1
|
Tran DVH, Pham TK, Kim YW. Amine-bearing hydrocarbon cross-links: Tailoring helix stability, hydrophilicity, and synthetic adaptability in peptides. Bioorg Med Chem 2024; 112:117893. [PMID: 39197182 DOI: 10.1016/j.bmc.2024.117893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 08/16/2024] [Accepted: 08/19/2024] [Indexed: 09/01/2024]
Abstract
This study comprehensively explored the helix-stabilizing effects of amine-bearing hydrocarbon cross-links (ABXs), revealing their context-dependent nature influenced by various structural parameters. Notably, we identified a 9-atom ABX as a robust helix stabilizer, showcasing versatile synthetic adaptability while preserving peptide water solubility. Future investigations are imperative to fully exploit this system's potential and enrich our chemical toolkit for designing innovative peptide-based biomolecules.
Collapse
Affiliation(s)
- Duc V H Tran
- College of Pharmacy, Dongguk University-Seoul, Goyang 10326, Republic of Korea; Intergrated Research Institute for Drug Development, College of Pharmacy, Dongguk University-Seoul, Goyang 10326, Republic of Korea
| | - Thanh K Pham
- College of Pharmacy, Dongguk University-Seoul, Goyang 10326, Republic of Korea; Intergrated Research Institute for Drug Development, College of Pharmacy, Dongguk University-Seoul, Goyang 10326, Republic of Korea
| | - Young-Woo Kim
- College of Pharmacy, Dongguk University-Seoul, Goyang 10326, Republic of Korea; Intergrated Research Institute for Drug Development, College of Pharmacy, Dongguk University-Seoul, Goyang 10326, Republic of Korea.
| |
Collapse
|
2
|
Hollebrands B, Hageman JA, van de Sande JW, Albada B, Janssen HG. Improved LC-MS identification of short homologous peptides using sequence-specific retention time predictors. Anal Bioanal Chem 2023; 415:2715-2726. [PMID: 37000211 PMCID: PMC10185643 DOI: 10.1007/s00216-023-04670-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 03/17/2023] [Accepted: 03/21/2023] [Indexed: 04/01/2023]
Abstract
Peptides are an important group of compounds contributing to the desired, as well as the undesired taste of a food product. Their taste impressions can include aspects of sweetness, bitterness, savoury, umami and many other impressions depending on the amino acids present as well as their sequence. Identification of short peptides in foods is challenging. We developed a method to assign identities to short peptides including homologous structures, i.e. peptides containing the same amino acids with a different sequence order, by accurate prediction of the retention times during reversed phase separation. To train the method, a large set of well-defined short peptides with systematic variations in the amino acid sequence was prepared by a novel synthesis strategy called 'swapped-sequence synthesis'. Additionally, several proteins were enzymatically digested to yield short peptides. Experimental retention times were determined after reversed phase separation and peptide MS2 data was acquired using a high-resolution mass spectrometer operated in data-dependent acquisition mode (DDA). A support vector regression model was trained using a combination of existing sequence-independent peptide descriptors and a newly derived set of selected amino acid index derived sequence-specific peptide (ASP) descriptors. The model was trained and validated using the experimental retention times of the 713 small food-relevant peptides prepared. Whilst selecting the most useful ASP descriptors for our model, special attention was given to predict the retention time differences between homologous peptide structures. Inclusion of ASP descriptors greatly improved the ability to accurately predict retention times, including retention time differences between 157 homologous peptide pairs. The final prediction model had a goodness-of-fit (Q2) of 0.94; moreover for 93% of the short peptides, the elution order was correctly predicted.
Collapse
Affiliation(s)
- Boudewijn Hollebrands
- Unilever Foods Innovation Centre - Hive, Bronland 14, 6708 WH, Wageningen, the Netherlands.
- Laboratory of Organic Chemistry, Wageningen University & Research, Stippeneng 4, 6708 WE, Wageningen, the Netherlands.
| | - Jos A Hageman
- Wageningen University & Research, Biometris, P.O. Box 16, 6700 AA, Wageningen, the Netherlands
| | - Jasper W van de Sande
- Laboratory of Organic Chemistry, Wageningen University & Research, Stippeneng 4, 6708 WE, Wageningen, the Netherlands
| | - Bauke Albada
- Laboratory of Organic Chemistry, Wageningen University & Research, Stippeneng 4, 6708 WE, Wageningen, the Netherlands
| | - Hans-Gerd Janssen
- Unilever Foods Innovation Centre - Hive, Bronland 14, 6708 WH, Wageningen, the Netherlands
- Laboratory of Organic Chemistry, Wageningen University & Research, Stippeneng 4, 6708 WE, Wageningen, the Netherlands
| |
Collapse
|
3
|
Karanth S, Iyyaswami R, Raj NT. Biosurfactant Based Reverse Micellar Extraction of Lactoperoxidase from Whey: Exploitation of Rhamnolipid Characteristics for Back Extraction. SEP SCI TECHNOL 2023. [DOI: 10.1080/01496395.2023.2189056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/16/2023]
Affiliation(s)
- Shwetha Karanth
- Department of Chemical Engineering, National Institute of Technology Karnataka, Mangalore, India
| | - Regupathi Iyyaswami
- Department of Chemical Engineering, National Institute of Technology Karnataka, Mangalore, India
| | - Nischal Thyagaraju Raj
- Department of Chemical Engineering, National Institute of Technology Karnataka, Mangalore, India
| |
Collapse
|
4
|
Verma NK, Dewangan RP, Harioudh MK, Ghosh JK. Introduction of a β-leucine residue instead of leucine 9 and glycine 10 residues in Temporin L for improved cell selectivity, stability and activity against planktonic and biofilm of methicillin resistant S. aureus. Bioorg Chem 2023; 134:106440. [PMID: 36870201 DOI: 10.1016/j.bioorg.2023.106440] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 02/07/2023] [Accepted: 02/18/2023] [Indexed: 03/06/2023]
Abstract
Leucine and glycine residues, at the 9th and 10th positions of helical domain of naturally occurring antimicrobial peptide (AMP), Temporin L were substituted with an unnatural amino acid, β-leucine (homovaline) to improve its serum protease stability, haemolytic/cytotoxic properties and reduce the size to some extent. The designed analogue, L9βl-TL showed either equal or improved antimicrobial activity to TL against different microorganisms including the resistant strains. Interestingly, L9βl-TL also exhibited lower haemolytic and cytotoxic activities against human red blood cells and 3T3 cells, respectively. Moreover, L9βl-TL showed antibacterial activity in presence of 25% (v/v) human serum and showed resistance against proteolytic cleavage in presence of it that suggested the serum protease stability of the TL-analogue. L9βl-TL exhibited un-ordered secondary structures in both bacterial and mammalian membrane mimetic lipid vesicles as compared to the helical structures of TL in these environments. However, tryptophan fluorescence studies demonstrated more selective interaction of L9βl-TL with bacterial membrane mimetic lipid vesicles in comparison to non-selective interactions of TL with both kinds of lipid vesicles. Membrane depolarization studies with live MRSA and bacterial membrane-mimetic lipid vesicles suggested a membrane-disrupting mode of action of L9βl-TL. L9βl-TL showed faster bactericidal mechanism compared to TL against MRSA. Interestingly, L9βl-TL was found as more potent than TL either in inhibiting biofilm formation or in eradicating the mature biofilm formed by MRSA. Overall, the present work demonstrates a simple and useful strategy to design of an analogue of TL, with minimal modifications while maintaining its antimicrobial activity with lesser toxicity and higher stability which could be attempted for other AMPs as well.
Collapse
Affiliation(s)
- Neeraj Kumar Verma
- Biochemistry and Structural Biology Division, CSIR-Central Drug Research Institute, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow 226031, India
| | - Rikeshwer Prasad Dewangan
- Biochemistry and Structural Biology Division, CSIR-Central Drug Research Institute, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow 226031, India.
| | - Munesh Kumar Harioudh
- Biochemistry and Structural Biology Division, CSIR-Central Drug Research Institute, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow 226031, India
| | - Jimut Kanti Ghosh
- Biochemistry and Structural Biology Division, CSIR-Central Drug Research Institute, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow 226031, India.
| |
Collapse
|
5
|
Yeung D, Spicer V, Zahedi RP, Krokhin O. Exploring the variable space of shallow machine learning models for reversed-phase retention time prediction. Comput Struct Biotechnol J 2023; 21:2446-2453. [PMID: 37090433 PMCID: PMC10113922 DOI: 10.1016/j.csbj.2023.02.047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 02/24/2023] [Accepted: 02/24/2023] [Indexed: 03/02/2023] Open
Abstract
Peptide retention time (RT) prediction algorithms are tools to study and identify the physicochemical properties that drive the peptide-sorbent interaction. Traditional RT algorithms use multiple linear regression with manually curated parameters to determine the degree of direct contribution for each parameter and improvements to RT prediction accuracies relied on superior feature engineering. Deep learning led to a significant increase in RT prediction accuracy and automated feature engineering via chaining multiple learning modules. However, the significance and the identity of these extracted variables are not well understood due to the inherent complexity when interpreting "relationships-of-relationships" found in deep learning variables. To achieve both accuracy and interpretability simultaneously, we isolated individual modules used in deep learning and the isolated modules are the shallow learners employed for RT prediction in this work. Using a shallow convolutional neural network (CNN) and gated recurrent unit (GRU), we find that the spatial features obtained via the CNN correlate with real-world physicochemical properties namely cross-collisional sections (CCS) and variations of assessable surface area (ASA). Furthermore, we determined that the discovered parameters are "micro-coefficients" that contribute to the "macro-coefficient" - hydrophobicity. Manually embedding CCS and the variations of ASA to the GRU model yielded an R2 = 0.981 using only 525 variables and can represent 88% of the ∼110,000 tryptic peptides used in our dataset. This work highlights the feature discovery process of our shallow learners can achieve beyond traditional RT models in performance and have better interpretability when compared with the deep learning RT algorithms found in the literature.
