structural Biology, UMR 5086 - CNRS / Université de Lyon, Building IBCP, 7 Passage du Vercors, Lyon, France
| | - Céline Henry
- PAPPSO Platform, Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, Jouy-en-Josas, France
| | - Agnès Fouet
- Université Paris Cité, Institut Cochin, INSERM, U1016, CNRS, UMR8104, Paris, France
| | - Karine Gloux
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, 78350 Jouy-en-Josas, France
| | - Jamila Anba-Mondoloni
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, 78350 Jouy-en-Josas, France
| | - Alexandra Gruss
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, 78350 Jouy-en-Josas, France
| |
Collapse
|
8
|
Ulrich RJ, Podkowik M, Tierce R, Irnov I, Putzel G, Samhadaneh N, Lacey KA, Boff D, Morales SM, Makita S, Karagounis TK, Zwack EE, Zhou C, Kim R, Drlica K, Pironti A, van Bakel H, Torres VJ, Shopsin B. Prophage-encoded methyltransferase drives adaptation of community-acquired methicillin-resistant Staphylococcus aureus. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.17.589803. [PMID: 38659881 PMCID: PMC11042277 DOI: 10.1101/2024.04.17.589803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
We recently described the evolution of a community-acquired methicillin-resistant Staphylococcus aureus (CA-MRSA) USA300 variant responsible for an outbreak of skin and soft tissue infections. Acquisition of a mosaic version of the Φ11 prophage (mΦ11) that increases skin abscess size was an early step in CA-MRSA adaptation that primed the successful spread of the clone. The present report shows how prophage mΦ11 exerts its effect on virulence for skin infection without encoding a known toxin or fitness genes. Abscess size and skin inflammation were associated with DNA methylase activity of an mΦ11-encoded adenine methyltransferase (designated pamA). pamA increased expression of fibronectin-binding protein A (fnbA; FnBPA), and inactivation of fnbA eliminated the effect of pamA on abscess virulence without affecting strains lacking pamA. Thus, fnbA is a pamA-specific virulence factor. Mechanistically, pamA was shown to promote biofilm formation in vivo in skin abscesses, a phenotype linked to FnBPA's role in biofilm formation. Collectively, these data reveal a novel mechanism-epigenetic regulation of staphylococcal gene expression-by which phage can regulate virulence to drive adaptive leaps by S. aureus.
Collapse
Affiliation(s)
- Robert J. Ulrich
- Department of Medicine, NYU Grossman School of Medicine, New York, NY, USA
| | - Magdalena Podkowik
- Department of Medicine, NYU Grossman School of Medicine, New York, NY, USA
- Antimicrobial-Resistant Pathogens Program, NYU Grossman School of Medicine, New York, NY, USA
| | - Rebecca Tierce
- Division of Comparative Medicine, NYU Langone Health, New York, NY, USA
| | - Irnov Irnov
- Department of Microbiology, NYU Grossman School of Medicine, New York, NY, USA
| | - Gregory Putzel
- Antimicrobial-Resistant Pathogens Program, NYU Grossman School of Medicine, New York, NY, USA
- Department of Microbiology, NYU Grossman School of Medicine, New York, NY, USA
| | - Nora Samhadaneh
- Antimicrobial-Resistant Pathogens Program, NYU Grossman School of Medicine, New York, NY, USA
- Department of Microbiology, NYU Grossman School of Medicine, New York, NY, USA
| | - Keenan A. Lacey
- Department of Microbiology, NYU Grossman School of Medicine, New York, NY, USA
| | - Daiane Boff
- Department of Microbiology, NYU Grossman School of Medicine, New York, NY, USA
| | - Sabrina M. Morales
- Department of Medicine, NYU Grossman School of Medicine, New York, NY, USA
| | - Sohei Makita
- Department of Pathology, NYU Grossman School of Medicine, New York, NY, USA
