1
|
Tereba-Mamani CJ, Blázquez-Mateu M, Ruiz-Angel MJ, García-Alvarez-Coque MC. The role of the cation and anion in aqueous liquid chromatography with sodium dodecyl sulphate and imidazolium-based ionic liquids as mobile phase reagents. Anal Chim Acta 2024; 1318:342942. [PMID: 39067921 DOI: 10.1016/j.aca.2024.342942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 06/10/2024] [Accepted: 07/03/2024] [Indexed: 07/30/2024]
Abstract
BACKGROUND In reversed-phase liquid chromatography, solute retention is primarily influenced by interactions between a nonpolar stationary phase and a moderately polar hydro-organic mobile phase, based on the solute lipophilicity. However, challenges regarding retention and peak tailing can arise due to ionic interactions between positively charged analytes and free silanols present on silica-based stationary phases. To address these challenges, incorporating surfactants and ionic liquids (ILs) into the mobile phase offers an effective solution. These additives synergistically enhance chromatographic performance through electrostatic and lipophilic interactions, which enable fine-tuning of selectivity and improved separation efficiency. RESULTS This study explores the chromatographic behaviour of several basic compounds in aqueous mixtures containing the anionic surfactant sodium dodecyl sulphate (SDS), above its critical micellar concentration, combined with various 1-alkyl-3-methylimidazolium-based ionic liquids (ILs) featuring chloride, tetrafluoroborate, and hexafluorophosphate anions, all without the addition of organic solvents. Specifically, this research investigates the influence of different anion types within the ILs and considers the impact of the IL cations. Analysis of solute peak profiles reveals narrow and symmetrical peaks. By introducing tetrafluoroborate and hexafluorophosphate IL anions into a mobile phase that contains an anionic surfactant, the study sheds light on the interactions occurring within the chromatographic column. This enhanced understanding of the combined effects of surfactants and ILs contributes to refining chromatographic methodologies. SIGNIFICANCE This research highlights the importance of carefully selecting the appropriate IL when incorporating it into a micellar mobile phase alongside SDS. This combination results in practical retention times that surpass the performance achieved with either the surfactant or IL alone in the mobile phase. The study particularly emphasises the impact of the IL anion, especially in the absence of SDS and organic solvents. This unveils interactions that are otherwise obscured in micellar and hydro-organic media, providing new insights into chromatographic dynamics.
Collapse
Affiliation(s)
- C J Tereba-Mamani
- Department de Química Analítica, Universitat de València, C/Dr. Moliner 50, Burjassot, Spain
| | - M Blázquez-Mateu
- Department de Química Analítica, Universitat de València, C/Dr. Moliner 50, Burjassot, Spain
| | - M J Ruiz-Angel
- Department de Química Analítica, Universitat de València, C/Dr. Moliner 50, Burjassot, Spain
| | | |
Collapse
|
2
|
Xu M, Wu Z. A mixed-mode reversed-phase/strong-anion-exchange stationary phase: Analyte-retention stability and application in the analysis of nonsteroidal anti-inflammatory drugs. J Chromatogr A 2024; 1722:464871. [PMID: 38593520 DOI: 10.1016/j.chroma.2024.464871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 04/01/2024] [Accepted: 04/03/2024] [Indexed: 04/11/2024]
Abstract
Mixed-mode reversed-phase/anion-exchange chromatography (RP/AEX) is an effective method for the chromatographic analysis of acidic drugs because it combines reversed-phase chromatography (RP) with anion-exchange chromatography (AEX). However, the result repeatability for the RP/AEX analysis of acidic drugs is frequently compromised by the detrimental effects of residual silanol groups in an RP/AEX stationary phase on peak separation and analyte retention. In this study, an RP/weak-AEX stationary phase with amino anion-exchange groups, Sil-AA, was prepared. Subsequently, an RP/strong-AEX stationary phase, Sil-PBQA, was prepared by replacing the amino groups in Sil-AA with a benzene ring and a benzyl-containing quaternary ammonium salt. The chromatographic behaviors of Sil-PBQA and Sil-AA were compared, and the effect of residual silanol groups on the chromatographic behavior of an RP/AEX stationary phase was evaluated. Residual silanol groups not only caused additional electrostatic interactions for acidic analytes, but also competed with the analytes for the anion-exchange sites in an RP/AEX stationary phase. The effects of different salt-containing mobile-phase systems on the analyte-retention behavior of Sil-PBQA were investigated to develop a method that enhanced the repeatability of the RP/AEX acidic-analyte-analysis results obtained using Sil-PBQA and facilitated the separation of nonsteroidal anti-inflammatory drugs on Sil-PBQA. The ideas presented in this paper can improve the separation of peaks and repeatability of results in the RP/AEX analysis of acidic drugs.
Collapse
Affiliation(s)
- Meng Xu
- School of Pharmaceutical Science & Technology, Tianjin University, 92 Weijin Road, Tianjin 300072, China.
| | - Zhenwei Wu
- School of Pharmaceutical Science & Technology, Tianjin University, 92 Weijin Road, Tianjin 300072, China
| |
Collapse
|
3
|
Kemmei T, Yudo A, Kodama S, Yamamoto A, Inoue Y, Kagaya S, Hayakawa K. Separation of inorganic anions on reversed-phase C18 columns with a phosphomolybdate mobile phase. J Chromatogr A 2024; 1722:464843. [PMID: 38574599 DOI: 10.1016/j.chroma.2024.464843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 03/11/2024] [Accepted: 03/22/2024] [Indexed: 04/06/2024]
Abstract
Reversed-phase high performance liquid chromatography (RP-HPLC) is the most widely used chromatographic method. In addition to hydrophobic interactions, additional interactions such as electrostatic interactions may participate in the retention behaviour of an analyte. This makes it possible to use RP-HPLC for many types of analyte. We describe a simple method for separating inorganic anions on a C18 column, in which retention of inorganic anions is almost entirely due to electrostatic interactions. This leads to rapid separations as well as higher theoretical plate numbers. We used 2 mM phosphoric acid containing a low concentration of disodium molybdate as the mobile phase, which allows UV detection of non-UV-absorbing anions. With this method, we determined eight inorganic anions including several non-UV-absorbing anions photometrically at 220 nm. The detection limits of the examined eight inorganic anions calculated at a signal-to-noise ratio of 3 were between 0.3 and 10 μM. The detector response was linear over three orders of magnitude of inorganic anion concentration. The proposed RP-HPLC/UV method was successfully applied to determine inorganic anions in some water samples.
Collapse
Affiliation(s)
- Tomoko Kemmei
- Toyama Institute of Health, 17-1 Nakataikoyama, Imizu 939-0363, Japan; Department of Environmental Applied Chemistry, Faculty of Engineering, University of Toyama, 3190 Gofuku, Toyama 930-8555, Japan.
