1
|
Liu J, Wang Z, Yang Z, Liu M, Liu H. A Protic Ionic Liquid Promoted Gel Polymer Electrolyte for Solid-State Electrochemical Energy Storage. MATERIALS (BASEL, SWITZERLAND) 2024; 17:5948. [PMID: 39685384 DOI: 10.3390/ma17235948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 11/28/2024] [Accepted: 12/03/2024] [Indexed: 12/18/2024]
Abstract
This study presents the synthesis of a transparent, flexible gel polymer electrolyte (GPE) based on the protic ionic liquid BMImHSO4 and on polyvinyl alcohol (PVA) through solution casting and electrochemical evaluation in a 2.5 V symmetrical C/C electrical double-layer solid-state capacitor (EDLC). The freestanding GPE film exhibits high thermal stability (>300 °C), wide electrochemical windows (>2.7 V), and good ionic conductivity (2.43 × 10-2 S cm-1 at 20 °C). EDLC, using this novel GPE film, shows high specific capacitance (81 F g-1) as well as good retention above 90% of the initial capacitance after 4500 cycles. The engineered protic ionic liquid GPE is, hopefully, applicable to high-performance solid-state electrochemical energy storage.
Collapse
Affiliation(s)
- Jiaxing Liu
- Hunan Provincial Key Laboratory of Chemical Power Sources, College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China
| | - Zan Wang
- Hunan Provincial Key Laboratory of Chemical Power Sources, College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China
| | - Zhihao Yang
- Hunan Provincial Key Laboratory of Chemical Power Sources, College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China
| | - Meiling Liu
- Hunan Provincial Key Laboratory of Chemical Power Sources, College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China
| | - Hongtao Liu
- Hunan Provincial Key Laboratory of Chemical Power Sources, College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China
| |
Collapse
|
2
|
Lanjar SUN, Solangi AR, Batool N, Khand NH, Kamboh M, Malah A, Buledi JA, Khan MM. Strategic electrochemical oxidation of vinblastin sulfate (an anticancer drug) via PVP-functionalized strontium oxide nanoparticles. RSC Adv 2024; 14:31387-31397. [PMID: 39359336 PMCID: PMC11446183 DOI: 10.1039/d4ra05493h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Accepted: 09/19/2024] [Indexed: 10/04/2024] Open
Abstract
Cancer is a primary cause of death worldwide, and considerably impacts mortality rates in low- and middle-income countries. The rise in chemotherapeutic patients and toxicity of cytotoxic agents highlight the need for reliable analytical methods to detect these compounds. The current study presents a simple and straightforward method for producing polyvinylpyrrolidone functionalized strontium oxide nanoparticles (PVP-SrO NPs). The synthesized PVP-SrO NPs were applied as a sensitive sensor to detect vinblastin sulfate (VNB) (an anticancer drug). The synthesized PVP-SrO NPs were characterized using different characterization techniques. Fourier transform infrared spectroscopy (FTIR) confirms the functionality of synthesized PVP-SrO NPs. The sharp intense peaks of X-ray diffraction spectroscopy (XRD) confirm the crystalline nature of NPs, scanning electron microscopy (SEM) confirm the nanobeads like morphology, and energy dispersive spectroscopy (EDS) reveals the presence of Sr and O at 68.3% and 23% respectively. The electrochemical impedance spectroscopy and cyclic voltammetry studies revealed that the PVP-SrO/GCE is more conductive than bare GCE with an R ct value of 960.4 Ω compared to 2440 Ω. The sensor exhibited a wide linear dynamic range for VNB (0.05 to 60 μM) with low LOD 0.005 μM, and LOD 0.017 μM. The proposed sensor was successfully used for monitoring VNB in human blood serum samples with a satisfactory percent recovery from 96% to 103%. The fabricated sensor exhibits better performance than the reported sensors in terms of processing, simplicity, cost-effectiveness, energy consumption, and enhanced efficacy in a very short time.
Collapse
Affiliation(s)
- Sana-Ul-Nisa Lanjar
- National Centre of Excellence in Analytical Chemistry, University of Sindh Jamshoro 76080 Pakistan
| | - Amber R Solangi
- National Centre of Excellence in Analytical Chemistry, University of Sindh Jamshoro 76080 Pakistan
| | - Nahjul Batool
- M. A. Kazi Institute of Chemistry, University of Sindh Jamshoro-76080 Sindh Pakistan
| | - Nadir H Khand
- National Centre of Excellence in Analytical Chemistry, University of Sindh Jamshoro 76080 Pakistan
| | - Manaza Kamboh
- National Centre of Excellence in Analytical Chemistry, University of Sindh Jamshoro 76080 Pakistan
| | - Arfana Malah
- M. A. Kazi Institute of Chemistry, University of Sindh Jamshoro-76080 Sindh Pakistan
| | - Jamil A Buledi
- National Centre of Excellence in Analytical Chemistry, University of Sindh Jamshoro 76080 Pakistan
| | - Mir Mehran Khan
- National Centre of Excellence in Analytical Chemistry, University of Sindh Jamshoro 76080 Pakistan
| |
Collapse
|
3
|
Sheibani S, Jafarzadeh S, Qazanfarzadeh Z, Osadee Wijekoon MMJ, Mohd Rozalli NH, Mohammadi Nafchi A. Sustainable strategies for using natural extracts in smart food packaging. Int J Biol Macromol 2024; 267:131537. [PMID: 38608975 DOI: 10.1016/j.ijbiomac.2024.131537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 03/24/2024] [Accepted: 04/09/2024] [Indexed: 04/14/2024]
Abstract
The growing demand for sustainable and eco-friendly food packaging has prompted research on innovative solutions to environmental and consumer health issues. To enhance the properties of smart packaging, the incorporation of bioactive compounds derived from various natural sources has attracted considerable interest because of their functional properties, including antioxidant and antimicrobial effects. However, extracting these compounds from natural sources poses challenges because of their complex chemical structures and low concentrations. Traditional extraction methods are often environmentally harmful, expensive and time-consuming. Thus, green extraction techniques have emerged as promising alternatives, offering sustainable and eco-friendly approaches that minimise the use of hazardous solvents and reduce environmental impact. This review explores cutting-edge research on the green extraction of bioactive compounds and their incorporation into smart packaging systems in the last 10 years. Then, an overview of bioactive compounds, green extraction techniques, integrated techniques, green extraction solvents and their application in smart packaging was provided, and the impact of bioactive compounds incorporated in smart packaging on the shelf lives of food products was explored. Furthermore, it highlights the challenges and opportunities within this field and presents recommendations for future research, aiming to contribute to the advancement of sustainable and efficient smart packaging solutions.