| | - Theodora K. Karagounis
- Ronald O. Perelman Department of Dermatology, NYU Grossman School of Medicine, New York, NY, USA
| | - Erin E. Zwack
- Department of Microbiology, NYU Grossman School of Medicine, New York, NY, USA
| | - Chunyi Zhou
- Department of Microbiology, NYU Grossman School of Medicine, New York, NY, USA
| | - Randie Kim
- Ronald O. Perelman Department of Dermatology, NYU Grossman School of Medicine, New York, NY, USA
| | - Karl Drlica
- Department of Microbiology, Biochemistry & Molecular Genetics, New Jersey Medical School, Rutgers University, Newark, NJ, USA
- Department of Biochemistry and Molecular Pharmacology, NYU Grossman School of Medicine, New York, NY, USA
| | - Alejandro Pironti
- Antimicrobial-Resistant Pathogens Program, NYU Grossman School of Medicine, New York, NY, USA
- Department of Microbiology, NYU Grossman School of Medicine, New York, NY, USA
| | - Harm van Bakel
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Icahn Genomics Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Victor J. Torres
- Antimicrobial-Resistant Pathogens Program, NYU Grossman School of Medicine, New York, NY, USA
- Department of Microbiology, NYU Grossman School of Medicine, New York, NY, USA
- Department of Host-Microbe Interactions, St. Jude Children’s Research Hospital, Memphis, TN, USA
| | - Bo Shopsin
- Department of Medicine, NYU Grossman School of Medicine, New York, NY, USA
- Antimicrobial-Resistant Pathogens Program, NYU Grossman School of Medicine, New York, NY, USA
- Department of Microbiology, NYU Grossman School of Medicine, New York, NY, USA
| |
Collapse
|
9
|
Moue I, Shimoda M, Kokutou H, Hanawa T, Tanaka Y. Community-Acquired Methicillin-Resistant Staphylococcus aureus Strain Positive for the Panton-Valentine Leucocidin Gene in a Middle-Aged Patient With Multiple Septic Pulmonary Emboli. Cureus 2024; 16:e56243. [PMID: 38623107 PMCID: PMC11016984 DOI: 10.7759/cureus.56243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/14/2024] [Indexed: 04/17/2024] Open
Abstract
A 59-year-old man suffered from fever and chest pain for three days following an accidental bite to a lip ulcer. His lower lip showed swelling and tenderness, and chest computed tomography showed multiple bilateral nodules. He was diagnosed with septic pulmonary embolism and a lip abscess, and blood, sputum, and lip abscess cultures confirmed the presence of methicillin-resistant Staphylococcus aureus (MRSA). Despite the initiation of vancomycin, he rapidly developed respiratory failure and septic shock, necessitating intubation and noradrenaline support. Gentamicin was added on the seventh day of admission due to an insufficient effect, and vancomycin was switched to linezolid on the 14th day of admission. However, his respiratory failure persisted as bilateral pneumothorax developed. Blood culture was negative on the 14th day after admission, but the patient died on the 15th day after admission. The MRSA isolate was tested for the presence of the Panton-Valentine leukocidin (PVL) gene in conjunction with the USA300 strain. The prevalence of community-acquired (CA)-MRSA in the USA300 clone is increasing but still low in Japan, and this type of infection is commonly observed in people of all ages; this case is the first instance reported in Japan of a middle-aged patient with septic pulmonary embolism. Given the anticipated global increase in CA-MRSA infection caused by the USA300 clone and the emergence of USA300 with altered pathogenicity, it may be crucial to suspect PVL-positive CA-MRSA infections even in middle-aged or elderly patients presenting with septic pulmonary embolism as community infections.