Collapse
|
6
|
Timms M, Steel R. Defining the specificity of recombinant human erythropoietin confirmation in equine samples by liquid chromatography-tandem mass spectrometry. Drug Test Anal 2021; 14:676-689. [PMID: 34898016 DOI: 10.1002/dta.3210] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 11/17/2021] [Accepted: 11/26/2021] [Indexed: 12/14/2022]
Abstract
The proteotypic human EPO peptides YLLEAK (T4), SLTTLLR (T11), TITADTFR (T14), and VYSNFLR (T17) are often used to confirm the presence of recombinant human EPO (rhEPO) in equine samples. Each of these peptides contains one or more isomeric leucine or isoleucine amino acids, raising the possibility that a simple leucine/isoleucine substitution could lead to a false identification when compared with a rhEPO reference standard. To examine this possibility variants of these four peptides were analysed by liquid chromatography-tandem mass spectrometry (LC-MS/MS). These studies indicate that confirmation of rhEPO in equine samples by immuno-affinity capture and LC-MS/MS analysis is true and accurate. It was also found that chromatography played a greater role in determining LC-MS/MS specificity than tandem mass spectrometry and that, in the case of more hydrophilic peptides, the accuracy of peptide identification could be enhanced by the inclusion of 13 C and 15 N labelled peptide internal standards.
Collapse
Affiliation(s)
- Mark Timms
- Biological Research Unit, Racing Analytical Services Ltd, Flemington, Victoria, Australia
| | - Rohan Steel
- Biological Research Unit, Racing Analytical Services Ltd, Flemington, Victoria, Australia
| |
Collapse
|
7
|
Yamagaki T, Kimura Y, Yamazaki T. Amidation/non-amidation top-down analysis of endogenous neuropeptide Y in brain tissue by nano flow liquid chromatography orbitrap Fourier transform mass spectrometry. JOURNAL OF MASS SPECTROMETRY : JMS 2021; 56:e4716. [PMID: 33759292 PMCID: PMC8047898 DOI: 10.1002/jms.4716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 11/20/2020] [Accepted: 03/02/2021] [Indexed: 05/05/2023]
Abstract
Neuropeptide Y (NPY) is a transmitter molecule in nerve system, and it was an over 4-kDa large peptide with the C-terminal end amidation. NPY is biosynthesized through many maturation processes from a large pre-pro-peptide with peptide-cleavages and amidation that is important to study the biosynthesis regulation. Previously, it was reported that cathepsin L participates in the production of NPY and that cathepsin L generates both of amidated and non-amidated NPYs. However, the non-amidated NPY (NPY-COOH) has not been reported in brain tissues until now. In this study, endogenous NPY-COOH in mouse brain tissue was detected and identified by using nano flow liquid chromatography (nanoLC) orbitrap Fourier transform mass spectrometry (FT-MS) after the effective purification and separation of NPY-COOH from NPY-amide and other peptides using two different gel-filtration chromatography. Amidated NPY was eluted earlier than non-amidated NPY-COOH in the C18 reversed phase nanoLC and the silica-based gel-filtration chromatogram with hydrophobic interaction. The amount of endogenous NPY-COOH was about 0.05% of the matured NPY-amide amount in adult mouse brain.
Collapse
Affiliation(s)
- Tohru Yamagaki
- Suntory Institute for Bioorganic ResearchSuntory Foundation for Life SciencesKyotoJapan
| | - Yuka Kimura
- Suntory Institute for Bioorganic ResearchSuntory Foundation for Life SciencesKyotoJapan
| | - Takashi Yamazaki
- Suntory Institute for Bioorganic ResearchSuntory Foundation for Life SciencesKyotoJapan
| |
Collapse
|
8
|
Beckwith DM, FitzGerald FG, Rodriguez Benavente MC, Mercer ER, Ludwig AK, Michalak M, Kaltner H, Kopitz J, Gabius HJ, Cudic M. Calorimetric Analysis of the Interplay between Synthetic Tn Antigen-Presenting MUC1 Glycopeptides and Human Macrophage Galactose-Type Lectin. Biochemistry 2021; 60:547-558. [PMID: 33560106 PMCID: PMC8269692 DOI: 10.1021/acs.biochem.0c00942] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 01/31/2021] [Indexed: 12/25/2022]
Abstract
Human macrophage galactose-type lectin (hMGL, HML, CD301, CLEC10A), a C-type lectin expressed by dendritic cells and macrophages, is a receptor for N-acetylgalactosamine α-linked to serine/threonine residues (Tn antigen, CD175) and its α2,6-sialylated derivative (sTn, CD175s). Because these two epitopes are among malignant cell glycan displays, particularly when presented by mucin-1 (MUC1), assessing the influence of the site and frequency of glycosylation on lectin recognition will identify determinants governing this interplay. Thus, chemical synthesis of the tandem-repeat O-glycan acceptor region of MUC1 and site-specific threonine glycosylation in all permutations were carried out. Isothermal titration calorimetry (ITC) analysis of the binding of hMGL to this library of MUC1 glycopeptides revealed an enthalpy-driven process and an affinity enhancement of an order of magnitude with an increasing glycan count from 6-8 μM for monoglycosylated peptides to 0.6 μM for triglycosylated peptide. ITC measurements performed in D2O permitted further exploration of the solvation dynamics during binding. A shift in enthalpy-entropy compensation and contact position-specific effects with the likely involvement of the peptide surroundings were detected. KinITC analysis revealed a prolonged lifetime of the lectin-glycan complex with increasing glycan valency and with a change in the solvent to D2O.
Collapse
Affiliation(s)
- Donella M. Beckwith
- Department of Chemistry and Biochemistry, Charles E.
Schmidt College of Science, Florida Atlantic University, Boca
Raton, Florida 33431, United States
| | - Forrest G. FitzGerald
- Department of Chemistry and Biochemistry, Charles E.
Schmidt College of Science, Florida Atlantic University, Boca
Raton, Florida 33431, United States
| | - Maria C. Rodriguez Benavente
- Department of Chemistry and Biochemistry, Charles E.
Schmidt College of Science, Florida Atlantic University, Boca
Raton, Florida 33431, United States
| | - Elizabeth R. Mercer
- Department of Chemistry and Biochemistry, Charles E.
Schmidt College of Science, Florida Atlantic University, Boca
Raton, Florida 33431, United States
| | - Anna-Kristin Ludwig
- Ludwig-Maximilians-University
Munich, Institute of Physiological Chemistry, Faculty of Veterinary
Medicine, Veterinärstrasse 13, 80539 Munich, Germany
| | - Malwina Michalak
- Department of Applied Tumor Biology, Institute of
Pathology, Medical School of the Ruprecht-Karls-University
Heidelberg, Im Neuenheimer Feld 224, 69120 Heidelberg,
Germany
| | - Herbert Kaltner
- Ludwig-Maximilians-University
Munich, Institute of Physiological Chemistry, Faculty of Veterinary
Medicine, Veterinärstrasse 13, 80539 Munich, Germany
| | - Jürgen Kopitz
- Department of Applied Tumor Biology, Institute of
Pathology, Medical School of the Ruprecht-Karls-University
Heidelberg, Im Neuenheimer Feld 224, 69120 Heidelberg,
Germany
| | - Hans-Joachim Gabius
- Ludwig-Maximilians-University
Munich, Institute of Physiological Chemistry, Faculty of Veterinary
Medicine, Veterinärstrasse 13, 80539 Munich, Germany
| | - Maré Cudic
- Department of Chemistry and Biochemistry, Charles E.
