1
|
Jin L, Liu W, Xiao Z, Yang H, Yu H, Dong C, Wu M. Recent Advances in Electrochemiluminescence Biosensors for Mycotoxin Assay. BIOSENSORS 2023; 13:653. [PMID: 37367018 DOI: 10.3390/bios13060653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 05/26/2023] [Accepted: 06/13/2023] [Indexed: 06/28/2023]
Abstract
Rapid and efficient detection of mycotoxins is of great significance in the field of food safety. In this review, several traditional and commercial detection methods are introduced, such as high-performance liquid chromatography (HPLC), liquid chromatography/mass spectrometry (LC/MS), enzyme-linked immunosorbent assay (ELISA), test strips, etc. Electrochemiluminescence (ECL) biosensors have the advantages of high sensitivity and specificity. The use of ECL biosensors for mycotoxins detection has attracted great attention. According to the recognition mechanisms, ECL biosensors are mainly divided into antibody-based, aptamer-based, and molecular imprinting techniques. In this review, we focus on the recent effects towards the designation of diverse ECL biosensors in mycotoxins assay, mainly including their amplification strategies and working mechanism.
Collapse
Affiliation(s)
- Longsheng Jin
- Department of Chemistry, College of Sciences, Nanjing Agricultural University, 1 Weigang, Nanjing 210095, China
| | - Weishuai Liu
- Department of Chemistry, College of Sciences, Nanjing Agricultural University, 1 Weigang, Nanjing 210095, China
| | - Ziying Xiao
- Department of Chemistry, College of Sciences, Nanjing Agricultural University, 1 Weigang, Nanjing 210095, China
| | - Haijian Yang
- Department of Chemistry, College of Sciences, Nanjing Agricultural University, 1 Weigang, Nanjing 210095, China
| | - Huihui Yu
- Department of Chemistry, College of Sciences, Nanjing Agricultural University, 1 Weigang, Nanjing 210095, China
| | - Changxun Dong
- Department of Chemistry, College of Sciences, Nanjing Agricultural University, 1 Weigang, Nanjing 210095, China
| | - Meisheng Wu
- Department of Chemistry, College of Sciences, Nanjing Agricultural University, 1 Weigang, Nanjing 210095, China
| |
Collapse
|
2
|
Jia Y, Zhao S, Li D, Yang J, Yang L. Portable chemiluminescence optical fiber aptamer-based biosensors for analysis of multiple mycotoxins. Food Control 2023. [DOI: 10.1016/j.foodcont.2022.109361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
3
|
Kumari A, Joshua R, Kumar R, Ahlawat P, Sindhu SC. Fungal Mycotoxins: Occurrence and Detection. Fungal Biol 2021. [DOI: 10.1007/978-3-030-68260-6_15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
4
|
Elbashir AA, Elgorashe REE, Alnajjar AO, Aboul-Enein HY. Application of Capillary Electrophoresis with Capacitively Coupled Contactless Conductivity Detection (CE-C 4D): 2017-2020. Crit Rev Anal Chem 2020; 52:535-543. [PMID: 32835492 DOI: 10.1080/10408347.2020.1809340] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Capacitively coupled contactless conductivity detection (C4D) has emerged as influential to detect analytes that do not have chromogenic or fluorogenic functional group. Since our last review several new capillary electrophoresis (CE) methods coupled with (CE-C4D) have been communicated. The aim of this review is to give an update of the almost all the new applications of CE-C4D in the field of pharmaceutical, food and biomedical analysis covering the period from 2017 to April 2020. The utilization of CE with C4D in the areas of pharmaceutical, food and biomedical analysis is presented. Finally, concluding remarks and outlooks are discussed.
Collapse
Affiliation(s)
- Abdalla Ahmed Elbashir
- Department of Chemistry, College of Science, King Faisal University, Al Ahsa, Saudi Arabia
| | | | - Ahmed O Alnajjar
- Department of Chemistry, College of Science, King Faisal University, Al Ahsa, Saudi Arabia
| | - Hassan Y Aboul-Enein
- Pharmaceutical and Medicinal Chemistry Department, Pharmaceutical and Drug Industries Research Division, National Research Centre, Cairo, Egypt
| |
Collapse
|
5
|
Colombo R, Papetti A. Pre-Concentration and Analysis of Mycotoxins in Food Samples by Capillary Electrophoresis. Molecules 2020; 25:molecules25153441. [PMID: 32751123 PMCID: PMC7436008 DOI: 10.3390/molecules25153441] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 07/24/2020] [Accepted: 07/28/2020] [Indexed: 12/31/2022] Open
Abstract
Mycotoxins are considered one of the most dangerous agricultural and food contaminants. They are toxic and the development of rapid and sensitive analytical methods to detect and quantify them is a very important issue in the context of food safety and animal/human health. The need to detect mycotoxins at trace levels and to simultaneously analyze many different mycotoxin types became mandatory to protect public health. In fact, European Commission regulations specified both their limits in foodstuffs and official sample preparation protocols in addition to analytical methods to verify their presence. Capillary Electrophoresis (CE) includes different separation modes, allowing many versatile applications in food analysis and safety. In the context of mycotoxins, recent advances to improve CE sensitivity, particularly pre-concentration techniques or miniaturized systems, deserve remarkable attention, as they provide an interesting approach in the analysis of such contaminants in complex food matrices. This review summarizes the applications of CE combined with different pre-concentration approaches, which have been proposed in the literature (mainly) in the last ten years. A section is also dedicated to recent microchip–CE devices since they represent the most promising CE mode for this application.