Collapse
Affiliation(s)
- Samira Sheibani
- Food Technology Division, School of Industrial Technology, Universiti Sains Malaysia, 11800 Penang, Malaysia
| | - Shima Jafarzadeh
- Centre for Sustainable Bioproducts, Deakin University, Waurn Ponds, VIC 3216, Australia.
| | - Zeinab Qazanfarzadeh
- International Centre for Research on Innovative Biobased Materials (ICRI-BioM)-International Research Agenda, Lodz University of Technology, Żeromskiego 116, 90-924 Lodz, Poland
| | - M M Jeevani Osadee Wijekoon
- Food Technology Division, School of Industrial Technology, Universiti Sains Malaysia, 11800 Penang, Malaysia
| | | | - Abdorreza Mohammadi Nafchi
- Food Technology Division, School of Industrial Technology, Universiti Sains Malaysia, 11800 Penang, Malaysia; Department of Food Science and Technology, Damghan Branch, Islamic Azad University, Damghan, Iran; Green Biopolymer, Coatings & Packaging Cluster, School of Industrial Technology, Universiti Sains Malaysia, 11800 Penang, Malaysia.
| |
Collapse
|
4
|
Dutta A, Panchali T, Khatun A, Jarapala SR, Das K, Ghosh K, Chakrabarti S, Pradhan S. Anti-cancer potentiality of linoelaidic acid isolated from marine Tapra fish oil (Ophisthopterus tardoore) via ROS generation and caspase activation on MCF-7 cell line. Sci Rep 2023; 13:14125. [PMID: 37644076 PMCID: PMC10465529 DOI: 10.1038/s41598-023-34885-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Accepted: 05/09/2023] [Indexed: 08/31/2023] Open
Abstract
The implication of inflammation in the pathophysiology of several types of cancers has been under intense investigation. Conjugated fatty acids can modulate inflammation and present anticancer effects, promoting cancer cell death. In this paper, we evaluated the efficacy of new conjugated fatty acids isolated from marine Opisthopterus tardoore (Tapra fish) in human breast cancer cell lines MCF-7. Linoelaidic acid, a marine fish (O. tardoore) derived unsaturated fatty acids, showed effective anticancer activity against MCF-7. Cell viability (MTT) assay revealed a dose-dependent decline in cancer cell viability. It was noteworthy that 5 µM linoelaidic acid decreased the MCF-7 cell viability by 81.82%. Besides that, linoelaidic acid significantly (P< 0.05) increased the level of tumor necrosis factor-α (TNF-α) and interleukin-1 receptor antagonist (IL-1ra) studied by ELISA. Not only that, linoelaidic acid significantly decreased the reduced glutathione level and increased the oxidized glutathione level in MCF-7 cells indicating the oxidative stress inside the cell. Two different cell staining methods with acridine orange-ethidium bromide and DAPI confirmed that the linoelaidic acid rendered their detrimental effect on cancer cells. To decipher the mode of apoptosis Western blotting was performed in which the expression pattern of several proteins (p53, IL-10, and IL-1ra) established the apoptosis in the studied cell lines after linoelaidic acid exposure. Hence it may be conferred that linoelaidic acid has prompt anticancer activity. Therefore this drug can be used further for the treatment of cancer.
Collapse
Affiliation(s)
- Ananya Dutta
- Department of Paramedical and Allied Health Sciences, Midnapore City College, Midnapore, 721129, West Bengal, India
| | - Titli Panchali
- Department of Paramedical and Allied Health Sciences, Midnapore City College, Midnapore, 721129, West Bengal, India
| | - Amina Khatun
- Department of Paramedical and Allied Health Sciences, Midnapore City College, Midnapore, 721129, West Bengal, India
| | - Sreenivasa Rao Jarapala
- Department of Food Chemistry and Nutrient Analysis, National Institute of Nutrition (NIN), Hyderabad, Telengana, 500007, India
| | - Koushik Das
- Department of Nutrition, Belda College, Paschim Medinipur, 721424, West Bengal, India
| | - Kuntal Ghosh
- Department of Paramedical and Allied Health Sciences, Midnapore City College, Midnapore, 721129, West Bengal, India
| | - Sudipta Chakrabarti
- Department of Paramedical and Allied Health Sciences, Midnapore City College, Midnapore, 721129, West Bengal, India
| | - Shrabani Pradhan
- Department of Paramedical and Allied Health Sciences, Midnapore City College, Midnapore, 721129, West Bengal, India.
| |
Collapse
|
5
|
Poole CF. Selectivity evaluation of extraction systems. J Chromatogr A 2023; 1695:463939. [PMID: 36996617 DOI: 10.1016/j.chroma.2023.463939] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 03/19/2023] [Accepted: 03/20/2023] [Indexed: 03/30/2023]
Abstract
Extraction is the most common sample preparation technique prior to chromatographic analysis for samples which are too complex, too dilute, or contain matrix components incompatible with the further use of the separation system or interfere in the detection step. The most important extraction techniques are biphasic systems involving the transfer of target compounds from the sample to a different phase ideally accompanied by no more than a tolerable burden of co-extracted matrix compounds. The solvation parameter model affords a general framework to characterize biphasic extraction systems in terms of their relative capability for solute-phase intermolecular interactions (dispersion, dipole-type, hydrogen bonding) and within phase solvent-solvent interactions for cavity formation (cohesion). The approach is general and allows the comparison of liquid and solid extraction phases using the same terms and is used to explain the features important for the selective enrichment of target compounds by a specific extraction phase using solvent extraction, liquid-liquid extraction, and solid-phase extraction for samples in a gas, liquid, or solid phase. Hierarchical cluster analysis with the system constants of the solvation parameter model as variables facilitates the selection of solvents for extraction, the identification of liquid-liquid distribution systems with non-redundant selectivity, and evaluation of different approaches using liquids and solids for the isolation of target compounds from different matrices.
Collapse
|
6
|
Zambom A, Vilas-Boas SM, Silva LP, Martins MAR, Ferreira O, Pinho SP. The Role of the Anion in Imidazolium-Based Ionic Liquids for Fuel and Terpenes Processing. Molecules 2023; 28:molecules28062456. [PMID: 36985428 PMCID: PMC10057593 DOI: 10.3390/molecules28062456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 02/24/2023] [Accepted: 03/02/2023] [Indexed: 03/11/2023] Open
Abstract
The potentialities of methylimidazolium-based ionic liquids (ILs) as solvents were evaluated for some relevant separation problems—terpene fractionation and fuel processing—studying selectivities, capacities, and solvent performance indices. The activity coefficients at infinite dilution of the solute (1) in the IL (3), γ13∞, of 52 organic solutes were measured by inverse gas chromatography over a temperature range of 333.2–453.2 K. The selected ILs are 1-butyl-3-methylimidazolium hexafluorophosphate, [C4mim][PF6], and the equimolar mixture of [C4mim][PF6] and 1-butyl-3-methylimidazolium chloride, [C4mim]Cl. Generally, low polar solutes follow γ1,C4mimCl∞ > γ1,C4mimPF6+C4mimCl∞ > γ1,C4mimPF6∞ while the opposite behavior is observed for alcohols and water. For citrus essential oil deterpenation, the results suggest that cations with long alkyl chains, such as C12mim+, promote capacity, while selectivity depends on the solute polarity. Promising results were obtained for the separation of several model mixtures relevant to fuel industries using the equimolar mixture of [C4mim][PF6] and [C4mim]Cl. This work demonstrates the importance of tailoring the polarity of the solvents, suggesting the use of ILs with mixed anions as alternative solvents for the removal of aliphatic hydrocarbons and contaminants from fuels.
