1
|
Nourani N, Taghvimi A, Bavili-Tabrizi A, Javadzadeh Y, Dastmalchi S. Microextraction Techniques for Sample Preparation of Amphetamines in Urine: A Comprehensive Review. Crit Rev Anal Chem 2024; 54:1304-1319. [PMID: 36093632 DOI: 10.1080/10408347.2022.2113028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
Abstract
Psychological disorders and dramatic social problems are serious concerns regarding the abuse of amphetamine and its stimulant derivatives worldwide. Consumers of such drugs experience great euphoria along with serious health problems. Determination and quantification of amphetamine-type stimulants are indispensable skills for clinical and forensic laboratories. Analysis of low drug doses in bio-matrices necessitates applications of simple and also effective preparation steps. The preparation procedures not only eliminate adverse matrix effects, but also provide reasonable clean-up and pre-concentration benefits. The current review presents different methods used for sample preparation of amphetamines from urine as the most frequently used biological matrix. The advantages and limitations of various sample preparation methods were discussed focusing on the miniaturized methods.
Collapse
Affiliation(s)
- Nasim Nourani
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
- Biotechnology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Medicinal Chemistry, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Arezou Taghvimi
- Biotechnology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ahad Bavili-Tabrizi
- Department of Medicinal Chemistry, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
- Pharmaceutical Analysis Research Center and Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Yousef Javadzadeh
- Biotechnology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Pharmaceutics, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Siavoush Dastmalchi
- Biotechnology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Medicinal Chemistry, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
- Faculty of Pharmacy, Near East University, North Cyprus, Turkey
| |
Collapse
|
2
|
Almohana AI, Almojil SF, Alali AF, Almoalimi KT. The elimination and extraction of organosulfur compounds from real water and soil samples using metal organic framework/graphene oxide as a novel and efficient nanocomposite. CHEMOSPHERE 2023; 319:137950. [PMID: 36702420 DOI: 10.1016/j.chemosphere.2023.137950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 01/10/2023] [Accepted: 01/22/2023] [Indexed: 06/18/2023]
Abstract
In the present work, an efficient metal organic framework/graphene oxide (MOF-801/GO) sorbent was fabricated and employed for the detection of organosulfur pesticides (OSPs) in real samples using gas chromatography-flame photometric detection (GC-FPD). The optimal extraction parameters for the suggested solid-phase extraction (SPE) include sorbent amount (60 mg), extraction solvent (acetonitrile) and extraction time (5 min). The linear dynamic ranges and detection limits for organosulfur pesticides (OSPs) samples under above extraction conditions were ranged from 0.5 to 300 μg L-1 and 0.1-1.1 μg L-1, respectively. Moreover, the proposed SPE/GC-FDP method was applied for the analysis of pesticides in different real environmental water and soil samples. The obtained recoveries of the analytes in were between 92.0 and 106.8% and relative standard deviation (RSD) values were lower than 9.2%. The application of the MOF-801/GO as a sorbent in dSPE of OSPs analytes showed to be reliable, fast and sensible methodology for pesticides monitoring in different environmental samples.
Collapse
Affiliation(s)
- Abdulaziz Ibrahim Almohana
- Department of Civil Engineering, College of Engineering, King Saud University, P.O. Box 800, Riyadh, 11421, Saudi Arabia
| | - Sattam Fahad Almojil
- Department of Civil Engineering, College of Engineering, King Saud University, P.O. Box 800, Riyadh, 11421, Saudi Arabia.
| | - Abdulrhman Fahmi Alali
- Department of Civil Engineering, College of Engineering, King Saud University, P.O. Box 800, Riyadh, 11421, Saudi Arabia
| | - Khaled Twfiq Almoalimi
- Department of Civil Engineering, College of Engineering, King Saud University, P.O. Box 800, Riyadh, 11421, Saudi Arabia
| |
Collapse
|
3
|
Zhao H, Wang S, Zhang Y, Lu C, Tang Y. Degradation of mevinphos and monocrotophos by OH radicals in the environment: A computational investigation on mechanism, kinetic, and ecotoxicity. JOURNAL OF HAZARDOUS MATERIALS 2023; 445:130478. [PMID: 36493641 DOI: 10.1016/j.jhazmat.2022.130478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 10/30/2022] [Accepted: 11/23/2022] [Indexed: 06/17/2023]
Abstract
Known organophosphorus pesticides are used widely in agriculture to improve the production of crops. Based on the literature, the degradation of some organophosphorus pesticides was studied theoretically. However, the mechanisms and variation of toxicity during the degradation of mevinphos and monocrotophos are still unclear in the environment, especially in wastewater. In this study, the reaction mechanisms for the degradation of the two representative organophosphorus pesticides (i.e., mevinphos and monocrotophos) in presence of OH radicals in the atmosphere and water are proposed using quantum chemical methods wB97-XD/6-311 + +G(3df,2pd)//wB97-XD/6-311 + +G(d,p). Result shows that the dominant channel is OH-addition to the C atom in CC bond with energy barriers being 15.6 and 14.7 kJ/mol, in the atmosphere and water, respectively, for mevinphos. As for monocrotophos, H-abstraction from NH group via barriers of 8.2 and 10.6 kJ/mol is more feasible in both the atmosphere and water. Moreover, the subsequent reactions of the major products in the atmosphere with NO and O2 were also studied to evaluate the atmospheric chemistry of mevinphos and monocrotophos. Kinetically, the total rate constant is 2.68 × 10-9 and 3.86 × 10-8 cm3 molecule-1·s-1 for mevinphos and monocrotophos in the atmosphere and 4.91 × 1010 and 7.77 × 1011 M-1 s-1 in the water at 298 K, thus the lifetime is estimated to be 36.46-364.60 s (2.53-25.31 s) in the atmosphere, and 1.41 × 10-2 - 1.41 × 10-1 s (8.92 ×10-4 - 8.92 ×10-3 s) in the advanced oxidation processes (AOPs) system. Furthermore, ecotoxic predictions for rats and three aqueous organisms imply their toxicity are reduced during degradation by using ECOSAR and T.E.S.T program based quantitative structure and activity relationship (QSAR) method.
Collapse
Affiliation(s)
- Hui Zhao
- School of Environmental and municipal engineering, Qingdao University of Technology, Fushun Road 11, Qingdao, Shandong 266033, PR China
| | - Shuangjun Wang
- School of Environmental and municipal engineering, Qingdao University of Technology, Fushun Road 11, Qingdao, Shandong 266033, PR China
| | - Yunju Zhang
- College of Chemistry and Chemical Engineering, Mianyang Normal University, Mianyang 621000, PR China
| | - Chenggang Lu
- School of Environmental and municipal engineering, Qingdao University of Technology, Fushun Road 11, Qingdao, Shandong 266033, PR China
| | - Yizhen Tang
- School of Environmental and municipal engineering, Qingdao University of Technology, Fushun Road 11, Qingdao, Shandong 266033, PR China.
| |
Collapse
|
4
|
Kannouma RE, Hammad MA, Kamal AH, Mansour FR. Miniaturization of Liquid-Liquid extraction; the barriers and the enablers. Microchem J 2022. [DOI: 10.1016/j.microc.2022.107863] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
5
|
Mishra S, Mishra S, Patel SS, Singh SP, Kumar P, Khan MA, Awasthi H, Singh S. Carbon nanomaterials for the detection of pesticide residues in food: A review. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 310:119804. [PMID: 35926736 DOI: 10.1016/j.envpol.2022.119804] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 06/02/2022] [Accepted: 07/14/2022] [Indexed: 06/15/2023]
Abstract
In agricultural fields, pesticides are widely used, but their residual presence in the environment poses a threat to humans, animals, insects, and ecosystems. The overuse of pesticides for pest control, enhancement of crop yield, etc. leaves behind a significant residual amount in the environment. Various robust, reliable, and reusable methods using a wide class of composites have been developed for the monitoring and controlling of pesticides. Researchers have discovered that carbon nanomaterials have a wide range of characteristics such as high porosity, conductivity and easy electron transfer that can be successfully used to detect pesticide residues from food. This review emphasizes the role of carbon nanomaterials in the field of pesticide residue analysis in different food matrices. The carbon nanomaterials including carbon nanotubes, carbon dots, carbon nanofibers, graphene/graphene oxides, and activated carbon fibres are discussed in the review. In addition, the review examines future prospects in this research area to help improve detection techniques for pesticides analysis.