Collapse
Affiliation(s)
| | - Adele Papetti
- Correspondence: ; Tel.: +39-0382987863; Fax: +39-0382422975
| |
Collapse
|
6
|
Caglayan MO, Şahin S, Üstündağ Z. Detection Strategies of Zearalenone for Food Safety: A Review. Crit Rev Anal Chem 2020; 52:294-313. [PMID: 32715728 DOI: 10.1080/10408347.2020.1797468] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Zearalenone (ZEN) is a toxic compound produced by the metabolism of fungi (genus Fusarium) that threaten the food and agricultural industry belonging to the in foods and feeds. ZEN has toxic effects on human and animal health due to its mutagenicity, teratogenicity, carcinogenicity, nephrotoxicity, immunotoxicity, and genotoxicity. To ensure food safety, rapid, precise, and reliable analytical methods can be developed for the detection of toxins such as ZEN. Different selective molecular diagnostic elements are used in conjunction with different detection strategies to achieve this goal. In this review, the use of electrochemical, colorimetric, fluorometric, refractometric as well as other strategies were discussed for ZEN detection. The success of the sensors in analytical performance depends on the development of receptors with increased affinity to the target. This requirement has been met with different immunoassays, aptamer-assays, and molecular imprinting techniques. The immobilization techniques and analysis strategies developed with the combination of nanomaterials provided high precision, reliability, and convenience in ZEN detection, in which electrochemical strategies perform the best.
Collapse
Affiliation(s)
| | - Samet Şahin
- Department of Bioengineering, Bilecik Şeyh Edebali University, Bilecik, Turkey
| | - Zafer Üstündağ
- Department of Chemistry, Kütahya Dumlupınar University, Kütahya, Turkey
| |
Collapse
|
7
|
Caglayan MO, Üstündağ Z. Detection of zearalenone in an aptamer assay using attenuated internal reflection ellipsometry and it's cereal sample applications. Food Chem Toxicol 2019; 136:111081. [PMID: 31883987 DOI: 10.1016/j.fct.2019.111081] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Revised: 12/12/2019] [Accepted: 12/23/2019] [Indexed: 12/12/2022]
Abstract
Mycotoxins are toxic compounds produced by the metabolism of certain fungi that threaten the food and agricultural industry. Over hundreds of mycotoxins, one of the most common toxins, zearalenone (ZEN), has toxic effects on human and animal health due to its mutagenicity, treatogenicity, carcinogenicity, nephrotoxicity, immunotoxicity, and genotoxicity. In this work, attenuated internal reflection spectroscopic ellipsometry (AIR-SE) combined with the signal amplification via surface plasmon resonance conditions that were proved to be a highly sensitive analytical tool in bio-sensing was developed for the sensitive and selective ZEN detection in cereal products such as corn, wheat, rice, and oat. Combined with the oligonucleotide aptamer for ZEN recognition, our proposed method showed good performance with yielding 0.08 ng/mL LOD and 0.01-1000 ng/mL detection range. A mini-review was also introduced in, to compare various methods for ZEN detection.
Collapse
Affiliation(s)
| | - Zafer Üstündağ
- Kutahya Dumlupinar University, Chemistry Department, Kutahya, Turkey
| |
Collapse
|
8
|
Fluorometric lateral flow immunochromatographic zearalenone assay by exploiting a quencher system composed of carbon dots and silver nanoparticles. Mikrochim Acta 2018; 185:388. [PMID: 30046913 DOI: 10.1007/s00604-018-2916-1] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2018] [Accepted: 07/13/2018] [Indexed: 01/21/2023]
Abstract
It is found that the fluorescence of carbon dots (CD) with an emission peak at 459 nm is strongly quenched by silver nanoparticles (AgNPs) with their absorption peak at 430 nm. The finding was applied in a fluorescence quenchometric lateral flow immunochromatographic assay for detection of zearalenone (ZEN) with CDs conjugated to ovalbumin (OVA) as donor signal probe and AgNP-Ab as acceptor signal probe. The assay has an LOD of 0.1 μg·L-1 for ZEN. This is 10 times better than the respective "turn-off" AgNP-based LFIA. In case of cereal samples and their products, the LODs range from 1 to 2.5 μg·kg-1. Only minor cross reactivity is found for fusarium toxins, and no cross-sensitivity for aflatoxin B1, T-2 mycotoxin, ochratoxin A, deoxynivalenol, and fumonisin B1. The assay represents a simple, sensitive, and rapid tool for determination of ZEN in cereal samples and their products. Graphical abstract Schematic presentation of fluorescence quenching lateral flow immunochromatographic assay (FLFIA) based on carbon dots (CD) and silver nanoparticle (AgNP) fluorescence resonance energy transfer (FRET) system for the rapid high sensitive detection of zearalenone (ZEN) in cereal samples.