Collapse
Affiliation(s)
- Aline Zambom
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
- Laboratório para a Sustentabilidade e Tecnologia em Regiões de Montanha, Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
| | - Sérgio M. Vilas-Boas
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
- Laboratório para a Sustentabilidade e Tecnologia em Regiões de Montanha, Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
- CICECO—Aveiro Institute of Materials, Complexo de Laboratórios Tecnológicos, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - Liliana P. Silva
- CICECO—Aveiro Institute of Materials, Complexo de Laboratórios Tecnológicos, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - Mónia A. R. Martins
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
- Laboratório para a Sustentabilidade e Tecnologia em Regiões de Montanha, Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
- CICECO—Aveiro Institute of Materials, Complexo de Laboratórios Tecnológicos, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - Olga Ferreira
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
- Laboratório para a Sustentabilidade e Tecnologia em Regiões de Montanha, Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
| | - Simão P. Pinho
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
- Laboratório para a Sustentabilidade e Tecnologia em Regiões de Montanha, Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
- Correspondence: ; Tel.: +351-273-303-086
| |
Collapse
|
7
|
Recent advances for estimating environmental properties for small molecules from chromatographic measurements and the solvation parameter model. J Chromatogr A 2023; 1687:463682. [PMID: 36502643 DOI: 10.1016/j.chroma.2022.463682] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 11/24/2022] [Accepted: 11/24/2022] [Indexed: 11/30/2022]
Abstract
The transfer of neutral compounds between immiscible phases in chromatographic or environmental systems can be described by six solute properties (solute descriptors) using the solvation parameter model. The solute descriptors are size (McGowan's characteristic volume), V, excess molar refraction, E, dipolarity/polarizability, S, hydrogen-bond acidity and basicity, A and B, and the gas-liquid partition constant on n-hexadecane at 298.15 K, L. V and E for liquids are accessible by calculation but the other descriptors and E for solids are determined experimentally by chromatographic, liquid-liquid partition, and solubility measurements. These solute descriptors are available for several thousand compounds in the Abraham solute descriptor databases and for several hundred compounds in the WSU experimental solute descriptor database. In the first part of this review, we highlight features important in defining each descriptor, their experimental determination, compare descriptor quality for the two organized descriptor databases, and methods for estimating Abraham solute descriptors. In the second part we focus on recent applications of the solvation parameter model to characterize environmental systems and its use for the identification of surrogate chromatographic models for estimating environmental properties.
Collapse
|
8
|
Fuel Cell Reactors for the Clean Cogeneration of Electrical Energy and Value-Added Chemicals. ELECTROCHEM ENERGY R 2022. [DOI: 10.1007/s41918-022-00168-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
AbstractFuel cell reactors can be tailored to simultaneously cogenerate value-added chemicals and electrical energy while releasing negligible CO2 emissions or other pollution; moreover, some of these reactors can even “breathe in” poisonous gas as feedstock. Such clean cogeneration favorably offsets the fast depletion of fossil fuel resources and eases growing environmental concerns. These unique reactors inherit advantages from fuel cells: a high energy conversion efficiency and high selectivity. Compared with similar energy conversion devices with sandwich structures, fuel cell reactors have successfully “hit three birds with one stone” by generating power, producing chemicals, and maintaining eco-friendliness. In this review, we provide a systematic summary on the state of the art regarding fuel cell reactors and key components, as well as the typical cogeneration reactions accomplished in these reactors. Most strategies fall short in reaching a win–win situation that meets production demand while concurrently addressing environmental issues. The use of fuel cells (FCs) as reactors to simultaneously produce value-added chemicals and electrical power without environmental pollution has emerged as a promising direction. The FC reactor has been well recognized due to its “one stone hitting three birds” merit, namely, efficient chemical production, electrical power generation, and environmental friendliness. Fuel cell reactors for cogeneration provide multidisciplinary perspectives on clean chemical production, effective energy utilization, and even pollutant treatment, with far-reaching implications for the wider scientific community and society. The scope of this review focuses on unique reactors that can convert low-value reactants and/or industrial wastes to value-added chemicals while simultaneously cogenerating electrical power in an environmentally friendly manner.
Graphical Abstract
A schematic diagram for the concept of fuel cell reactors for cogeneration of electrical energy and value-added chemicals
Collapse
|
9
|
Characterising a Protic Ionic Liquid Library with Applied Machine Learning Algorithms. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.120453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
10
|
Altun A, Şara ON. Density, viscosity and excess properties of binary mixtures of ethylene glycol and 1-butyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.119221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
11
|
Pankajkumar-Patel N, Peris-García E, Ruiz-Angel M, García-Alvarez-Coque M. Interactions of basic compounds with ionic liquids used as oils in microemulsion liquid chromatography. J Chromatogr A 2022; 1674:463142. [DOI: 10.1016/j.chroma.2022.463142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 05/10/2022] [Accepted: 05/10/2022] [Indexed: 11/27/2022]
|
12
|
Ahmed W, Azmant R, Chendouh-Brahmi N, Ahmed R, Naz S, Qayyum A, El Askary A, Gharib AF, Alrehaili AA, Ali N. Natural and commercial antibiotic comparison with drugs modeling Cell Integrity Cell Stability of Bio-Kinetics Changes under Morphological Topographies cells with lower Toxicological Characteristics for multidrug resistances problem. Saudi J Biol Sci 2022; 29:103351. [PMID: 35846384 PMCID: PMC9283668 DOI: 10.1016/j.sjbs.2022.103351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 04/30/2022] [Accepted: 06/13/2022] [Indexed: 11/29/2022] Open
Abstract
Antibacterial drug-resistant strains are a serious problem of bacterial treatments nowadays and have a concern. The plant exacts of Adhatoda vasica and Calotropis procera are well-known for their role as antibiotic agents. The extraction of novel antibiotic compounds was done by HPLC-DAD, their yield is quantified by numerous solvents. The complete biological activity with antioxidants, bio-kinematicof four compounds of B-Sitosteryl linoleate, Myristyl diglucoside, D-Triglucopyranoside, and S- allylcysteine acids were studied. The supercritical fluid extraction techniques were the best strategies for higher yield, accuracy clarity, and inter, intra process of all four compounds. A. vasica and C. procera samples and investigated in six different solvents. D-Triglucopyranoside (13.81 ± 0.48%), Myristyl diglucoside (11.81 ± 0.41%), B- Sitosteryl linoleate (12.81 ± 0.48%), and s-allylcysteine acids (14.81 ± 0.31%) were higher. The design and action of compounds were applied to proper compartmental pharmacokinetic modelling for in-depth design understanding. The morphology and structure of bacterial cells with the extracted compounds upheld the permeability of cell membranes, membrane integrity, and membrane potential and lower the bacterial binding capacity the infectious index was measured in transmission electron microscopy (TEM) and their alteration process. Plants have well upheld the cellular permeability The toxicity test was performed on both extracted samples with concentrations (1, 0.4, and 0.8%). The areas under plasma half-life of compounds with their solubility, abortion level were higher in four compounds showed the potential of novel antibiotics. The novel medicinal plants used as antibiotics could be the best sources of infection control as a source of future medicines with antibacterial potential solving multidrug issues of bacteria in the world.
Collapse
|
13
|
Abstract
Ionic liquids (ILs) are non-molecular solvents; specifically, molten salts with low melting points, often below 100 °C and even below room temperature, thus allowing these solvents to remain liquid [...]