Collapse
Affiliation(s)
- Smriti Mishra
- Industrial Waste Utilization, Nano and Biomaterial Division, CSIR- Advanced Materials and Processes Research Institute (CSIR-AMPRI), Hoshangabad Road, Bhopal, Madhya Pradesh-462026, India
| | - Shivangi Mishra
- Pesticide Toxicology Laboratory & Regulatory Toxicology Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan, 31 Mahatma Gandhi Marg, Lucknow-226001, Uttar Pradesh, India
| | - Shiv Singh Patel
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India; Water Resources Management and Rural Technology, CSIR- Advanced Materials and Processes Research Institute (CSIR-AMPRI), Hoshangabad Road, Bhopal, Madhya Pradesh- 462026, India
| | - Sheelendra Pratap Singh
- Pesticide Toxicology Laboratory & Regulatory Toxicology Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan, 31 Mahatma Gandhi Marg, Lucknow-226001, Uttar Pradesh, India; Analytical Chemistry Laboratory, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan, 31 Mahatma Gandhi Marg, Lucknow-226001, Uttar Pradesh, India
| | - Pradip Kumar
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India; Green Engineered Materials and Additive Manufacturing, Council of Scientific and Industrial Research- Advanced Materials and Processes Research Institute, Bhopal - 462026, India
| | - Mohd Akram Khan
- Industrial Waste Utilization, Nano and Biomaterial Division, CSIR- Advanced Materials and Processes Research Institute (CSIR-AMPRI), Hoshangabad Road, Bhopal, Madhya Pradesh-462026, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Himani Awasthi
- Hygia Institute of Pharmaceutical Education and Research, Lucknow-226020, India
| | - Shiv Singh
- Industrial Waste Utilization, Nano and Biomaterial Division, CSIR- Advanced Materials and Processes Research Institute (CSIR-AMPRI), Hoshangabad Road, Bhopal, Madhya Pradesh-462026, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| |
Collapse
|
6
|
Erbas Z, Soylak M. Determination of Rhodamine B by UV–Vis spectrophotometry in cosmetics after microextraction by using heat-induced homogeneous liquid–liquid extraction method. JOURNAL OF THE IRANIAN CHEMICAL SOCIETY 2022. [DOI: 10.1007/s13738-022-02579-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
7
|
Koszelewski D, Kowalczyk P, Śmigielski P, Samsonowicz-Górski J, Kramkowski K, Wypych A, Szymczak M, Ostaszewski R. Relationship between Structure and Antibacterial Activity of α-Aminophosphonate Derivatives Obtained via Lipase-Catalyzed Kabachnik-Fields Reaction. MATERIALS 2022; 15:ma15113846. [PMID: 35683150 PMCID: PMC9182137 DOI: 10.3390/ma15113846] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 04/29/2022] [Accepted: 05/25/2022] [Indexed: 02/01/2023]
Abstract
We reported a new method dealing with the synthesis of novel pharmacologically relevant α-aminophosphonate derivatives via a lipase-catalyzed Kabachnik−Fields reaction with yields of up to 93%. The advantages of this protocol are excellent yields, mild reaction conditions, low costs, and sustainability. The developed protocol is applicable to a range of H-phosphites and organic amines, providing a wide substrate scope. A new class of α-aminophosphonate analogues possessing P-chiral centers was also synthesized. The synthesized compounds were characterized on the basis of their antimicrobial activities against E. coli. The impact of the various alkoxy groups on antimicrobial activity was demonstrated. The crucial role of the substituents, located at the aromatic rings in the phenylethyloxy and benzyloxy groups, on the inhibitory action against selected pathogenic E. coli strains was revealed. The observed results are especially important because of increasing resistance of bacteria to various drugs and antibiotics.
Collapse
Affiliation(s)
- Dominik Koszelewski
- Institute of Organic Chemistry PAS, Kasprzaka 44/52, 01-224 Warsaw, Poland; (P.Ś.); (J.S.-G.)
- Correspondence: (D.K.); (P.K.); Tel.: +48-22-3432012 (D.K.); +48-22-765-33-01 (P.K.)
| | - Paweł Kowalczyk
- Department of Animal Nutrition, The Kielanowski Institute of Animal Physiology and Nutrition, Polish Academy of Sciences, Instytucka 3, 05-110 Jabłonna, Poland;
- Correspondence: (D.K.); (P.K.); Tel.: +48-22-3432012 (D.K.); +48-22-765-33-01 (P.K.)
| | - Paweł Śmigielski
- Institute of Organic Chemistry PAS, Kasprzaka 44/52, 01-224 Warsaw, Poland; (P.Ś.); (J.S.-G.)
| | - Jan Samsonowicz-Górski
- Institute of Organic Chemistry PAS, Kasprzaka 44/52, 01-224 Warsaw, Poland; (P.Ś.); (J.S.-G.)
| | - Karol Kramkowski
- Department of Physical Chemistry, Medical University of Bialystok, Kilińskiego 1 Str., 15-089 Białystok, Poland;
| | - Aleksandra Wypych
- Centre for Modern Interdisciplinary Technologies Nicolaus Copernicus University in Torun ul. Wileńska 4, 87-100 Toruń, Poland;
| | - Mateusz Szymczak
- Department of Molecular Virology, Institute of Microbiology, Faculty of Biology, University of 7 Warsaw, Miecznikowa 1, 02-096 Warsaw, Poland;
| | - Ryszard Ostaszewski
- Department of Animal Nutrition, The Kielanowski Institute of Animal Physiology and Nutrition, Polish Academy of Sciences, Instytucka 3, 05-110 Jabłonna, Poland;
| |
Collapse
|
8
|
Chen L, Chen B, Zhou Z, Liang Y, Wu Z, He M, Hu B. Covalent organic framework-based magnetic solid phase extraction coupled with micellar electrokinetic chromatography for the analysis of trace organophosphorus pesticides in environmental water and atmospheric particulates. J Chromatogr A 2022; 1673:463030. [DOI: 10.1016/j.chroma.2022.463030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Accepted: 04/04/2022] [Indexed: 10/18/2022]
|
9
|
Ingle RG, Zeng S, Jiang H, Fang WJ. Current development of bioanalytical sample preparation techniques in pharmaceuticals. J Pharm Anal 2022; 12:517-529. [PMID: 36105159 PMCID: PMC9463481 DOI: 10.1016/j.jpha.2022.03.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 02/23/2022] [Accepted: 03/14/2022] [Indexed: 12/03/2022] Open
Abstract
Sample preparation is considered as the bottleneck step in bioanalysis because each biological matrix has its own unique challenges and complexity. Competent sample preparation to extract the desired analytes and remove redundant components is a crucial step in each bioanalytical approach. The matrix effect is a key hurdle in bioanalytical sample preparation, which has gained extensive consideration. Novel sample preparation techniques have advantages over classical techniques in terms of accuracy, automation, ease of sample preparation, storage, and shipment and have become increasingly popular over the past decade. Our objective is to provide a broad outline of current developments in various bioanalytical sample preparation techniques in chromatographic and spectroscopic examinations. In addition, how these techniques have gained considerable attention over the past decade in bioanalytical research is mentioned with preferred examples. Modern trends in bioanalytical sample preparation techniques, including sorbent-based microextraction techniques, are primarily emphasized. Bioanalytical sampling techniques are described with suitable applications in pharmaceuticals. The pros and cons of each bioanalytical sampling techniques are described. Relevant biological matrices are outlined.
Collapse
|
10
|
Du Y, Xu X, Liu Q, Bai L, Hang K, Wang D. Identification of organic pollutants with potential ecological and health risks in aquatic environments: Progress and challenges. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 806:150691. [PMID: 34600995 DOI: 10.1016/j.scitotenv.2021.150691] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 09/25/2021] [Accepted: 09/26/2021] [Indexed: 06/13/2023]
Abstract
Thousands of organic pollutants are intentionally and unintentionally discharged into water bodies, adversely affecting the ecological environment and human health. Screening for organic pollutants that pose a potential risk in aquatic environments is essential for risk management. This review evaluates the processes, methods, and technologies used to screen such pollutants in the aquatic environment and discuss their advantages and disadvantages, in addition to the challenges and knowledge gaps in this field. Combining non-target screening, target screening, and suspect screening is often effective for compiling a list of potential risk compounds and enables the quantitative analysis of these compounds. Sample preparation technologies and pollutant detection technologies considerably affect the results of pollutant screening. The limited amount of chemical and toxicological information contained in databases hinders the screening of organic pollutants with potential risk. Machine learning, high-throughput methods, and other technologies will increase the accuracy and convenience of screening for high-risk pollutants. This review provides an important reference for screening these compounds in aquatic environments and can be used in future pollutant screening and risk management.