Collapse
|
9
|
Poór M, Zand A, Szente L, Lemli B, Kunsági-Máté S. Interaction of α- and β-zearalenols with β-cyclodextrins. Molecules 2017; 22:molecules22111910. [PMID: 29113131 PMCID: PMC6150337 DOI: 10.3390/molecules22111910] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Revised: 11/03/2017] [Accepted: 11/03/2017] [Indexed: 12/13/2022] Open
Abstract
Zearalenone (ZEN) is a mycotoxin produced by Fusarium fungi. ZEN primarily contaminates different cereals, and exerts a strong xenoestrogenic effect in animals and humans. ZEN is a fluorescent mycotoxin, although molecular interactions and microenvironmental changes significantly modify its spectral properties. During biotransformation, ZEN is converted into α-zearalenol (α-ZOL) and β-zearalenol (β-ZOL), the toxic metabolites of ZEN, which mimick the effect of estrogen. Cyclodextrins (CDs) are host molecules, and have been studied extensively; they can form stable complexes with several mycotoxins, including ZEN. However, information is limited regarding the interactions of CDs with ZOLs. Therefore, we studied the interactions of α- and β-ZOLs with native and six chemically modified β-CDs by fluorescence spectroscopy. Fluorescence enhancement during complex formation, as well as binding constants, were determined. To understand ZOL-CD interactions better, molecular modeling studies were also carried out. Both mycotoxin derivatives formed the most stable complexes with methylated and sulfobutylated CD-derivatives; however, the CD complexes of α-ZOL were significantly stronger than those of β-ZOL. The data presented here indicate which of the chemically modified β-CDs appear more suitable as fluorescence enhancers or as potential mycotoxin binders.
Collapse
Affiliation(s)
- Miklós Poór
- Department of Pharmacology, Faculty of Pharmacy, University of Pécs, Szigeti út 12, H-7624 Pécs, Hungary.
- János Szentágothai Research Center, University of Pécs, Ifjúság útja 20, H-7624 Pécs, Hungary.
| | - Afshin Zand
- Department of Pharmacology, Faculty of Pharmacy, University of Pécs, Szigeti út 12, H-7624 Pécs, Hungary.
| | - Lajos Szente
- CycloLab Cyclodextrin Research & Development Laboratory, Ltd., Illatos út 7, H-1097 Budapest, Hungary.
| | - Beáta Lemli
- János Szentágothai Research Center, University of Pécs, Ifjúság útja 20, H-7624 Pécs, Hungary.
- Department of General and Physical Chemistry, University of Pécs, Ifjúság útja 6, H-7624 Pécs, Hungary.
| | - Sándor Kunsági-Máté
- János Szentágothai Research Center, University of Pécs, Ifjúság útja 20, H-7624 Pécs, Hungary.
- Department of General and Physical Chemistry, University of Pécs, Ifjúság útja 6, H-7624 Pécs, Hungary.
| |
Collapse
|
10
|
Alshannaq A, Yu JH. Occurrence, Toxicity, and Analysis of Major Mycotoxins in Food. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2017; 14:E632. [PMID: 28608841 PMCID: PMC5486318 DOI: 10.3390/ijerph14060632] [Citation(s) in RCA: 613] [Impact Index Per Article: 87.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Revised: 06/06/2017] [Accepted: 06/06/2017] [Indexed: 11/16/2022]
Abstract
Mycotoxins are toxic secondary metabolites produced by certain filamentous fungi (molds). These low molecular weight compounds (usually less than 1000 Daltons) are naturally occurring and practically unavoidable. They can enter our food chain either directly from plant-based food components contaminated with mycotoxins or by indirect contamination from the growth of toxigenic fungi on food. Mycotoxins can accumulate in maturing corn, cereals, soybeans, sorghum, peanuts, and other food and feed crops in the field and in grain during transportation. Consumption of mycotoxin-contaminated food or feed can cause acute or chronic toxicity in human and animals. In addition to concerns over adverse effects from direct consumption of mycotoxin-contaminated foods and feeds, there is also public health concern over the potential ingestion of animal-derived food products, such as meat, milk, or eggs, containing residues or metabolites of mycotoxins. Members of three fungal genera, Aspergillus, Fusarium, and Penicillium, are the major mycotoxin producers. While over 300 mycotoxins have been identified, six (aflatoxins, trichothecenes, zearalenone, fumonisins, ochratoxins, and patulin) are regularly found in food, posing unpredictable and ongoing food safety problems worldwide. This review summarizes the toxicity of the six mycotoxins, foods commonly contaminated by one or more of them, and the current methods for detection and analysis of these mycotoxins.
Collapse
Affiliation(s)
- Ahmad Alshannaq
- Department of Food Science, University of Wisconsin-Madison, 1550 Linden Drive, Madison, WI 53706, USA.
- Food Research Institute, University of Wisconsin-Madison, 1550 Linden Drive, Madison, WI 53706, USA.
| | - Jae-Hyuk Yu
- Food Research Institute, University of Wisconsin-Madison, 1550 Linden Drive, Madison, WI 53706, USA.
- Department of Bacteriology, University of Wisconsin-Madison, 1550 Linden Drive, Madison, WI 53706, USA.