| | - Azusa Yudo
- Toyama Institute of Health, 17-1 Nakataikoyama, Imizu 939-0363, Japan; Department of Environmental Applied Chemistry, Faculty of Engineering, University of Toyama, 3190 Gofuku, Toyama 930-8555, Japan
| | - Shuji Kodama
- Department of Chemistry, School of Science, Tokai University, 4-1-1 Kitakaname, Hiratsuka 259-1292, Japan
| | - Atsushi Yamamoto
- Department of Biological Chemistry, College of Bioscience and Biotechnology, Chubu University, 1200 Matsumoto-cho, Kasugai 487-8501, Japan
| | - Yoshinori Inoue
- Department of Environmental Applied Chemistry, Faculty of Engineering, University of Toyama, 3190 Gofuku, Toyama 930-8555, Japan; Department of Applied Chemistry, Faculty of Engineering, Aichi Institute of Technology, 1247 Yachigusa, Yakusa-cho, Toyota 470-0392, Japan
| | - Shigehiro Kagaya
- Department of Environmental Applied Chemistry, Faculty of Engineering, University of Toyama, 3190 Gofuku, Toyama 930-8555, Japan
| | - Kazuichi Hayakawa
- Institute of Nature and Environmental Technology, Kanazawa University, O24 Wakemachi, Nomi 923-1224, Japan
| |
Collapse
|
4
|
Halsey H, Hall J, Huang C, Liu W, Parganiha P, Song S, Duran-Capece A, Fett J, Mathkar S, Lohani S. Challenges with retention and recovery of impurities containing acidic moieties during analytical UHPLC method development and validation for gefapixant freebase. J Pharm Biomed Anal 2024; 237:115772. [PMID: 37844365 DOI: 10.1016/j.jpba.2023.115772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 10/03/2023] [Accepted: 10/04/2023] [Indexed: 10/18/2023]
Abstract
Gefapixant citrate is a P2X3 purinergic receptor antagonist developed for the treatment of chronic cough. Gefapixant freebase is the penultimate intermediate in the commercial manufacturing route for gefapixant citrate and contains a complex impurity profile consisting of acidic and basic analytes. A UHPLC method was developed for assay and purity determination of gefapixant freebase utilizing a Waters Acquity Charged Surface Hybrid (CSH) C18 column (2.1 mm I.D. x 10 cm length, 1.7 µm particle size) with 0.1 % phosphoric acid and acetonitrile as the mobile phases. Method optimization was performed using ACD Labs LC Simulator to achieve baseline separation of all impurities and the method was successfully validated. During routine use and method transfer for gefapixant freebase, an increase in retention time for impurities containing strongly acidic functional groups, and poor recovery of a sulfinic acid impurity were observed. Subsequent investigation determined that the CSH column aging resulting from exposure of the column packing to the acidic mobile phase was the root cause for these behaviors. The mechanism of peak-shifting was further investigated using model compounds and determined to be due to an increase in ionic interactions with the CSH stationary phase with routine column use. The increase in ionic interactions was demonstrated to correlate with the charge state of the analyte. Poor recovery for the sulfinic acid impurity was attributed to increased peak tailing for this single impurity on older columns. This knowledge was leveraged to establish additional system suitability requirements to monitor column performance for the lifecycle of the analytical procedure.
Collapse
Affiliation(s)
- Holst Halsey
- Analytical Research and Development, MRL, Merck & Co., Inc., Rahway, NJ 07065, United States.
| | - Jackson Hall
- Analytical Research and Development, MRL, Merck & Co., Inc., Rahway, NJ 07065, United States
| | - Chunli Huang
- Analytical Research and Development, MRL, Merck & Co., Inc., Rahway, NJ 07065, United States
| | - Wenjun Liu
- Analytical Research and Development, MRL, Merck & Co., Inc., Rahway, NJ 07065, United States
| | - Priya Parganiha
- Analytical Research and Development, MRL, Merck & Co., Inc., Rahway, NJ 07065, United States
| | - Siqing Song
- Analytical Research and Development, MRL, Merck & Co., Inc., Rahway, NJ 07065, United States
| | - Alicia Duran-Capece
- Analytical Chemistry in Development and Supply. Merck & Co., Inc., Rahway, NJ 07065, United States
| | - Joseph Fett
- Analytical Chemistry in Development and Supply. Merck & Co., Inc., Rahway, NJ 07065, United States
| | - Shilpa Mathkar
- Analytical Chemistry in Development and Supply. Merck & Co., Inc., Rahway, NJ 07065, United States
| | - Sachin Lohani
- Analytical Research and Development, MRL, Merck & Co., Inc., Rahway, NJ 07065, United States
| |
Collapse
|
5
|
Yoshii T, Nakano K, Okuda T, Citterio D, Hiruta Y. Evaluation of separation performance for eggshell-based reversed-phase HPLC columns by controlling particle size and application in quantitative therapeutic drug monitoring. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2023; 15:1790-1796. [PMID: 36938787 DOI: 10.1039/d3ay00219e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Eggshell-based reversed-phase packing materials were applied to an analytical column for high-performance liquid chromatography. Commercially available eggshell powder was classified by a cyclone system to obtain three types of particles with different diameters (arithmetic mean ± standard deviation: 4.3 ± 3.8, 5.6 ± 3.3, and 9.5 ± 5.5 μm). Sedimentation separation removed tiny particles from each sample, resulting in particles with arithmetic means of 6.6 ± 5.5, 7.3 ± 4.5, and 10.2 ± 5.0 μm, respectively. The unclassified particles and three particle types treated with sedimentation separation were subsequently packed into analytical columns (150 mm × 4.6 mm I.D.), and their separation efficiencies were evaluated by comparing their height equivalent to a theoretical plate (HETP). The column without sedimentation separation exhibited the highest HETP, whereas the columns with sedimentation separation showed better separation efficiency and lower back pressure. The column with the best separation efficiency was applied for the separation of 10 alkylbenzenes and 5 steroids, and all peaks were observed with complete separation (peak resolution: RS > 1.5). Finally, the column was used for quantitative analysis of voriconazole, an azole antifungal agent, and imatinib, a first-generation molecularly targeted drug for cancer treatment, in spiked whole blood. Excellent accuracy (99.1-102.8%) and precision (0.6-1.9%) were observed for the spiked drugs and long-term stability (>3000 column volumes of mobile phase flow) indicated good applicability of the developed eggshell-based column as an analytical column for routine analyses of therapeutic drugs in blood.
Collapse
Affiliation(s)
- Tomoka Yoshii
- Department of Applied Chemistry, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama, Kanagawa 223-8522, Japan.
| | - Kohei Nakano
- Department of Applied Chemistry, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama, Kanagawa 223-8522, Japan.
| | - Tomoaki Okuda
- Department of Applied Chemistry, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama, Kanagawa 223-8522, Japan.
| | - Daniel Citterio
- Department of Applied Chemistry, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama, Kanagawa 223-8522, Japan.
| | - Yuki Hiruta
- Department of Applied Chemistry, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama, Kanagawa 223-8522, Japan.
| |
Collapse
|
6
|
Comprehensive evaluation of zwitterionic hydrophilic liquid chromatography stationary phases for oligonucleotide characterization. J Chromatogr A 2023; 1690:463785. [PMID: 36641941 DOI: 10.1016/j.chroma.2023.463785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 01/05/2023] [Accepted: 01/07/2023] [Indexed: 01/09/2023]
Abstract
Hydrophilic interaction chromatography (HILIC) has been proposed as a valuable alternative to ion-pairing reversed-phase chromatography (IP-RPLC) for oligonucleotide (ON) analysis. In this context, the potential of seven zwitterionic HILIC columns has been evaluated against amide- and poly-hydroxy fructan-functionalized HILIC columns and a C18 column operated under IP-RPLC mode. Based on the retention characteristics of key small molecule pairs, each zwitterionic HILIC column showed a unique radar-shaped profile, suggesting different selectivities for distinct structural differences. Unmodified DNA and RNA samples were then evaluated, and the columns classified based on their retentivity. Two zwitterionic columns were particularly promising in terms of overall resolution, especially for the largest ONs (> 40-mer). Finally, separations between a chemically modified drug-like ON and its closely related impurities were performed. Although the ZIC-cHILIC column showed similar selectivity values as compared to the reference IP-RPLC technique, all columns demonstrated a general decrease in selectivity due to the minor structural differences present in the highly complex samples. This work highlights the utility of zwitterionic HILIC mode for ON analysis and it reveals the importance of understanding columns characteristics - in terms of retention and selectivity - when selecting a stationary phase for specific ON applications.
Collapse
|
7
|
Tereba-Mamani CJ, Janczuk MA, Ruiz-Angel MJ, García-Alvarez-Coque MC. Aqueous liquid chromatography with mobile phases of sodium dodecyl sulphate and ionic liquid. J Chromatogr A 2023; 1689:463740. [PMID: 36580766 DOI: 10.1016/j.chroma.2022.463740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 12/14/2022] [Accepted: 12/20/2022] [Indexed: 12/24/2022]
Abstract
In conventional reversed-phase liquid chromatography (RPLC) with hydro-organic solvents, basic cationic solutes yield retained, broad, asymmetric peaks, owing to their interaction with free anionic silanols in the stationary phase. RPLC mobile phases to which the anionic surfactant sodium dodecyl sulphate (SDS), or an ionic liquid (IL) are added, have been proposed as solutions, since these additives are able to block the silanol effect thus improving the chromatographic performance. With these additives, it is however necessary to increase the elution strength by adding an organic solvent, such as an alcohol or acetonitrile. A novel aqueous liquid chromatographic mode (in the absence of organic solvent) is here proposed, where the mobile phases contain only a mixture of aqueous solutions of SDS and an IL derived from 1-alkyl-3-methylimidazolium associated to chloride, both environmentally friendly. When these reagents are added, the anionic surfactant adsorbed on the stationary phase is able to attract the cationic solutes, whereas the adsorbed IL cation repels them. The combination of both effects (attraction and repulsion) allows the modulation of retention, by varying the IL/SDS ratio. Given the character of the additives, a type of green liquid chromatography is achieved. In this work, the chromatographic behavior of six basic compounds of pharmaceutical interest, the β-adrenoceptor antagonists acebutolol, atenolol, carteolol, metroprolol, oxprenolol and propranolol, is examined. In order to assess the chromatographic behavior of the mixed mobile phases containing SDS and IL, changes in retention, peak profile and resolution of mixtures of the analytes were explored at varying concentration of the additives.