Collapse
|
14
|
Khater S, Ferguson P, Grand-Guillaume-Perrenoud A. Method development approaches for small-molecule analytes. SEP SCI TECHNOL 2022. [DOI: 10.1016/b978-0-323-88487-7.00005-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
|
15
|
Aryafard M, Minofar B, Cséfalvay E, Malinová L, Řeha D. Novel room temperature ionic liquids and low melting mixtures based on imidazolium: Cheap ionic solvents for chemical and biological applications. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.117877] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
16
|
Kolmar SS, Grulke CM. The effect of noise on the predictive limit of QSAR models. J Cheminform 2021; 13:92. [PMID: 34823605 PMCID: PMC8613965 DOI: 10.1186/s13321-021-00571-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 11/14/2021] [Indexed: 01/09/2023] Open
Abstract
A key challenge in the field of Quantitative Structure Activity Relationships (QSAR) is how to effectively treat experimental error in the training and evaluation of computational models. It is often assumed in the field of QSAR that models cannot produce predictions which are more accurate than their training data. Additionally, it is implicitly assumed, by necessity, that data points in test sets or validation sets do not contain error, and that each data point is a population mean. This work proposes the hypothesis that QSAR models can make predictions which are more accurate than their training data and that the error-free test set assumption leads to a significant misevaluation of model performance. This work used 8 datasets with six different common QSAR endpoints, because different endpoints should have different amounts of experimental error associated with varying complexity of the measurements. Up to 15 levels of simulated Gaussian distributed random error was added to the datasets, and models were built on the error laden datasets using five different algorithms. The models were trained on the error laden data, evaluated on error-laden test sets, and evaluated on error-free test sets. The results show that for each level of added error, the RMSE for evaluation on the error free test sets was always better. The results support the hypothesis that, at least under the conditions of Gaussian distributed random error, QSAR models can make predictions which are more accurate than their training data, and that the evaluation of models on error laden test and validation sets may give a flawed measure of model performance. These results have implications for how QSAR models are evaluated, especially for disciplines where experimental error is very large, such as in computational toxicology. ![]()
Collapse
Affiliation(s)
- Scott S Kolmar
- Center for Computational Toxicology and Exposure, Office of Research and Development, US Environmental Protection Agency, Research Triangle Park, NC, USA.
| | - Christopher M Grulke
- Center for Computational Toxicology and Exposure, Office of Research and Development, US Environmental Protection Agency, Research Triangle Park, NC, USA
| |
Collapse
|
17
|
Zhao X, Zhang S, Huang Q, Peng C, Feng Y, Xing J. Regulation of hydrogen bond acidity and its effect on separation performances. J Chromatogr A 2021; 1657:462556. [PMID: 34601256 DOI: 10.1016/j.chroma.2021.462556] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 09/09/2021] [Accepted: 09/09/2021] [Indexed: 11/18/2022]
Abstract
Ionic liquid bonded polysiloxanes (PILs) are a class of polysiloxanes whose side chains contain ionic liquid (IL) moieties. They not only inherit the character of "dual nature" from ILs but also inherit the excellent film-forming ability and thermal stability from polysiloxanes. In this paper, the solvation parameter model is introduced to investigate the interaction characteristics of PILs. The experimental results show that the b values of PILs occur in a wider range than those previously reported for the stationary phases. The hydrogen bond acidity can be effectively adjusted by varying the ionic liquid content or substituents. Hindering the formation of the hydrogen-bonded networks and increasing the exposed hydrogens may be intrinsic to the strong hydrogen bond acidity of PILs. Subsequently, the separation performances of these PIL stationary phases were demonstrated by separating various mixed samples of aromatic isomers, dichloroanilines, substituted alkanes, alcohols, esters, etc. The results show that the PILs with strong hydrogen bond acidity have excellent selectivity performances for aromatic position isomers, alcohols, and substituted alkanes. This study is significant for understanding the hydrogen bond acidity and broadening the range of hydrogen bond acidity of ionic liquid stationary phases.
Collapse
Affiliation(s)
- Xiaojie Zhao
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, Hubei 430072, China; School of Environmental Engineering and Chemistry, Luoyang Institute of Science and Technology, Luoyang 471023, China
| | - Shaowen Zhang
- School of Environmental Engineering and Chemistry, Luoyang Institute of Science and Technology, Luoyang 471023, China
| | - Qing Huang
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, Hubei 430072, China
| | - Chuanyun Peng
- School of Environmental Engineering and Chemistry, Luoyang Institute of Science and Technology, Luoyang 471023, China
| | - Yong Feng
- School of Environmental Engineering and Chemistry, Luoyang Institute of Science and Technology, Luoyang 471023, China
| | - Jun Xing
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, Hubei 430072, China.
| |
Collapse
|
18
|
Ausín D, Parajó JJ, Trenzado JL, Varela LM, Cabeza O, Segade L. Influence of Small Quantities of Water on the Physical Properties of Alkylammonium Nitrate Ionic Liquids. Int J Mol Sci 2021; 22:7334. [PMID: 34298957 PMCID: PMC8306069 DOI: 10.3390/ijms22147334] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 06/28/2021] [Accepted: 07/02/2021] [Indexed: 11/16/2022] Open
Abstract
This paper presents a comprehensive study of two alkylammonium nitrate ionic liquids. As part of this family of materials, mainly ethylammonium nitrate (EAN) and also propylammonium nitrate (PAN) have attracted a great deal of attention during the last decades due to their potential applications in many fields. Although there have been numerous publications focused on the measurement of their physical properties, a great dispersion can be observed in the results obtained for the same magnitude. One of the critical points to be taken into account in their physical characterization is their water content. Thus, the main objective of this work was to determine the degree of influence of the presence of small quantities of water in EAN and PAN on the measurement of density, viscosity, electrical conductivity, refractive index and surface tension. For this purpose, the first three properties were determined in samples of EAN and PAN with water contents below 30,000 ppm in a wide range of temperatures, between 5 and 95 °C, while the last two were obtained at 25 °C. As a result of this study, it has been concluded that the presence of water is critical in those physical properties that involve mass or charge transport processes, resulting in the finding that the absolute value of the average percentage change in both viscosity and electrical conductivity is above 40%. Meanwhile, refractive index (≤0.3%), density (≤0.5%) and surface tension (≤2%) present much less significant changes.
Collapse
Affiliation(s)
- David Ausín
- Departamento de Física, Facultade de Ciencias, Campus da Zapateira, Universidade da Coruña, 15071 A Coruña, Spain; (D.A.); (O.C.)
| | - Juan J. Parajó
- Grupo de Nanomateriais, Fotónica e Materia Branda, Departamento de Física de Partículas y Departamento de Física Aplicada, Universidade de Santiago de Compostela, Campus Vida s/n, 15782 Santiago de Compostela, Spain; (J.J.P.); (L.M.V.)
- Departamento de Química e Bioquímica, CIQUP-Centro de Investigaçao em Química da Universidade do Porto, Universidade do Porto, P-4169-007 Porto, Portugal
| | - José L. Trenzado
- Departamento de Física, Universidad de Las Palmas de Gran Canaria, 35017 Las Palmas Gran Canaria, Spain;
| | - Luis M. Varela
- Grupo de Nanomateriais, Fotónica e Materia Branda, Departamento de Física de Partículas y Departamento de Física Aplicada, Universidade de Santiago de Compostela, Campus Vida s/n, 15782 Santiago de Compostela, Spain; (J.J.P.); (L.M.V.)
| | - Oscar Cabeza
- Departamento de Física, Facultade de Ciencias, Campus da Zapateira, Universidade da Coruña, 15071 A Coruña, Spain; (D.A.); (O.C.)
| | - Luisa Segade
- Departamento de Física, Facultade de Ciencias, Campus da Zapateira, Universidade da Coruña, 15071 A Coruña, Spain; (D.A.); (O.C.)