| |
Collapse
|
11
|
|
12
|
Determination of zearalenone with a glassy carbon electrode modified with nanocomposite consisting of palladium nanoparticles and a conductive polymeric ionic liquid. Mikrochim Acta 2016. [DOI: 10.1007/s00604-016-1907-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
13
|
Pulina G, Battacone G, Brambilla G, Cheli F, Danieli PP, Masoero F, Pietri A, Ronchi B. An Update on the Safety of Foods of Animal Origin and Feeds. ITALIAN JOURNAL OF ANIMAL SCIENCE 2016. [DOI: 10.4081/ijas.2014.3571] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
14
|
Hybrid nanoparticles based on magnetic multiwalled carbon nanotube-nanoC18SiO2 composites for solid phase extraction of mycotoxins prior to their determination by LC-MS. Mikrochim Acta 2015. [DOI: 10.1007/s00604-015-1722-2] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
15
|
Fisli H, Bensouilah N, Abdaoui M. Spectrofluorimetric determination of the antineoplastic agent lomustine based on the sensitizing effect of β-cyclodextrin. LUMINESCENCE 2015; 31:871-80. [PMID: 26510489 DOI: 10.1002/bio.3045] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2015] [Revised: 08/25/2015] [Accepted: 09/10/2015] [Indexed: 11/07/2022]
Abstract
The effects of solvent dipolarity/polarizability and solvent-solute hydrogen bonding on the photophysical properties of the antineoplastic drug lomustine were analysed by means of the linear solvation energy relationship (LSER) concept proposed by Kamlet and Taft. The LSER method enabled the overall solvent effects to be quantitatively estimated and separated into specific and non-specific contributions. The molecular encapsulation of lomustine by β-cyclodextrin (β-CD) has been studied using fluorescence spectroscopy. The results are discussed in terms of the binding parameter and the effect of the solvent used. It was concluded that β-CD forms a 1:1 inclusional complex with lomustine in acetonitrile solution and its association constant was calculated to be 500 M(-1). In addition, and for the first time, a simple, rapid and high sensitive fluorimetric method for the determination of lomustine was developed based upon the enhancement effect produced through complex formation with β-CD. The new approach for the quantification of lomustine in the presence of β-CD was described in aqueous and organic solutions. Better limits of detection (0.31 µg ml(-1)) and quantification (1.05 µg ml(-1)) were obtained in aqueous solution with respect to those obtained in organic solvent.
Collapse
Affiliation(s)
- Hassina Fisli
- Laboratoire de Chimie Appliquée (LCA), Université 8 mai 1945, Guelma, Algeria
| | - Nadjia Bensouilah
- Laboratoire de Chimie Appliquée (LCA), Université 8 mai 1945, Guelma, Algeria
| | - Mohamed Abdaoui
- Laboratoire de Chimie Appliquée (LCA), Université 8 mai 1945, Guelma, Algeria
| |
Collapse
|
16
|
Poór M, Kunsági-Máté S, Sali N, Kőszegi T, Szente L, Peles-Lemli B. Interactions of zearalenone with native and chemically modified cyclodextrins and their potential utilization. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2015; 151:63-8. [DOI: 10.1016/j.jphotobiol.2015.07.009] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2015] [Revised: 07/07/2015] [Accepted: 07/09/2015] [Indexed: 11/30/2022]
|
17
|
Determination of trace amounts of zearalenone in beverage samples with an electrochemical sensor. Mycotoxin Res 2015; 31:203-8. [DOI: 10.1007/s12550-015-0232-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2015] [Revised: 09/13/2015] [Accepted: 09/17/2015] [Indexed: 10/23/2022]
|
18
|
Poór M, Kunsági-Máté S, Szente L, Matisz G, Secenji G, Czibulya Z, Kőszegi T. Interaction of ochratoxin A with quaternary ammonium beta-cyclodextrin. Food Chem 2015; 172:143-9. [DOI: 10.1016/j.foodchem.2014.09.034] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2014] [Revised: 08/05/2014] [Accepted: 09/08/2014] [Indexed: 10/24/2022]
|
19
|
Du H, Liu J, Xun Y, Liang J, Li S, Chen G. Determination of Deoxynivalenol, Zearalenone, Aflatoxin B1, and Ochratoxin by an Enzyme-Linked Immunosorbent Assay. ANAL LETT 2014. [DOI: 10.1080/00032719.2014.891125] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
20
|
Yang J, Li J, Jiang Y, Duan X, Qu H, Yang B, Chen F, Sivakumar D. Natural occurrence, analysis, and prevention of mycotoxins in fruits and their processed products. Crit Rev Food Sci Nutr 2014; 54:64-83. [PMID: 24188233 DOI: 10.1080/10408398.2011.569860] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Mycotoxins are small toxic chemical products formed as the secondary metabolites by fungi that readily contaminate foods with toxins in the field or after harvest. The presence of mycotoxins, such as aflatoxins, ochratoxin A, and patulin, in fruits and their processed products is of high concern for human health due to their properties to induce severe acute and chronic toxicity at low-dose levels. Currently, a broad range of detection techniques used for practical analysis and detection of a wide spectrum of mycotoxins are available. Many analytical methods have been developed for the determination of each group of these mycotoxins in different food matrices, but new methods are still required to achieve higher sensitivity and address other challenges that are posed by these mycotoxins. Effective technologies are needed to reduce or even eliminate the presence of the mycotoxins in fruits and their processed products. Preventive measures aimed at the inhibition of mycotoxin formation in fruits and their processed products are the most effective approach. Detoxification of mycotoxins by different physical, chemical, and biological methods are less effective and sometimes restricted because of concerns of safety, possible losses in nutritional quality of the treated commodities and cost implications. This article reviewed the available information on the major mycotoxins found in foods and feeds, with an emphasis of fruits and their processed products, and the analytical methods used for their determination. Based on the current knowledge, the major strategies to prevent or even eliminate the presence of the mycotoxins in fruits and their processed products were proposed.