Collapse
Affiliation(s)
- C J Tereba-Mamani
- Departament de Química Analítica, Universitat de València, c/Dr. Moliner 50, Burjassot, Spain
| | - M A Janczuk
- Departament de Química Analítica, Universitat de València, c/Dr. Moliner 50, Burjassot, Spain
| | - M J Ruiz-Angel
- Departament de Química Analítica, Universitat de València, c/Dr. Moliner 50, Burjassot, Spain
| | | |
Collapse
|
8
|
Yoshii T, Sakama A, Kanamori K, Nakanishi K, Imai H, Citterio D, Hiruta Y. Fabrication process development and basic evaluation of eggshell-based column packing material for reversed-phase preparative separation. J Chromatogr A 2023; 1688:463722. [PMID: 36571981 DOI: 10.1016/j.chroma.2022.463722] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 12/14/2022] [Indexed: 12/23/2022]
Abstract
Purification of basic drugs in reversed-phase mode is often difficult, mainly due to adsorption of positively charged compounds to the silica gel-based stationary phase. Since this adsorption can be suppressed under alkaline condition, columns with alkali-resistance are required. In addition, compounds with acid-sensitive structures are sometimes degraded during separation on silica gel-based columns which exhibit acidity due to their surface structure. We prepared an alkali-resistant reversed-phase packing material, Eggshell-PMAcO based on eggshells modified with an amphiphilic copolymer, poly(maleic acid-alt-1-octadecene) (PMAcO). The height equivalent to a theoretical plate (HETP) of the Eggshell-PMAcO column was improved by surface treatment with ammonium acetate buffer (900 mM, pH = 3.7), which is an inexpensive reagent, and the retention behavior for hydrophobic compounds was compared to a typical ODS column based on silica gel, resulting in sufficient selectivity of the eggshell-based column for hydrophobic compounds, as indicated by the ratio of retention factors of pentylbenzene and butylbenzene (Eggshell-PMAcO column: 1.55, ODS column: 1.65). Column temperature-dependent retention behavior of naphthalene was investigated in the temperature range from 25 °C to 45 °C, followed by the calculation of thermodynamic parameters. There was little difference in the standard molar enthalpy (Eggshell-PMAcO: -19.6 kJ/mol, ODS: -21.7 kJ/mol). The absolute value of the standard free Gibbs energy for the Eggshell-PMAcO column was much smaller than that of the ODS column (Eggshell-PMAcO: -0.284 kJ/mol, ODS: -13.0 kJ/mol), indicating that the Eggshell-PMAcO column had a weaker retention strength for naphthalene than the ODS column mainly due to the large difference in the standard molar entropy (Eggshell-PMAcO: -64.9 J/mol K, ODS column: -29.2 J/mol K). The retention capacities for imipramine under neutral (water/methanol) and alkaline (0.1% triethylamine water/methanol) conditions were 0.2 mg and 5 mg, respectively, based on injection mass-dependent HETP, retention factor and symmetry factor. Finally, the prepared column was applied to the purification of a building block for nucleic acid drugs. This study demonstrated that reversed-phase columns, which can be fabricated from eggshells and an amphiphilic copolymer in an inexpensive and eco-friendly way, have the ability to purify basic compounds and acid-sensitive compounds.
Collapse
Affiliation(s)
- Tomoka Yoshii
- Department of Applied Chemistry, Faculty of Science and Technology, Graduate School of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama, Kanagawa 223-8522, Japan
| | - Akihiro Sakama
- Department of Applied Chemistry, Faculty of Science and Technology, Graduate School of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama, Kanagawa 223-8522, Japan
| | - Kazuyoshi Kanamori
- Department of Chemistry, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan
| | - Kazuki Nakanishi
- Institute for Integrated Cell-Material Sciences, Kyoto University, Kyoto 606-8502, Japan; Institute of Materials and Systems for Sustainability, Nagoya University, Nagoya, Aichi 464-0814, Japan
| | - Hiroaki Imai
- Department of Applied Chemistry, Faculty of Science and Technology, Graduate School of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama, Kanagawa 223-8522, Japan
| | - Daniel Citterio
- Department of Applied Chemistry, Faculty of Science and Technology, Graduate School of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama, Kanagawa 223-8522, Japan
| | - Yuki Hiruta
- Department of Applied Chemistry, Faculty of Science and Technology, Graduate School of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama, Kanagawa 223-8522, Japan.
| |
Collapse
|
9
|
Quantitative evaluation of reversed-phase packing material based on calcium carbonate microspheres modified with an alternating copolymer. J Chromatogr A 2022; 1677:463294. [PMID: 35809518 DOI: 10.1016/j.chroma.2022.463294] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Revised: 06/27/2022] [Accepted: 06/28/2022] [Indexed: 11/24/2022]
Abstract
Considering the vulnerability of silica gel to alkaline mobile phases, a highly alkaline stable stationary phase for HPLC is required to separate basic compounds with high separation efficiency. To address this issue, we have developed a high alkaline stable packing material (CaCO3-PMAcO) based on mesoporous calcium carbonate microspheres modified with poly(maleic acid-alt-1-octadecene). In this study, we report further investigation of the separation performance of CaCO3-PMAcO column by systematically evaluating the effects of particle size and chromatographic conditions. Based on the theory of the van Deemter equation, the separation efficiency was related to the size of CaCO3-PMAcO particles (2.9 - 5.7 µm). The evaluation of thermodynamics of retention by changing the column temperature from 20 °C to 45 °C implied that the retention mode was dominated by hydrophobic interaction associated with the exothermic enthalpy changes (-11.1 to -12.5 kJ/mol). The results of column selectivity tests revealed that the CaCO3-PMAcO column had hydrophobic selectivity comparable to C18 silica gel columns (αP/B; CaCO3-PMAcO column: 1.53, C18 column: 1.69), and higher shape/steric selectivity (αTri/Ter; CaCO3-PMAcO column: 1.56, C18 column: 0.955). In practice, the CaCO3-PMAcO column could be applied to the separation of not only alkylbenzenes and polycyclic aromatic hydrocarbons, but also to basic tricyclic antidepressants by using an alkaline mobile phase (pH 12).
Collapse
|
10
|
Shi J, Zhang L, Huo Z, Chen L. High stability amino-derived reversed-phase/anion-exchange mixed-mode phase based on polysilsesquioxane microspheres for simultaneous separation of compound drugs. J Pharm Biomed Anal 2021; 203:114187. [PMID: 34111733 DOI: 10.1016/j.jpba.2021.114187] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 05/29/2021] [Accepted: 05/31/2021] [Indexed: 11/16/2022]
Abstract
A series of amino-derived mixed-mode chromatographic stationary phases were synthesized based on porous mercaptopropyl-functionalized polysilsesquioxane mesoporous microspheres synthesized by a co-condensation of methyltrimethoxysilane (MTMS) and mercaptopropyltrimethoxysilane (MPTMS). Through controlling the ratio of MTMS and MPTMS, the modified stationary phases with different amino densities were prepared by a "thiol-ene" click chemistry reaction. The morphology, pore structure, and functional groups of the microspheres were characterized by scanning electron microscope (SEM), nitrogen adsorption-desorption test, Fourier transform infrared spectroscopy (FT-IR), elemental analysis, and zeta potential, respectively. The chromatographic behavior of the stationary phases was evaluated by using alkylbenzene homologs and inorganic anions as probes. The mixed-mode retention behavior and separation mechanisms for neutral, alkaline, and acidic drugs on the prepared column had been systematically studied by changing the value of pH, ionic, and solvent strength of the mobile phase. Compared with the silica-based amino-bonded column (S-NH2), the synthesized organosilica phase exhibited higher hydrothermal stability and longer service life under high alkaline conditions. The newly synthesized phase was successfully applied to the simultaneous separation of the multiple substances in compound drugs.