| |
Collapse
|
19
|
Rabiul Islam M, Warsi F, Sayem Alam M, Ali M. Solvatochromic behaviour of coumarin 102 in PEGs + ionic liquid/water solutions: Role of solute-solvent or solvent-solvent interactions. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.116483] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
20
|
|
21
|
Determination of physicochemical properties of ionic liquids by gas chromatography. J Chromatogr A 2021; 1644:461964. [PMID: 33741140 DOI: 10.1016/j.chroma.2021.461964] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 01/24/2021] [Accepted: 01/31/2021] [Indexed: 12/27/2022]
Abstract
Over the years room temperature ionic liquids have gained attention as solvents with favorable environmental and technical features. Both chromatographic and conventional methods afford suitable tools for the study of their physicochemical properties. Use of gas chromatography compared to conventional methods for the measurement of physicochemical properties of ionic liquids have several advantages; very low sample concentrations, high accuracy, faster measurements, use of wider temperature range and the possibility to determine physicochemical properties of impure samples. Also, general purpose gas chromatography instruments are widely available in most laboratories thus alleviating the need to purchase more specific instruments for less common physiochemical measurements. Some of the main types of physicochemical properties of ionic liquids accessible using gas chromatography include gas-liquid partition constants, infinite dilution activity coefficients, partial molar quantities, solubility parameters, system constants of the solvation parameter model, thermal stability, transport properties, and catalytic and other surface properties.
Collapse
|
22
|
Shmukler L, Fedorova I, Fadeeva YA, Safonova L. The physicochemical properties and structure of alkylammonium protic ionic liquids of RnH4-nNX (n = 1–3) family. A mini–review. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2020.114350] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
23
|
Molecular “wiring” of plasma amine oxidase: Green and enzyme friendly approaches. Int J Biol Macromol 2020; 165:2071-2078. [DOI: 10.1016/j.ijbiomac.2020.10.082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 08/12/2020] [Accepted: 10/12/2020] [Indexed: 11/19/2022]
|
24
|
Biswas A, Dasari S, Mallik BS. Cohesiveness and Nondiffusive Rotational Jump Dynamics of Protic Ionic Liquid from Dispersion-Corrected FPMD Simulations. J Phys Chem B 2020; 124:10752-10765. [DOI: 10.1021/acs.jpcb.0c05866] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Affiliation(s)
- Aritri Biswas
- Department of Chemistry, Indian Institute of Technology Hyderabad, Sangareddy 502285, Telangana, India
| | - Sathish Dasari
- Department of Chemistry, Indian Institute of Technology Hyderabad, Sangareddy 502285, Telangana, India
| | - Bhabani S. Mallik
- Department of Chemistry, Indian Institute of Technology Hyderabad, Sangareddy 502285, Telangana, India
| |
Collapse
|
25
|
Deng Y, Yao J, Li H. Effects of ionicity and chain structure on the physicochemical properties of protic ionic liquids. AIChE J 2020. [DOI: 10.1002/aic.16982] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Yuyan Deng
- Department of Chemistry, ZJU‐NHU United R&D Center Zhejiang University Hangzhou China
| | - Jia Yao
- Department of Chemistry, ZJU‐NHU United R&D Center Zhejiang University Hangzhou China
| | - Haoran Li
- Department of Chemistry, ZJU‐NHU United R&D Center Zhejiang University Hangzhou China
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering Zhejiang University Hangzhou China
| |
Collapse
|
26
|
Microgeometry-independent equation for measuring infinite dilution activity coefficients using gas-liquid chromatography with static-wall-coated open-tubular columns. J Chromatogr A 2020; 1624:461264. [DOI: 10.1016/j.chroma.2020.461264] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 05/02/2020] [Accepted: 05/19/2020] [Indexed: 11/20/2022]
|
27
|
Hou X, Cheng Z, Wang J. Preparative purification of corilagin from Phyllanthus by combining ionic liquid extraction, prep-HPLC, and precipitation. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2020; 12:3382-3389. [PMID: 32930226 DOI: 10.1039/d0ay00860e] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
In this study, a green extraction and purification process for the rapid preparation of corilagin from Phyllanthus has been designed using an aqueous ionic liquid coupled with preparative high-performance liquid chromatography (prep-HPLC) and precipitation. The results showed that the optimum extraction process for corilagin involved mixing Phyllanthus tenellus Roxb. with 0.4 M [BMIm]Br at a liquid-solid ratio of 10 : 1 and dispersing the mixture by ultrasonication at 50 °C for 15 min. Macroporous resin D101 and prep-HPLC were employed for [BMIm]Br removal and corilagin separation to yield corilagin of 86.49% purity. Subsequently, corilagin was further purified by water precipitation to achieve 99.12% purity. The results indicated the successful development of a new rapid and green process to prepare corilagin on a large scale from plants using [BMIm]Br. This promising process can be applied for the preparative separation and purification of other active compounds from complex plant systems.
Collapse
Affiliation(s)
- Xiaodong Hou
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, Shandong 266101, China.
| | - Zitao Cheng
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, Shandong 266101, China.
| | - Jiao Wang
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, Shandong 266101, China.
| |
Collapse
|
28
|
Mukhopadhyay S, Dutta R, Das P. A critical review on plant biomonitors for determination of polycyclic aromatic hydrocarbons (PAHs) in air through solvent extraction techniques. CHEMOSPHERE 2020; 251:126441. [PMID: 32443242 DOI: 10.1016/j.chemosphere.2020.126441] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 03/05/2020] [Accepted: 03/06/2020] [Indexed: 06/11/2023]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are hydrocarbons having two or more fused aromatic rings, released from natural (like forest fires and volcanic eruption) as well as man-made sources (like burning of fossil fuel & wood, automobile emission). They are persistent priority pollutants and continue to last for a long time in the environment causing severe damage to human health owing to their genotoxicity, mutagenicity and carcinogenicity. The study of PAHs in environment has therefore aroused a global concern. PAHs adsorption to plant cell wall is facilitated by transpiration and plant root lipids which help PAHs transfer from roots to leaves and stalks, causing more accumulation of contaminants with the increase in lipid content. Hence, these bioaccumulators can be utilized as biomonitors for indirect assessment of ambient air pollution. Efficacy of specific plants, lichens and mosses as useful biomonitors of airborne PAHs pollution has been discussed in this review along with prevalent classical and modified extraction techniques coupled with proper analytical procedures in order to gain an insight into the assessment of atmospheric PAHs concentrations. Different modern and modified solvent extraction techniques along with conventional Soxhlet method are identified for extraction of PAHs from accumulative bioindicators and analytical methods are also developed for accurate determination of PAHs. Process parameters like choice of solvent, temperature, time of extraction, pressure and matrix characteristics are usually checked. An approach of biomonitoring of PAHs using plants, lichens and mosses has been discussed here as they usually trap the atmospheric PAHs and mineralize them.
