1
|
Komorizono R, Yoshizumi S, Tomonaga K. Development of an RNA virus-based episomal vector with artificial aptazyme for gene silencing. Appl Microbiol Biotechnol 2024; 108:491. [PMID: 39422780 PMCID: PMC11489216 DOI: 10.1007/s00253-024-13327-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 09/04/2024] [Accepted: 10/07/2024] [Indexed: 10/19/2024]
Abstract
RNA virus-based episomal vector (REVec), engineered from Borna disease virus, is an innovative gene delivery tool that enables sustained gene expression in transduced cells. However, the difficulty in controlling gene expression and eliminating vectors has limited the practical use of REVec. In this study, we overcome these shortcomings by inserting artificial aptazymes into the untranslated regions of foreign genes carried in vectors or downstream of the viral phosphoprotein gene, which is essential for vector replication. Non-transmissive REVec carrying GuaM8HDV or the P1-F5 aptazyme showed immediate suppression of gene expression in a guanine or theophylline concentration-dependent manner. Continuous compound administration also markedly reduced the percentage of vector-transduced cells and eventually led to the complete elimination of the vectors from the transduced cells. This new REVec is a safe gene delivery technology that allows fine-tuning of gene expression and could be a useful platform for gene therapy and gene-cell therapy, potentially contributing to the cure of many genetic disorders. KEY POINTS: • We developed a bornavirus vector capable of silencing transgene expression by insertion of aptazyme • Transgene expression was markedly suppressed in a compound concentration-dependent manner • Artificial aptazyme systems allowed complete elimination of the vector from transduced cells.
Collapse
Affiliation(s)
- Ryo Komorizono
- Laboratory of RNA Viruses, Department of Virus Research, Institute for Life and Medical Sciences (LiMe), Kyoto University, 53 Kawahara-Cho, Shogo-in, Sakyo, Kyoto, 606-8507, Japan
| | - Shima Yoshizumi
- Laboratory of RNA Viruses, Department of Virus Research, Institute for Life and Medical Sciences (LiMe), Kyoto University, 53 Kawahara-Cho, Shogo-in, Sakyo, Kyoto, 606-8507, Japan
| | - Keizo Tomonaga
- Laboratory of RNA Viruses, Department of Virus Research, Institute for Life and Medical Sciences (LiMe), Kyoto University, 53 Kawahara-Cho, Shogo-in, Sakyo, Kyoto, 606-8507, Japan.
- Laboratory of RNA Viruses, Department of Mammalian Regulatory Network, Graduate School of Biostudies, Kyoto University, 53 Kawahara-Cho, Shogo-in, Sakyo, Kyoto, 606-8507, Japan.
- Department of Molecular Virology, Graduate School of Medicine, Kyoto University, 53 Kawahara-Cho, Shogo-in, Sakyo, Kyoto, 606-8507, Japan.
| |
Collapse
|
2
|
Akkaya D, Seyhan G, Sari S, Barut B. In vitro and in silico investigation of FDA-approved drugs to be repurposed against Alzheimer's disease. Drug Dev Res 2024; 85:e22184. [PMID: 38634273 DOI: 10.1002/ddr.22184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 03/06/2024] [Accepted: 04/01/2024] [Indexed: 04/19/2024]
Abstract
Alzheimer's disease (AD), one of the main causes of dementia, is a neurodegenerative disorder. Cholinesterase inhibitors are used in the treatment of AD, but prolonged use of these drugs can lead to serious side effects. Drug repurposing is an approach that aims to reveal the effectiveness of drugs in different diseases beyond their clinical uses. In this work, we investigated in vitro and in silico inhibitory effects of 11 different drugs on cholinesterases. The results showed that trimebutine, theophylline, and levamisole had the highest acetylcholinesterase inhibitory actions among the tested drugs, and these drugs inhibited by 68.70 ± 0.46, 53.25 ± 3.40, and 44.03 ± 1.20%, respectively at 1000 µM. In addition, these drugs are bound to acetylcholinesterase via competitive manner. Molecular modeling predicted good fitness in acetylcholinesterase active site for these drugs and possible central nervous system action for trimebutine. All of these results demonstrated that trimebutine was determined to be the drug with the highest potential for use in AD.