Collapse
Affiliation(s)
- Jinjin Shi
- School of Pharmaceutical Science & Technology, Tianjin University, 92 Weijin Road, Tianjin, 300072, China
| | - Lixuan Zhang
- School of Pharmaceutical Science & Technology, Tianjin University, 92 Weijin Road, Tianjin, 300072, China
| | - Zhixia Huo
- School of Pharmaceutical Science & Technology, Tianjin University, 92 Weijin Road, Tianjin, 300072, China
| | - Lei Chen
- School of Pharmaceutical Science & Technology, Tianjin University, 92 Weijin Road, Tianjin, 300072, China.
| |
Collapse
|
11
|
Gritti F. Perspective on the Future Approaches to Predict Retention in Liquid Chromatography. Anal Chem 2021; 93:5653-5664. [PMID: 33797872 DOI: 10.1021/acs.analchem.0c05078] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The demand for rapid column screening, computer-assisted method development and method transfer, and unambiguous compound identification by LC/MS analyses has pushed analysts to adopt experimental protocols and software for the accurate prediction of the retention time in liquid chromatography (LC). This Perspective discusses the classical approaches used to predict retention times in LC over the last three decades and proposes future requirements to increase their accuracy. First, inverse methods for retention prediction are essentially applied during screening and gradient method optimization: a minimum number of experiments or design of experiments (DoE) is run to train and calibrate a model (either purely statistical or based on the principles and fundamentals of liquid chromatography) by a mere fitting process. They do not require the accurate knowledge of the true column hold-up volume V0, system dwell volume Vdwell (in gradient elution), and the retention behavior (k versus the content of strong solvent φ, temperature T, pH, and ionic strength I) of the analytes. Their relative accuracy is often excellent below a few percent. Statistical methods are expected to be the most attractive to handle very complex retention behavior such as in mixed-mode chromatography (MMC). Fundamentally correct retention models accounting for the simultaneous impact of φ, I, pH, and T in MMC are needed for method development based on chromatography principles. Second, direct methods for retention prediction are ideally suited for accurate method transfer from one column/system configuration to another: these quality by design (QbD) methods are based on the fundamentals and principles of solid-liquid adsorption and gradient chromatography. No model calibration is necessary; however, they require universal conventions for the accurate determination of true retention factors (for 1 < k < 30) as a function of the experimental variables (φ, T, pH, and I) and of the true column/system parameters (V0, Vdwell, dispersion volume, σ, and relaxation volume, τ, of the programmed gradient profile at the column inlet and gradient distortion at the column outlet). Finally, when the molecular structure of the analytes is either known or assumed, retention prediction has essentially been made on the basis of statistical approaches such as the linear solvation energy relationships (LSERs) and the quantitative structure retention relationships (QSRRs): their ability to accurately predict the retention remains limited within 10-30%. They have been combined with molecular similarity approaches (where the retention model is calibrated with compounds having structures similar to that of the targeted analytes) and artificial intelligence algorithms to further improve their accuracy below 10%. In this Perspective, it is proposed to adopt a more rigorous and fundamental approach by considering the very details of the solid-liquid adsorption process: Monte Carlo (MC) or molecular dynamics (MD) simulations are promising tools to explain and interpret retention data that are too complex to be described by either empirical or statistical retention models.
Collapse
Affiliation(s)
- Fabrice Gritti
- Waters Corporation, 34 Maple Street, Milford, Massachusetts 01757, United States
| |
Collapse
|
12
|
Kadlecová Z, Kalíková K, Folprechtová D, Tesařová E, Gilar M. Method for evaluation of ionic interactions in liquid chromatography. J Chromatogr A 2020; 1625:461301. [DOI: 10.1016/j.chroma.2020.461301] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 05/29/2020] [Accepted: 05/31/2020] [Indexed: 01/17/2023]
|
13
|
Hellhake S, Meckelmann SW, Empl MT, Rentmeister K, Wißdorf W, Steinberg P, Schmitz OJ, Benter T, Schebb NH. Non-targeted and targeted analysis of oxylipins in combination with charge-switch derivatization by ion mobility high-resolution mass spectrometry. Anal Bioanal Chem 2020; 412:5743-5757. [PMID: 32699965 PMCID: PMC7413910 DOI: 10.1007/s00216-020-02795-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 06/15/2020] [Accepted: 06/29/2020] [Indexed: 12/11/2022]
Abstract
Eicosanoids and other oxylipins play an important role in mediating inflammation as well as other biological processes. For the investigation of their biological role(s), comprehensive analytical methods are necessary, which are able to provide reliable identification and quantification of these compounds in biological matrices. Using charge-switch derivatization with AMPP (N-(4-aminomethylphenyl)pyridinium chloride) in combination with liquid chromatography ion mobility quadrupole time-of-flight mass spectrometry (LC-IM-QTOF-MS), we developed a non-target approach to analyze oxylipins in plasma, serum, and cells. The developed workflow makes use of an ion mobility resolved fragmentation to pinpoint derivatized molecules based on the cleavage of AMPP, which yields two specific fragment ions. This allows a reliable identification of known and unknown eicosanoids and other oxylipins. We characterized the workflow using 52 different oxylipins and investigated their fragmentation patterns and ion mobilities. Limits of detection ranged between 0.2 and 10.0 nM (1.0-50 pg on column), which is comparable with other state-of-the-art methods using LC triple quadrupole (QqQ) MS. Moreover, we applied this strategy to analyze oxylipins in different biologically relevant matrices, as cultured cells, human plasma, and serum. Graphical abstract.
Collapse
Affiliation(s)
- Stefan Hellhake
- School of Mathematics and Natural Sciences, University of Wuppertal, Gauss-Str. 20, 42119, Wuppertal, Germany
| | - Sven W Meckelmann
- Applied Analytical Chemistry & Teaching and Research Center for Separation, University of Duisburg-Essen, Universitätsstr. 5-7, 45141, Essen, Germany
| | - Michael T Empl
- Institute for Food Toxicology, University of Veterinary Medicine Hannover, Bünteweg 2, 30559, Hannover, Germany
| | - Kristina Rentmeister
- Applied Analytical Chemistry & Teaching and Research Center for Separation, University of Duisburg-Essen, Universitätsstr. 5-7, 45141, Essen, Germany
| | - Walter Wißdorf
- School of Mathematics and Natural Sciences, University of Wuppertal, Gauss-Str. 20, 42119, Wuppertal, Germany
| | - Pablo Steinberg
- Institute for Food Toxicology, University of Veterinary Medicine Hannover, Bünteweg 2, 30559, Hannover, Germany
| | - Oliver J Schmitz
- Applied Analytical Chemistry & Teaching and Research Center for Separation, University of Duisburg-Essen, Universitätsstr. 5-7, 45141, Essen, Germany
| | - Thorsten Benter
- School of Mathematics and Natural Sciences, University of Wuppertal, Gauss-Str. 20, 42119, Wuppertal, Germany
| | - Nils Helge Schebb
- School of Mathematics and Natural Sciences, University of Wuppertal, Gauss-Str. 20, 42119, Wuppertal, Germany.
| |
Collapse
|
14
|
Hydrophilic Liquid Chromatography versus Reversed-Phase Liquid Chromatography in the Absence and the Presence of 1-Hexyl-3-methylimidazolium Chloride for the Analysis of Basic Compounds. SEPARATIONS 2020. [DOI: 10.3390/separations7020030] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
In reversed-phase liquid chromatography (RPLC), positively charged basic compounds yield broad and asymmetric peaks, as a result of ionic interactions with free silanols that remain on conventional silica-based columns. Diverse solutions have been proposed to mask the silanophilic activity, which is translated to an improved peak shape. In this work, the chromatographic performance of hydrophilic interaction liquid chromatography (HILIC) was evaluated as an alternative to the addition of an ionic liquid (IL) to the aqueous-organic mobile phase used with RPLC columns, for the analysis of eight β-adrenoceptor antagonists. ILs change the behavior of RPLC stationary phases owing to adsorption on their surface. Meanwhile, in HILIC, a layer of adsorbed water is formed on the stationary phase surface. The association of cationic basic compounds with the adsorbed additive ions, hydrophilic partitioning on the HILIC columns, and other interactions, give rise to complex retention mechanisms. The chromatographic behavior was examined in terms of retention, elution strength, selectivity, peak shape and resolution, using acetonitrile-water mobile phases buffered at pH 3. Both chromatographic modes, RPLC with added IL and HILIC, proved to be a viable solution to the problem of poor peak shape for basic compounds.