Collapse
Affiliation(s)
- Iori Moue
- Respiratory Disease Center, Fukujuji Hospital, Kiyose, JPN
| | | | | | - Tomoko Hanawa
- Department of General Medicine, Kyorin University Faculty of Medicine, Mitaka, JPN
| | | |
Collapse
|
10
|
Podkowik M, Perault AI, Putzel G, Pountain A, Kim J, Dumont A, Zwack E, Ulrich RJ, Karagounis TK, Zhou C, Haag AF, Shenderovich J, Wasserman GA, Kwon J, Chen J, Richardson AR, Weiser JN, Nowosad CR, Lun DS, Parker D, Pironti A, Zhao X, Drlica K, Yanai I, Torres VJ, Shopsin B. Quorum-sensing agr system of Staphylococcus aureus primes gene expression for protection from lethal oxidative stress. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.06.08.544038. [PMID: 37333372 PMCID: PMC10274873 DOI: 10.1101/2023.06.08.544038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/20/2023]
Abstract
The agr quorum-sensing system links Staphylococcus aureus metabolism to virulence, in part by increasing bacterial survival during exposure to lethal concentrations of H2O2, a crucial host defense against S. aureus. We now report that protection by agr surprisingly extends beyond post-exponential growth to the exit from stationary phase when the agr system is no longer turned on. Thus, agr can be considered a constitutive protective factor. Deletion of agr increased both respiration and fermentation but decreased ATP levels and growth, suggesting that Δagr cells assume a hyperactive metabolic state in response to reduced metabolic efficiency. As expected from increased respiratory gene expression, reactive oxygen species (ROS) accumulated more in the agr mutant than in wild-type cells, thereby explaining elevated susceptibility of Δagr strains to lethal H2O2 doses. Increased survival of wild-type agr cells during H2O2 exposure required sodA, which detoxifies superoxide. Additionally, pretreatment of S. aureus with respiration-reducing menadione protected Δagr cells from killing by H2O2. Thus, genetic deletion and pharmacologic experiments indicate that agr helps control endogenous ROS, thereby providing resilience against exogenous ROS. The long-lived "memory" of agr-mediated protection, which is uncoupled from agr activation kinetics, increased hematogenous dissemination to certain tissues during sepsis in ROS-producing, wild-type mice but not ROS-deficient (Nox2-/-) mice. These results demonstrate the importance of protection that anticipates impending ROS-mediated immune attack. The ubiquity of quorum sensing suggests that it protects many bacterial species from oxidative damage.
Collapse
Affiliation(s)
- Magdalena Podkowik
- Department of Medicine, Division of Infectious Diseases, NYU Grossman School of Medicine, New York, NY, USA
- Antimicrobial-Resistant Pathogens Program, New York University School of Medicine, New York, NY, USA
| | - Andrew I. Perault
- Antimicrobial-Resistant Pathogens Program, New York University School of Medicine, New York, NY, USA
- Department of Microbiology, NYU Grossman School of Medicine, New York, NY, USA
| | - Gregory Putzel
- Antimicrobial-Resistant Pathogens Program, New York University School of Medicine, New York, NY, USA
- Department of Microbiology, NYU Grossman School of Medicine, New York, NY, USA
- Microbial Computational Genomic Core Lab, NYU Grossman School of Medicine, New York, NY, USA
| | - Andrew Pountain
- Institute for Systems Genetics; NYU Grossman School of Medicine, New York, NY, USA
| | - Jisun Kim
- Department of Pathology, Immunology and Laboratory Medicine, Center for Immunity and Inflammation, Rutgers New Jersey Medical School Cancer Center, Newark, NJ, USA
| | - Ashley Dumont
- Department of Microbiology, NYU Grossman School of Medicine, New York, NY, USA
| | - Erin Zwack
- Department of Microbiology, NYU Grossman School of Medicine, New York, NY, USA
| | - Robert J. Ulrich
- Department of Medicine, Division of Infectious Diseases, NYU Grossman School of Medicine, New York, NY, USA
| | - Theodora K. Karagounis
- Antimicrobial-Resistant Pathogens Program, New York University School of Medicine, New York, NY, USA
- Ronald O. Perelman Department of Dermatology; NYU Grossman School of Medicine, New York, NY, USA
| | - Chunyi Zhou
- Department of Medicine, Division of Infectious Diseases, NYU Grossman School of Medicine, New York, NY, USA
- Antimicrobial-Resistant Pathogens Program, New York University School of Medicine, New York, NY, USA