Collapse
Affiliation(s)
- Didem Akkaya
- Faculty of Pharmacy, Department of Biochemistry, Karadeniz Technical University, Trabzon, Turkey
| | - Gökçe Seyhan
- Faculty of Pharmacy, Department of Biochemistry, Karadeniz Technical University, Trabzon, Turkey
| | - Suat Sari
- Faculty of Pharmacy, Pharmaceutical Chemistry Department, Hacettepe University, Ankara, Turkey
| | - Burak Barut
- Faculty of Pharmacy, Department of Biochemistry, Karadeniz Technical University, Trabzon, Turkey
| |
Collapse
|
3
|
Dimitrijevic D, Fabian E, Funk-Weyer D, Landsiedel R. Rapid equilibrium dialysis, ultrafiltration or ultracentrifugation? Evaluation of methods to quantify the unbound fraction of substances in plasma. Biochem Biophys Res Commun 2023; 651:114-120. [PMID: 36812744 DOI: 10.1016/j.bbrc.2023.02.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Accepted: 02/09/2023] [Indexed: 02/12/2023]
Abstract
In pharmacokinetics plasma protein binding (PPB) is a well-established parameter impacting drug disposition. The unbound fraction (fu) is arguably regarded the effective concentration at the target site. Pharmacology and toxicology, increasingly use in vitro models. The translation of in vitro concentrations to in vivo doses can be supported by toxicokinetic modelling, e.g. physiologically based toxicokinetic models (PBTK). PPB of a test substance is an input parameter for PBTK. We compared three methods to quantify fu: rapid equilibrium dialysis (RED), ultrafiltration (UF) and ultracentrifugation (UC) using twelve substances covering a wide range of Log Pow (-0.1 to 6.8) and molecular weights (151 and 531 g/mol): Acetaminophen, Bisphenol A, Caffeine, Colchicine, Fenarimol, Flutamide, Genistein, Ketoconazole, α-Methyltestosterone, Tamoxifen, Trenbolone and Warfarin. After RED and UF separation, three polar substances (Log Pow < 2) were largely unbound (fu > 70%), while more lipophilic substances were largely bound (fu < 33%). Compared to RED or UF, UC resulted in a generally higher fu of lipophilic substances. fu obtained after RED and UF were more consistent with published data. For half of the substances, UC resulted in fu higher than the reference data. UF, RED and both UF and UC, resulted in lower fu of Flutamide, Ketoconazole and Colchicine, respectively. For fu quantifications, the separation method should be selected according to the test substance's properties. Based on our data, RED is suitable for a broader range of substances while UC and UF are suitable for polar substances.
Collapse
Affiliation(s)
- Dunja Dimitrijevic
- Free University of Berlin, Institute of Pharmacy, Pharmacology and Toxicology, Königin-Luise-Straße 2-4, 14195, Berlin, Germany.
| | - Eric Fabian
- BASF SE, Experimental Toxicology and Ecology, Carl-Bosch-Straße 38, 67063, Ludwigshafen am Rhein, Germany.
| | - Dorothee Funk-Weyer
- BASF SE, Experimental Toxicology and Ecology, Carl-Bosch-Straße 38, 67063, Ludwigshafen am Rhein, Germany.
| | - Robert Landsiedel
- Free University of Berlin, Institute of Pharmacy, Pharmacology and Toxicology, Königin-Luise-Straße 2-4, 14195, Berlin, Germany; BASF SE, Experimental Toxicology and Ecology, Carl-Bosch-Straße 38, 67063, Ludwigshafen am Rhein, Germany.
| |
Collapse
|
4
|
Carecho R, Carregosa D, Dos Santos CN. Low Molecular Weight (poly)Phenol Metabolites Across the Blood-Brain Barrier: The Underexplored Journey. Brain Plast 2021; 6:193-214. [PMID: 33782650 PMCID: PMC7990460 DOI: 10.3233/bpl-200099] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
The world of (poly)phenols arising from dietary sources has been significantly amplified with the discovery of low molecular weight (LMW) (poly)phenol metabolites resulting from phase I and phase II metabolism and microbiota transformations. These metabolites, which are known to reach human circulation have been studied to further explore their interesting properties, especially regarding neuroprotection. Nevertheless, once in circulation, their distribution to target tissues, such as the brain, relies on their ability to cross the blood-brain barrier (BBB), one of the most controlled barriers present in humans. This represents a key step of an underexplored journey towards the brain. Present review highlights the main findings related to the ability of LMW (poly)phenol metabolites to reach the brain, considering different studies: in silico, in vitro, and in vivo. The mechanisms associated with the transport of these LMW (poly)phenol metabolites across the BBB and possible transporters will be discussed. Overall, the transport of these LMW (poly)phenol metabolites is crucial to elucidate which compounds may exert direct neuroprotective effects, so it is imperative to continue dissecting their potential to cross the BBB and the mechanisms behind their permeation.