Collapse
Affiliation(s)
- Yanjun Du
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 100085 Beijing, China; University of Chinese Academy of Sciences, 100049 Beijing, China; National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, 100021 Beijing, China
| | - Xiong Xu
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 100085 Beijing, China
| | - Quanzhen Liu
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 100085 Beijing, China; University of Chinese Academy of Sciences, 100049 Beijing, China
| | - Lu Bai
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 100085 Beijing, China; University of Chinese Academy of Sciences, 100049 Beijing, China
| | - Kexin Hang
- Experimental High School Attached to Beijing Normal University, 100052 Beijing, China
| | - Donghong Wang
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 100085 Beijing, China; University of Chinese Academy of Sciences, 100049 Beijing, China.
| |
Collapse
|
11
|
Calahorrano-Moreno MB, Ordoñez-Bailon JJ, Baquerizo-Crespo RJ, Dueñas-Rivadeneira AA, B. S. M. Montenegro MC, Rodríguez-Díaz JM. Contaminants in the cow's milk we consume? Pasteurization and other technologies in the elimination of contaminants. F1000Res 2022; 11:91. [PMID: 35186276 PMCID: PMC8822143 DOI: 10.12688/f1000research.108779.1] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/19/2022] [Indexed: 11/30/2022] Open
Abstract
Cow's milk is currently the most consumed product worldwide. However, due to various direct and indirect contamination sources, different chemical and microbiological contaminants have been found in cow's milk. This review details the main contaminants found in cow's milk, referring to the sources of contamination and their impact on human health. A comparative approach highlights the poor efficacy and effects of the pasteurization process with other methods used in the treatment of cow's milk. Despite pasteurization and related techniques being the most widely applied to date, they have not demonstrated efficacy in eliminating contaminants. New technologies have appeared as alternative treatments to pasteurization. However, in addition to causing physicochemical changes in the raw material, their efficacy is not total in eliminating chemical contaminants, suggesting the need for new research to find a solution that contributes to improving food safety.
Collapse
Affiliation(s)
- Micaela Belen Calahorrano-Moreno
- Departamento de Procesos Químicos, Facultad de Ciencias Matemáticas, Físicas y Químicas, Universidad Técnica de Manabí, Portoviejo, Manabí, 130104, Ecuador
| | - Jonathan Jerry Ordoñez-Bailon
- Departamento de Procesos Químicos, Facultad de Ciencias Matemáticas, Físicas y Químicas, Universidad Técnica de Manabí, Portoviejo, Manabí, 130104, Ecuador
| | - Ricardo José Baquerizo-Crespo
- Departamento de Procesos Químicos, Facultad de Ciencias Matemáticas, Físicas y Químicas, Universidad Técnica de Manabí, Portoviejo, Manabí, 130104, Ecuador
| | - Alex Alberto Dueñas-Rivadeneira
- Departamento de Procesos Agroindustriales, Facultad de Ciencias Zootécnicas, Universidad Técnica de Manabí, Portoviejo, Manabí, 130104, Ecuador
| | | | - Joan Manuel Rodríguez-Díaz
- Departamento de Procesos Químicos, Facultad de Ciencias Matemáticas, Físicas y Químicas, Universidad Técnica de Manabí, Portoviejo, Manabí, 130104, Ecuador
- Laboratorio de Análisis Químicos y Biotecnológicos, Instituto de Investigación, Universidad Técnica de Manabí, Portoviejo, Manabí, 130104, Ecuador
| |
Collapse
|
12
|
Thamrin Azis, Maulidiyah M, Muzakkar MZ, Ratna R, Aziza SW, Bijang CM, Agus Salim LO, Prabowo OA, Wibowo D, Nurdin M. Examination of Carbon Paste Electrode/TiO2 Nanocomposite as Electrochemical Sensor for Detecting Profenofos Pesticide. SURFACE ENGINEERING AND APPLIED ELECTROCHEMISTRY 2021. [DOI: 10.3103/s1068375521030029] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
13
|
Alam S, Srivastava N, Iqbal N, Saini MK, Kumar J. Magnetic Solid-Phase Extraction (MSPE) Using Magnetite-Based Core-Shell Nanoparticles with Silica Network (SiO2) Coupled with GC-MS/MS Analysis for Determination of Multiclass Pesticides in Water. J AOAC Int 2021; 104:633-644. [PMID: 33201225 DOI: 10.1093/jaoacint/qsaa156] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 09/16/2020] [Accepted: 10/20/2020] [Indexed: 11/12/2022]
Abstract
BACKGROUND For the analysis of pesticide residues in water samples, various extraction techniques are available. However, liquid-liquid extraction (LLE) and solid-phase extraction (SPE) are most commonly used. LLE and SPE extraction techniques each have their own disadvantages. OBJECTIVE The aim of the study was to develop an environment-friendly multi-residue method for determination of multiclass pesticides in environmental water samples (ground water, agricultural field/irrigation run-off water, etc.). METHODS The magnetic solid-phase extraction (MSPE) technique using surface-fabricated magnetic nano-particles was used for extraction of water samples, followed by quantification by gas chromatography tandem mass spectrometry. The developed multi-residue method was validated in terms of linearity, LOD, LOQ, recovery, and repeatability. RESULTS Recovery data were obtained at the spiking concentration level of 1, 5, and 10 µg/L, yielding recoveries in the range of 70-120%. Overall, non-polar pesticides from all the groups, i.e., synthetic pyrethroid, organophosphorus, organochlorine, herbicides, and fungicides, show acceptable recovery percentages. Good linearity (r2 value ≥ 0.99) was observed at the concentration range of 0.5-100 µg/L. RSD values were found ≤ 18.8. CONCLUSIONS The study shows that the method is specific, rapid, and low cost, as well as having a good linearity and recovery; thus, this method is applied in routine purposes for the analysis of pesticide residue in real water samples. HIGHLIGHTS Due to better adsorption ability, permeability, and magnetic separability, the functionalized nano-particles were found effective in the enrichment of 22 multiclass pesticides including organo-phosphorus, organo-chlorine, synthetic pyrethroid, herbicides, and fungicides.
Collapse
Affiliation(s)
- Samsul Alam
- Analytical Division, Institute of Pesticide Formulation Technology (IPFT), Sector-20, Udyog Vihar, Gurgaon, Haryana, India
| | - Neha Srivastava
- Analytical Division, Institute of Pesticide Formulation Technology (IPFT), Sector-20, Udyog Vihar, Gurgaon, Haryana, India
| | - Nusrat Iqbal
- Analytical Division, Institute of Pesticide Formulation Technology (IPFT), Sector-20, Udyog Vihar, Gurgaon, Haryana, India
| | - Mahesh Kumar Saini
- Analytical Division, Institute of Pesticide Formulation Technology (IPFT), Sector-20, Udyog Vihar, Gurgaon, Haryana, India
| | - Jitendra Kumar
- Analytical Division, Institute of Pesticide Formulation Technology (IPFT), Sector-20, Udyog Vihar, Gurgaon, Haryana, India
| |
Collapse
|
14
|
Amino acids- based hydrophobic natural deep eutectic solvents as a green acceptor phase in two-phase hollow fiber-liquid microextraction for the determination of caffeic acid in coffee, green tea, and tomato samples. Microchem J 2021. [DOI: 10.1016/j.microc.2021.106021] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
15
|
An innovative continuous sample drop flow microextraction for GC–MS determination of pesticides in grape juice and water samples. J Food Compost Anal 2021. [DOI: 10.1016/j.jfca.2020.103695] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
16
|
The effects of rose pigments extracted by different methods on the optical properties of carbon quantum dots and its efficacy in the determination of Diazinon. Microchem J 2020. [DOI: 10.1016/j.microc.2020.105232] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
17
|
Şaylan M, Er EÖ, Tekin Z, Bakırdere S. An accurate and sensitive analytical method for the simultaneous determination of glycine, methionine and homocysteine in biological matrices by matrix matching strategy and LC-quadrupole-time-of-flight-MS/MS. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2020; 239:118394. [PMID: 32442907 DOI: 10.1016/j.saa.2020.118394] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Revised: 04/11/2020] [Accepted: 04/19/2020] [Indexed: 06/11/2023]
Abstract
Nowadays, it is well known that early diagnosis directly affects the success of treatment. Biomarkers play a crucial role in early diagnosis of diseases or explanation of pathological condition. The investigation of new biomarkers depends on the reliable quantification of analytes in biological matrices. Regarding to the critical roles of amino acids in metabolism, functions and nutrition of human body, the careful monitoring of their levels in biological samples is required to evaluate their potential in biomarker studies for clinical research. In this study, a reliable and accurate analytical strategy was developed for the simultaneous determination of glycine, methionine and homocysteine using LC-quadrupole-time of flight-tandem MS system. The method detection limit was found to be 0.73 μg/mL, 0.017 μg/mL and 0.019 μg/mL for glycine, methionine and homocysteine, respectively. The calibration curves were obtained with great linearity (R2 ≥ 0.9993) and low relative standard deviation values showed the repeatability of proposed method. The method applicability was determined using human plasma and urine samples, and high percent recoveries demonstrated the accuracy of method developed. Each measurement was taken less than 4.0 min indicating a promising strategy for the fast and reliable quantification of target amino acids in clinical laboratories.