Schmidt College of Science, Florida Atlantic University, Boca
Raton, Florida 33431, United States
| |
Collapse
|
9
|
Field JK, Euerby MR, Haselmann KF, Petersson P. Investigation into reversed-phase chromatography peptide separation systems Part IV: Characterisation of mobile phase selectivity differences. J Chromatogr A 2021; 1641:461986. [PMID: 33631703 DOI: 10.1016/j.chroma.2021.461986] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Revised: 02/04/2021] [Accepted: 02/05/2021] [Indexed: 11/25/2022]
Abstract
The differentiation of mobile phase compositions between sub-classes which exhibit distinct chromatographic selectivity (i.e. termed characterisation) towards a range of peptide probes with diverse functionality and hence the possibility for multi-modal retention mechanisms has been undertaken. Due to the complexity of peptide retention mechanisms in given mobile phase conditions, no attempt has been made to explain these, instead mobile phases have simply been classified into distinct groups with an aim of identifying those yielding differing selectivities for use in strategic method development roadmaps for the analysis of peptide mixtures. The selectivity differences between nine synthetic peptides (fragments of [Ile27]-Bovine GLP-2) were used to assess how fifty-one RPC mobile phase compositions of differing pH (range 1.8 - 7.8), salt types, ionic strengths, ion-pair reagents and chaotropic / kosmotropic additives affected chromatographic selectivity on a new generation C18 stationary phase (Ascentis Express C18). The mobile phase compositions consisted of commonly used and novel UV or MS compatible additives. The chemometric tool of Principal Component Analysis (PCA) was used to visualise the differences in selectivity generated between the various mobile phases evaluated. The results highlight the importance of screening numerous mobile phases of differing pH, ion-pair reagents and ionic strength in order to maximise the probability of achieving separation of all the peptides of interest within a complex mixture. PCA permitted a ranking of the relative importance of the various mobile phase parameters evaluated. The concept of using this approach was proven in the analysis of a sample of Bovine GLP-2 (1-15) containing synthesis related impurities. Mobile phases with high ionic strength were demonstrated to be crucial for the generation of symmetrical peaks. The observations made on the C18 phase were compared on three additional stationary phases (i.e. alkyl amide, fluorophenyl and biphenyl), which had previously been shown to possess large selectivity differences towards these peptides, on a limited sub-set of mobile phases. With the exception of the ion-pair reagent, similar trends were obtained for the C18, fluorophenyl and biphenyl phases intimating the applicability of these findings to the vast majority of RPC columns (i.e. neutral or weakly polar in character) which are suitable for the analysis of peptides. The conclusions were not relevant for columns with a more disparate nature (i.e. containing a high degree of positive charge).
Collapse
Affiliation(s)
- Jennifer K Field
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, G4 0RE, United Kingdom
| | - Melvin R Euerby
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, G4 0RE, United Kingdom; Shimadzu UK, Milton Keynes, Buckinghamshire, MK12 5RD, United Kingdom
| | | | | |
Collapse
|
10
|
Lu J, Xu H, Xia J, Ma J, Xu J, Li Y, Feng J. D- and Unnatural Amino Acid Substituted Antimicrobial Peptides With Improved Proteolytic Resistance and Their Proteolytic Degradation Characteristics. Front Microbiol 2020; 11:563030. [PMID: 33281761 PMCID: PMC7688903 DOI: 10.3389/fmicb.2020.563030] [Citation(s) in RCA: 99] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Accepted: 10/22/2020] [Indexed: 01/10/2023] Open
Abstract
The transition of antimicrobial peptides (AMPs) from the laboratory to market has been severely hindered by their instability toward proteases in biological systems. In the present study, we synthesized derivatives of the cationic AMP Pep05 (KRLFKKLLKYLRKF) by substituting L-amino acid residues with D- and unnatural amino acids, such as D-lysine, D-arginine, L-2,4-diaminobutanoic acid (Dab), L-2,3-diaminopropionic acid (Dap), L-homoarginine, 4-aminobutanoic acid (Aib), and L-thienylalanine, and evaluated their antimicrobial activities, toxicities, and stabilities toward trypsin, plasma proteases, and secreted bacterial proteases. In addition to measuring changes in the concentration of the intact peptides, LC-MS was used to identify the degradation products of the modified AMPs in the presence of trypsin and plasma proteases to determine degradation pathways and examine whether the amino acid substitutions afforded improved proteolytic resistance. The results revealed that both D- and unnatural amino acids enhanced the stabilities of the peptides toward proteases. The derivative DP06, in which all of the L-lysine and L-arginine residues were replaced by D-amino acids, displayed remarkable stability and mild toxicity in vitro but only slight activity and severe toxicity in vivo, indicating a significant difference between the in vivo and in vitro results. Unexpectedly, we found that the incorporation of a single Aib residue at the N-terminus of compound UP09 afforded remarkably enhanced plasma stability and improved activity in vivo. Hence, this derivative may represent a candidate AMP for further optimization, providing a new strategy for the design of novel AMPs with improved bioavailability.
Collapse
Affiliation(s)
- Jianguang Lu
- Key State Laboratory of Drug Innovation and Pharmaceutical Technology, China State Institute of Pharmaceutical Industry, Shanghai, China.,Department of Peptide Drugs R&D, Shanghai Duomirui Biotechnology Co., Ltd., Shanghai, China
| | - Hongjiang Xu
- Key State Laboratory of Drug Innovation and Pharmaceutical Technology, China State Institute of Pharmaceutical Industry, Shanghai, China.,Department of Drug Evaluation and Research, Chia Tai Tianqing Pharmaceutical Group Co., Ltd., Nanjing, China
| | - Jianghua Xia
- Key State Laboratory of Drug Innovation and Pharmaceutical Technology, China State Institute of Pharmaceutical Industry, Shanghai, China
| | - Jie Ma
- Department of Peptide Drugs R&D, Shanghai Duomirui Biotechnology Co., Ltd., Shanghai, China
| | - Jun Xu
- Department of Peptide Drugs R&D, Shanghai Duomirui Biotechnology Co., Ltd., Shanghai, China
| | - Yanan Li
- Key State Laboratory of Drug Innovation and Pharmaceutical Technology, China State Institute of Pharmaceutical Industry, Shanghai, China.,School of Pharmacy, Fudan University, Shanghai, China
| | - Jun Feng
- Key State Laboratory of Drug Innovation and Pharmaceutical Technology, China State Institute of Pharmaceutical Industry, Shanghai, China.,Department of Peptide Drugs R&D, Shanghai Duomirui Biotechnology Co., Ltd., Shanghai, China
| |
Collapse
|
11
|
Ultrashort Cationic Lipopeptides-Effect of N-Terminal Amino Acid and Fatty Acid Type on Antimicrobial Activity and Hemolysis. Molecules 2020; 25:molecules25020257. [PMID: 31936341 PMCID: PMC7024302 DOI: 10.3390/molecules25020257] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 12/31/2019] [Accepted: 01/02/2020] [Indexed: 01/28/2023] Open
Abstract
Ultrashort cationic lipopeptides (USCLs) are promising antimicrobial agents that hypothetically may be alternatively used to combat pathogens such as bacteria and fungi. In general, USCLs consist of fatty acid chains and a few basic amino acid residues. The main shortcoming of USCLs is their relatively high cytotoxicity and hemolytic activity. This study focuses on the impact of the hydrophobic fatty acid chain, on both antimicrobial and hemolytic activities. To learn more about this region, a series of USCLs with different straight-chain fatty acids (C8, C10, C12, C14) attached to the tripeptide with two arginine residues were synthesized. The amino acid at the N-terminal position was exchanged for proteinogenic and non-proteinogenic amino acid residues (24 in total). Moreover, the branched fatty acid residues were conjugated to N-terminus of a dipeptide with two arginine residues. All USCLs had C-terminal amides. USCLs were tested against reference bacterial strains (including ESKAPE group) and Candida albicans. The hemolytic potential was tested on human erythrocytes. Hydrophobicity of the compounds was evaluated by RP-HPLC. Shortening of the fatty acid chain and simultaneous addition of amino acid residue at N-terminus were expected to result in more selective and active compounds than those of the reference lipopeptides with similar lipophilicity. Hypothetically, this approach would also be beneficial to other antimicrobial peptides where N-lipidation strategy was used to improve their biological characteristics.