Collapse
Affiliation(s)
- Rafael Carecho
- CEDOC, NOVA Medical School, Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Campo dos Mártires da Pátria, Lisboa, Portugal.,Instituto de Tecnologia Química e Biológica António Xavier, Universidade NOVA de Lisboa, Avenida da República, Oeiras, Portugal
| | - Diogo Carregosa
- CEDOC, NOVA Medical School, Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Campo dos Mártires da Pátria, Lisboa, Portugal.,iBET, Instituto de Biologia Experimental e Tecnológica, Avenida da República, Apartado 12, Oeiras, Portugal
| | - Cláudia Nunes Dos Santos
- CEDOC, NOVA Medical School, Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Campo dos Mártires da Pátria, Lisboa, Portugal.,iBET, Instituto de Biologia Experimental e Tecnológica, Avenida da República, Apartado 12, Oeiras, Portugal.,Instituto de Tecnologia Química e Biológica António Xavier, Universidade NOVA de Lisboa, Avenida da República, Oeiras, Portugal
| |
Collapse
|
5
|
Gupta M, Bogdanowicz T, Reed MA, Barden CJ, Weaver DF. The Brain Exposure Efficiency (BEE) Score. ACS Chem Neurosci 2020; 11:205-224. [PMID: 31815431 DOI: 10.1021/acschemneuro.9b00650] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The blood-brain barrier (BBB), composed of microvascular tight junctions and glial cell sheathing, selectively controls drug permeation into the central nervous system (CNS) by either passive diffusion or active transport. Computational techniques capable of predicting molecular brain penetration are important to neurological drug design. A novel prediction algorithm, termed the Brain Exposure Efficiency Score (BEE), is presented. BEE addresses the need to incorporate the role of trans-BBB influx and efflux active transporters by considering key brain penetrance parameters, namely, steady state unbound brain to plasma ratio of drug (Kp,uu) and dose normalized unbound concentration of drug in brain (Cu,b). BEE was devised using quantitative structure-activity relationships (QSARs) and molecular modeling studies on known transporter proteins and their ligands. The developed algorithms are provided as a user-friendly open source calculator to assist in optimizing a brain penetrance strategy during the early phases of small molecule molecular therapeutic design.
Collapse
Affiliation(s)
- Mayuri Gupta
- Krembil Research Institute, University Health Network, 60 Leonard Avenue, Toronto, Ontario M5T 2S8, Canada
| | - Thomas Bogdanowicz
- Krembil Research Institute, University Health Network, 60 Leonard Avenue, Toronto, Ontario M5T 2S8, Canada
| | - Mark A. Reed
- Krembil Research Institute, University Health Network, 60 Leonard Avenue, Toronto, Ontario M5T 2S8, Canada
| | - Christopher J. Barden
- Krembil Research Institute, University Health Network, 60 Leonard Avenue, Toronto, Ontario M5T 2S8, Canada
| | - Donald F. Weaver
- Krembil Research Institute, University Health Network, 60 Leonard Avenue, Toronto, Ontario M5T 2S8, Canada
- Department of Medicine, University of Toronto, Toronto, Ontario M5G 2C4, Canada
- Department of Chemistry, University of Toronto, Toronto, Ontario M5S 3H6, Canada
- Department of Pharmaceutical Sciences, University of Toronto, Toronto, Ontario M5S 3M2 Canada
| |
Collapse
|
6
|
Zhang F, Xue J, Shao J, Jia L. Compilation of 222 drugs’ plasma protein binding data and guidance for study designs. Drug Discov Today 2012; 17:475-85. [DOI: 10.1016/j.drudis.2011.12.018] [Citation(s) in RCA: 142] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2011] [Revised: 10/19/2011] [Accepted: 12/15/2011] [Indexed: 01/18/2023]
|
7
|
Chien CF, Wu YT, Lee WC, Lin LC, Tsai TH. Herb–drug interaction of Andrographis paniculata extract and andrographolide on the pharmacokinetics of theophylline in rats. Chem Biol Interact 2010; 184:458-65. [DOI: 10.1016/j.cbi.2010.01.017] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2009] [Revised: 01/12/2010] [Accepted: 01/13/2010] [Indexed: 10/19/2022]