Collapse
Affiliation(s)
- Jinyi Yang
- a Key Laboratory of Plant Resource Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences , People's Republic of China
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Misiuk W, Jasiuk E. Study of the inclusion interaction of HP-γ-cyclodextrin with bupropion and its analytical application. J Mol Struct 2014. [DOI: 10.1016/j.molstruc.2013.12.056] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
22
|
Li P, Zhang Z, Hu X, Zhang Q. Advanced hyphenated chromatographic-mass spectrometry in mycotoxin determination: current status and prospects. MASS SPECTROMETRY REVIEWS 2013; 32:420-452. [PMID: 23804155 DOI: 10.1002/mas.21377] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2012] [Accepted: 01/04/2013] [Indexed: 06/02/2023]
Abstract
Mass spectrometric techniques are essential for advanced research in food safety and environmental monitoring. These fields are important for securing the health of humans and animals, and for ensuring environmental security. Mycotoxins, toxic secondary metabolites of filamentous fungi, are major contaminants of agricultural products, food and feed, biological samples, and the environment as a whole. Mycotoxins can cause cancers, nephritic and hepatic diseases, various hemorrhagic syndromes, and immune and neurological disorders. Mycotoxin-contaminated food and feed can provoke trade conflicts, resulting in massive economic losses. Risk assessment of mycotoxin contamination for humans and animals generally depends on clear identification and reliable quantitation in diversified matrices. Pioneering work on mycotoxin quantitation using mass spectrometry (MS) was performed in the early 1970s. Now, unambiguous confirmation and quantitation of mycotoxins can be readily achieved with a variety hyphenated techniques that combine chromatographic separation with MS, including liquid chromatography (LC) or gas chromatography (GC). With the advent of atmospheric pressure ionization, LC-MS has become a routine technique. Recently, the co-occurrence of multiple mycotoxins in the same sample has drawn an increasing amount of attention. Thus, modern analyses must be able to detect and quantitate multiple mycotoxins in a single run. Improvements in tandem MS techniques have been made to achieve this purpose. This review describes the advanced research that has been done regarding mycotoxin determination using hyphenated chromatographic-MS techniques, but is not a full-circle survey of all the literature published on this topic. The present work provides an overview of the various hyphenated chromatographic-MS-based strategies that have been applied to mycotoxin analysis, with a focus on recent developments. The use of chromatographic-MS to measure levels of mycotoxins, including aflatoxins, ochratoxins, patulin, trichothecenes, zearalenone, and fumonisins, is discussed in detail. Both free and masked mycotoxins are included in this review due to different methods of sample preparation. Techniques are described in terms of sample preparation, internal standards, LC/ultra performance LC (UPLC) optimization, and applications and survey. Several future hyphenated MS techniques are discussed as well, including multidimensional chromatography-MS, capillary electrophoresis-MS, and surface plasmon resonance array-MS.
Collapse
Affiliation(s)
- Peiwu Li
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan 430062, P.R. China; Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Wuhan 430062, P.R. China; Key Laboratory of Detection for Mycotoxins, Ministry of Agriculture, Wuhan 430062, P.R. China; Laboratory of Risk Assessment for Oilseeds Products (Wuhan), Ministry of Agriculture, Wuhan 430062, P.R. China; Quality Inspection and Test Center for Oilseeds Products, Ministry of Agriculture, Wuhan 430062, P.R. China
| | | | | | | |
Collapse
|
23
|
|
24
|
Complexation of the mycotoxin zearalenone with β-cyclodextrin: Study of the interaction and first promising applications. Mycotoxin Res 2013; 24:14-8. [PMID: 23606075 DOI: 10.1007/bf02985265] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2007] [Accepted: 11/05/2007] [Indexed: 02/05/2023]
Abstract
This work reports the study of the interactions between native and substituted β-cyclodextrins and zearalenone and its derivatives α- and β-zearelonol. The data obtained by fluorescence and NMR experiments suggested that zearalenone, α- and β-zearalenol and cyclodextrins give rise to host-guest complexation, with the inclusion of the phenolic moiety inside the cyclodextrin cavity. The high stability of these complexes induces a high fluorescence enhancement upon complexation. These results have been successfully applied to the spectrofluorimetric determination of zearalenone in maize raw samples, without any chromatographic separation.
Collapse
|
25
|
Güray T, Tuncel M, Uysal UD, Oncu-Kaya EM. DETERMINATION OF ZEARALENONE BY THE CAPILLARY ZONE ELECTROPHORESIS-UV DETECTION AND ITS APPLICATION TO POULTRY FEED AND CEREALS. J LIQ CHROMATOGR R T 2013. [DOI: 10.1080/10826076.2012.691437] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Affiliation(s)
- Tufan Güray
- a Faculty of Arts and Science, Department of Chemistry , Eskişehir Osmangazi University , Eskişehir , Turkey
| | - Muzaffer Tuncel
- b Faculty of Pharmacy, Department of Analytical Chemistry , Anadolu University , Eskişehir , Turkey
| | - Ulku Dilek Uysal
- c Faculty of Science, Department of Chemistry , Anadolu University , Eskişehir , Turkey
| | - Elif Mine Oncu-Kaya
- c Faculty of Science, Department of Chemistry , Anadolu University , Eskişehir , Turkey
| |
Collapse
|
26
|
Highly sensitive electrochemical immunoassay for zearalenone in grain and grain-based food. Mikrochim Acta 2012. [DOI: 10.1007/s00604-012-0915-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
27
|
Li P, Zhang Z, Zhang Q, Zhang N, Zhang W, Ding X, Li R. Current development of microfluidic immunosensing approaches for mycotoxin detection via capillary electromigration and lateral flow technology. Electrophoresis 2012; 33:2253-65. [PMID: 22887149 DOI: 10.1002/elps.201200050] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Mycotoxin contamination in the food chain has caused serious health issues in humans and animals. Thus, a rapid on-site and lab-independent detection method for mycotoxins, such as aflatoxins (AFTs), is desirable. Microfluidic chip based immunosensor technology is one of the most promising methods for fast mycotoxin assays. In this review, we cover the major microfluidic immunosensors used for mycotoxin analysis, via flow-through (capillary electromigration) and lateral flow technology. Sample preparation from different matrices of agricultural products and foodstuffs is summarized. The choice of materials, fabrication strategies, and detection methods for microfluidic immunosensors are further discussed in detail. The sensors application in mycotoxin determination is also outlined. Finally, future challenges and opportunities are discussed.