Collapse
Affiliation(s)
- Meltem Şaylan
- Yıldız Technical University, Department of Chemistry, 34349 İstanbul, Turkey
| | - Elif Öztürk Er
- Yıldız Technical University, Chemical Engineering Department, 34349 İstanbul, Turkey.
| | - Zeynep Tekin
- Yıldız Technical University, Department of Chemistry, 34349 İstanbul, Turkey
| | - Sezgin Bakırdere
- Yıldız Technical University, Department of Chemistry, 34349 İstanbul, Turkey.
| |
Collapse
|
18
|
Combination of dispersive solid phase extraction with solidification organic drop–dispersive liquid–liquid microextraction based on deep eutectic solvent for extraction of organophosphorous pesticides from edible oil samples. J Chromatogr A 2020; 1627:461390. [DOI: 10.1016/j.chroma.2020.461390] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 06/15/2020] [Accepted: 07/05/2020] [Indexed: 01/10/2023]
|
19
|
Tışlı B, Chormey DS, Ayyıldız MF, Bakırdere S. Experimental Design of Vortex Assisted Switchable Solvent Homogeneous Liquid-Liquid Microextraction for Simultaneous Determination of Four Pesticides in Wastewater. J AOAC Int 2020; 103:1250-1255. [PMID: 33241397 DOI: 10.1093/jaoacint/qsaa047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 03/27/2020] [Accepted: 03/27/2020] [Indexed: 11/14/2022]
Abstract
BACKGROUND Pesticides are chemicals used mainly to protect plant crops in order to increase their production efficiency and quality. OBJECTIVE Switchable-solvent homogeneous liquid-liquid microextraction was optimized using a Box-Behnken experimental design and validated on a gas chromatography mass spectrometry system for the determination of analytes. METHOD The significance of independent variables (switchable solvent volume, sodium hydroxide volume, and vortex period) and their interactions were evaluated by analysis of variance at 95% confidence limits (α = 0.05). RESULTS The LOD and LOQ ranges of the analytes were found to be 0.42-1.90 µg/L and 1.36-6.33 µg/L, respectively. Percentage recovery results were found to be in the range of 87-113% in spiking experiments. CONCLUSIONS A simple, efficient, and accurate analytical method was developed for the simultaneous determination of the selected pesticides. Highlights: Matrix matching was used to enhance quantification accuracy for real samples. HIGHLIGHTS Matrix matching was used to enhance quantification accuracy for real samples.
Collapse
Affiliation(s)
- Büşra Tışlı
- Yıldız Technical University, Faculty of Art and Science, Department of Chemistry, İstanbul, 34220, Turkey
| | - Dotse Selali Chormey
- Yıldız Technical University, Faculty of Art and Science, Department of Chemistry, İstanbul, 34220, Turkey
| | - Merve Fırat Ayyıldız
- Yıldız Technical University, Faculty of Art and Science, Department of Chemistry, İstanbul, 34220, Turkey
| | - Sezgin Bakırdere
- Yıldız Technical University, Faculty of Art and Science, Department of Chemistry, İstanbul, 34220, Turkey
| |
Collapse
|
20
|
Lim ES, Lim MC, Park K, Lee G, Lim JA, Woo MA, Lee N, Choi SW, Chang HJ. Selective Binding and Elution of Aptamers for Pesticides Based on Sol-Gel-Coated Nanoporous Anodized Aluminum Oxide Membrane. NANOMATERIALS 2020; 10:nano10081533. [PMID: 32764256 PMCID: PMC7466512 DOI: 10.3390/nano10081533] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 07/24/2020] [Accepted: 08/03/2020] [Indexed: 01/19/2023]
Abstract
Sol-gel-based mesopores allow the entry of target small molecules retained in their cavity and aptamers to bind to target molecules. Herein, sol-gel-based materials are applied to screen-selective aptamers for small molecules, such as pesticides. To enhance the efficiency of aptamer screening using a sol-gel, it is necessary to increase the binding surface. In this study, we applied the sol-gel to an anodized aluminum oxide (AAO) membrane, and the morphological features were observed via electron microscopy after spin coating. The binding and elution processes were conducted and confirmed by fluorescence microscopy and polymerase chain reaction. The sol-gel coating on the AAO membrane formed a hollow nanocolumn structure. A diazinon-binding aptamer was bound to the diazinon-containing sol-gel-coated AAO membrane, and the bound aptamer was effectively retrieved from the sol-gel matrix by thermal elution. As a proof of concept, a sol-gel-coated AAO disc was mounted on the edge of a pipette tip, and the feasibility of the prepared platform for the systematic evolution of ligands by exponential enrichment (SELEX) of the aptamer binding was also confirmed. The proposed approach will be applied to an automated SELEX cycle using an automated dispenser, such as a pipetting robot, in the near future.
Collapse
Affiliation(s)
- Eun Seob Lim
- Research Group of Consumer Safety, Research Division of Strategic Food Technology, Korea Food Research Institute, Wanju-gun, Jeollabuk-do 55365, Korea; (E.S.L.); (M.-C.L.); (K.P.); (G.L.); (J.-A.L.); (M.-A.W.); (N.L.); (S.-W.C.)
- Department of Food Biotechnology, Korea University of Science and Technology, Daejeon 34113, Korea
| | - Min-Cheol Lim
- Research Group of Consumer Safety, Research Division of Strategic Food Technology, Korea Food Research Institute, Wanju-gun, Jeollabuk-do 55365, Korea; (E.S.L.); (M.-C.L.); (K.P.); (G.L.); (J.-A.L.); (M.-A.W.); (N.L.); (S.-W.C.)
| | - Kisang Park
- Research Group of Consumer Safety, Research Division of Strategic Food Technology, Korea Food Research Institute, Wanju-gun, Jeollabuk-do 55365, Korea; (E.S.L.); (M.-C.L.); (K.P.); (G.L.); (J.-A.L.); (M.-A.W.); (N.L.); (S.-W.C.)
- Department of Molecular Science and Technology, Ajou University, Suwon-si, Gyeonggi-do 16499, Korea
| | - Gaeul Lee
- Research Group of Consumer Safety, Research Division of Strategic Food Technology, Korea Food Research Institute, Wanju-gun, Jeollabuk-do 55365, Korea; (E.S.L.); (M.-C.L.); (K.P.); (G.L.); (J.-A.L.); (M.-A.W.); (N.L.); (S.-W.C.)
- Department of Food Science and Technology, Chonbuk National University, Jeonju-si, Jeollabuk-do 54896, Korea
| | - Jeong-A Lim
- Research Group of Consumer Safety, Research Division of Strategic Food Technology, Korea Food Research Institute, Wanju-gun, Jeollabuk-do 55365, Korea; (E.S.L.); (M.-C.L.); (K.P.); (G.L.); (J.-A.L.); (M.-A.W.); (N.L.); (S.-W.C.)
| | - Min-Ah Woo
- Research Group of Consumer Safety, Research Division of Strategic Food Technology, Korea Food Research Institute, Wanju-gun, Jeollabuk-do 55365, Korea; (E.S.L.); (M.-C.L.); (K.P.); (G.L.); (J.-A.L.); (M.-A.W.); (N.L.); (S.-W.C.)
| | - Nari Lee
- Research Group of Consumer Safety, Research Division of Strategic Food Technology, Korea Food Research Institute, Wanju-gun, Jeollabuk-do 55365, Korea; (E.S.L.); (M.-C.L.); (K.P.); (G.L.); (J.-A.L.); (M.-A.W.); (N.L.); (S.-W.C.)
| | - Sung-Wook Choi
- Research Group of Consumer Safety, Research Division of Strategic Food Technology, Korea Food Research Institute, Wanju-gun, Jeollabuk-do 55365, Korea; (E.S.L.); (M.-C.L.); (K.P.); (G.L.); (J.-A.L.); (M.-A.W.); (N.L.); (S.-W.C.)
| | - Hyun-Joo Chang
- Research Group of Consumer Safety, Research Division of Strategic Food Technology, Korea Food Research Institute, Wanju-gun, Jeollabuk-do 55365, Korea; (E.S.L.); (M.-C.L.); (K.P.); (G.L.); (J.-A.L.); (M.-A.W.); (N.L.); (S.-W.C.)