|
8
|
Fang JY, Tsai TH, Hung CF, Wong WW. Development and evaluation of the essential oil from Magnolia fargesii for enhancing the transdermal absorption of theophylline and cianidanol. J Pharm Pharmacol 2010; 56:1493-500. [PMID: 15563755 DOI: 10.1211/0022357044823] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
Abstract
Abstract
To improve the skin permeation of theophylline and cianidanol ((+)-catechin), the essential oil of Magnolia fargesii was evaluated using in-vitro and in-vivo permeation techniques. Oxygenated monoterpenes and sesquiterpenes are the major components of M. fargesii essential oil. The in-vitro permeation of theophylline and cianidanol was significantly enhanced after treatment with M. fargesii essential oil. The essential oil increased the in-vivo skin deposition of cianidanol but not theophylline. On the other hand, in-vivo microdialysis showed a higher subcutaneous theophylline amount after essential oil treatment. In-vitro cell viability and prostaglandin E2 release by skin keratinocytes indicated that there was low or negligible cytotoxicity by M. fargesii essential oil. The in-vivo skin tolerance study determined by transepidermal water loss and colorimetry confirmed that no irritation of the skin was detected when using M. fargesii essential oil.
Collapse
Affiliation(s)
- Jia-You Fang
- Pharmaceutics Laboratory, Graduate Institute of Natural Products, Chang Gung University, 259 Wen-Hwa 1st Road, Kweishan, Taoyuan 333, Taiwan.
| | | | | | | |
Collapse
|
9
|
Measurement of the pharmacokinetics and pharmacodynamics of neuroactive compounds. Neurobiol Dis 2010; 37:38-47. [DOI: 10.1016/j.nbd.2009.09.025] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2009] [Revised: 09/29/2009] [Accepted: 09/30/2009] [Indexed: 11/24/2022] Open
|
10
|
Fang JY, Tsai TH, Lin YY, Wong WW, Wang MN, Huang JF. Transdermal delivery of tea catechins and theophylline enhanced by terpenes: a mechanistic study. Biol Pharm Bull 2007; 30:343-9. [PMID: 17268077 DOI: 10.1248/bpb.30.343] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Using in vitro and in vivo techniques, terpenes were evaluated as enhancers to improve the skin permeation of therapeutically active agents derived from tea, including tea catechins and theophylline. The in vitro permeation was determined by Franz cells. The skin deposition and subcutaneous amounts of drugs sampled by microdialysis were evaluated in vivo. Terpenes varied in their activities of enhancing drug permeation. The oxygen-containing terpenes were effective enhancers of drug permeation, whereas the hydrocarbon terpenes were much less efficient. Oxygen-containing terpenes with a bicyclic structure had reduced enhancing activity. Terpenes enhanced tea catechin permeation to a much greater degree than they did theophylline. The isomers of (+)-catechin and (-)-epicatechin showed different permeation behaviors when incorporated with terpenes. In the in vivo status, terpenes promoted the skin uptake but not the subsequent subcutaneous concentration of (-)-epigallocatechin gallate (EGCG). Both increased skin/vehicle partitioning and lipid bilayer disruption of the stratum corneum (SC) contributed the enhancing mechanisms of terpenes for topically applied tea catechins and theophylline based on the experimental results from the partition coefficient and transepidermal water loss (TEWL). alpha-Terpineol was found to be the best enhancer for catechins and theophylline. The high enhancement by alpha-terpineol was due to macroscopic perturbation of the SC and the biological reaction in viable skin as evaluated by TEWL and colorimetry.