Collapse
|
12
|
Hoffmann W, Langenhan J, Huhmann S, Moschner J, Chang R, Accorsi M, Seo J, Rademann J, Meijer G, Koksch B, Bowers MT, von Helden G, Pagel K. Eine intrinsische Hydrophobieskala für Aminosäuren und ihre Anwendung auf fluorierte Verbindungen. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201813954] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Waldemar Hoffmann
- Freie Universität Berlin Fachbereich für Biologie, Chemie und Pharmazie Takustraße 3 / Königin-Luise-Straße 2+4 14195 Berlin Deutschland
- Fritz-Haber-Institut der Max-Planck-Gesellschaft Abteilung Molekülphysik Faradayweg 4–6 14195 Berlin Deutschland
| | - Jennifer Langenhan
- Fritz-Haber-Institut der Max-Planck-Gesellschaft Abteilung Molekülphysik Faradayweg 4–6 14195 Berlin Deutschland
| | - Susanne Huhmann
- Freie Universität Berlin Fachbereich für Biologie, Chemie und Pharmazie Takustraße 3 / Königin-Luise-Straße 2+4 14195 Berlin Deutschland
| | - Johann Moschner
- Freie Universität Berlin Fachbereich für Biologie, Chemie und Pharmazie Takustraße 3 / Königin-Luise-Straße 2+4 14195 Berlin Deutschland
| | - Rayoon Chang
- Freie Universität Berlin Fachbereich für Biologie, Chemie und Pharmazie Takustraße 3 / Königin-Luise-Straße 2+4 14195 Berlin Deutschland
- Fritz-Haber-Institut der Max-Planck-Gesellschaft Abteilung Molekülphysik Faradayweg 4–6 14195 Berlin Deutschland
| | - Matteo Accorsi
- Freie Universität Berlin Fachbereich für Biologie, Chemie und Pharmazie Takustraße 3 / Königin-Luise-Straße 2+4 14195 Berlin Deutschland
| | - Jongcheol Seo
- Fritz-Haber-Institut der Max-Planck-Gesellschaft Abteilung Molekülphysik Faradayweg 4–6 14195 Berlin Deutschland
- aktuelle Adresse: University of Science and Technology (POSTECH) Fachbereich Chemie 77 Cheongam-ro Pohang 37673 Republik Korea
| | - Jörg Rademann
- Freie Universität Berlin Fachbereich für Biologie, Chemie und Pharmazie Takustraße 3 / Königin-Luise-Straße 2+4 14195 Berlin Deutschland
| | - Gerard Meijer
- Fritz-Haber-Institut der Max-Planck-Gesellschaft Abteilung Molekülphysik Faradayweg 4–6 14195 Berlin Deutschland
| | - Beate Koksch
- Freie Universität Berlin Fachbereich für Biologie, Chemie und Pharmazie Takustraße 3 / Königin-Luise-Straße 2+4 14195 Berlin Deutschland
| | - Michael T. Bowers
- University of California Santa Barbara Department of Chemistry & Biochemistry Santa Barbara California 93106 USA
| | - Gert von Helden
- Fritz-Haber-Institut der Max-Planck-Gesellschaft Abteilung Molekülphysik Faradayweg 4–6 14195 Berlin Deutschland
| | - Kevin Pagel
- Freie Universität Berlin Fachbereich für Biologie, Chemie und Pharmazie Takustraße 3 / Königin-Luise-Straße 2+4 14195 Berlin Deutschland
- Fritz-Haber-Institut der Max-Planck-Gesellschaft Abteilung Molekülphysik Faradayweg 4–6 14195 Berlin Deutschland
| |
Collapse
|
13
|
Hoffmann W, Langenhan J, Huhmann S, Moschner J, Chang R, Accorsi M, Seo J, Rademann J, Meijer G, Koksch B, Bowers MT, von Helden G, Pagel K. An Intrinsic Hydrophobicity Scale for Amino Acids and Its Application to Fluorinated Compounds. Angew Chem Int Ed Engl 2019; 58:8216-8220. [PMID: 30958917 DOI: 10.1002/anie.201813954] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Revised: 03/01/2019] [Indexed: 11/10/2022]
Abstract
More than 100 hydrophobicity scales have been introduced, with each being based on a distinct condensed-phase approach. However, a comparison of the hydrophobicity values gained from different techniques, and their relative ranking, is not straightforward, as the interactions between the environment and the amino acid are unique to each method. Here, we overcome this limitation by studying the properties of amino acids in the clean-room environment of the gas phase. In the gas phase, entropic contributions from the hydrophobic effect are by default absent and only the polarity of the side chain dictates the self-assembly. This allows for the derivation of a novel hydrophobicity scale, which is based solely on the interaction between individual amino acid units within the cluster and thus more accurately reflects the intrinsic nature of a side chain. This principle can be further applied to classify non-natural derivatives, as shown here for fluorinated amino acid variants.
Collapse
Affiliation(s)
- Waldemar Hoffmann
- Freie Universität Berlin, Department of Biology, Chemistry and Pharmacy, Takustrasse 3/Königin-Luise-Strasse 2+4, 14195, Berlin, Germany.,Fritz-Haber-Institut der Max-Planck-Gesellschaft, Department of Molecular Physics, Faradayweg 4-6, 14195, Berlin, Germany
| | - Jennifer Langenhan
- Fritz-Haber-Institut der Max-Planck-Gesellschaft, Department of Molecular Physics, Faradayweg 4-6, 14195, Berlin, Germany
| | - Susanne Huhmann
- Freie Universität Berlin, Department of Biology, Chemistry and Pharmacy, Takustrasse 3/Königin-Luise-Strasse 2+4, 14195, Berlin, Germany
| | - Johann Moschner
- Freie Universität Berlin, Department of Biology, Chemistry and Pharmacy, Takustrasse 3/Königin-Luise-Strasse 2+4, 14195, Berlin, Germany
| | - Rayoon Chang
- Freie Universität Berlin, Department of Biology, Chemistry and Pharmacy, Takustrasse 3/Königin-Luise-Strasse 2+4, 14195, Berlin, Germany.,Fritz-Haber-Institut der Max-Planck-Gesellschaft, Department of Molecular Physics, Faradayweg 4-6, 14195, Berlin, Germany
| | - Matteo Accorsi
- Freie Universität Berlin, Department of Biology, Chemistry and Pharmacy, Takustrasse 3/Königin-Luise-Strasse 2+4, 14195, Berlin, Germany
| | - Jongcheol Seo
- Fritz-Haber-Institut der Max-Planck-Gesellschaft, Department of Molecular Physics, Faradayweg 4-6, 14195, Berlin, Germany.,present address: University of Science and Technology (POSTECH), Department of Chemistry, 77 Cheongam-ro, Pohang, 37673, Korea
| | - Jörg Rademann
- Freie Universität Berlin, Department of Biology, Chemistry and Pharmacy, Takustrasse 3/Königin-Luise-Strasse 2+4, 14195, Berlin, Germany
| | - Gerard Meijer
- Fritz-Haber-Institut der Max-Planck-Gesellschaft, Department of Molecular Physics, Faradayweg 4-6, 14195, Berlin, Germany
| | - Beate Koksch
- Freie Universität Berlin, Department of Biology, Chemistry and Pharmacy, Takustrasse 3/Königin-Luise-Strasse 2+4, 14195, Berlin, Germany
| | - Michael T Bowers
- University of California Santa Barbara, Department of Chemistry & Biochemistry, Santa Barbara, California, 93106, USA
| | - Gert von Helden
- Fritz-Haber-Institut der Max-Planck-Gesellschaft, Department of Molecular Physics, Faradayweg 4-6, 14195, Berlin, Germany
| | - Kevin Pagel
- Freie Universität Berlin, Department of Biology, Chemistry and Pharmacy, Takustrasse 3/Königin-Luise-Strasse 2+4, 14195, Berlin, Germany.,Fritz-Haber-Institut der Max-Planck-Gesellschaft, Department of Molecular Physics, Faradayweg 4-6, 14195, Berlin, Germany
| |
Collapse
|
14
|
Tarasova IA, Masselon CD, Gorshkov AV, Gorshkov MV. Predictive chromatography of peptides and proteins as a complementary tool for proteomics. Analyst 2018; 141:4816-4832. [PMID: 27419248 DOI: 10.1039/c6an00919k] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
In the last couple of decades, considerable effort has been focused on developing methods for quantitative and qualitative proteome characterization. The method of choice in this characterization is mass spectrometry used in combination with sample separation. One of the most widely used separation techniques at the front end of a mass spectrometer is high performance liquid chromatography (HPLC). A unique feature of HPLC is its specificity to the amino acid sequence of separated peptides and proteins. This specificity may provide additional information about the peptides or proteins under study which is complementary to the mass spectrometry data. The value of this information for proteomics has been recognized in the past few decades, which has stimulated significant effort in the development and implementation of computational and theoretical models for the prediction of peptide retention time for a given sequence. Here we review the advances in this area and the utility of predicted retention times for proteomic applications.
Collapse
Affiliation(s)
- Irina A Tarasova
- Institute for Energy Problems of Chemical Physics, Russian Academy of Sciences, Moscow 119334, Russia.
| | - Christophe D Masselon
- CEA, iRTSV-BGE, Laboratoire d'Etude de la Dynamique des Protéomes, Grenoble, F-38000, France and INSERM, U1038-BGE, F-38000, Grenoble, France
| | - Alexander V Gorshkov
- N.N. Semenov Institute of Chemical Physics, Russian Academy of Sciences, Moscow 119991, Russia
| | - Mikhail V Gorshkov
- Institute for Energy Problems of Chemical Physics, Russian Academy of Sciences, Moscow 119334, Russia. and Moscow Institute of Physics and Technology (State University), Dolgoprudny, Moscow region 141700, Russia
| |
Collapse
|
15
|
Badgett MJ, Boyes B, Orlando R. Peptide retention prediction using hydrophilic interaction liquid chromatography coupled to mass spectrometry. J Chromatogr A 2018; 1537:58-65. [PMID: 29338870 PMCID: PMC5805588 DOI: 10.1016/j.chroma.2017.12.055] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Revised: 12/12/2017] [Accepted: 12/20/2017] [Indexed: 10/18/2022]
Abstract
A model that predicts retention for peptides using a HALO® penta-HILIC column and gradient elution was created. Coefficients for each amino acid were derived using linear regression analysis and these coefficients can be summed to predict the retention of peptides. This model has a high correlation between experimental and predicted retention times (0.946), which is on par with previous RP and HILIC models. External validation of the model was performed using a set of H. pylori samples on the same LC-MS system used to create the model, and the deviation from actual to predicted times was low. Apart from amino acid composition, length and location of amino acid residues on a peptide were examined and two site-specific corrections for hydrophobic residues at the N-terminus as well as hydrophobic residues one spot over from the N-terminus were created.