Collapse
Affiliation(s)
- Peiwu Li
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, P. R. China.
| | | | | | | | | | | | | |
Collapse
|
28
|
Rabanes HR, Guidote AM, Quirino JP. Capillary electrophoresis of natural products: Highlights of the last five years (2006-2010). Electrophoresis 2011; 33:180-95. [DOI: 10.1002/elps.201100223] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2011] [Revised: 09/22/2011] [Accepted: 09/22/2011] [Indexed: 12/14/2022]
|
29
|
Spectroscopic investigations on the inclusion interaction between hydroxypropyl-β-cyclodextrin and bupropion. J Mol Liq 2011. [DOI: 10.1016/j.molliq.2011.01.014] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
30
|
Jin P, Han Z, Cai Z, Wu Y, Ren Y. Simultaneous determination of 10 mycotoxins in grain by ultra-high-performance liquid chromatography–tandem mass spectrometry using13C15-deoxynivalenol as internal standard. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2010; 27:1701-13. [DOI: 10.1080/19440049.2010.517222] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
31
|
Vallejo-Cordoba B, González-Córdova AF. Capillary electrophoresis for the analysis of contaminants in emerging food safety issues and food traceability. Electrophoresis 2010; 31:2154-64. [PMID: 20593390 DOI: 10.1002/elps.200900777] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
This review presents an overview of the applicability of CE in the analysis of chemical and biological contaminants involved in emerging food safety issues. Additionally, CE-based genetic analyzers' usefulness as a unique tool in food traceability verification systems was presented. First, analytical approaches for the determination of melamine and specific food allergens in different foods were discussed. Second, natural toxin analysis by CE was updated from the last review reported in 2008. Finally, the analysis of prion proteins associated with the "mad cow" crises and the application of CE-based genetic analyzers for meat traceability were summarized.
Collapse
Affiliation(s)
- Belinda Vallejo-Cordoba
- Laboratorio de Calidad, Autenticidad y Trazabilidad de los Alimentos, Centro de Investigación en Alimentación y Desarrollo, A. C. (CIAD), Sonora, Mexico.
| | | |
Collapse
|
32
|
Herrero M, García-Cañas V, Simo C, Cifuentes A. Recent advances in the application of capillary electromigration methods for food analysis and Foodomics. Electrophoresis 2010; 31:205-28. [PMID: 19967713 DOI: 10.1002/elps.200900365] [Citation(s) in RCA: 142] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The use of capillary electromigration methods to analyze foods and food components is reviewed in this work. Papers that were published during the period April 2007 to March 2009 are included following the previous review by García-Cañas and Cifuentes (Electrophoresis, 2008, 29, 294-309). These works include the analysis of amino acids, biogenic amines, peptides, proteins, DNAs, carbohydrates, phenols, polyphenols, pigments, toxins, pesticides, vitamins, additives, small organic and inorganic ions and other compounds found in foods and beverages, as well as those applications of CE for monitoring food interactions and food processing. The use of microchips, CE-MS, chiral-CE as well as other foreseen trends in food analysis are also discussed including their possibilities in the very new field of Foodomics.
Collapse
Affiliation(s)
- Miguel Herrero
- Departamento de Caracterización de Alimentos, Instituto de Fermentaciones Industriales, Madrid 28006, Spain
| | | | | | | |
Collapse
|
33
|
Hervás M, López MÁ, Escarpa A. Simplified calibration and analysis on screen-printed disposable platforms for electrochemical magnetic bead-based inmunosensing of zearalenone in baby food samples. Biosens Bioelectron 2010; 25:1755-60. [DOI: 10.1016/j.bios.2009.12.031] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2009] [Accepted: 12/21/2009] [Indexed: 10/20/2022]
|
34
|
Biesaga-Kos´cielniak J, Filek M. Occurrence and Physiology of Zearalenone as a New Plant Hormone. SOCIOLOGY, ORGANIC FARMING, CLIMATE CHANGE AND SOIL SCIENCE 2010. [DOI: 10.1007/978-90-481-3333-8_15] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
35
|
Duca RC, Bravin F, Delaforge M, Vladescu L, Badea IA, Criste RD. Development of a new HPLC method used for determination of zearalenone and its metabolites in broiler samples. Influence of zearalenone on the nutritional properties of broiler meat. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2009; 57:10497-10504. [PMID: 19877635 DOI: 10.1021/jf9014608] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
This paper presents the development, optimization and validation of a new HPLC method used for the separation and determination of zearalenone, ZON, and its metabolites in biological samples of Leghorn broiler. ZON and its metabolites can be separated with good resolution in 11 min, using a Hypersil Gold C18 column, a mobile phase mixture of 50 mM aqueous ammonium acetate:acetonitrile:methanol, 45:8:47 (v/v/v), flow rate 1 mL/min and column temperature 40 degrees C. Based on the results obtained by this method applied on biological samples one can conclude that liver is the site for zearalenone localization and detoxification. Influence of zearalenone on the nutritional properties of broiler meat (weight variation, gross chemical composition, fatty acids profile of the meat) was studied, also. Results obtained during 4 days of treatment with ZON showed minimal or no effects of the dietary zearalenone on broiler meat nutritional quality.