- Correspondence: ; Tel.: +82-63-219-9326
| |
Collapse
|
21
|
Afshar Mogaddam MR, Farajzadeh MA, Mohebbi A, Nemati M. Hollow fiber–liquid phase microextraction method based on a new deep eutectic solvent for extraction and derivatization of some phenolic compounds in beverage samples packed in plastics. Talanta 2020; 216:120986. [DOI: 10.1016/j.talanta.2020.120986] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Revised: 03/26/2020] [Accepted: 03/28/2020] [Indexed: 11/15/2022]
|
22
|
Delove Tegladza I, Qi T, Chen T, Alorku K, Tang S, Shen W, Kong D, Yuan A, Liu J, Lee HK. Direct immersion single-drop microextraction of semi-volatile organic compounds in environmental samples: A review. JOURNAL OF HAZARDOUS MATERIALS 2020; 393:122403. [PMID: 32126428 DOI: 10.1016/j.jhazmat.2020.122403] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2019] [Revised: 02/20/2020] [Accepted: 02/23/2020] [Indexed: 06/10/2023]
Abstract
Single-drop microextraction (SDME) techniques are efficient approaches to pretreatment of aqueous samples. The main advantage of SDME lies in the miniaturization of the solvent extraction process, minimizing the hazards associated with the use of toxic organic solvents. Thus, SDME techniques are cost-effective, and represent less harm to the environment, subscribing to green analytical chemistry principles. In practice, two main approaches can be used to perform SDME - direct immersion (DI)-SDME and headspace (HS)-SDME. Even though the DI-SDME has been shown to be quite effective for extraction and enrichment of various organic compounds, applications of DI-SDME are normally more suitable for moderately polar and non-polar semi-volatile organic compounds (SVOCs) using organic solvents which are immiscible with water. In this review, we present a historical overview and current advances in DI-SDME, including the common analytical tools which are usually coupled with DI-SDME. The review also focuses on applications concerning SVOCs in environmental samples. Currents trends in DI-SDME and possible future direction of the procedure are discussed.
Collapse
Affiliation(s)
- Isaac Delove Tegladza
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, 212003, Jiangsu Province, PR China
| | - Tong Qi
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, 212003, Jiangsu Province, PR China
| | - Tianyu Chen
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, 212003, Jiangsu Province, PR China
| | - Kingdom Alorku
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, 212003, Jiangsu Province, PR China
| | - Sheng Tang
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, 212003, Jiangsu Province, PR China.
| | - Wei Shen
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, 212003, Jiangsu Province, PR China.
| | - Dezhao Kong
- School of Grain Science and Technology, Jiangsu University of Science and Technology, Zhenjiang, 212003, Jiangsu Province, PR China
| | - Aihua Yuan
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, 212003, Jiangsu Province, PR China
| | - Jianfeng Liu
- Shanghai Waigaoqiao Shipbuilding Co., Ltd, Shanghai, 200137, PR China
| | - Hian Kee Lee
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore, 117543, Singapore.
| |
Collapse
|
23
|
Wijdan Shakir Khayoon, Hawraa Rahman Younis. Ion Pair-dispersive Liquid–Liquid Microextraction Combined with Spectrophotometry for Carbamazepine Determination in Pharmaceutical Formulations and Biological Samples. JOURNAL OF ANALYTICAL CHEMISTRY 2020. [DOI: 10.1134/s1061934820060118] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
24
|
Analytical Scheme for Simultaneous Determination of Phthalates and Bisphenol A in Honey Samples Based on Dispersive Liquid-Liquid Microextraction Followed by GC-IT/MS. Effect of the Thermal Stress on PAE/BP-A Levels. Methods Protoc 2020; 3:mps3010023. [PMID: 32213842 PMCID: PMC7189663 DOI: 10.3390/mps3010023] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2020] [Revised: 03/19/2020] [Accepted: 03/21/2020] [Indexed: 12/26/2022] Open
Abstract
In this paper, an analytical protocol was developed for the simultaneous determination of phthalates (di-methyl phthalate DMP, di-ethyl phthalate DEP, di-isobutyl phthalate DiBP, di-n-butyl phthalate DBP, bis-(2-ethylhexyl) phthalate DEHP, di-n-octyl phthalate DNOP) and bisphenol A (BPA). The extraction technique used was the ultrasound vortex assisted dispersive liquid–liquid microextraction (UVA-DLLME). The method involves analyte extraction using 75 µL of benzene and subsequent analysis by gas chromatography combined with ion trap mass spectrometry (GC-IT/MS). The method is sensitive, reliable, and reproducible with a limit of detection (LOD) below 13 ng g−1 and limit of quantification (LOQ) below 22 ng g−1 and the intra- and inter-day errors below 7.2 and 9.3, respectively. The method developed and validated was applied to six honey samples (i.e., four single-use commercial ones and two home-made ones. Some phthalates were found in the samples at concentrations below the specific migration limits (SMLs). Furthermore, the commercial samples were subjected to two different thermal stresses (24 h and 48 h at 40 °C) for evidence of the release of plastic from the containers. An increase in the phthalate concentrations was observed, especially during the first phase of the shock, but the levels were still within the limits of the regulations.
Collapse
|
25
|
Jiang M, Chen C, He J, Zhang H, Xu Z. Fluorescence assay for three organophosphorus pesticides in agricultural products based on Magnetic-Assisted fluorescence labeling aptamer probe. Food Chem 2020; 307:125534. [PMID: 31644980 DOI: 10.1016/j.foodchem.2019.125534] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 07/24/2019] [Accepted: 09/12/2019] [Indexed: 11/29/2022]
Abstract
There has been increasing recent concern about the agricultural use of organophosphorus pesticides. A rapid and sensitive fluorescence assay for the detection of three organophosphorus pesticides has therefore been developed using 6-carboxy-fluorescein labeling aptamer as the probe and functionalized magnetic nanoparticles as the separation carrier. The aptamer hybridized with complementary DNA conjugated on the surface of the magnetic nanoparticles to form a magnetic aptamer-complementary DNA complex. Upon introducing the target organophosphorus pesticide, the aptamer departed from the complementary DNA, resulting in the fluorescence signal. Under optimized conditions, the limits of detection (LODs, S/N = 3) for trichlorfon, glyphosate, and malathion were 72.20 ng L-1, 88.80 ng L-1, and 195.37 ng L-1, respectively. The method was applied for the detection of trichlorfon, glyphosate, and malathion in spiked lettuce and carrot samples. The recoveries were in the range of 79.4%-118.7%, which were in good agreement with those obtained by gas chromatography, and the relative standard deviations were also acceptable. The method therefore has high sensitivity, so provides a means for the detection of multiple organophosphorus pesticides.
Collapse
Affiliation(s)
- Mingdi Jiang
- Key Laboratory of Food Processing Technology and Quality Control in Shandong Province, College of Food Science and Engineering, Shandong Agricultural University, Taian 271018, China
| | - Chen Chen
- Key Laboratory of Food Processing Technology and Quality Control in Shandong Province, College of Food Science and Engineering, Shandong Agricultural University, Taian 271018, China
| | - Jingbo He
- Key Laboratory of Food Processing Technology and Quality Control in Shandong Province, College of Food Science and Engineering, Shandong Agricultural University, Taian 271018, China
| | - Hongyan Zhang
- College of Life Science, Shandong Normal University, Jinan 250014, China
| | - Zhixiang Xu
- Key Laboratory of Food Processing Technology and Quality Control in Shandong Province, College of Food Science and Engineering, Shandong Agricultural University, Taian 271018, China.
| |
Collapse
|
26
|
Moinfar S, Jamil LA, Sami HZ. Determination of Organophosphorus Pesticides in Juice and Water by Modified Continuous Sample Drop Flow Microextraction Combined with Gas Chromatography–Mass Spectrometry. FOOD ANAL METHOD 2020. [DOI: 10.1007/s12161-020-01723-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
27
|
Development of a dispersive liquid-liquid microextraction method based on a ternary deep eutectic solvent as chelating agent and extraction solvent for preconcentration of heavy metals from milk samples. Talanta 2020; 208:120485. [DOI: 10.1016/j.talanta.2019.120485] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Revised: 09/27/2019] [Accepted: 10/18/2019] [Indexed: 11/19/2022]
|
28
|
Jouyban A, Farajzadeh MA, Afshar Mogaddam MR. In matrix formation of deep eutectic solvent used in liquid phase extraction coupled with solidification of organic droplets dispersive liquid-liquid microextraction; application in determination of some pesticides in milk samples. Talanta 2020; 206:120169. [DOI: 10.1016/j.talanta.2019.120169] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Revised: 07/20/2019] [Accepted: 07/21/2019] [Indexed: 12/25/2022]
|
29
|
Mohammadi Nilash M, Avar S, Mirzaei F, Fakhari AR, Rezaee Shirin-Abadi A. Electrospun terpolymeric nanofiber membrane for micro solid-phase extraction of diazinon and chlorpyrifos from aqueous samples. J Sep Sci 2019; 43:920-928. [PMID: 31840394 DOI: 10.1002/jssc.201900798] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Revised: 12/02/2019] [Accepted: 12/04/2019] [Indexed: 11/06/2022]
Abstract
The present study deals with the synthesis and electrospining of a new terpolymer nanofiber in order to determine the amount of diazinon and chlorpyrifos in water and fruit juice samples. The synthesized terpolymer and the prepared nanofiber were characterized using 1 H NMR spectroscopy, FTIR spectroscopy, scanning electron microscopy, and gel permeation chromatography. The performance of terpolymer nanofiber, prepared as a sorbent for micro solid phase extraction was investigated for the extraction of diazinon and chlorpyrifos from aquaeous media. Then, the target analytes were desorbed from the coating with an organic solvent and analyzed by gas chromatography with flame ionization detector. Extraction efficiencies were significant (>90%) under the optimum condition. The proposed method also demonstrated good linear dynamic ranges for diazinon and chlorpyrifos (3-250 and 5-200 µg/L), and low limit of detections (0.5 and 0.7 µg/L) respectively. Moreover, under optimum condition for extraction of diazinon and chlorpyrifos, square of correlation coefficients (R2 ) of 0.9978 and 0.9953 and relative standard deviations of 4.6 and 5.1% were achieved, respectively. The recoveries for diazinon and chlorpyrifos were in the range of 85-97%.