Collapse
Affiliation(s)
- Majors J Badgett
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA 30602 United States
| | - Barry Boyes
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA 30602 United States; Advanced Materials Technology, Wilmington, DE 19810 United States
| | - Ron Orlando
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA 30602 United States.
| |
Collapse
|
16
|
Digging into the low molecular weight peptidome with the OligoNet web server. Sci Rep 2017; 7:11692. [PMID: 28916823 PMCID: PMC5601033 DOI: 10.1038/s41598-017-11786-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Accepted: 08/25/2017] [Indexed: 12/04/2022] Open
Abstract
Bioactive peptides play critical roles in regulating many biological processes. Recently, natural short peptides biomarkers are drawing significant attention and are considered as “hidden treasure” of drug candidates. High resolution and high mass accuracy provided by mass spectrometry (MS)-based untargeted metabolomics would enable the rapid detection and wide coverage of the low-molecular-weight peptidome. However, translating unknown masses (<1 500 Da) into putative peptides is often limited due to the lack of automatic data processing tools and to the limit of peptide databases. The web server OligoNet responds to this challenge by attempting to decompose each individual mass into a combination of amino acids out of metabolomics datasets. It provides an additional network-based data interpretation named “Peptide degradation network” (PDN), which unravels interesting relations between annotated peptides and generates potential functional patterns. The ab initio PDN built from yeast metabolic profiling data shows a great similarity with well-known metabolic networks, and could aid biological interpretation. OligoNet allows also an easy evaluation and interpretation of annotated peptides in systems biology, and is freely accessible at https://daniellyz200608105.shinyapps.io/OligoNet/.
Collapse
|
17
|
Retro analog concept: comparative study on physico-chemical and biological properties of selected antimicrobial peptides. Amino Acids 2017; 49:1755-1771. [PMID: 28756544 PMCID: PMC5602100 DOI: 10.1007/s00726-017-2473-7] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2017] [Accepted: 07/20/2017] [Indexed: 01/03/2023]
Abstract
Increasing drug resistance of common pathogens urgently needs discovery of new effective molecules. Antimicrobial peptides are believed to be one of the possible solutions of this problem. One of the approaches for improvement of biological properties is reversion of the sequence (retro analog concept). This research is based on investigation of antimicrobial activity against Gram-positive, Gram-negative bacteria, and fungi, hemolysis of erythrocytes, interpretation of the circular dichroism spectra, measurement of counter-ion content, and assessment of the peptide hydrophobicity and self-assembly using reversed-phase chromatography. The experiments were conducted using the following peptides: aurein 1.2, CAMEL, citropin 1.1, omiganan, pexiganan, temporin A, and their retro analogs. Among the compounds studied, only retro omiganan showed an enhanced antimicrobial and a slightly increased hemolytic activity as compared to parent molecule. Moreover, retro pexiganan exhibited high activity towards Klebsiella pneumoniae, whereas pexiganan was in general more or equally active against the rest of tested microorganisms. Furthermore, the determined activity was closely related to the peptide hydrophobicity. In general, the reduced hemolytic activity correlates with lower antimicrobial activity. The tendency to self-association and helicity fraction in SDS seems to be correlated. The normalized RP-HPLC—temperature profiles of citropin 1.1 and aurein 1.2, revealed an enhanced tendency to self-association than that of their retro analogs.
Collapse
|
18
|
Tsiatsiani L, Giansanti P, Scheltema RA, van den Toorn H, Overall CM, Altelaar AFM, Heck AJR. Opposite Electron-Transfer Dissociation and Higher-Energy Collisional Dissociation Fragmentation Characteristics of Proteolytic K/R(X) n and (X) nK/R Peptides Provide Benefits for Peptide Sequencing in Proteomics and Phosphoproteomics. J Proteome Res 2016; 16:852-861. [PMID: 28111955 DOI: 10.1021/acs.jproteome.6b00825] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
A key step in shotgun proteomics is the digestion of proteins into peptides amenable for mass spectrometry. Tryptic peptides can be readily sequenced and identified by collision-induced dissociation (CID) or higher-energy collisional dissociation (HCD) because the fragmentation rules are well-understood. Here, we investigate LysargiNase, a perfect trypsin mirror protease, because it cleaves equally specific at arginine and lysine residues, albeit at the N-terminal end. LysargiNase peptides are therefore practically tryptic-like in length and sequence except that following ESI, the two protons are now both positioned at the N-terminus. Here, we compare side-by-side the chromatographic separation properties, gas-phase fragmentation characteristics, and (phospho)proteome sequence coverage of tryptic (i.e., (X)nK/R) and LysargiNase (i.e., K/R(X)n) peptides using primarily electron-transfer dissociation (ETD) and, for comparison, HCD. We find that tryptic and LysargiNase peptides fragment nearly as mirror images. For LysargiNase predominantly N-terminal peptide ions (c-ions (ETD) and b-ions (HCD)) are formed, whereas for trypsin, C-terminal fragment ions dominate (z-ions (ETD) and y-ions (HCD)) in a homologous mixture of complementary ions. Especially during ETD, LysargiNase peptides fragment into low-complexity but information-rich sequence ladders. Trypsin and LysargiNase chart distinct parts of the proteome, and therefore, the combined use of these enzymes will benefit a more in-depth and reliable analysis of (phospho)proteomes.
Collapse
Affiliation(s)
| | | | | | | | - Christopher M Overall
- Centre for Blood Research, Department of Oral Biological and Medical Sciences, and Department of Biochemistry and Molecular Biology, University of British Columbia , Vancouver V6T 1Z3, BC, Canada
| | | | | |
Collapse
|
19
|
Le Maux S, Nongonierma AB, Murray B, Kelly PM, FitzGerald RJ. Identification of short peptide sequences in the nanofiltration permeate of a bioactive whey protein hydrolysate. Food Res Int 2015. [DOI: 10.1016/j.foodres.2015.09.012] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
20
|
Wang CK, Northfield SE, Swedberg JE, Colless B, Chaousis S, Price DA, Liras S, Craik DJ. Exploring experimental and computational markers of cyclic peptides: Charting islands of permeability. Eur J Med Chem 2015; 97:202-13. [PMID: 25974856 DOI: 10.1016/j.ejmech.2015.04.049] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2015] [Revised: 04/23/2015] [Accepted: 04/24/2015] [Indexed: 12/25/2022]
Abstract
An increasing number of macrocyclic peptides that cross biological membranes are being reported, suggesting that it might be possible to develop peptides into orally bioavailable therapeutics; however, current understanding of what makes macrocyclic peptides cell permeable is still limited. Here, we synthesized 62 cyclic hexapeptides and characterized their permeability using in vitro assays commonly used to predict in vivo absorption rates, i.e. the Caco-2 and PAMPA assays. We correlated permeability with experimentally measured parameters of peptide conformation obtained using rapid methods based on chromatography and nuclear magnetic resonance spectroscopy. Based on these correlations, we propose a model describing the interplay between peptide permeability, lipophilicity and hydrogen bonding potential. Specifically, peptides with very high permeability have high lipophilicity and few solvent hydrogen bond interactions, whereas peptides with very low permeability have low lipophilicity or many solvent interactions. Our model is supported by molecular dynamics simulations of the cyclic peptides calculated in explicit solvent, providing a structural basis for the observed correlations. This prospective exploration into biomarkers of peptide permeability has the potential to unlock wider opportunities for development of peptides into drugs.
Collapse
Affiliation(s)
- Conan K Wang
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Susan E Northfield
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Joakim E Swedberg
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Barbara Colless
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Stephanie Chaousis
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - David A Price
- Worldwide Medicinal Chemistry, CVMED, Pfizer, 610 Main Street, Cambridge, MA 02139, USA
| | - Spiros Liras
- Worldwide Medicinal Chemistry, CVMED, Pfizer, 610 Main Street, Cambridge, MA 02139, USA
| | - David J Craik
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4072, Australia.
| |
Collapse
|
21
|
Le Maux S, Nongonierma AB, FitzGerald RJ. Improved short peptide identification using HILIC–MS/MS: Retention time prediction model based on the impact of amino acid position in the peptide sequence. Food Chem 2015; 173:847-54. [DOI: 10.1016/j.foodchem.2014.10.104] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2014] [Revised: 10/04/2014] [Accepted: 10/18/2014] [Indexed: 01/10/2023]
|
22
|
Peigneur S, Paolini-Bertrand M, Gaertner H, Biass D, Violette A, Stöcklin R, Favreau P, Tytgat J, Hartley O. δ-Conotoxins synthesized using an acid-cleavable solubility tag approach reveal key structural determinants for NaV subtype selectivity. J Biol Chem 2014; 289:35341-50. [PMID: 25352593 DOI: 10.1074/jbc.m114.610436] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Conotoxins are venom peptides from cone snails with multiple disulfide bridges that provide a rigid structural scaffold. Typically acting on ion channels implicated in neurotransmission, conotoxins are of interest both as tools for pharmacological studies and as potential new medicines. δ-Conotoxins act by inhibiting inactivation of voltage-gated sodium channels (Nav). Their pharmacology has not been extensively studied because their highly hydrophobic character makes them difficult targets for chemical synthesis. Here we adopted an acid-cleavable solubility tag strategy that facilitated synthesis, purification, and directed disulfide bridge formation. Using this approach we readily produced three native δ-conotoxins from Conus consors plus two rationally designed hybrid peptides. We observed striking differences in Nav subtype selectivity across this group of compounds, which differ in primary structure at only three positions: 12, 23, and 25. Our results provide new insights into the structure-activity relationships underlying the Nav subtype selectivity of δ-conotoxins. Use of the acid-cleavable solubility tag strategy should facilitate synthesis of other hydrophobic peptides with complex disulfide bridge patterns.