Collapse
Affiliation(s)
- Radu Corneliu Duca
- National Research and Development Institute for Biology and Animal Nutrition (INCDBNA) 1, Calea Bucuresti, 077015 Balotesti, Ilfov, Romania
| | | | | | | | | | | |
Collapse
|
36
|
6-O-(2-hydroxybutyl)-β-CD as a chiral selector for nonaqueous capillary electrophoretic separation of chiral drugs. ACTA ACUST UNITED AC 2009. [DOI: 10.1007/s11458-009-0038-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
37
|
Hervás M, López MÁ, Escarpa A. Electrochemical immunoassay using magnetic beads for the determination of zearalenone in baby food: An anticipated analytical tool for food safety. Anal Chim Acta 2009; 653:167-72. [DOI: 10.1016/j.aca.2009.09.024] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2009] [Revised: 09/15/2009] [Accepted: 09/16/2009] [Indexed: 11/25/2022]
|
38
|
Maragos CM. Photoreaction of indole-containing mycotoxins to fluorescent products. Mycotoxin Res 2009; 25:67-75. [DOI: 10.1007/s12550-009-0010-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2009] [Revised: 03/19/2009] [Accepted: 03/20/2009] [Indexed: 11/28/2022]
|
39
|
Dall’Asta C, Faccini A, Galaverna G, Corradini R, Dossena A, Marchelli R. Complexation of zearalenone and zearalenols with native and modified β-cyclodextrins. J INCL PHENOM MACRO 2009. [DOI: 10.1007/s10847-009-9572-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
40
|
Recent advances in the development of novel materials for mycotoxin analysis. Anal Bioanal Chem 2009; 395:1205-13. [DOI: 10.1007/s00216-009-2728-6] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2009] [Revised: 02/18/2009] [Accepted: 02/23/2009] [Indexed: 10/21/2022]
|
41
|
An overview of conventional and emerging analytical methods for the determination of mycotoxins. Int J Mol Sci 2009; 10:62-115. [PMID: 19333436 PMCID: PMC2662450 DOI: 10.3390/ijms10010062] [Citation(s) in RCA: 114] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2008] [Revised: 11/24/2008] [Accepted: 01/01/2009] [Indexed: 11/16/2022] Open
Abstract
Mycotoxins are a group of compounds produced by various fungi and excreted into the matrices on which they grow, often food intended for human consumption or animal feed. The high toxicity and carcinogenicity of these compounds and their ability to cause various pathological conditions has led to widespread screening of foods and feeds potentially polluted with them. Maximum permissible levels in different matrices have also been established for some toxins. As these are quite low, analytical methods for determination of mycotoxins have to be both sensitive and specific. In addition, an appropriate sample preparation and pre-concentration method is needed to isolate analytes from rather complicated samples. In this article, an overview of methods for analysis and sample preparation published in the last ten years is given for the most often encountered mycotoxins in different samples, mainly in food. Special emphasis is on liquid chromatography with fluorescence and mass spectrometric detection, while in the field of sample preparation various solid-phase extraction approaches are discussed. However, an overview of other analytical and sample preparation methods less often used is also given. Finally, different matrices where mycotoxins have to be determined are discussed with the emphasis on their specific characteristics important for the analysis (human food and beverages, animal feed, biological samples, environmental samples). Various issues important for accurate qualitative and quantitative analyses are critically discussed: sampling and choice of representative sample, sample preparation and possible bias associated with it, specificity of the analytical method and critical evaluation of results.
Collapse
|
42
|
YANG Y, ZHU C, SHEN J, HAO A. Enantioseparation in Capillary Electrophoresis Using 6-Oligo-(lactic acid)cyclomaltoheptaose as a Chiral Selector. ANAL SCI 2009; 25:1315-8. [DOI: 10.2116/analsci.25.1315] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Affiliation(s)
- Yanli YANG
- School of Chemistry and Chemical Engineering, Shandong University
| | - Chenfu ZHU
- School of Chemistry and Chemical Engineering, Shandong University
| | - Jian SHEN
- School of Chemistry and Chemical Engineering, Shandong University
| | - Aiyou HAO
- School of Chemistry and Chemical Engineering, Shandong University
| |
Collapse
|
43
|
Galaverna G, Dall'Asta C, Corradini R, Dossena A, Marchelli R. Cyclodextrins as selectors for mycotoxin recognition. WORLD MYCOTOXIN J 2008. [DOI: 10.3920/wmj2008.1022] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
This review deals with the applications of cyclodextrins as selectors for mycotoxin recognition. Complexation by cyclodextrins via formation of inclusion (host-guest) complexes induces significant changes in the physical and chemical properties of mycotoxins as guest molecules, effects that can be used in a variety of analytical techniques. Changes in chromatographic and electrophoretic properties and their applications to set up new separation methods are covered. Among these changes, a significant effect is the enhancement of the mycotoxin fluorescence upon inclusion, a phenomenon which provides a simple and convenient method to significantly increase the sensitivity of fluorescence-based trace analysis. The practical application of this phenomenon to set up new analytical methods is described. Studies on the mechanism of inclusion complex formation are also reported.