Collapse
Affiliation(s)
| | - Sajad Avar
- Faculty of Chemistry, Shahid Beheshti University, G. C., P.O. Box 1983963113, Evin, Tehran, I.R. Iran
| | - Fahimeh Mirzaei
- Faculty of Chemistry, Shahid Beheshti University, G. C., P.O. Box 1983963113, Evin, Tehran, I.R. Iran
| | - Ali Reza Fakhari
- Faculty of Chemistry, Shahid Beheshti University, G. C., P.O. Box 1983963113, Evin, Tehran, I.R. Iran
| | - Abbas Rezaee Shirin-Abadi
- Faculty of Chemistry, Shahid Beheshti University, G. C., P.O. Box 1983963113, Evin, Tehran, I.R. Iran
| |
Collapse
|
30
|
Determination of organophosphorus pesticide residues in vegetables using solid phase micro-extraction coupled with gas chromatography–flame photometric detector. ARAB J CHEM 2019. [DOI: 10.1016/j.arabjc.2014.12.001] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
31
|
Zhao W, Jing X, Chang M, Meng J, Feng C. Vortex‐assisted Emulsification Microextraction for the Determination of Pyrethroids in Mushroom. B KOREAN CHEM SOC 2019. [DOI: 10.1002/bkcs.11850] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Wenfei Zhao
- College of Food Science and EngineeringShanxi Agricultural University Taigu 030801 China
| | - Xu Jing
- College of Food Science and EngineeringShanxi Agricultural University Taigu 030801 China
| | - Mingchang Chang
- College of Food Science and EngineeringShanxi Agricultural University Taigu 030801 China
| | - Junlong Meng
- College of Food Science and EngineeringShanxi Agricultural University Taigu 030801 China
| | - Cuiping Feng
- College of Food Science and EngineeringShanxi Agricultural University Taigu 030801 China
| |
Collapse
|
32
|
Alam M, Kim Y, Park S. Synthesis, characterization (IR, 1H, 13C & 31P NMR), fungicidal, herbicidal and molecular docking evaluation of steroid phosphorus compounds. OPEN CHEM 2019. [DOI: 10.1515/chem-2019-0069] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
AbstractPhosphorus containing steroidal derivatives such as 3β-oxo-[diazaphosphalidine-2’-one] stigmast-5-ene and 3β-oxo-[diazaphosphalidine-2’-one] stigmast-5,22-diene were designed, synthesized and characterized using spectroscopic techniques (IR,1H,13C &31P NMR, HRMS) and elemental analysis. The fungicidal and herbicidal studies of the compounds were performed and the experimental outcomes showed that compound 4 showed a good fungicidal activity against mycelium growth of fungi, while in the case of herbicidal activity, both compounds show a moderate activity compared to the commercial drug; Atrazine. The binding free energy of active compound 4 to the receptor named 4-Hydroxyphenylpyruvate dioxygenase (HPPD) was calculated using the molecular docking study. The HPPD is one of the most effective targets of plants for the herbicide study.
Collapse
Affiliation(s)
- Mahboob Alam
- Division of Chemistry and Biotechnology, Dongguk University, 123 Dongdae-ro, Gyeongju 780-714, Gyeongju, Republic of Korea
| | - Youngwon Kim
- Department of Advanced Materials Chemistry, Dongguk University, 123 Dongdae-ro, Gyeongju 780-714, Gyeongju, Republic of Korea
| | - Soonheum Park
- Department of Advanced Materials Chemistry, Dongguk University, 123 Dongdae-ro, Gyeongju 780-714, Gyeongju, Republic of Korea
| |
Collapse
|
33
|
Wu H, Luo Y, Hou C, Huo D, Wang W, Zhao J, Lei Y. Rapid and fingerprinted monitoring of pesticide methyl parathion on the surface of fruits/leaves as well as in surface water enabled by gold nanorods based casting-and-sensing SERS platform. Talanta 2019; 200:84-90. [DOI: 10.1016/j.talanta.2019.03.004] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2018] [Revised: 02/26/2019] [Accepted: 03/01/2019] [Indexed: 12/24/2022]
|
34
|
Double quantum dots-nanoporphyrin fluorescence-visualized paper-based sensors for detecting organophosphorus pesticides. Talanta 2019; 199:46-53. [DOI: 10.1016/j.talanta.2019.02.023] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Revised: 01/24/2019] [Accepted: 02/04/2019] [Indexed: 11/23/2022]
|
35
|
Lee YC, Hsieh CM, Tsai TN, Yang DP, Chen PS. Ultrasound-assisted synthesis of thermosensitive nanovesicle for direct trap and release of analgesic drugs in biofluid and sewage. ULTRASONICS SONOCHEMISTRY 2019; 54:61-67. [PMID: 30827904 DOI: 10.1016/j.ultsonch.2019.02.015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Revised: 02/13/2019] [Accepted: 02/16/2019] [Indexed: 06/09/2023]
Abstract
An environmentally friendly thermosensitive nanovesicle-cloud point microextraction technique has been developed with the assistant of ultrasonic waves to determine analgesic drugs with a broad range of polarity in field water and human urine. Based on thin-film hydration, the conformation of nanovesicles formed by a binary mixing system with the nonionic surfactants was evaluated using regular and cryogenic transmission electron microscopy. The multilayered nano-spherical structure was able to capture polar and nonpolar compounds simultaneously. Analgesic drugs (acetaminophen, salicylic acid, ketoprofen, diclofenac, indomethacin, ibuprofen, and mefenamic acid) were detected by ultra-performance liquid chromatography coupled to photodiode array detection. Under optimal conditions including the type and ratio of surfactants, sonication time and sonication temperature, linear calibration curves were obtained over the range of 50-8000 μg L-1. The coefficient of determination (R2) ranged from 0.9953 to 0.9995, with detection limits of 10-100 μg L-1. The relative standard deviations ranged from 3.2% to 12.7% for intraday precision (n = 5) and 2.5% to 14.1% for interday precision (n = 15). The relative recoveries obtained from one industrial wastewater sample and two field water samples ranged from 86.1% to 108.1%. In the human urine analysis, three volunteers ingested 1500 mg of acetaminophen. After 4 h, the concentration of acetaminophen in the urine was found to range from 87.0 to 197.9 mg L-1.
Collapse
Affiliation(s)
- Yueh-Chan Lee
- Department and Graduate Institute of Forensic Medicine, National Taiwan University, Taipei, Taiwan
| | - Chien-Ming Hsieh
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei, Taiwan
| | - Tsung-Neng Tsai
- Division of Cardiology, Department of Internal Medicine, TriService General Hospital, National Defence Medical Centre, Taipei, Taiwan
| | - Da-Peng Yang
- Department and Graduate Institute of Forensic Medicine, National Taiwan University, Taipei, Taiwan
| | - Pai-Shan Chen
- Department and Graduate Institute of Forensic Medicine, National Taiwan University, Taipei, Taiwan.
| |
Collapse
|
36
|
Amatatongchai M, Sroysee W, Sodkrathok P, Kesangam N, Chairam S, Jarujamrus P. Novel three-Dimensional molecularly imprinted polymer-coated carbon nanotubes (3D-CNTs@MIP) for selective detection of profenofos in food. Anal Chim Acta 2019; 1076:64-72. [PMID: 31203965 DOI: 10.1016/j.aca.2019.04.075] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Revised: 04/14/2019] [Accepted: 04/18/2019] [Indexed: 11/25/2022]
Abstract
A new and facile method for selective measurement of profenofos (PFF) using a simple flow-injection system with a molecularly-imprinted-polymer-coated carbon nanotube (3D-CNTs@MIP) amperometric sensor is proposed. The 3D-CNTs@MIP was synthesized by successively coating the surface of carboxylated CNTs with SiO2 and vinyl end groups, then terminating with molecularly imprinted polymer (MIP) shells. MIP was grafted to the CNT cores using methacrylic acid (MAA) monomer, ethylene glycol dimethacrylate (EGDMA) as cross linker, and 2,2'-azobisisobutyronitrile (AIBN) as initiator. We constructed the PFF sensor by coating the surface of a glassy carbon electrode (GCE) with 3D-CNTs@MIP and removed the imprinting template by solvent extraction. Morphological and structural characterization reveal that blending of the MIP on the CNT surface significantly increases the selective surface area, leading to greater numbers of imprinting sites for improved sensitivity and electron transfer. The 3D-CNTs@MIP sensor exhibits a fast response with good recognition when applied to PFF detection by cyclic voltammetry and amperometry. The PFF oxidation current signal appears at +0.7 V vs Ag/AgCl using 0.1 M phosphate buffer (pH 7.0) as the carrier solution. The designed 3D-imprinted sensor provides a linear response over the range 0.01-200 μM (r2 = 0.995) with a low detection limit of 0.002 μM (3σ). The sensor was successfully applied to detection of PFF in vegetable samples.