Collapse
|
15
|
Manetto S, Mazzoccanti G, Ciogli A, Villani C, Gasparrini F. Ultra-high performance separation of basic compounds on reversed-phase columns packed with fully/superficially porous silica and hybrid particles by using ultraviolet transparent hydrophobic cationic additives. J Sep Sci 2020; 43:1653-1662. [PMID: 32043722 DOI: 10.1002/jssc.201901333] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2019] [Revised: 02/06/2020] [Indexed: 12/22/2022]
Abstract
The use of the tetrabutylammonium additive was investigated in the ultra-high performance reversed-phase liquid chromatographic elution of basic molecules of pharmaceutical interest. When added to the mobile phase at low pH, the hydrophobic tetrabutylammonium cation interacts with the octadecyl chains and with the residual silanols, thus imparting a positive charge to the stationary phase, modulating retention and improving peak shape of protonated basic solutes. Two sources of additive were tested: a mixture of tetrabutylammonium hydroxide/trifluoroacetic acid and tetrabutylammonium hydrogen sulfate. Retention and peak shape of 11 basic pharmaceutical compounds were evaluated on commercially available ultra-fast columns packed with octadecyl stationary phases (Ascentis Express C18 2.0 µm, Acquity BEH C18 1.7 µm, Titan C18 1.9 µm). All columns benefit from the use of additive, especially tetrabutylammonium hydrogen sulfate, providing very symmetric peaks with reasonable retention times. Focusing on the probe compounds amitriptyline and sertraline, efficiency and asymmetry values were investigated at increasing retention factor. The trend is very different to that obtained in reversed-phase conditions and the effect lies in the complex molecular interaction mechanisms based on hydrophobic and ion exchange interactions as well as electrostatic repulsion.
Collapse
Affiliation(s)
- Simone Manetto
- Dipartimento di Chimica e Tecnologie del Farmaco, "Sapienza" Università di Roma, Rome, Italy
| | - Giulia Mazzoccanti
- Dipartimento di Chimica e Tecnologie del Farmaco, "Sapienza" Università di Roma, Rome, Italy
| | - Alessia Ciogli
- Dipartimento di Chimica e Tecnologie del Farmaco, "Sapienza" Università di Roma, Rome, Italy
| | - Claudio Villani
- Dipartimento di Chimica e Tecnologie del Farmaco, "Sapienza" Università di Roma, Rome, Italy
| | - Francesco Gasparrini
- Dipartimento di Chimica e Tecnologie del Farmaco, "Sapienza" Università di Roma, Rome, Italy
| |
Collapse
|
16
|
Utility of linear and nonlinear models for retention prediction in liquid chromatography. J Chromatogr A 2020; 1613:460690. [DOI: 10.1016/j.chroma.2019.460690] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 11/05/2019] [Accepted: 11/06/2019] [Indexed: 01/18/2023]
|
17
|
Synthesis of Octyl-Quaternary Ammonium Mixed-Mode Stationary Phase by Vapor Deposition Approach and Its Application in Compound Preparation Separation. Chromatographia 2019. [DOI: 10.1007/s10337-019-03774-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
18
|
Peris-García E, García-Alvarez-Coque M, Carda-Broch S, Ruiz-Angel M. Effect of buffer nature and concentration on the chromatographic performance of basic compounds in the absence and presence of 1-hexyl-3-methylimidazolium chloride. J Chromatogr A 2019; 1602:397-408. [DOI: 10.1016/j.chroma.2019.06.061] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Revised: 06/26/2019] [Accepted: 06/28/2019] [Indexed: 10/26/2022]
|
19
|
Estimation of Solute-Stationary Phase and Solute-Mobile Phase Interactions in the Presence of Ionic Liquids. SEPARATIONS 2019. [DOI: 10.3390/separations6030040] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The presence of free silanols on alkyl-bonded reversed-phase stationary phases is responsible for broad and asymmetrical peaks when basic drugs are chromatographed with conventional octadecylsilane (C18) columns due to ionic interactions. In the last few years, ionic liquids (ILs) have attracted attention to reduce this undesirable silanol activity. ILs should be considered as dual modifiers (with a cationic and anionic character), which means that both cations and anions are able to adsorb on the stationary phase, creating a positively or negatively charged layer, depending on the relative adsorption. The accessibility of basic compounds to the silanols is prevented by both the IL cation and anion, improving the peak profiles. A comparative study of the performance of six imidazolium-based ILs, differing in their cation/anions, as modifiers of the chromatographic behavior of a group of ten β-adrenoceptor antagonists, is addressed. Mobile phases containing cationic amines (triethylamine and dimethyloctylamine) were used as a reference for the interpretation of the results. Using a mathematical model based on two chemical equilibria, the association constants between the solutes and modified stationary phase as well as those between solutes and the additive in the mobile phase were estimated. These values, together with the changes in retention and peak shape, were used to obtain conclusions about the retention mechanism, changes in the nature of the chromatographic system, and silanol suppression effect.
Collapse
|
20
|
Reversed-phase liquid chromatography system constant database over an extended mobile phase composition range for 25 siloxane-bonded silica-based columns. J Chromatogr A 2019; 1600:112-126. [DOI: 10.1016/j.chroma.2019.04.027] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Revised: 04/06/2019] [Accepted: 04/10/2019] [Indexed: 11/23/2022]
|
21
|
Artim CM, Brown JS, Alabi CA. Biophysical Characterization of Cationic Antibacterial Oligothioetheramides. Anal Chem 2019; 91:3118-3124. [PMID: 30675774 DOI: 10.1021/acs.analchem.8b05721] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Biophysical analysis into the mechanism of action of membrane-disrupting antibiotics such as antimicrobial peptides (AMPs) and AMP mimetics is necessary to improve our understanding of this promising but relatively untapped class of antibiotics. We evaluate the impact of cationic nature, specifically the presence of guanidine versus amine functional groups using sequence-defined oligothioetheramides (oligoTEAs). Relative to amines, guanidine groups demonstrated improved antibacterial activity against methicillin-resistant Staphylococcus aureus (MRSA). To understand the mechanism of action, we evaluated membrane interactions by performing a propidium iodide assay and fluorescence microscopy of supported MRSA mimetic bilayers treated with oligoTEAs. Both studies demonstrated membrane disruption, while fluorescence microscopy showed the formation of lipid aggregates. We further analyzed the mechanism using surface plasmon resonance with a recently developed two-state binding model with loss. Our biophysical analysis points to the importance of lipid aggregation for antibacterial activity and suggests that guanidine groups improve antibacterial activity by increasing the extent of lipid aggregation. Altogether, these results verify and rationalize the importance of guanidines for enhanced antibacterial activity of oligoTEAs, and present biophysical phenomena for the design and analysis of additional membrane-active antibiotics.