Collapse
Affiliation(s)
- Steve Peigneur
- From the Department Pharmaceutical Sciences, Laboratory of Toxicology & Pharmacology, Catholic University, 3000 Leuven, Belgium
| | - Marianne Paolini-Bertrand
- the Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, 1211 Geneva, Switzerland
| | - Hubert Gaertner
- the Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, 1211 Geneva, Switzerland
| | - Daniel Biass
- Atheris Laboratories, 1233 Bernex, Switzerland, and
| | | | | | - Philippe Favreau
- Atheris Laboratories, 1233 Bernex, Switzerland, and the Department of Environment, Transport and Agriculture, Service de Toxicologie de l'Environnement, 1211 Geneva, Switzerland
| | - Jan Tytgat
- From the Department Pharmaceutical Sciences, Laboratory of Toxicology & Pharmacology, Catholic University, 3000 Leuven, Belgium,
| | - Oliver Hartley
- the Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, 1211 Geneva, Switzerland,
| |
Collapse
|
23
|
Gilar M, Jaworski A, McDonald TS. Solvent selectivity and strength in reversed-phase liquid chromatography separation of peptides. J Chromatogr A 2014; 1337:140-6. [DOI: 10.1016/j.chroma.2014.02.048] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2014] [Revised: 02/11/2014] [Accepted: 02/16/2014] [Indexed: 01/29/2023]
|
24
|
Qian Z, Dominguez SR, Holmes KV. Role of the spike glycoprotein of human Middle East respiratory syndrome coronavirus (MERS-CoV) in virus entry and syncytia formation. PLoS One 2013; 8:e76469. [PMID: 24098509 PMCID: PMC3789674 DOI: 10.1371/journal.pone.0076469] [Citation(s) in RCA: 175] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2013] [Accepted: 08/29/2013] [Indexed: 12/19/2022] Open
Abstract
Little is known about the biology of the emerging human group c betacoronavirus, Middle East Respiratory Syndrome coronavirus (MERS-CoV). Because coronavirus spike glycoproteins (S) mediate virus entry, affect viral host range, and elicit neutralizing antibodies, analyzing the functions of MERS-CoV S protein is a high research priority. MERS-CoV S on lentivirus pseudovirions mediated entry into a variety of cell types including embryo cells from New World Eptesicus fuscus bats. Surprisingly, a polyclonal antibody to the S protein of MHV, a group a murine betacoronavirus, cross-reacted in immunoblots with the S2 domain of group c MERS-CoV spike protein. MERS pseudovirions released from 293T cells contained only uncleaved S, and pseudovirus entry was blocked by lysosomotropic reagents NH4Cl and bafilomycin and inhibitors of cathepsin L. However, when MERS pseudovirions with uncleaved S protein were adsorbed at 4°C to Vero E6 cells, brief trypsin treatment at neutral pH triggered virus entry at the plasma membrane and syncytia formation. When 293T cells producing MERS pseudotypes co-expressed serine proteases TMPRSS-2 or -4, large syncytia formed at neutral pH, and the pseudovirions produced were non-infectious and deficient in S protein. These experiments show that if S protein on MERS pseudovirions is uncleaved, then viruses enter by endocytosis in a cathepsin L-dependent manner, but if MERS-CoV S is cleaved, either during virus maturation by serine proteases or on pseudovirions by trypsin in extracellular fluids, then viruses enter at the plasma membrane at neutral pH and cause massive syncytia formation even in cells that express little or no MERS-CoV receptor. Thus, whether MERS-CoV enters cells within endosomes or at the plasma membrane depends upon the host cell type and tissue, and is determined by the location of host proteases that cleave the viral spike glycoprotein and activate membrane fusion.
Collapse
Affiliation(s)
- Zhaohui Qian
- Department of Microbiology, University of Colorado School of Medicine, Aurora, Colorado, United States of America
- Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Samuel R. Dominguez
- Department of Microbiology, University of Colorado School of Medicine, Aurora, Colorado, United States of America
- Department of Pediatrics, University of Colorado School of Medicine, Aurora, Colorado, United States of America
| | - Kathryn V. Holmes
- Department of Microbiology, University of Colorado School of Medicine, Aurora, Colorado, United States of America
- * E-mail:
| |
Collapse
|
25
|
Mant CT, Hodges RS. Design of peptide standards with the same composition and minimal sequence variation to monitor performance/selectivity of reversed-phase matrices. J Chromatogr A 2012; 1230:30-40. [PMID: 22326185 PMCID: PMC3294100 DOI: 10.1016/j.chroma.2012.01.053] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2011] [Revised: 01/13/2012] [Accepted: 01/19/2012] [Indexed: 10/14/2022]
Abstract
The present manuscript extends our de novo peptide design approach to the synthesis and evaluation of a new generation of reversed-phase HPLC peptide standards with the same composition and minimal sequence variation (SCMSV). Thus, we have designed and synthesized four series of peptide standards with the sequences Gly-X-Leu-Gly-Leu-Ala-Leu-Gly-Gly-Leu-Lys-Lys-amide, where the N-terminal is either N(α)-acetylated (Series 1) or contains a free α-amino group (Series 3); and Gly-Gly-Leu-Gly-Gly-Ala-Leu-Gly-X-Leu-Lys-Lys-amide, where the N-terminal is either N(α)-acetylated (Series 2) or contains a free α-amino group (Series 4). In this initial study, the single substitution position, X, was substituted with alkyl side-chains (Ala
Collapse
Affiliation(s)
- Colin T. Mant
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver, School of Medicine, Aurora, CO 80045, USA
| | - Robert S. Hodges
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver, School of Medicine, Aurora, CO 80045, USA
| |
Collapse
|
26
|
Shamshurin D, Spicer V, Krokhin OV. Defining intrinsic hydrophobicity of amino acids’ side chains in random coil conformation. Reversed-phase liquid chromatography of designed synthetic peptides vs. random peptide data sets. J Chromatogr A 2011; 1218:6348-55. [DOI: 10.1016/j.chroma.2011.06.092] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2011] [Revised: 06/21/2011] [Accepted: 06/27/2011] [Indexed: 11/25/2022]
|
27
|
Fæste CK, Rønning HT, Christians U, Granum PE. Liquid chromatography and mass spectrometry in food allergen detection. J Food Prot 2011; 74:316-45. [PMID: 21333155 DOI: 10.4315/0362-028x.jfp-10-336] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Food allergy is an important issue in the field of food safety because of the hazards for affected persons and the hygiene requirements and legal regulations imposed on the food industry. Consumer protection and law enforcement require suitable analytical techniques for the detection of allergens in foods. Immunological methods are currently preferred; however, confirmatory alternatives are needed. The determination of allergenic proteins by liquid chromatography and mass spectrometry has greatly advanced in recent years, and gel-free allergenomics is becoming a routinely used approach for the identification and quantitation of food allergens. The present review provides a brief overview of the principles of proteomic procedures, various chromatographic set ups, and mass spectrometry instrumentation used in allergenomics. A compendium of published liquid chromatography methods, proteomic analyses, typical marker peptides, and quantitative assays for 14 main allergy-causing foods is also included.
Collapse
Affiliation(s)
- Christiane Kruse Fæste
- Section of Chemistry, Department of Feed and Food Safety, National Veterinary Institute, P.O. Box 750 Sentrum, Oslo N-0106, Norway.
| | | | | | | |
Collapse
|
28
|
Azarova IN, Kuchkina AY, Baram GI, Goldberg EL. Prediction of peptide retention volumes in gradient reversed phase HPLC. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2011; 34:171-6. [DOI: 10.1134/s1068162008020039] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
29
|
Liu C, Wang H, Fu Y, Yuan Z, Chi H, Wang L, Sun R, He S. [Prediction of peptide retention time in reversed-phase liquid chromatography and its application in protein identification]. Se Pu 2010; 28:529-34. [PMID: 20873570 DOI: 10.3724/sp.j.1123.2010.00529] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Liquid chromatography-mass spectrometry (LC-MS) is the mainstream of high throughput protein identification technology. Peptide retention time in reversed-phase liquid chromatography (RPLC) is mainly determined by the physicochemical properties of the peptide and the LC conditions (stationary phase and mobile phase). Retention time can be predicted by analyzing these properties and quantifying their effects on peptide chromatographic behavior. Prediction of peptide retention time in LC can be used to improve identification of peptides and post translational modifications (PTM). There are mainly two methods to predict retention time: i.e., retention coefficients and machine learning. The coefficient of determination between observed and predicted retention times can reach 0.93. With the development of LC-MS technology, retention time prediction will become an important tool to facilitate protein identification.