Collapse
Affiliation(s)
- Maliwan Amatatongchai
- Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Ubon Ratchathani University, Ubon Ratchathani, 34190, Thailand; Nanomaterials Science, Sensors & Catalysis for Problem-Based Projects, Faculty of Science, Ubon Ratchathani University, Ubon Ratchathani, 34190, Thailand.
| | - Wongduan Sroysee
- Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Ubon Ratchathani University, Ubon Ratchathani, 34190, Thailand; Nanomaterials Science, Sensors & Catalysis for Problem-Based Projects, Faculty of Science, Ubon Ratchathani University, Ubon Ratchathani, 34190, Thailand
| | - Porntip Sodkrathok
- Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Ubon Ratchathani University, Ubon Ratchathani, 34190, Thailand; Nanomaterials Science, Sensors & Catalysis for Problem-Based Projects, Faculty of Science, Ubon Ratchathani University, Ubon Ratchathani, 34190, Thailand
| | - Nuttapol Kesangam
- Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Ubon Ratchathani University, Ubon Ratchathani, 34190, Thailand; Nanomaterials Science, Sensors & Catalysis for Problem-Based Projects, Faculty of Science, Ubon Ratchathani University, Ubon Ratchathani, 34190, Thailand
| | - Sanoe Chairam
- Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Ubon Ratchathani University, Ubon Ratchathani, 34190, Thailand; Nanomaterials Science, Sensors & Catalysis for Problem-Based Projects, Faculty of Science, Ubon Ratchathani University, Ubon Ratchathani, 34190, Thailand
| | - Purim Jarujamrus
- Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Ubon Ratchathani University, Ubon Ratchathani, 34190, Thailand; Nanomaterials Science, Sensors & Catalysis for Problem-Based Projects, Faculty of Science, Ubon Ratchathani University, Ubon Ratchathani, 34190, Thailand
| |
Collapse
|
37
|
Rodríguez-Mata AE, Amabilis-Sosa LE, Roé-Sosa A, Barrera-Andrade JM, Rangel-Peraza JG, Salinas-Juárez MG. Quantification of recalcitrant organic compounds during their removal test by a novel and economical method based on chemical oxygen demand analysis. KOREAN J CHEM ENG 2019. [DOI: 10.1007/s11814-018-0203-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
38
|
Ahmed Ibrahim KE, Elbashir AA, Osman Ahmed MM, Şolpan D. Radiolytic degradation of carbofuran by using gamma and gamma/hydrogen peroxide processes. Radiat Phys Chem Oxf Engl 1993 2018. [DOI: 10.1016/j.radphyschem.2018.10.014] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
39
|
Liang D, Liu W, Raza R, Bai Y, Liu H. Applications of solid-phase micro-extraction with mass spectrometry in pesticide analysis. J Sep Sci 2018; 42:330-341. [DOI: 10.1002/jssc.201800804] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Revised: 10/21/2018] [Accepted: 11/14/2018] [Indexed: 12/14/2022]
Affiliation(s)
- Dapeng Liang
- Key Lab of Groundwater Resources and Environment of Ministry of Education; College of New Energy and Environment; Jilin University; Changchun P. R. China
| | - Wenjie Liu
- Key Lab of Groundwater Resources and Environment of Ministry of Education; College of New Energy and Environment; Jilin University; Changchun P. R. China
| | - Rabia Raza
- Beijing National Laboratory for Molecular Sciences; Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education; Institute of Analytical Chemistry; College of Chemistry and Molecular Engineering; Peking University; Beijing P. R. China
| | - Yu Bai
- Beijing National Laboratory for Molecular Sciences; Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education; Institute of Analytical Chemistry; College of Chemistry and Molecular Engineering; Peking University; Beijing P. R. China
| | - Huwei Liu
- Beijing National Laboratory for Molecular Sciences; Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education; Institute of Analytical Chemistry; College of Chemistry and Molecular Engineering; Peking University; Beijing P. R. China
| |
Collapse
|
40
|
Development of a Solid-Phase Extraction (SPE) Cartridge Based on Chitosan-Metal Oxide Nanoparticles (Ch-MO NPs) for Extraction of Pesticides from Water and Determination by HPLC. Int J Anal Chem 2018; 2018:3640691. [PMID: 30369950 PMCID: PMC6189673 DOI: 10.1155/2018/3640691] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2018] [Revised: 07/31/2018] [Accepted: 09/02/2018] [Indexed: 11/17/2022] Open
Abstract
The present study aims to prepare two new types of chitosan-metal oxide nanoparticles (Ch-MO NPs), namely, chitosan-copper oxide nanoparticles (Ch-CuO NPs) and chitosan-zinc oxide nanoparticles (Ch-ZnO NPs), using sol-gel precipitation mechanism, and test them new as adsorbent materials for extraction and clean-up of different pesticides from water. The design of core-shell was implemented by metal oxide core with chitosan as a hard shell after crosslinking mechanism by glutaraldehyde and then epichlorohydrin. The characterizations of the prepared nanoparticles were investigated using Fourier transform infrared spectrometry (FT-IR), zeta potential, scanning electron microscopy (SEM), transmission electron microscope (TEM), and X-ray diffraction (XRD). FT-IR confirmed the interaction between chitosan, metal oxide, and crosslinking mechanism. SEM and TEM explained that the nanoparticles have a spherical morphology and nanosize of 93.74 and 97.95 nm for Ch-CuO NPs and Ch-ZnO NPs, respectively. Factorial experimental design was applied to study the effect of pH, concentration of pesticide, agitation time, and temperature on the efficiency of adsorption of pesticides from water samples. The results indicated that optimum conditions were pH of 7, temperature of 25°C, and agitation time of 25 min. The SPE cartridges were then packed with Ch-MO NPs, and seven pesticides of abamectin, diazinon, fenamiphos, imidacloprid, lambda-cyhalothrin, methomyl, and thiophanate-methyl were extracted from water samples and determined by HPLC. The extraction efficiency of Ch-ZnO NPs was higher than Ch-CuO NPs, but both removed a larger amount of most of tested pesticides than the standard ODS cartridge (C18). The results showed that this method achieves rapid and simple extraction in small quantities of adsorbents (Ch-MO NPs) and solvents. In addition, the method is highly sensitive to pesticides and has a high recovery rate.
Collapse
|
41
|
Çelik B, Akkaya E, Bakirdere S, Aydin F. Determination of indium using vortex assisted solid phase microextraction based on oleic acid coated magnetic nanoparticles combined with slotted quartz tube-flame atomic absorption spectrometry. Microchem J 2018. [DOI: 10.1016/j.microc.2018.04.031] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
42
|
Vera R, Insa S, Fontàs C, Anticó E. A new extraction phase based on a polymer inclusion membrane for the detection of chlorpyrifos, diazinon and cyprodinil in natural water samples. Talanta 2018; 185:291-298. [DOI: 10.1016/j.talanta.2018.03.056] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Revised: 03/19/2018] [Accepted: 03/20/2018] [Indexed: 10/17/2022]
|
43
|
Badawy MEI, Marei AESM, El-Nouby MAM. Preparation and characterization of chitosan-siloxane magnetic nanoparticles for the extraction of pesticides from water and determination by HPLC. SEPARATION SCIENCE PLUS 2018. [DOI: 10.1002/sscp.201800084] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Mohamed E. I. Badawy
- Department of Pesticide Chemistry and Technology; Faculty of Agriculture; Alexandria University; Alexandria Egypt
| | - Abd El-Salam M. Marei
- Department of Pesticide Chemistry and Technology; Faculty of Agriculture; Alexandria University; Alexandria Egypt
| | - Mahmoud A. M. El-Nouby
- Department of Pesticide Chemistry and Technology; Faculty of Agriculture; Alexandria University; Alexandria Egypt
| |
Collapse
|
44
|
In situ ionic liquid dispersive liquid-liquid microextraction coupled to gas chromatography-mass spectrometry for the determination of organophosphorus pesticides. J Chromatogr A 2018; 1559:95-101. [DOI: 10.1016/j.chroma.2017.12.059] [Citation(s) in RCA: 89] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Revised: 12/19/2017] [Accepted: 12/21/2017] [Indexed: 12/25/2022]
|
45
|
Present state and applications of single drop microextraction for the determination of harmful organic compounds and pollutants. NOVA BIOTECHNOLOGICA ET CHIMICA 2018. [DOI: 10.2478/nbec-2018-0001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Abstract
Single drop microextraction (SDME) nowadays earns an increasing attention by scientists due to its simplicity, low cost and the need for only common laboratory equipment. This microextraction technique combines sample cleanup and pre-concentration of analytes in one step. Furthermore, a significant reduction in the amount of organic solvents needed comparing to standard LLE techniques places SDME into the position of environmental friendly extraction techniques. SDME is a straightforward technique in which a micro-drop of solvent is suspended from the tip of a conventional micro-syringe and then it is in a direct contact with a sample solution in which it is immiscible or it could be suspended in the headspace above the sample. The paper overviews developments of the state-of-the-art SDME techniques for the extraction of harmful organic compound and pollutants from environmental, food and biological matrices. Key extraction parameters essential for SDME performance were described and discussed.