Collapse
Affiliation(s)
- Christine M Artim
- Robert Frederick Smith School of Chemical and Biomolecular Engineering , Ithaca , New York 14853 , United States
| | - Joseph S Brown
- Robert Frederick Smith School of Chemical and Biomolecular Engineering , Ithaca , New York 14853 , United States
| | - Christopher A Alabi
- Robert Frederick Smith School of Chemical and Biomolecular Engineering , Ithaca , New York 14853 , United States
| |
Collapse
|
22
|
Žuvela P, Skoczylas M, Jay Liu J, Ba Czek T, Kaliszan R, Wong MW, Buszewski B, Héberger K. Column Characterization and Selection Systems in Reversed-Phase High-Performance Liquid Chromatography. Chem Rev 2019; 119:3674-3729. [PMID: 30604951 DOI: 10.1021/acs.chemrev.8b00246] [Citation(s) in RCA: 148] [Impact Index Per Article: 29.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Reversed-phase high-performance liquid chromatography (RP-HPLC) is the most popular chromatographic mode, accounting for more than 90% of all separations. HPLC itself owes its immense popularity to it being relatively simple and inexpensive, with the equipment being reliable and easy to operate. Due to extensive automation, it can be run virtually unattended with multiple samples at various separation conditions, even by relatively low-skilled personnel. Currently, there are >600 RP-HPLC columns available to end users for purchase, some of which exhibit very large differences in selectivity and production quality. Often, two similar RP-HPLC columns are not equally suitable for the requisite separation, and to date, there is no universal RP-HPLC column covering a variety of analytes. This forces analytical laboratories to keep a multitude of diverse columns. Therefore, column selection is a crucial segment of RP-HPLC method development, especially since sample complexity is constantly increasing. Rationally choosing an appropriate column is complicated. In addition to the differences in the primary intermolecular interactions with analytes of the dispersive (London) type, individual columns can also exhibit a unique character owing to specific polar, hydrogen bond, and electron pair donor-acceptor interactions. They can also vary depending on the type of packing, amount and type of residual silanols, "end-capping", bonding density of ligands, and pore size, among others. Consequently, the chromatographic performance of RP-HPLC systems is often considerably altered depending on the selected column. Although a wide spectrum of knowledge is available on this important subject, there is still a lack of a comprehensive review for an objective comparison and/or selection of chromatographic columns. We aim for this review to be a comprehensive, authoritative, critical, and easily readable monograph of the most relevant publications regarding column selection and characterization in RP-HPLC covering the past four decades. Future perspectives, which involve the integration of state-of-the-art molecular simulations (molecular dynamics or Monte Carlo) with minimal experiments, aimed at nearly "experiment-free" column selection methodology, are proposed.
Collapse
Affiliation(s)
- Petar Žuvela
- Department of Chemistry , National University of Singapore , Singapore 117543 , Singapore
| | - Magdalena Skoczylas
- Department of Environmental Chemistry and Bioanalytics, Center for Modern Interdisciplinary Technologies , Nicolaus Copernicus University , Wileńska 4 , 87-100 Toruń , Poland
| | - J Jay Liu
- Department of Chemical Engineering , Pukyong National University , 365 Sinseon-ro , Nam-gu, 48-513 Busan , Korea
| | | | | | - Ming Wah Wong
- Department of Chemistry , National University of Singapore , Singapore 117543 , Singapore
| | - Bogusław Buszewski
- Department of Environmental Chemistry and Bioanalytics, Center for Modern Interdisciplinary Technologies , Nicolaus Copernicus University , Wileńska 4 , 87-100 Toruń , Poland
| | | |
Collapse
|
23
|
Artim CM, Phan NN, Alabi CA. Effect of Composition on Antibacterial Activity of Sequence-Defined Cationic Oligothioetheramides. ACS Infect Dis 2018; 4:1257-1263. [PMID: 29750860 DOI: 10.1021/acsinfecdis.8b00079] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
In response to the urgent need for new antibiotic development strategies, antimicrobial peptides and their synthetic mimetics are being investigated as promising alternatives to traditional antibiotics. To facilitate their development into clinically viable candidates, we need to understand what molecular features and physicochemical properties are needed to induce cell death. Within the context of sequence-defined oligothioetheramides (oligoTEAs), we explore the impact of the cationic pendant group and backbone hydrophobicity on the potency and selectivity of antibacterial oligoTEAs. Through antibacterial, cytotoxicity, membrane destabilization, and membrane depolarization assays, we find a strong dependency on the nature of the cationic group and improved selectivity toward bacteria by tuning backbone hydrophobicity. In particular, compounds with the guanidinium headgroup are more potent than those with amines. Finally, we identify a promising oligoTEA, PDT-4G, with enhanced activity in vitro (minimum inhibitory concentration (MIC) ∼ 0.78 μM) and moderate activity in a mouse thigh infection model of methicillin-resistant Staphylococcus aureus. The studies outlined in this work provide insights into the effect of macromolecular physicochemical properties on antibacterial potency. This knowledge base will be vital for researchers engaged in the ongoing development of clinically viable antibacterial agents.
Collapse
Affiliation(s)
- Christine M. Artim
- Robert F. Smith School of Chemical and Biomolecular Engineering, Cornell University, 120 Olin Hall, Ithaca, New York 14853, United States
| | - Ngoc N. Phan
- Robert F. Smith School of Chemical and Biomolecular Engineering, Cornell University, 120 Olin Hall, Ithaca, New York 14853, United States
| | - Christopher A. Alabi
- Robert F. Smith School of Chemical and Biomolecular Engineering, Cornell University, 120 Olin Hall, Ithaca, New York 14853, United States
| |
Collapse
|
24
|
Suitability of 1-hexyl-3-methylimidazolium ionic liquids for the analysis of pharmaceutical formulations containing tricyclic antidepressants. J Chromatogr A 2018; 1559:118-127. [DOI: 10.1016/j.chroma.2017.11.063] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Revised: 11/21/2017] [Accepted: 11/26/2017] [Indexed: 11/17/2022]
|
25
|
Extent of the influence of phosphate buffer and ionic liquids on the reduction of the silanol effect in a C18 stationary phase. J Chromatogr A 2018; 1559:112-117. [DOI: 10.1016/j.chroma.2017.05.061] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Revised: 05/24/2017] [Accepted: 05/29/2017] [Indexed: 11/19/2022]
|
26
|
Huo Z, Wan Q, Chen L. Synthesis and evaluation of porous polymethylsilsesquioxane microspheres as low silanol activity chromatographic stationary phase for basic compound separation. J Chromatogr A 2018; 1553:90-100. [DOI: 10.1016/j.chroma.2018.04.024] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Revised: 04/05/2018] [Accepted: 04/10/2018] [Indexed: 11/29/2022]
|
27
|
Peris-García E, Ruiz-Angel M, Carda-Broch S, García-Alvarez-Coque M. Analysis of basic drugs by liquid chromatography with environmentally friendly mobile phases in pharmaceutical formulations. Microchem J 2017. [DOI: 10.1016/j.microc.2017.06.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
28
|
Applications of the solvation parameter model in reversed-phase liquid chromatography. J Chromatogr A 2017; 1486:2-19. [DOI: 10.1016/j.chroma.2016.05.099] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Revised: 05/26/2016] [Accepted: 05/30/2016] [Indexed: 11/20/2022]
|
29
|
Ultra-high performance liquid chromatographic determination of levofloxacin in human plasma and prostate tissue with use of experimental design optimization procedures. J Chromatogr B Analyt Technol Biomed Life Sci 2016; 1029-1030:48-59. [DOI: 10.1016/j.jchromb.2016.06.051] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2016] [Revised: 06/25/2016] [Accepted: 06/28/2016] [Indexed: 11/21/2022]
|
30
|
Calabuig-Hernández S, García-Alvarez-Coque MC, Ruiz-Angel MJ. Performance of amines as silanol suppressors in reversed-phase liquid chromatography. J Chromatogr A 2016; 1465:98-106. [PMID: 27586325 DOI: 10.1016/j.chroma.2016.08.048] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Revised: 08/18/2016] [Accepted: 08/20/2016] [Indexed: 10/21/2022]
Abstract
In reversed-phase liquid chromatography, cationic basic compounds yield broad and asymmetrical peaks, as a result of their ionic interaction with the anionic free silanol groups present in the silica-based stationary phases (commonly derivatised with C18 groups). A simple way to improve the peak shape is the addition to the hydro-organic mobile phase of a reagent (usually called additive) with cationic character. This associates with the stationary phase to prevent the access of analytes to the free silanol groups. Cationic additives may interact electrostatically with the anionic silanols. The hydrophobic region of the additive may also associate with the alkyl chains bound to the stationary phase, with the positive charge oriented towards the mobile phase. The access to the silanol groups is thus blocked, but in turn, the stationary phase is positively charged and will repel the protonated basic compounds, which unless their polarity is sufficiently low, will elute at very short times. In this work, a comparative study of the performance of a group of amines (butylamine, pentylamine, hexylamine, cyclopentylamine, cycloheptylamine, N,N-dimethyloctylamine and tributylmethylammonium chloride), as modifiers of the chromatographic behaviour of basic compounds, is carried out. The behaviour is compared with that obtained with the ionic liquids 1-butyl-3-methylimidazolium chloride and 1-hexyl-3-methylimidazolium chloride, used as additives. The study revealed that the performance of the cationic additives to block the silanol activity is mainly explained by the additive size and its ability to be adsorbed onto the stationary phase.