| | - Andreas F. Haag
- School of Medicine, University of St Andrews, St Andrews, UK
| | - Julia Shenderovich
- Antimicrobial-Resistant Pathogens Program, New York University School of Medicine, New York, NY, USA
- Department of Microbiology, NYU Grossman School of Medicine, New York, NY, USA
| | | | - Junbeom Kwon
- Department of Medicine, Division of Infectious Diseases, NYU Grossman School of Medicine, New York, NY, USA
| | - John Chen
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Anthony R. Richardson
- Department of Microbiology and Molecular Genetics, University of Pittsburgh, Pittsburgh, PA, USA
| | - Jeffrey N. Weiser
- Department of Microbiology, NYU Grossman School of Medicine, New York, NY, USA
| | - Carla R. Nowosad
- Department of Pathology, NYU Grossman School of Medicine, New York, NY, USA
| | - Desmond S. Lun
- Center for Computational and Integrative Biology and Department of Computer Science, Rutgers University, Camden, NJ, USA
| | - Dane Parker
- Department of Pathology, Immunology and Laboratory Medicine, Center for Immunity and Inflammation, Rutgers New Jersey Medical School Cancer Center, Newark, NJ, USA
| | - Alejandro Pironti
- Antimicrobial-Resistant Pathogens Program, New York University School of Medicine, New York, NY, USA
- Department of Microbiology, NYU Grossman School of Medicine, New York, NY, USA
- Microbial Computational Genomic Core Lab, NYU Grossman School of Medicine, New York, NY, USA
| | - Xilin Zhao
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen, Fujian Province, China
| | - Karl Drlica
- Public Health Research Institute, New Jersey Medical School, Rutgers University, Newark, NJ, USA
- Department of Microbiology, Biochemistry & Molecular Genetics, New Jersey Medical School, Rutgers University, Newark, NJ, USA
| | - Itai Yanai
- Institute for Systems Genetics; NYU Grossman School of Medicine, New York, NY, USA
- Department of Biochemistry and Molecular Pharmacology, NYU Grossman School of Medicine, New York, NY, USA
| | - Victor J. Torres
- Antimicrobial-Resistant Pathogens Program, New York University School of Medicine, New York, NY, USA
- Department of Microbiology, NYU Grossman School of Medicine, New York, NY, USA
| | - Bo Shopsin
- Department of Medicine, Division of Infectious Diseases, NYU Grossman School of Medicine, New York, NY, USA
- Antimicrobial-Resistant Pathogens Program, New York University School of Medicine, New York, NY, USA
- Department of Microbiology, NYU Grossman School of Medicine, New York, NY, USA
| |
Collapse
|
11
|
Hamushan M, Yu J, Jiang F, Wang B, Li M, Hu Y, Wang J, Wu Q, Tang J, Han P, Shen H. Adaptive evolution of the Clf-Sdr subfamily contributes to Staphylococcus aureus musculoskeletal infection: Evidence from comparative genomics. Microbiol Res 2024; 278:127502. [PMID: 37832395 DOI: 10.1016/j.micres.2023.127502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 09/05/2023] [Accepted: 09/13/2023] [Indexed: 10/15/2023]
Abstract
Persistent Staphylococcus aureus infections of the musculoskeletal system are a challenge in clinical practice. Although extensive studies on the genotypic changes in S. aureus in soft tissue and blood system infections have been conducted, little is known about how S. aureus adapts to the microenvironment of the musculoskeletal system. Here, we used comparative genomics to analyze the isolates from patients with an S. aureus infection of the musculoskeletal system. We observed that mutations in the Clf-Sdr subfamily proteins frequently occurred during persistent infections. Furthermore, these mutations were primarily located in the non-active site (R region), rather than in the active site (A region). Mechanistically, the clfA/B mutation enhanced the S. aureus biofilm formation ability through the binding to fibrinogen and intercellular adhesion. Complementation studies using the USA300-ΔMSCRAMMs strains clfA and clfB revealed that mutations in both the A and R regions could enhance their corresponding function. The results of protein structure prediction and ligand-binding simulations suggest that these mutations influence the protein structure and ligand binding. In conclusion, our study suggests that the Clf-Sdr subfamily mutations may be one of the mechanisms contributing to persistent S. aureus infections of the musculoskeletal system.