Collapse
|
46
|
Makkliang F, Kanatharana P, Thavarungkul P, Thammakhet-Buranachai C. A miniaturized monolith-MWCNTs-COOH multi-stir-rod microextractor device for trace parabens determination in cosmetic and personal care products. Talanta 2018; 184:429-436. [DOI: 10.1016/j.talanta.2018.03.024] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Revised: 03/08/2018] [Accepted: 03/10/2018] [Indexed: 11/30/2022]
|
47
|
Fernandes VC, Freitas M, Pacheco JPG, Oliveira JM, Domingues VF, Delerue-Matos C. Magnetic dispersive micro solid-phase extraction and gas chromatography determination of organophosphorus pesticides in strawberries. J Chromatogr A 2018; 1566:1-12. [PMID: 30017087 DOI: 10.1016/j.chroma.2018.06.045] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Revised: 06/17/2018] [Accepted: 06/18/2018] [Indexed: 12/25/2022]
Abstract
Magnetic nanoparticles (MNPs) with different sizes and characteristics were synthesized to be used as a QuEChERS sorbents for the determination of seven organophosphorus pesticides (OPPs) in strawberries by gas chromatography analysis with flame photometric and mass spectrometry detection. To achieve the optimum conditions of modified QuEChERS procedure several parameters affecting the cleanup efficiency including the amount of the sorbents and cleanup time were investigated. The results were compared with classical QuEChERS methodologies and the modified QuEChERS procedure using MNPs showed the better performance. Under the optimum conditions of the new methodology, three spiking levels (25, 50 and 100 μg kg-1) were evaluated in a strawberry sample. The results showed that the average recovery was 93% and the relative standard deviation was less than 12%. The enrichment factor ranged from 111 to 145%. The good linearity with coefficients of determination of 0.9904-0.9991 was obtained over the range of 25-250 μg kg-1 for 7 OPPs. It was determined that the MNPs have an excellent function as sorbent when purified even using less amount of sorbents and the magnetic properties allowed non-use of the centrifugation in cleanup step. The new methodology was applied in strawberry samples from conventional and organic farming. The new sorbents were successfully applied for extraction and determination of OPPs in strawberries.
Collapse
Affiliation(s)
- Virgínia Cruz Fernandes
- REQUIMTE/LAQV, Instituto Superior de Engenharia, Instituto Politécnico do Porto, Rua Drº António Bernardino de Almeida, 431, 4200-072 Porto, Portugal.
| | - Maria Freitas
- REQUIMTE/LAQV, Instituto Superior de Engenharia, Instituto Politécnico do Porto, Rua Drº António Bernardino de Almeida, 431, 4200-072 Porto, Portugal
| | - João P G Pacheco
- REQUIMTE/LAQV, Instituto Superior de Engenharia, Instituto Politécnico do Porto, Rua Drº António Bernardino de Almeida, 431, 4200-072 Porto, Portugal
| | - José Maria Oliveira
- REQUIMTE/LAQV, Instituto Superior de Engenharia, Instituto Politécnico do Porto, Rua Drº António Bernardino de Almeida, 431, 4200-072 Porto, Portugal
| | - Valentina Fernandes Domingues
- REQUIMTE/LAQV, Instituto Superior de Engenharia, Instituto Politécnico do Porto, Rua Drº António Bernardino de Almeida, 431, 4200-072 Porto, Portugal
| | - Cristina Delerue-Matos
- REQUIMTE/LAQV, Instituto Superior de Engenharia, Instituto Politécnico do Porto, Rua Drº António Bernardino de Almeida, 431, 4200-072 Porto, Portugal
| |
Collapse
|
48
|
Prodhan MDH, Papadakis EN, Papadopoulou-Mourkidou E. Variability of pesticide residues in eggplant units collected from a field trial and marketplaces in Greece. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2018; 98:2277-2284. [PMID: 28984912 DOI: 10.1002/jsfa.8716] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Revised: 09/11/2017] [Accepted: 09/28/2017] [Indexed: 06/07/2023]
Abstract
BACKGROUND Variability of pesticide residues among food items is very important when assessing the risks and food safety for the consumers. Therefore, the present study was undertaken to estimate the unit-to-unit residue variability factors for eggplant. RESULTS In total, 120 samples from a trial field and 142 samples from different marketplaces in Thessaloniki, Greece, were collected to estimate the variability of pesticide residues in eggplant units. They were extracted by the QuEChERS method and the residues were determined by LC-MS/MS. For the field samples, the unit-to-unit variability factors (VFs) obtained for cypermethrin and deltamethrin residues were 2.54 and 2.51, respectively. The mean residue levels of both pesticides were higher in the composite samples than in the individual samples. The average VFs for the marketplace samples was 3.89. The eggplant units exposed to pesticides were higher in residues than the non-exposed units. CONCLUSION The variability factors obtained in the marketplace samples were higher than those in the samples collected from the field trial. A default VF value of 3 for field trials is appropriate for use when assessing the acute dietary intake but a VF for the marketplace samples should be reconsidered with a larger data. © 2017 Society of Chemical Industry.
Collapse
|
49
|
Bao L, Spandan V, Yang Y, Dyett B, Verzicco R, Lohse D, Zhang X. Flow-induced dissolution of femtoliter surface droplet arrays. LAB ON A CHIP 2018; 18:1066-1074. [PMID: 29487930 DOI: 10.1039/c7lc01321c] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
The dissolution of liquid nanodroplets is a crucial step in many applied processes, such as separation and dispersion in the food industry, crystal formation of pharmaceutical products, concentrating and analysis in medical diagnosis, and drug delivery in aerosols. In this work, using both experiments and numerical simulations, we quantitatively study the dissolution dynamics of femtoliter surface droplets in a highly ordered array under a uniform flow. Our results show that the dissolution of femtoliter droplets strongly depends on their spatial positions relative to the flow direction, drop-to-drop spacing in the array, and the imposed flow rate. In some particular cases, the droplet at the edge of the array can dissolve about 30% faster than the ones located near the centre. The dissolution rate of the droplet increases by 60% as the inter-droplet spacing is increased from 2.5 μm to 20 μm. Moreover, the droplets close to the front of the flow commence to shrink earlier than those droplets in the center of the array. The average dissolution rate is faster for the faster flow. As a result, the dissolution time (Ti) decreases with the Reynolds number (Re) of the flow as Ti ∝ Re-3/4. The experimental results are in good agreement with the numerical simulations where the advection-diffusion equation for the concentration field is solved and the concentration gradient on the surface of the drop is computed. The findings suggest potential approaches to manipulate nanodroplet sizes in droplet arrays simply by dissolution controlled by an external flow. The obtained droplets with varying curvatures may serve as templates for generating multifocal microlenses in one array.
Collapse
Affiliation(s)
- Lei Bao
- Soft Matter & Interfaces Group, School of Engineering, RMIT University, Melbourne, VIC 3001, Australia
| | | | | | | | | | | | | |
Collapse
|
50
|
Jouyban A, Farajzadeh MA, Afshar Mogaddam MR. A lighter-than-water deep eutectic-solvent-based dispersive liquid-phase microextraction method in a U-shaped homemade device. NEW J CHEM 2018. [DOI: 10.1039/c8nj00597d] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
A new microextraction method, termed glass-filter-based dispersive liquid-phase microextraction using a lighter-than-water deep eutectic solvent, was developed for the extraction and preconcentration of different classes of pesticides from fruit juice and vegetable samples.
Collapse
Affiliation(s)
- Abolghasem Jouyban
- Pharmaceutical Analysis Research Center and Faculty of Pharmacy
- Tabriz University of Medical Sciences
- Tabriz
- Iran
| | - Mir Ali Farajzadeh
- Department of Analytical Chemistry
- Faculty of Chemistry
- University of Tabriz
- Tabriz
- Iran
| | | |
Collapse
|