Collapse
Affiliation(s)
- S Calabuig-Hernández
- Departament de Química Analítica, Universitat de València, c/Dr. Moliner 50, Burjassot, Spain
| | | | - M J Ruiz-Angel
- Departament de Química Analítica, Universitat de València, c/Dr. Moliner 50, Burjassot, Spain.
| |
Collapse
|
31
|
Wiczling P, Kubik Ł, Kaliszan R. Maximum A Posteriori Bayesian Estimation of Chromatographic Parameters by Limited Number of Experiments. Anal Chem 2015; 87:7241-9. [DOI: 10.1021/acs.analchem.5b01195] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Paweł Wiczling
- Department of Biopharmaceutics
and Pharmacodynamics, Medical University of Gdańsk, Gen.
J. Hallera 107, 80-416 Gdańsk, Poland
| | - Łukasz Kubik
- Department of Biopharmaceutics
and Pharmacodynamics, Medical University of Gdańsk, Gen.
J. Hallera 107, 80-416 Gdańsk, Poland
| | - Roman Kaliszan
- Department of Biopharmaceutics
and Pharmacodynamics, Medical University of Gdańsk, Gen.
J. Hallera 107, 80-416 Gdańsk, Poland
| |
Collapse
|
32
|
Contributions to reversed-phase column selectivity. J Chromatogr A 2015; 1395:57-64. [DOI: 10.1016/j.chroma.2015.03.044] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2014] [Revised: 03/17/2015] [Accepted: 03/18/2015] [Indexed: 11/23/2022]
|
33
|
On the use of ionic liquids as mobile phase additives in high-performance liquid chromatography. A review. Anal Chim Acta 2015; 883:1-21. [PMID: 26088771 DOI: 10.1016/j.aca.2015.03.042] [Citation(s) in RCA: 77] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2015] [Revised: 03/24/2015] [Accepted: 03/25/2015] [Indexed: 01/18/2023]
Abstract
The popularity of ionic liquids (ILs) has grown during the last decades in several analytical separation techniques. Consequently, the number of reports devoted to the applications of ILs is still increasing. This review is focused on the use of ILs (mainly imidazolium-based associated to chloride and tetrafluoroborate) as mobile phase additives in high-performance liquid chromatography (HPLC). In this approach, ILs just function as salts, but keep several kinds of intermolecular interactions, which are useful for chromatographic separations. Both cation and anion can be adsorbed on the stationary phase, creating a bilayer. This gives rise to hydrophobic, electrostatic and other specific interactions with the stationary phase and solutes, which modify the retention behaviour and peak shape. This review updates the advances in this field, with emphasis on topics not always deeply considered in the literature, such as the mechanisms of retention, the estimation of the suppressing potency of silanols, modelling and optimisation of the chromatographic performance, and the comparison with other additives traditionally used to avoid the silanol problem.
Collapse
|
34
|
Ubeda-Torres MT, Ortiz-Bolsico C, García-Alvarez-Coque MC, Ruiz-Angel MJ. Gaining insight in the behaviour of imidazolium-based ionic liquids as additives in reversed-phase liquid chromatography for the analysis of basic compounds. J Chromatogr A 2014; 1380:96-103. [PMID: 25591403 DOI: 10.1016/j.chroma.2014.12.064] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2014] [Revised: 11/27/2014] [Accepted: 12/20/2014] [Indexed: 10/24/2022]
Abstract
In reversed-phase liquid chromatography in the absence of additives, cationic basic compounds give rise to broad and asymmetrical peaks as a result of ionic interactions with residual free silanols on silica-based stationary phases. Ionic liquids (ILs), added to the mobile phase, have been suggested as alternatives to amines to block the activity of silanols. However, the dual character of ILs should be considered: both cation and anion may be adsorbed on the stationary phase, thereby creating a double asymmetrical layer positively or negatively charged, depending on the relative adsorption of both ions. In this work, a study of the performance of six imidazolium-based ILs (the chlorides and tetrafluoroborates of 1-ethyl-, 1-butyl- and 1-hexyl-3-methylimidazolium) as modifiers of the chromatographic behaviour of a group of 10 β-blockers is performed, and compared with triethylamine and dimethyloctylamine. In order to gain more insight in the behaviour of ILs in RPLC, the changes in the nature of the chromatographic system, at increasing concentration of the additives, were followed based on retention and peak shape modelling. The multiple interactions that amines and ILs experience inside the chromatographic system suggest that the suppressing potency should be measured based on the shape of chromatographic peaks and not on the changes in retention. The ILs 1-hexyl-3-methyl-imidazolium chloride and tetrafluoroborate offered the most interesting features for the separation of the basic drugs.
Collapse
Affiliation(s)
- M T Ubeda-Torres
- Departament de Química Analítica, Universitat de València, c/Dr. Moliner 50, Burjassot, Spain
| | - C Ortiz-Bolsico
- Departament de Química Analítica, Universitat de València, c/Dr. Moliner 50, Burjassot, Spain
| | | | - M J Ruiz-Angel
- Departament de Química Analítica, Universitat de València, c/Dr. Moliner 50, Burjassot, Spain.
| |
Collapse
|
35
|
Ruiz-Angel M, Pous-Torres S, Carda-Broch S, García-Alvarez-Coque M. Performance of different C18 columns in reversed-phase liquid chromatography with hydro-organic and micellar-organic mobile phases. J Chromatogr A 2014; 1344:76-82. [DOI: 10.1016/j.chroma.2014.04.011] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2014] [Revised: 04/02/2014] [Accepted: 04/04/2014] [Indexed: 11/30/2022]
|
36
|
Yang Y, Stella C, Wang W, Schöneich C, Gennaro L. Characterization of Oxidative Carbonylation on Recombinant Monoclonal Antibodies. Anal Chem 2014; 86:4799-806. [DOI: 10.1021/ac4039866] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
| | - Cinzia Stella
- Eurofins Lancaster Laboratories, Inc., 2425 New Holland Pike, P.O. Box 12425, Lancaster, Pennsylvania 17605, United States
| | | | - Christian Schöneich
- Department
of Pharmaceutical Chemistry, University of Kansas, Lawrence, Kansas 66047, United States
| | | |
Collapse
|
37
|
Comparative assessment of achiral stationary phases for high throughput analysis in supercritical fluid chromatography. J Chromatogr A 2014; 1332:73-81. [DOI: 10.1016/j.chroma.2014.01.060] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2013] [Revised: 01/18/2014] [Accepted: 01/20/2014] [Indexed: 11/21/2022]
|
38
|
Selective separation and purification of highly polar basic compounds using a silica-based strong cation exchange stationary phase. Anal Chim Acta 2013; 804:304-12. [DOI: 10.1016/j.aca.2013.10.034] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2013] [Revised: 10/11/2013] [Accepted: 10/16/2013] [Indexed: 11/18/2022]
|
39
|
Wenzel B, Günther R, Brust P, Steinbach J. A fluoro versus a nitro derivative-a high-performance liquid chromatography study of two basic analytes with different reversed phases and silica phases as basis for the separation of a positron emission tomography radiotracer. J Chromatogr A 2013; 1311:98-105. [PMID: 24021831 DOI: 10.1016/j.chroma.2013.08.068] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2013] [Revised: 08/15/2013] [Accepted: 08/17/2013] [Indexed: 02/05/2023]
Abstract
To develop a basis for the separation of a (18)F-labeled PET radiotracer from its nitro precursor, we performed an analytical HPLC study using the unlabeled reference compound and the corresponding nitro precursor. Aim of the study was to find a separation in which the fluoro derivative elutes in front of the nitro precursor with appropriate separation parameters. Several RP phases as well as a bare silica column were investigated with ACN and MeOH as organic modifiers and aqueous NH4OAc because of the basic character of the analytes. Four types of separation were observed based on different interaction mechanisms. When ACN/20mM NH4OAc aq. was used mainly cationic-exchange and hydrophobic interactions contributed to the retention. A reversal of elution order could be observed starting from 95% ACN and subsequent increasing of the water content. This phenomenon was observed for all RP phases and seems to be independent of the different spacers bound to the silica. By contrast, using MeOH/20mM NH4OAc aq. the elution order depends on the phase material. Two columns with the potential to perform π-π interactions showed different separation behavior compared to the other RP phases.