Collapse
Affiliation(s)
- Shritama Mukhopadhyay
- Department of Chemical Engineering, Jadavpur University, Jadavpur, Kolkata, 700032, India.
| | - Ratna Dutta
- Department of Chemical Engineering, Jadavpur University, Jadavpur, Kolkata, 700032, India.
| | - Papita Das
- Department of Chemical Engineering, Jadavpur University, Jadavpur, Kolkata, 700032, India.
| |
Collapse
|
29
|
Li MWH, Huang X, Zhu H, Kurabayashi K, Fan X. Microfabricated ionic liquid column for separations in dry air. J Chromatogr A 2020; 1620:461002. [DOI: 10.1016/j.chroma.2020.461002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2020] [Revised: 02/25/2020] [Accepted: 02/26/2020] [Indexed: 01/09/2023]
|
30
|
Efficiency of capillary GC columns based on phosphonium ionic liquids. J Chromatogr A 2020; 1622:461127. [PMID: 32331778 DOI: 10.1016/j.chroma.2020.461127] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 04/09/2020] [Accepted: 04/12/2020] [Indexed: 11/24/2022]
Abstract
Gas chromatographic columns based on ionic liquids (ILs) are very promising since the selectivity of these columns can be tuned by both the cation and the anion chemical nature. In this paper, efficiencies of capillary columns based on four phosphonium ionic liquids were studied. The performance of seven columns containing the cation trihexyl(tetradecyl)phosphonium and the anions bromide, chloride, and bis(trifluoromethylsulfonyl)imide was evaluated by measuring the solute band broadening as a function of gas velocities at three temperatures. Hence, classical height equivalent to a theoretical plate (H) against gas velocity (u) plots corresponding to those columns were generated and the data were fitted to the Golay-Guiochon equation with the aim of seeking the optimum conditions to be operated each of them. Band broadening at practical gas velocities is mainly due to poor mass transfer properties of solutes in the (viscous) liquid phases, which limits the achieved efficiencies. These H/u plots proved to be necessary to characterize the column quality at a given temperature, to interpret the band broadening phenomena and thus, to establish the lower temperature limits and the expected plate counts at that temperature.
Collapse
|
31
|
Kimura Y. Solvation heterogeneity in ionic liquids as demonstrated by photo-chemical reactions. PURE APPL CHEM 2020. [DOI: 10.1515/pac-2019-1116] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
It has been recognised that ionic liquids (ILs) with long alkyl-chains have a segregated structure due to the inhomogeneous distribution of polar parts and non-polar parts. This inhomogeneity of ILs brings about unique solvation phenomena of solute molecules dissolved in ILs. We have investigated various solvation-state selective phenomena by using laser spectroscopic techniques such as solvation state selective vibrational spectroscopy, translational and rotational dynamics of small molecules in ILs, and solvation state selective fundamental chemical reactions. In this paper, we have reviewed an intramolecular electron transfer (ET) reaction in the Marcus inverted region of N,N-dimethyl-p-nitroaniline and an intramolecular proton transfer (IPT) reaction in 4′-N,N-diethylamino-3-hydroxyflavone as examples of chemical reactions affected by unique solvation in ILs.
Collapse
Affiliation(s)
- Yoshifumi Kimura
- Department of molecular science and biochemistry, Faculty of science and engineering , Doshisha University , Kyotanabe-city, Kyoto 610-0321 , Japan
| |
Collapse
|
32
|
Bioni TA, de Oliveira ML, Dignani MT, El Seoud OA. Understanding the efficiency of ionic liquids–DMSO as solvents for carbohydrates: use of solvatochromic- and related physicochemical properties. NEW J CHEM 2020. [DOI: 10.1039/d0nj02258f] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The quantification of interactions of solvatochromic probes with ionic liquids/DMSO serves as an expedient approach for predicting the solvent efficiency in dissolving carbohydrates
Collapse
Affiliation(s)
- Thaís A. Bioni
- Institute of Chemistry
- The University of São Paulo
- 748 Prof. Lineu Prestes Av
- 05508-000 São Paulo
- Brazil
| | - Mayara L. de Oliveira
- Institute of Chemistry
- The University of São Paulo
- 748 Prof. Lineu Prestes Av
- 05508-000 São Paulo
- Brazil
| | - Marcella T. Dignani
- Institute of Chemistry
- The University of São Paulo
- 748 Prof. Lineu Prestes Av
- 05508-000 São Paulo
- Brazil
| | - Omar A. El Seoud
- Institute of Chemistry
- The University of São Paulo
- 748 Prof. Lineu Prestes Av
- 05508-000 São Paulo
- Brazil
| |
Collapse
|
33
|
Yalcin D, Drummond CJ, Greaves TL. Solvation properties of protic ionic liquids and molecular solvents. Phys Chem Chem Phys 2020; 22:114-128. [DOI: 10.1039/c9cp05711k] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Ionic liquids (ILs) are highly tailorable solvents with many potential applications. Knowledge about their solvation properties is highly beneficial in the utilization of ILs for specific tasks, though for many ILs this is currently unknown.
Collapse
Affiliation(s)
- Dilek Yalcin
- School of Science
- College of Science
- Engineering and Health
- RMIT University
- Melbourne
| | - Calum J. Drummond
- School of Science
- College of Science
- Engineering and Health
- RMIT University
- Melbourne
| | - Tamar L. Greaves
- School of Science
- College of Science
- Engineering and Health
- RMIT University
- Melbourne
| |
Collapse
|
34
|
Yalcin D, Christofferson AJ, Drummond CJ, Greaves TL. Solvation properties of protic ionic liquid–molecular solvent mixtures. Phys Chem Chem Phys 2020; 22:10995-11011. [DOI: 10.1039/d0cp00201a] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
In this study, we have investigated the solvation properties of binary mixtures of PILs with molecular solvents. The selected binary solvent systems are the PILs ethylammonium nitrate (EAN) and propylammonium nitrate (PAN) combined with either water, methanol, acetonitrile or DMSO.
Collapse
Affiliation(s)
- Dilek Yalcin
- School of Science
- College of Science
- Engineering and Health
- RMIT University
- Melbourne
| | | | - Calum J. Drummond
- School of Science
- College of Science
- Engineering and Health
- RMIT University
- Melbourne
| | - Tamar L. Greaves
- School of Science
- College of Science
- Engineering and Health
- RMIT University
- Melbourne
| |
Collapse
|
35
|
Tasqeeruddin S, Asiri YI. An environmentally benign, green, and efficient ionic liquid catalyzed synthesis of Quinoline derivatives via Knoevenagel condensation. J Heterocycl Chem 2019. [DOI: 10.1002/jhet.3754] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Syed Tasqeeruddin
- Department of Pharmaceutical Chemistry, College of PharmacyKing Khalid University Abha Saudi Arabia
| | | |
Collapse
|
36
|
Kaczmarkiewicz A, Zielak J, Nuckowski Ł, Studzińska S. Analysis of antisense oligonucleotides with the use of ionic liquids as mobile phase modifiers. RSC Adv 2019; 9:39100-39110. [PMID: 35540640 PMCID: PMC9076077 DOI: 10.1039/c9ra06483d] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Accepted: 11/13/2019] [Indexed: 11/29/2022] Open
Abstract
The main goal of this study was the investigation of the impact of several ionic liquids, commonly used as free silanol suppressors, on the retention and separation of phosphorothioate oligonucleotides. Three various stationary phases (octadecyl, octadecyl with embedded polar groups and pentafluorophenyl) as well as ionic liquids with the concentration range of 0.1-7 mM were used for this purpose. The results obtained during this study showed that the increase in concentration of ionic liquids results in increasing retention of the oligonucleotides. Such an effect was observed regardless of the stationary phase used. Moreover, elongation of the alkyl chain in the structure of ionic liquids caused an increase of antisense oligonucleotide retention factors. The results obtained during retention studies confirmed that addition of ionic liquids to the mobile phase influences antisense oligonucleotide retention in a way similar to the case of commonly used ion pair reagents such as amines. A method of oligonucleotide separation was also developed. The best selectivity was obtained for the octadecyl stationary phase since separation of mixtures of antisense oligonucleotides and their metabolites differing in sequence length was successful. It has to be pointed out that ionic liquids were used for the first time as mobile phase additives for oligonucleotide analysis.