Collapse
Affiliation(s)
- Chao Liu
- Key Laboratory of Intelligent Information Processing, Institute of Computing Technology, Chinese Academy of Sciences, Beijing 100190, China
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Mant CT, Cepeniene D, Hodges RS. Reversed-phase HPLC of peptides: Assessing column and solvent selectivity on standard, polar-embedded and polar endcapped columns. J Sep Sci 2010; 33:3005-21. [DOI: 10.1002/jssc.201000518] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
31
|
Alpert AJ, Petritis K, Kangas L, Smith RD, Mechtler K, Mitulović G, Mohammed S, Heck AJR. Peptide orientation affects selectivity in ion-exchange chromatography. Anal Chem 2010; 82:5253-9. [PMID: 20481592 PMCID: PMC2884984 DOI: 10.1021/ac100651k] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Here we demonstrate that separation of proteolytic peptides, having the same net charge and one basic residue, is affected by their specific orientation toward the stationary phase in ion-exchange chromatography. In electrostatic repulsion-hydrophilic interaction chromatography (ERLIC) with an anion-exchange material, the C-terminus of the peptides is, on average, oriented toward the stationary phase. In cation exchange, the average peptide orientation is the opposite. Data with synthetic peptides, serving as orientation probes, indicate that in tryptic/Lys-C peptides the C-terminal carboxyl group appears to be in a zwitterionic bond with the side chain of the C-terminal Lys/Arg residue. In effect, the side chain is then less basic than the N-terminus, accounting for the specific orientation of tryptic and Lys-C peptides. Analyses of larger sets of peptides, generated from lysates by either Lys-N, Lys-C, or trypsin, reveal that specific peptide orientation affects the ability of charged side chains, such as phosphate residues, to influence retention. Phosphorylated residues that are remote in the sequence from the binding site affect retention less than those that are closer. When a peptide contains multiple charged sites, then orientation is observed to be less rigid and retention tends to be governed by the peptide's net charge rather than its sequence. These general observations could be of value in confirming a peptide's identification and, in particular, phosphosite assignments in proteomics analyses. More generally, orientation accounts for the ability of chromatography to separate peptides of the same composition but different sequence.
Collapse
Affiliation(s)
- Andrew J Alpert
- PolyLC Inc., 9151 Rumsey Road, Ste. 180, Columbia, Maryland 21045, USA.
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Babushok VI, Zenkevich IG. Retention Characteristics of Peptides in RP-LC: Peptide Retention Prediction. Chromatographia 2010. [DOI: 10.1365/s10337-010-1721-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
33
|
Tsai CW, Liu CI, Chan YC, Tsai HHG, Ruaan RC. Study of Conformation Effects on the Retention of Small Peptides in Reversed-Phase Chromatography by Thermodynamic Analysis and Molecular Dynamics Simulation. J Phys Chem B 2010; 114:11620-7. [DOI: 10.1021/jp101846n] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Ching-W Tsai
- Department of Chemical and Materials Engineering, and Department of Chemistry, National Central University, Jhong-Li, Taiwan 320, R&D Center for Membrane Technology, Department of Chemical Engineering, Chung Yuan Christian University, Jhong-Li, Taoyuan 320, Taiwan, and Department of Nursing, Mei-Ho Institute of Technology, Pintung 912, Taiwan
| | - Chih-I Liu
- Department of Chemical and Materials Engineering, and Department of Chemistry, National Central University, Jhong-Li, Taiwan 320, R&D Center for Membrane Technology, Department of Chemical Engineering, Chung Yuan Christian University, Jhong-Li, Taoyuan 320, Taiwan, and Department of Nursing, Mei-Ho Institute of Technology, Pintung 912, Taiwan
| | - Ying-C Chan
- Department of Chemical and Materials Engineering, and Department of Chemistry, National Central University, Jhong-Li, Taiwan 320, R&D Center for Membrane Technology, Department of Chemical Engineering, Chung Yuan Christian University, Jhong-Li, Taoyuan 320, Taiwan, and Department of Nursing, Mei-Ho Institute of Technology, Pintung 912, Taiwan
| | - Hui-H G Tsai
- Department of Chemical and Materials Engineering, and Department of Chemistry, National Central University, Jhong-Li, Taiwan 320, R&D Center for Membrane Technology, Department of Chemical Engineering, Chung Yuan Christian University, Jhong-Li, Taoyuan 320, Taiwan, and Department of Nursing, Mei-Ho Institute of Technology, Pintung 912, Taiwan
| | - Ruoh-C Ruaan
- Department of Chemical and Materials Engineering, and Department of Chemistry, National Central University, Jhong-Li, Taiwan 320, R&D Center for Membrane Technology, Department of Chemical Engineering, Chung Yuan Christian University, Jhong-Li, Taoyuan 320, Taiwan, and Department of Nursing, Mei-Ho Institute of Technology, Pintung 912, Taiwan
| |
Collapse
|
34
|
Harscoat-Schiavo C, Raminosoa F, Ronat-Heit E, Vanderesse R, Marc I. Modeling the separation of small peptides by cation-exchange chromatography. J Sep Sci 2010; 33:2447-57. [DOI: 10.1002/jssc.201000112] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
35
|
Gorshkov AV, Evreinov VV, Tarasova IA, Gorshkov MV. Critical chromatography of macromolecules as a tool for reading the amino acid sequence of biomacromolecules: Reality or science fiction? JOURNAL OF ANALYTICAL CHEMISTRY 2010. [DOI: 10.1134/s1061934810010028] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
36
|
Krokhin OV, Spicer V. Peptide Retention Standards and Hydrophobicity Indexes in Reversed-Phase High-Performance Liquid Chromatography of Peptides. Anal Chem 2009; 81:9522-30. [DOI: 10.1021/ac9016693] [Citation(s) in RCA: 116] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Oleg V. Krokhin
- Department of Internal Medicine, University of Manitoba, Manitoba Centre for Proteomics and Systems Biology, 799 JBRC, 715 McDermot Avenue, Winnipeg, MB, R3E 3P4, Canada, and Department of Physics and Astronomy, University of Manitoba, Winnipeg, MB, R3T 2N2, Canada
| | - Vic Spicer
- Department of Internal Medicine, University of Manitoba, Manitoba Centre for Proteomics and Systems Biology, 799 JBRC, 715 McDermot Avenue, Winnipeg, MB, R3E 3P4, Canada, and Department of Physics and Astronomy, University of Manitoba, Winnipeg, MB, R3T 2N2, Canada
| |
Collapse
|
37
|
Bączek T, Kaliszan R. Predictions of peptides' retention times in reversed-phase liquid chromatography as a new supportive tool to improve protein identification in proteomics. Proteomics 2009; 9:835-47. [DOI: 10.1002/pmic.200800544] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
38
|
Mant CT, Kovacs JM, Kim HM, Pollock DD, Hodges RS. Intrinsic amino acid side-chain hydrophilicity/hydrophobicity coefficients determined by reversed-phase high-performance liquid chromatography of model peptides: comparison with other hydrophilicity/hydrophobicity scales. Biopolymers 2009; 92:573-95. [PMID: 19795449 PMCID: PMC2792893 DOI: 10.1002/bip.21316] [Citation(s) in RCA: 96] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
An accurate determination of the intrinsic hydrophilicity/hydrophobicity of amino acid side-chains in peptides and proteins is fundamental in understanding many area of research, including protein folding and stability, peptide and protein function, protein-protein interactions and peptide/protein oligomerization, as well as the design of protocols for purification and characterization of peptides and proteins. Our definition of intrinsic hydrophilicity/hydrophobicity of side-chains is the maximum possible hydrophilicity/hydrophobicity of side-chains in the absence of any nearest-neighbor effects and/or any conformational effects of the polypeptide chain that prevent full expression of side-chain hydrophilicity/hydrophobicity. In this review, we have compared an experimentally derived intrinsic side-chain hydrophilicity/hydrophobicity scale generated from RP-HPLC retention behavior of de novo designed synthetic model peptides at pH 2 and pH 7 with other RP-HPLC-derived scales, as well as scales generated from classic experimental and calculation-based methods of octanol/water partitioning of Nalpha-acetyl-amino-acid amides or free energy of transfer of free amino acids. Generally poor correlation was found with previous RP-HPLC-derived scales, likely due to the random nature of the peptide mixtures in terms of varying peptide size, conformation and frequency of particular amino acids. In addition, generally poor correlation with the classical approaches served to underline the importance of the presence of a polypeptide backbone when generating intrinsic values. We have shown that the intrinsic scale determined here is in full agreement with the structural characteristics of amino acid side-chains.