Collapse
Affiliation(s)
- Barbara Wenzel
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research (former Institute of Radiopharmacy), Research Site Leipzig, Dept. of Neuroradiopharmaceuticals, Germany.
| | | | | | | |
Collapse
|
40
|
Borges EM, Euerby MR. An appraisal of the chemical and thermal stability of silica based reversed-phase liquid chromatographic stationary phases employed within the pharmaceutical environment. J Pharm Biomed Anal 2013; 77:100-15. [DOI: 10.1016/j.jpba.2013.01.013] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2012] [Revised: 01/04/2013] [Accepted: 01/05/2013] [Indexed: 10/27/2022]
|
41
|
Overloading study of basic compounds with a positively charged C18 column in liquid chromatography. J Chromatogr A 2013; 1281:60-6. [PMID: 23411141 DOI: 10.1016/j.chroma.2013.01.074] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2012] [Revised: 12/30/2012] [Accepted: 01/17/2013] [Indexed: 11/23/2022]
Abstract
While tailing and overloading of basic compounds remain problematic on most RP columns, a new kind of positively charged RP column named XCharge C18 was found to be superior good for the separation of alkaloids in our practical use. In this work, the surface charge property of the XCharge C18 column was evaluated by the retention of NO(3)(-) under different pH values and buffer concentrations. A considerable and pH-dependent positive charge was confirmed on the column. Then overloading behaviors of bases were systematically studied using amitriptyline as a basic probe. Good peak shapes (Tf<1.5) and extra high loadability with a C(0.5) of about 30,000 mg/L were observed on the column, with commonly used 0.1% formic acid as mobile phase additive. However, increasing the ionic strength of buffer with phosphates led to tailing peaks at high sample amount and sharp decline in loadability (C(0.5) of 2000-3000 mg/L), although it brought higher column efficiency at low sample amount. Higher pH also induced worse performance and lower loadability. The overall results demonstrated the importance of an appropriate level of ionic repulsion for the XCharge C18 column to achieve the good performance for bases, which could be explained by the multiple-site adsorption theory as ionic repulsion would shield the solute from occupying high-energy sites deeper in C18 layer.
Collapse
|
42
|
das Neves J, Sarmento B, Amiji M, Bahia MF. Development and validation of a HPLC method for the assay of dapivirine in cell-based and tissue permeability experiments. J Chromatogr B Analyt Technol Biomed Life Sci 2012; 911:76-83. [PMID: 23217310 DOI: 10.1016/j.jchromb.2012.10.034] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2012] [Revised: 09/29/2012] [Accepted: 10/01/2012] [Indexed: 11/26/2022]
Abstract
Dapivirine, a non-nucleoside reverse transcriptase inhibitor, is being currently used for the development of potential anti-HIV microbicide formulations and delivery systems. A new high-performance liquid chromatography (HPLC) method with UV detection was developed for the assay of this drug in different biological matrices, namely cell lysates, receptor media from permeability experiments and homogenates of mucosal tissues. The method used a reversed-phase C18 column with a mobile phase composed of trifluoroacetic acid solution (0.1%, v/v) and acetonitrile in a gradient mode. Injection volume was 50μL and the flow rate 1mL/min. The total run time was 12min and UV detection was performed at 290nm for dapivirine and the internal standard (IS) diphenylamine. A Box-Behnken experimental design was used to study different experimental variables of the method, namely the ratio of the mobile phase components and the gradient time, and their influence in responses such as the retention factor, tailing factor, and theoretical plates for dapivirine and the IS, as well as the peak resolution between both compounds. The optimized method was further validated and its usefulness assessed for in vitro and ex vivo experiments using dapivirine or dapivirine-loaded nanoparticles. The method showed to be selective, linear, accurate and precise in the range of 0.02-1.5μg/mL. Other chromatographic parameters, namely carry-over, lower limit of quantification (0.02μg/mL), limit of detection (0.006μg/mL), recovery (equal or higher than 90.7%), and sample stability at different storage conditions, were also determined and found adequate for the intended purposes. The method was successfully used for cell uptake assays and permeability studies across cell monolayers and pig genital mucosal tissues. Overall, the proposed method provides a simple, versatile and reliable way for studying the behavior of dapivirine in different biological matrices and assessing its potential as an anti-HIV microbicide drug.
Collapse
Affiliation(s)
- José das Neves
- Laboratory of Pharmaceutical Technology, LTF/CICF, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313, Porto, Portugal.
| | | | | | | |
Collapse
|
43
|
Fernández-Navarro J, Torres-Lapasió J, Ruiz-Ángel M, García-Álvarez-Coque M. 1-Hexyl-3-methyl imidazolium tetrafluoroborate: An efficient column enhancer for the separation of basic drugs by reversed-phase liquid chromatography. J Chromatogr A 2012; 1258:168-74. [DOI: 10.1016/j.chroma.2012.08.051] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2012] [Revised: 08/13/2012] [Accepted: 08/14/2012] [Indexed: 11/29/2022]
|
44
|
Bocian S, Buszewski B. Residual silanols at reversed-phase silica in HPLC - a contribution for a better understanding. J Sep Sci 2012; 35:1191-200. [DOI: 10.1002/jssc.201200055] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
45
|
Chromatographic retention behaviour, modelling and separation optimisation of the quaternary ammonium salt isometamidium chloride and related compounds on a range of reversed-phase liquid chromatographic stationary phases. Anal Bioanal Chem 2012; 404:239-55. [DOI: 10.1007/s00216-012-6105-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2012] [Revised: 05/04/2012] [Accepted: 05/04/2012] [Indexed: 10/28/2022]
|
46
|
Fernández-Navarro J, Torres-Lapasió J, Ruiz-Ángel M, García-Álvarez-Coque M. Silanol suppressing potency of alkyl-imidazolium ionic liquids on C18 stationary phases. J Chromatogr A 2012; 1232:166-75. [DOI: 10.1016/j.chroma.2011.11.054] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2011] [Revised: 11/22/2011] [Accepted: 11/23/2011] [Indexed: 11/28/2022]
|
47
|
Borges EM, Collins CH. Effects of pH and temperature on the chromatographic performance and stability of immobilized poly(methyloctylsiloxane) stationary phases. J Chromatogr A 2012; 1227:174-80. [DOI: 10.1016/j.chroma.2012.01.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2011] [Revised: 12/23/2011] [Accepted: 01/01/2012] [Indexed: 11/24/2022]
|
48
|
Borges EM, Euerby MR, Collins CH. Characterization of a mixed-mode reversed-phase/cation-exchange stationary phase prepared by thermal immobilization of poly(dimethylsiloxane) onto the surface of silica. Anal Bioanal Chem 2012; 402:2043-55. [DOI: 10.1007/s00216-011-5674-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2011] [Revised: 12/05/2011] [Accepted: 12/16/2011] [Indexed: 11/28/2022]
|
49
|
Contributions to reversed-phase column selectivity. II. Cation exchange. J Chromatogr A 2011; 1218:7110-29. [DOI: 10.1016/j.chroma.2011.07.085] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2011] [Revised: 06/18/2011] [Accepted: 07/26/2011] [Indexed: 11/19/2022]
|
50
|
Borges EM, Collins CH. Selectivity of some basic solutes on a poly(methyltetradecylsiloxane)-silica stationary phase. J Sep Sci 2011; 34:3011-9. [DOI: 10.1002/jssc.201100345] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2011] [Revised: 06/21/2011] [Accepted: 07/27/2011] [Indexed: 11/10/2022]
|