Collapse
Affiliation(s)
- Anna Kaczmarkiewicz
- Chair of Environmental Chemistry and Bioanalytics, Faculty of Chemistry, Nicolaus Copernicus University 7 Gagarin Str. PL-87-100 Toruń Poland +48-56-6114837 +48-56-6114308
| | - Judyta Zielak
- Chair of Environmental Chemistry and Bioanalytics, Faculty of Chemistry, Nicolaus Copernicus University 7 Gagarin Str. PL-87-100 Toruń Poland +48-56-6114837 +48-56-6114308
| | - Łukasz Nuckowski
- Chair of Environmental Chemistry and Bioanalytics, Faculty of Chemistry, Nicolaus Copernicus University 7 Gagarin Str. PL-87-100 Toruń Poland +48-56-6114837 +48-56-6114308
| | - Sylwia Studzińska
- Chair of Environmental Chemistry and Bioanalytics, Faculty of Chemistry, Nicolaus Copernicus University 7 Gagarin Str. PL-87-100 Toruń Poland +48-56-6114837 +48-56-6114308
| |
Collapse
|
37
|
Kimura Y, Fukui T, Okazoe S, Miyabayashi H, Endo T. Photo-excitation dynamics of N, N-dimethyl-p-nitroaniline in ionic liquids: Effect of cation alkyl-chain length. J Mol Liq 2019. [DOI: 10.1016/j.molliq.2019.111128] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
38
|
Estimation of Solute-Stationary Phase and Solute-Mobile Phase Interactions in the Presence of Ionic Liquids. SEPARATIONS 2019. [DOI: 10.3390/separations6030040] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The presence of free silanols on alkyl-bonded reversed-phase stationary phases is responsible for broad and asymmetrical peaks when basic drugs are chromatographed with conventional octadecylsilane (C18) columns due to ionic interactions. In the last few years, ionic liquids (ILs) have attracted attention to reduce this undesirable silanol activity. ILs should be considered as dual modifiers (with a cationic and anionic character), which means that both cations and anions are able to adsorb on the stationary phase, creating a positively or negatively charged layer, depending on the relative adsorption. The accessibility of basic compounds to the silanols is prevented by both the IL cation and anion, improving the peak profiles. A comparative study of the performance of six imidazolium-based ILs, differing in their cation/anions, as modifiers of the chromatographic behavior of a group of ten β-adrenoceptor antagonists, is addressed. Mobile phases containing cationic amines (triethylamine and dimethyloctylamine) were used as a reference for the interpretation of the results. Using a mathematical model based on two chemical equilibria, the association constants between the solutes and modified stationary phase as well as those between solutes and the additive in the mobile phase were estimated. These values, together with the changes in retention and peak shape, were used to obtain conclusions about the retention mechanism, changes in the nature of the chromatographic system, and silanol suppression effect.
Collapse
|
39
|
Sirbu D, Zeng L, Waddell PG, Benniston AC. An unprecedented oxidised julolidine-BODIPY conjugate and its application in real-time ratiometric fluorescence sensing of sulfite. Org Biomol Chem 2019; 17:7360-7368. [PMID: 31339165 DOI: 10.1039/c9ob01316d] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Reaction of a julolidine-based BODIPY compound with silver(i) ions in the presence of white light produced the oxidised julolidine version (OXJUL) containing a quaternary nitrogen. The oxidation of one ring at the julolidine site is highly unusual and there is no other reported literature example. The fluorescence maximum of OXJUL is altered from 648 nm to 608 nm by the addition of an aqueous solution of Na2SO3 over several minutes. In the presence of a large excess of sulfite a further slower reaction is observed which further shifts the emission maximum to 544 nm. The alterations form the basis of a real-time ratiometric sensor for sulfite and its detection in a white wine.
Collapse
Affiliation(s)
- D Sirbu
- Molecular Photonics Laboratory, Chemistry-School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne, NE1 7RU, UK.
| | | | | | | |
Collapse
|
40
|
Lawal IA, Klink M, Ndungu P, Moodley B. Brief bibliometric analysis of "ionic liquid" applications and its review as a substitute for common adsorbent modifier for the adsorption of organic pollutants. ENVIRONMENTAL RESEARCH 2019; 175:34-51. [PMID: 31102948 DOI: 10.1016/j.envres.2019.05.005] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Revised: 04/12/2019] [Accepted: 05/06/2019] [Indexed: 05/21/2023]
Abstract
The importance of improving adsorbent's adsorption efficiency in organic pollutants has been reported by many researchers. Surfactant-based modified adsorbents were a tasteful choice. As a result, the use of surfactants as a modifier for removing organic pollutants has shown to play a very big role in enhancing the adsorption efficiency of different materials. Ionic liquids are receiving extensive interest as green multipurpose compounds, primarily as a replacement for traditional chemicals that are used in many chemical processes. This work gives a brief bibliometric analysis of application of ionic liquid from 1930 to 2017, documents were collected from Scopus database and keywords from the abstracts and titles were analyzed using VOSviewer software. Furthermore, the work presents a review of conventionally known surfactants and the recent likelihood of ionic liquids for modifying adsorbents for adsorption of organic pollutants. Over the period of years between 1930 and 2017, 13,144 documents were published on the application of ionic liquids. VOSviewer software further confirms that adsorption is one of the leading areas in applications of ionic liquids. Review also showed that ionic liquid is a good modifier of adsorbents.
Collapse
Affiliation(s)
- Isiaka A Lawal
- Energy, Sensors and Multifunctional Nanomaterials Research Group, Department of Applied Chemistry, University of Johannesburg, Doornfontein 2028, Johannesburg, South Africa; Chemistry Department Faculty of Applied and Computer Science, Vaal University of Technology, Vanderbijlpark Campus, Boulevard, 1900, Vanderbijlpark, South Africa.
| | - Michael Klink
- Chemistry Department Faculty of Applied and Computer Science, Vaal University of Technology, Vanderbijlpark Campus, Boulevard, 1900, Vanderbijlpark, South Africa
| | - Patrick Ndungu
- Energy, Sensors and Multifunctional Nanomaterials Research Group, Department of Applied Chemistry, University of Johannesburg, Doornfontein 2028, Johannesburg, South Africa.
| | - Brenda Moodley
- School of Chemistry and Physics, College of Agriculture, Engineering and Science, University of KwaZulu-Natal, P/Bag X45001, Westville Campus, Durban, 4000, South Africa
| |
Collapse
|
41
|
Synthesis, thermal stability, vibrational spectra and conformational studies of novel dicationic meta-xylyl linked bis-1-methylimidazolium ionic liquids. J Mol Struct 2019. [DOI: 10.1016/j.molstruc.2019.03.019] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
42
|
Kasprzak D, Krystkowiak E, Stępniak I, Galiński M. Dissolution of cellulose in novel carboxylate-based ionic liquids and dimethyl sulfoxide mixed solvents. Eur Polym J 2019. [DOI: 10.1016/j.eurpolymj.2019.01.053] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
43
|
Lancaster NL. Organic Reactivity in Ionic Liquids: Some Mechanistic Insights into Nucleophilic Substitution Reactions. JOURNAL OF CHEMICAL RESEARCH 2019. [DOI: 10.3184/030823405774309096] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Ionic liquids have been advanced as alternative solvents for organic reactions. In this paper, the principal findings of studies on nucleophilic substitutions in ionic liquids are reviewed. Thus our examination of halides (Cl-, Br- and I) in a range of ionic liquids is combined with our study of amine nucleophilicity into a single narrative. There have been a few other quantitative studies of nucleophilic substitutions in ionic liquids, and the results of these studies are also summarised in this work. These data are compared to related reactions in molecular solvents, and used to show where ionic liquids do (and do not) offer advantages over molecular solvents for nucleophilic substitutions.