Collapse
Affiliation(s)
- Colin T. Mant
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver, School of Medicine, Aurora, CO 80045, USA
| | - James M. Kovacs
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver, School of Medicine, Aurora, CO 80045, USA
| | - Hyun-Min Kim
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver, School of Medicine, Aurora, CO 80045, USA
| | - David D. Pollock
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver, School of Medicine, Aurora, CO 80045, USA
| | - Robert S. Hodges
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver, School of Medicine, Aurora, CO 80045, USA
| |
Collapse
|
39
|
Chen VC, Chou CC, Hsieh HY, Perreault H, Khoo KH. Targeted identification of phosphorylated peptides by off-line HPLC-MALDI-MS/MS using LC retention time prediction. JOURNAL OF MASS SPECTROMETRY : JMS 2008; 43:1649-1658. [PMID: 18613259 DOI: 10.1002/jms.1450] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Protein phosphorylation is a type of posttranslational modification which plays an important role in cell regulation and signal transduction. Because of its biological relevance, a considerable amount of interest has been paid to the development of efficient techniques for phosphopeptide analysis. Although advances in MS control have enabled the high-throughput discovery of proteins from limited amounts of sample, automated selection of MS/MS precursor ions based on intensity alone can significantly hamper the detection of low-abundance phosphopeptides. On the basis of the observation that the introduction of a phosphate moiety does not dramatically change peptide retention time in reverse-phase chromatography, phosphopeptide specific MS/MS fragmentation attempts based on LC retention time and m/z were evaluated using a standard protein mixture, then using in vitro phosphorylated myelin basic protein. Results indicated that the majority (98%) of phosphopeptides identified eluted within a +/- 4-min window of the predicted LC elution time. While studies presented here are primarily proof of concept in nature, data suggest that the use of LC retention time prediction could be a valuable constraint for the identification of phosphopeptides within a set of off-line LC deposited sample spots. It is expected that the development of these methods will not only permit the targeted identification of protein phosphorylation sites but also allow the in-depth analysis of the dynamic events linked to the posttranslational modification.
Collapse
Affiliation(s)
- Vincent C Chen
- Department of Chemistry, University of Manitoba, 144 Dysart Rd., Winnipeg, MB, Canada.
| | | | | | | | | |
Collapse
|
40
|
Liu H, Xu B, Ray MK, Shahrokh Z. Peptide mapping with liquid chromatography using a basic mobile phase. J Chromatogr A 2008; 1210:76-83. [DOI: 10.1016/j.chroma.2008.09.059] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2008] [Revised: 09/08/2008] [Accepted: 09/11/2008] [Indexed: 10/21/2022]
|
41
|
Hewel JA, Emili A. High-resolution biomarker discovery: Moving from large-scale proteome profiling to quantitative validation of lead candidates. Proteomics Clin Appl 2008; 2:1422-34. [DOI: 10.1002/prca.200800030] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2008] [Indexed: 12/18/2022]
|
42
|
Xu H, Yang L, Freitas MA. A robust linear regression based algorithm for automated evaluation of peptide identifications from shotgun proteomics by use of reversed-phase liquid chromatography retention time. BMC Bioinformatics 2008; 9:347. [PMID: 18713471 PMCID: PMC2553802 DOI: 10.1186/1471-2105-9-347] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2008] [Accepted: 08/19/2008] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Rejection of false positive peptide matches in database searches of shotgun proteomic experimental data is highly desirable. Several methods have been developed to use the peptide retention time as to refine and improve peptide identifications from database search algorithms. This report describes the implementation of an automated approach to reduce false positives and validate peptide matches. RESULTS A robust linear regression based algorithm was developed to automate the evaluation of peptide identifications obtained from shotgun proteomic experiments. The algorithm scores peptides based on their predicted and observed reversed-phase liquid chromatography retention times. The robust algorithm does not require internal or external peptide standards to train or calibrate the linear regression model used for peptide retention time prediction. The algorithm is generic and can be incorporated into any database search program to perform automated evaluation of the candidate peptide matches based on their retention times. It provides a statistical score for each peptide match based on its retention time. CONCLUSION Analysis of peptide matches where the retention time score was included resulted in a significant reduction of false positive matches with little effect on the number of true positives. Overall higher sensitivities and specificities were achieved for database searches carried out with MassMatrix, Mascot and X!Tandem after implementation of the retention time based score algorithm.
Collapse
Affiliation(s)
- Hua Xu
- Department of Molecular Virology Immunology and Medical Genetics, Comprehensive Cancer Center, the Ohio State University Medical Center, Columbus, OH 43210, USA.
| | | | | |
Collapse
|
43
|
Kim J, Petritis K, Shen Y, Camp DG, Moore RJ, Smith RD. Phosphopeptide elution times in reversed-phase liquid chromatography. J Chromatogr A 2007; 1172:9-18. [PMID: 17935722 PMCID: PMC2096734 DOI: 10.1016/j.chroma.2007.09.032] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2007] [Revised: 09/10/2007] [Accepted: 09/14/2007] [Indexed: 11/16/2022]
Abstract
Elution time shifts between 33 different peptides and their corresponding phosphopeptides ranging from 4 amino acid residues to 35 amino acids in length were systematically investigated using high-resolution reversed-phase liquid chromatography (RPLC)-tandem mass spectrometry (MS/MS) analysis with trifluoroacetic acid as the ion pairing agent. Observed peptide elution time shifts for a single phosphorylation ranged from -5.28 min (for pYVPML) to +0.59 min (for HRDpSGLLDSLGR). Peptides containing a phosphotyrosine residue displayed a significant decrease in elution time following phosphorylation compared to their similar-sized peptides with phosphoserine or phosphothreonine residues. While peptide phosphorylation generally led to a decrease in the observed elution time, five peptides displayed increased elution times as a result of phosphorylation. For large peptides (> or =18 amino acids), the elution time shifts due to single phosphorylation were limited (ranging between -0.48 and +0.03 min), while the elution time shifts for small peptides (<18 amino acids) were characterized by a larger deviation (ranging between -5.28 and +0.59 min). The predictive capability for the observed RPLC elution time change due to phosphorylation has been suggested, which will aid in assigning confident phosphopeptide identifications and their subsequent confirmation.
Collapse
Affiliation(s)
- Jeongkwon Kim
- Environmental Molecular Science Laboratory, MSIN K8-98, Pacific Northwest National Laboratory, P.O. Box 999, Richland, WA 99352, USA
| | | | | | | | | | | |
Collapse
|
44
|
Spicer V, Yamchuk A, Cortens J, Sousa S, Ens W, Standing KG, Wilkins JA, Krokhin OV. Sequence-Specific Retention Calculator. A Family of Peptide Retention Time Prediction Algorithms in Reversed-Phase HPLC: Applicability to Various Chromatographic Conditions and Columns. Anal Chem 2007; 79:8762-8. [DOI: 10.1021/ac071474k] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Vic Spicer
- Department of Physics and Astronomy, University of Manitoba, Winnipeg, MB, R3T 2N2, Canada, and Manitoba Centre for Proteomics and Systems Biology and Department of Internal Medicine, University of Manitoba, 799 JBRC, Winnipeg, MB, R3E 3P4, Canada
| | - Andriy Yamchuk
- Department of Physics and Astronomy, University of Manitoba, Winnipeg, MB, R3T 2N2, Canada, and Manitoba Centre for Proteomics and Systems Biology and Department of Internal Medicine, University of Manitoba, 799 JBRC, Winnipeg, MB, R3E 3P4, Canada
| | - John Cortens
- Department of Physics and Astronomy, University of Manitoba, Winnipeg, MB, R3T 2N2, Canada, and Manitoba Centre for Proteomics and Systems Biology and Department of Internal Medicine, University of Manitoba, 799 JBRC, Winnipeg, MB, R3E 3P4, Canada
| | - Sandra Sousa
- Department of Physics and Astronomy, University of Manitoba, Winnipeg, MB, R3T 2N2, Canada, and Manitoba Centre for Proteomics and Systems Biology and Department of Internal Medicine, University of Manitoba, 799 JBRC, Winnipeg, MB, R3E 3P4, Canada
| | - Werner Ens
- Department of Physics and Astronomy, University of Manitoba, Winnipeg, MB, R3T 2N2, Canada, and Manitoba Centre for Proteomics and Systems Biology and Department of Internal Medicine, University of Manitoba, 799 JBRC, Winnipeg, MB, R3E 3P4, Canada
| | - Kenneth G. Standing
- Department of Physics and Astronomy, University of Manitoba, Winnipeg, MB, R3T 2N2, Canada, and Manitoba Centre for Proteomics and Systems Biology and Department of Internal Medicine, University of Manitoba, 799 JBRC, Winnipeg, MB, R3E 3P4, Canada
| | - John A. Wilkins
- Department of Physics and Astronomy, University of Manitoba, Winnipeg, MB, R3T 2N2, Canada, and Manitoba Centre for Proteomics and Systems Biology and Department of Internal Medicine, University of Manitoba, 799 JBRC, Winnipeg, MB, R3E 3P4, Canada
| | - Oleg V. Krokhin
- Department of Physics and Astronomy, University of Manitoba, Winnipeg, MB, R3T 2N2, Canada, and Manitoba Centre for Proteomics and Systems Biology and Department of Internal Medicine, University of Manitoba, 799 JBRC, Winnipeg, MB, R3E 3P4, Canada
| |
Collapse
|