Collapse
Affiliation(s)
- Musha Hamushan
- Orthopaedic Department, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China; Institute of Microsurgery on Extremities, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jinlong Yu
- Orthopaedic Department, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Feng Jiang
- Orthopaedic Department, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China; Institute of Microsurgery on Extremities, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Boyong Wang
- Orthopaedic Department, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China; Institute of Microsurgery on Extremities, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Mingzhang Li
- Orthopaedic Department, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China; Institute of Microsurgery on Extremities, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yujie Hu
- Orthopaedic Department, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China; Institute of Microsurgery on Extremities, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jianqiang Wang
- Department of Clinical Laboratory, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qiong Wu
- Department of Clinical Laboratory, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jin Tang
- Department of Clinical Laboratory, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Pei Han
- Orthopaedic Department, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China; Institute of Microsurgery on Extremities, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Hao Shen
- Orthopaedic Department, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China; Institute of Microsurgery on Extremities, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
12
|
Hou Z, Liu L, Wei J, Xu B. Progress in the Prevalence, Classification and Drug Resistance Mechanisms of Methicillin-Resistant Staphylococcus aureus. Infect Drug Resist 2023; 16:3271-3292. [PMID: 37255882 PMCID: PMC10226514 DOI: 10.2147/idr.s412308] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 05/12/2023] [Indexed: 06/01/2023] Open
Abstract
Staphylococcus aureus is a common human pathogen with a variety of virulence factors, which can cause multiple infectious diseases. In recent decades, due to the constant evolution and the abuse of antibiotics, Staphylococcus aureus was becoming more resistant, the infection rate of MRSA remained high, and clinical treatment of MRSA became more difficult. The genetic diversity of MRSA was mainly represented by the continuous emergence of epidemic strains, resulting in the constant changes of epidemic clones. Different classes of MRSA resulted in different epidemics and resistance characteristics, which could affect the clinical symptoms and treatments. MRSA had also spread from traditional hospitals to community and livestock environments, and the new clones established a relationship between animals and humans, promoting further evolution of MRSA. Since the resistance mechanism of MRSA is very complex, it is important to clarify these resistance mechanisms at the molecular level for the treatment of infectious diseases. We firstly described the diversity of SCCmec elements, and discussed the types of SCCmec, its drug resistance mechanisms and expression regulations. Then, we described how the vanA operon makes Staphylococcus aureus resistant to vancomycin and its expression regulation. Finally, a brief introduction was given to the drug resistance mechanisms of biofilms and efflux pump systems. Analyzing the resistance mechanism of MRSA can help study new anti-infective drugs and alleviate the evolution of MRSA. At the end of the review, we summarized the treatment strategies for MRSA infection, including antibiotics, anti-biofilm agents and efflux pump inhibitors. To sum up, here we reviewed the epidemic characteristics of Staphylococcus aureus, summarized its classifications, drug resistance mechanisms of MRSA (SCCmec element, vanA operon, biofilm and active efflux pump system) and novel therapy strategies, so as to provide a theoretical basis for the treatment of MRSA infection.