Collapse
Affiliation(s)
- Jia-You Fang
- Pharmaceutics Laboratory, Graduate Institute of Natural Products, Chang Gung University, Taoyuan, Taiwan.
| | | | | | | | | | | |
Collapse
|
11
|
Saka K, Uemura K, Shintani-Ishida K, Yoshida KI. Acetic acid improves the sensitivity of theophylline analysis by gas chromatography–mass spectrometry. J Chromatogr B Analyt Technol Biomed Life Sci 2007; 846:240-4. [PMID: 17011247 DOI: 10.1016/j.jchromb.2006.09.008] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2006] [Revised: 08/29/2006] [Accepted: 09/06/2006] [Indexed: 11/16/2022]
Abstract
In the analysis of theophylline by gas chromatography-mass spectrometry (GC-MS), we found that the addition of acetic acid to the solvent (ethyl acetate) decreased the adsorption of theophylline to the glass wool packed into the inlet liner. The addition of acetic acid to ethyl acetate improved the sensitivity for theophylline (optimum concentration of 3%). This simple and sensitive method without derivatization can be applied to the quantification of theophylline in serum samples in clinical and toxicological practice.
Collapse
Affiliation(s)
- Kanju Saka
- Department of Forensic Medicine, Graduate School of Medicine, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan.
| | | | | | | |
Collapse
|
12
|
Chapter 3.1 Liquid chromatographic methods used for microdialysis: an overview. ACTA ACUST UNITED AC 2006. [DOI: 10.1016/s1569-7339(06)16013-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
13
|
Jan WC, Lin LC, Tsai TH. Herb-drug interaction of Evodia rutaecarpa extract on the pharmacokinetics of theophylline in rats. JOURNAL OF ETHNOPHARMACOLOGY 2005; 102:440-5. [PMID: 16099612 DOI: 10.1016/j.jep.2005.07.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2004] [Revised: 03/21/2005] [Accepted: 07/06/2005] [Indexed: 05/04/2023]
Abstract
The extract of Evodia rutaecarpa fruit and its preparation were used for the treatment of gastrointestinal disorders and headache. To assess the possible herb-drug interaction, the ethanol extract of Evodia rutaecarpa fruit (1 and 2 g/kg/day, p.o.) and the herbal preparation Wu-Chu-Yu-Tang (1 and 5 g/kg/day) were given to rats daily for three consecutive days and on the fourth day theophylline was administered (2 mg/kg, i.v.). Theophylline concentration in blood was measured by a microdialysis coupled to a liquid chromatographic system. Pharmacokinetic data were calculated by noncompartmental model. The results indicate that the theophylline level was significantly decreased by the pretreatment with the extract of Evodia rutaecarpa and herbal preparation Wu-Chu-Yu-Tang with dose-related manner. It is suggested that the herb-drug interaction may occur through the induction of the metabolism of theophylline.
Collapse
Affiliation(s)
- Woan-Ching Jan
- Institute of Pharmacology, National Yang-Ming University, Taipei, Taiwan
| | | | | |
Collapse
|
14
|
Plock N, Kloft C. Microdialysis—theoretical background and recent implementation in applied life-sciences. Eur J Pharm Sci 2005; 25:1-24. [PMID: 15854796 DOI: 10.1016/j.ejps.2005.01.017] [Citation(s) in RCA: 187] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2004] [Revised: 01/20/2005] [Accepted: 01/21/2005] [Indexed: 11/26/2022]
Abstract
In the past decade microdialysis has become a method of choice in the study of unbound tissue concentrations of both endogenous and exogenous substances. Microdialysis has been shown to offer information about substances directly at the site of action while being well tolerable and safe. The large variety of its field of application has been demonstrated. However, a few challenges have to be met to make this method generally applicable in routine applications. This review will provide an overview over theoretical aspects that have to be considered during the implementation of microdialysis. Moreover, a comparison between microdialysis and other tissue sampling techniques will demonstrate advantages and limitations of the methods mentioned. Subsequently, it will present a critical synopsis of a variety of scientific/biomedical applications of this method with emphasis on the most recent literature, focussing on target tissues while giving examples of substances examined. It is concluded that microdialysis will be of great value in future investigations of pharmacokinetics, pharmacodynamics and in monitoring of disease status and progression.
Collapse
Affiliation(s)
- Nele Plock
- Department of Clinical Pharmacy, Institute of Pharmacy, Freie Universitaet Berlin, Kelchstr. 31, D-12169 Berlin, Germany
| | | |
Collapse
|