Collapse
Affiliation(s)
- G. Galaverna
- Dipartimento di Chimica Organica e Industriale, Università degli Studi di Parma, Viale G.P. Usberti 17/A, Campus Universitario, 43100 Parma, Italy
| | - C. Dall'Asta
- Dipartimento di Chimica Organica e Industriale, Università degli Studi di Parma, Viale G.P. Usberti 17/A, Campus Universitario, 43100 Parma, Italy
| | - R. Corradini
- Dipartimento di Chimica Organica e Industriale, Università degli Studi di Parma, Viale G.P. Usberti 17/A, Campus Universitario, 43100 Parma, Italy
| | - A. Dossena
- Dipartimento di Chimica Organica e Industriale, Università degli Studi di Parma, Viale G.P. Usberti 17/A, Campus Universitario, 43100 Parma, Italy
| | - R. Marchelli
- Dipartimento di Chimica Organica e Industriale, Università degli Studi di Parma, Viale G.P. Usberti 17/A, Campus Universitario, 43100 Parma, Italy
| |
Collapse
|
44
|
Maragos CM, Appell M, Lippolis V, Visconti A, Catucci L, Pascale M. Use of cyclodextrins as modifiers of fluorescence in the detection of mycotoxins. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2008; 25:164-71. [PMID: 18286406 DOI: 10.1080/02652030701564555] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Cyclodextrins, cyclic oligosaccharides composed of amylose subunits, are known to interact with mycotoxins. The interactions may be useful to analytical chemists by altering the properties of the mycotoxin of interest, namely the chromatographic properties, electrophoretic properties, fluorescence, or absorption of these fungal metabolites. Practical applications of these effects have been the incorporation of cyclodextrins into high-performance liquid chromatography and capillary electrophoresis methods for mycotoxin detection. Specific mycotoxins include those with a native fluorescence such as the aflatoxins, ochratoxin A (OTA) and zearalenone (ZEN) as well as those that can be rendered fluorescent through derivatization, such as T-2 toxin. The literature describing the applications of cyclodextrins in mycotoxin analysis is reviewed and an attempt to extend the use of cyclodextrins to the detection of labelled T-2 toxin is presented. Twenty cyclodextrins were evaluated for their ability to enhance the fluorescence emission of T-2 toxin derivatized with pyrene-1-carbonyl cyanide (T2-Pyr). This evaluation revealed that heptakis (2,6-di-O-methyl)-beta-cyclodextrin (DIMEB), in particular, enhanced T2-Pyr fluorescence. DIMEB was used as a buffer modifier in a capillary electrophoresis-laser-induced fluorescence (CE-LIF) method for detecting T-2 in maize. Because of the effects that certain cyclodextrins have, especially under aqueous conditions, they may make useful additives for a variety of mycotoxin analytical methods.
Collapse
Affiliation(s)
- C M Maragos
- Mycotoxin Research Unit, USDA-ARS-NCAUR, Peoria, IL 61604, USA.
| | | | | | | | | | | |
Collapse
|
45
|
Caballero J, Zamora C, Aguayo D, Yañez C, González-Nilo FD. Study of the interaction between progesterone and beta-cyclodextrin by electrochemical techniques and steered molecular dynamics. J Phys Chem B 2008; 112:10194-201. [PMID: 18665626 DOI: 10.1021/jp8006766] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The interaction of progesterone with beta-cyclodextrin (beta-CD) was studied by differential pulse polarography. The aim of the present work was to study the effect of beta-CD on the electrochemical behavior of progesterone in aqueous solution and also to analyze the molecular interactions involved in formation of the inclusion complex. The complex with stoichiometry of 1:1 was thermodynamically characterized. In addition, steered molecular dynamics (SMD) was used to investigate the energetic properties of formation of the inclusion complex along four different pathways (reaction coordinates), considering two possible orientations. From multiple trajectories along these pathways, the potentials of mean force for formation of the beta-CD progesterone inclusion complex were calculated. The energy analysis was in good agreement with the experimental results. In the beta-CD progesterone inclusion complex, a large portion of the steroid skeleton is included in the beta-CD cavity. The lowest energy was found when the D-ring of the guest molecule is located near the secondary hydroxyls of the beta-CD cavity. In the most probable orientation, one intermolecular hydrogen bond is formed between the O of the C-20 keto group of the progesterone and a secondary hydroxyl of the beta-CD.
Collapse
Affiliation(s)
- Julio Caballero
- Centro de Bioinformática y Simulación Molecular, Universidad de Talca, 2 Norte 685, Casilla 721, Talca, Chile
| | | | | | | | | |
Collapse
|
46
|
|
47
|
|
48
|
Cserháti T. New applications of cyclodextrins in electrically driven chromatographic systems: a review. Biomed Chromatogr 2008; 22:563-71. [DOI: 10.1002/bmc.979] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
49
|
Spectrofluorimetric study and detection of ketoconazole in the presence of beta-cyclodextrin. J Fluoresc 2007; 18:219-25. [PMID: 17952572 DOI: 10.1007/s10895-007-0265-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2007] [Accepted: 09/24/2007] [Indexed: 10/22/2022]
Abstract
The formation of a complex between ketoconazole and beta-cyclodextrin was followed by spectrofluorimetry. The inclusion of ketoconazole in beta-cyclodextrin cavity enhanced the native fluorescence of the drug. The stoichiometry of the complex was 1:1 beta-cyclodextrin to ketoconazole and the stability constant of the complex (log K(f)) was determined to be 4.3+/-0.01 at pH=7.9 and 3.7+/-0.04 at pH=2.6. A sensitive spectrofluorimetric method for the detection of ketoconazole is presented. At optimized experimental conditions, a linear relationship between the fluorescence intensity of the solution and concentration of ketoconazole is observed in the range of 0.01-10 microg ml(-1) (5 x 10(-8) M-1.88 x 10(-5) M). The method was applied to the detection of ketoconazole in pharmaceutical products and the results were satisfactory in comparison to the official method (relative error=2.8% and standard deviation=0.06 for tablets of ketoconazole). The recovery of ketoconazole from a blood serum sample, determined by the proposed method, was 97.1+/-2.4%.
Collapse
|