Collapse
Affiliation(s)
- Zhuru Hou
- Department of Basic Medicine, Fenyang College of Shanxi Medical University, Fenyang, People’s Republic of China
- Key Laboratory of Lvliang for Clinical Molecular Diagnostics, Fenyang, People’s Republic of China
| | - Ling Liu
- Key Laboratory of Lvliang for Clinical Molecular Diagnostics, Fenyang, People’s Republic of China
- Department of Medical Laboratory Science, Fenyang College of Shanxi Medical University, Fenyang, People’s Republic of China
- Department of Clinical Laboratory, Fenyang Hospital of Shanxi Province, Fenyang, People’s Republic of China
| | - Jianhong Wei
- Department of Basic Medicine, Fenyang College of Shanxi Medical University, Fenyang, People’s Republic of China
| | - Benjin Xu
- Key Laboratory of Lvliang for Clinical Molecular Diagnostics, Fenyang, People’s Republic of China
- Department of Medical Laboratory Science, Fenyang College of Shanxi Medical University, Fenyang, People’s Republic of China
- Department of Clinical Laboratory, Fenyang Hospital of Shanxi Province, Fenyang, People’s Republic of China
| |
Collapse
|
13
|
Anderson EE, Dyzenhaus S, Ilmain JK, Sullivan MJ, van Bakel H, Torres VJ. SarS Is a Repressor of Staphylococcus aureus Bicomponent Pore-Forming Leukocidins. Infect Immun 2023; 91:e0053222. [PMID: 36939325 PMCID: PMC10112191 DOI: 10.1128/iai.00532-22] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 02/20/2023] [Indexed: 03/21/2023] Open
Abstract
Staphylococcus aureus is a successful pathogen that produces a wide range of virulence factors that it uses to subvert and suppress the immune system. These include the bicomponent pore-forming leukocidins. How the expression of these toxins is regulated is not completely understood. Here, we describe a screen to identify transcription factors involved in the regulation of leukocidins. The most prominent discovery from this screen is that SarS, a known transcription factor which had previously been described as a repressor of alpha-toxin expression, was found to be a potent repressor of leukocidins LukED and LukSF-PV. We found that inactivating sarS resulted in increased virulence both in an ex vivo model using primary human neutrophils and in an in vivo infection model in mice. Further experimentation revealed that SarS represses leukocidins by serving as an activator of Rot, a critical repressor of toxins, as well as by directly binding and repressing the leukocidin promoters. By studying contemporary clinical isolates, we identified naturally occurring mutations in the sarS promoter that resulted in overexpression of sarS and increased repression of leukocidins in USA300 bloodstream clinical isolates. Overall, these data establish SarS as an important repressor of leukocidins and expand our understanding of how these virulence factors are being regulated in vitro and in vivo by S. aureus.
Collapse
Affiliation(s)
- Exene E. Anderson
- Department of Microbiology, New York University Grossman School of Medicine, New York, New York, USA
| | - Sophie Dyzenhaus
- Department of Microbiology, New York University Grossman School of Medicine, New York, New York, USA
| | - Juliana K. Ilmain
- Department of Microbiology, New York University Grossman School of Medicine, New York, New York, USA
| | - Mitchell J. Sullivan
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Harm van Bakel
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Icahn Genomics Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Victor J. Torres
- Department of Microbiology, New York University Grossman School of Medicine, New York, New York, USA
| |
Collapse
|
14
|
Changing careers: Skin pathogen evolves to infect the bloodstream. Cell Host Microbe 2023; 31:166-167. [PMID: 36758515 DOI: 10.1016/j.chom.2023.01.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
Abstract
Community-acquired methicillin-resistant Staphylococcus aureus (CA-MRSA) rose to clinical dominance decades ago and predominantly manifested as skin and soft-tissue infections (SSTIs). These clones were distinct from those causing hospital acquired (HA-MRSA) infections. Dyzenhaus et al. describe the evolutionary changes necessary for CA-MRSA clones to cause bloodstream infections (BSIs).
Collapse
|