Collapse
|
44
|
De Boeck M, Dehaen W, Tytgat J, Cuypers E. Microextractions in forensic toxicology: The potential role of ionic liquids. Trends Analyt Chem 2019. [DOI: 10.1016/j.trac.2018.11.036] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
45
|
Ronco NR, Menestrina F, Romero LM, Castells CB. Determination of gas–liquid partition coefficients of several organic solutes in trihexyl (tetradecyl) phosphonium dicyanamide using capillary gas chromatography columns. J Chromatogr A 2019; 1584:179-186. [DOI: 10.1016/j.chroma.2018.11.048] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Revised: 11/18/2018] [Accepted: 11/20/2018] [Indexed: 10/27/2022]
|
46
|
Cichowska-Kopczyńska I, Joskowska M, Debski B, Aranowski R, Hupka J. Separation of toluene from gas phase using supported imidazolium ionic liquid membrane. J Memb Sci 2018. [DOI: 10.1016/j.memsci.2018.08.058] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
47
|
Wang R, Feng Z, Jin W, Huang X. Phase Behavior of the Anionic Surfactant [Bmim][AOT]-Stabilized Hydrophobic Ionic Liquid-Based Microemulsions and the Effect of n-Alcohols. Ind Eng Chem Res 2018. [DOI: 10.1021/acs.iecr.8b03766] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Rongrong Wang
- Key Laboratory of Colloid and Interface Chemistry of the Education Ministry of China, Shandong University, Jinan 250100, China
| | - Zhenyu Feng
- Key Laboratory of Colloid and Interface Chemistry of the Education Ministry of China, Shandong University, Jinan 250100, China
| | - Wei Jin
- Key Laboratory of Colloid and Interface Chemistry of the Education Ministry of China, Shandong University, Jinan 250100, China
| | - Xirong Huang
- Key Laboratory of Colloid and Interface Chemistry of the Education Ministry of China, Shandong University, Jinan 250100, China
| |
Collapse
|
48
|
Sun X, Tan J, Ding H, Tan X, Xing J, Xing L, Zhai Y, Li Z. Detection of Polycyclic Aromatic Hydrocarbons in Water Samples by Annular Platform-Supported Ionic Liquid-Based Headspace Liquid-Phase Microextraction. JOURNAL OF ANALYTICAL METHODS IN CHEMISTRY 2018; 2018:3765682. [PMID: 30363692 PMCID: PMC6180925 DOI: 10.1155/2018/3765682] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Revised: 07/03/2018] [Accepted: 08/27/2018] [Indexed: 06/08/2023]
Abstract
In this paper, a new method of annular platform-supported headspace liquid-phase microextraction (LPME) was designed using ionic liquid as an extraction solvent, wherein extraction stability and efficiency were improved by adding an annular platform inside the extraction bottle. The ionic liquid 1-silicyl-3-benzylimidazolehexafluorophosphate was first synthesized and proved to be an excellent extraction solvent. Coupled with liquid chromatography, the proposed method was employed to analysis of polycyclic aromatic hydrocarbons (PAHs) in water and optimized in aspects of extraction temperature, extraction solvent volume, extraction time, pH, stirring rate, and salt effect of solution. The results indicated that this method showed good linearity (R 2 > 0.995) within 0.5 µg·L-1 to 1000 µg·L-1 for PAHs. The method was more suitable for extraction of volatile PAHs, with recoveries from 65.0% to 102% and quantification limits from 0.01 to 0.05 µg·L-1. It has been successfully applied for detection of PAHs in seawater samples.
Collapse
Affiliation(s)
- Xiaojie Sun
- Key Laboratory of Testing and Evaluation for Aquatic Product Safety and Quality, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China
| | - Jie Tan
- Key Laboratory of Testing and Evaluation for Aquatic Product Safety and Quality, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China
- Qingdao National Laboratory for Marine Science and Technology, Qingdao 266000, China
| | - Haiyan Ding
- Key Laboratory of Testing and Evaluation for Aquatic Product Safety and Quality, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China
| | - Xiaojie Tan
- The Affiliated Hospital of Qingdao University, Qingdao 266000, China
| | - Jun Xing
- Key Laboratory of Analytical Chemistry for Biology and Medicine, Ministry of Education, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Lihong Xing
- Key Laboratory of Testing and Evaluation for Aquatic Product Safety and Quality, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China
| | - Yuxiu Zhai
- Key Laboratory of Testing and Evaluation for Aquatic Product Safety and Quality, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China
| | - Zhaoxin Li
- Key Laboratory of Testing and Evaluation for Aquatic Product Safety and Quality, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China
| |
Collapse
|
49
|
Hosseini S, Aparicio S, Alavianmehr M, Khalifeh R. On the volumetric properties of 2-hydroxy ethylammonium formate ionic liquid under high-pressures: Measurement and molecular dynamics. J Mol Liq 2018. [DOI: 10.1016/j.molliq.2018.06.074] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
50
|
Gruzdev MS, Krestyaninov MA, Krylov EN, Shmukler LE, Safonova LP. Possibility of Protic Ionic Liquids Formation From Triethanolamine with Sulfonamides. J Phys Chem B 2018; 122:6586-6594. [PMID: 29856632 DOI: 10.1021/acs.jpcb.8b02981] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
In this work, we have studied the products of interaction of triethanolamine with sulfonamides (4-chloro- and 4-nitrobenzenesulfonamide) and with bis(trifluoromethanesulfonyl)amide to show that it is possible to form protic ionic liquids. By using the hybrid functional B3LYP, we have made quantum-chemical calculations of the structure and energy of the formed compounds, and as part of the Natural bond orbital analysis, we have calculated the hydrogen bonds parameters. The structures of the obtained compounds have been confirmed by IR and NMR spectroscopy. On the basis of the obtained data, we have made a conclusion that triethanolamine with 4-chloro- and 4-nitrobenzenesulfonamides forms hydrogen-bonded complexes, whereas with bis(trifluoromethanesulfonyl)amide is forms a salt. We have determined the thermal characteristics of all of the obtained compounds, and for bis(trifluoromethanesulfonyl)imide tris(2-hydroxyethyl)ammonium salt, the electric conductivity as well.
Collapse
Affiliation(s)
- M S Gruzdev
- G. A. Krestov Institute of Solution Chemistry , Russian Academy of Sciences Akademicheskaya St.1 , Ivanovo , 153045 Russia
| | - M A Krestyaninov
- G. A. Krestov Institute of Solution Chemistry , Russian Academy of Sciences Akademicheskaya St.1 , Ivanovo , 153045 Russia
| | - E N Krylov
- Ivanovo State University , Yermak St. 39 , Ivanovo , 153025 Russia
| | - L E Shmukler
- G. A. Krestov Institute of Solution Chemistry , Russian Academy of Sciences Akademicheskaya St.1 , Ivanovo , 153045 Russia
| | - L P Safonova
- G. A. Krestov Institute of Solution Chemistry , Russian Academy of Sciences Akademicheskaya St.1 , Ivanovo , 153045 Russia
| |
Collapse
|