1
|
Goulart AC, Rodrigues AAZ, Heleno FF, Faria AMD, Goulart SM, Queiroz MELRD. Liquid-liquid and solid-liquid extractions with low-temperature partitioning - A review. Anal Chim Acta 2024; 1316:342795. [PMID: 38969398 DOI: 10.1016/j.aca.2024.342795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 05/20/2024] [Accepted: 05/28/2024] [Indexed: 07/07/2024]
Abstract
The paper represents the first review of solvent extraction techniques utilizing the low-temperature partitioning/purification (LTP) approach. Initially conceived in the 1960s to purify extracts from fatty matrices, it wasn't until the 2000s that this approach received increasing attention for its efficacy in extracting organic compounds from diverse samples, often without additional cleanup steps. This review covers a brief history and proposes a mechanism for LTP-based solvent extraction. Furthermore, the principal practical issues of the technique are spotlighted, elucidating the factors influencing extraction efficiency. The advantages, limitations, and potential combinations with other extraction techniques of the LTP-based solvent extractions are analyzed. The versatility of the LTP approach is demonstrated by its applications in extracting various compounds from food, environmental, and biological samples, emphasizing its potential for rapid sample preparation with minimal steps, few chemicals, and minimal analyst intervention.
Collapse
Affiliation(s)
| | | | - Fernanda Fernandes Heleno
- Departamento de Química, Universidade Federal de Viçosa, Av. P.H. Rolfs, S/n, 36570-000, Viçosa, MG, Brazil
| | - Anizio Marcio de Faria
- Instituto de Ciências Exatas e Naturais Do Pontal, Universidade Federal de Uberlândia, Rua Vinte, 1600, Bairro Tupã, 38304-402, Ituiutaba, MG, Brazil
| | | | | |
Collapse
|
2
|
Steils JM, Lang M, Kraus M, Schöne K, Cashman J, Baumgartner C. A Novel Approach for Single-Step Analyte Fractionation of Raw Milk Prior to Antibiotic Residue Trace Analysis as an Alternative to QuEchERS-Based Extraction. J AOAC Int 2024; 107:649-662. [PMID: 38467139 DOI: 10.1093/jaoacint/qsae022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 02/16/2024] [Accepted: 03/06/2024] [Indexed: 03/13/2024]
Abstract
BACKGROUND Antibiotic residues in milk are a well-known hazard in the dairy food chain. Detection methods for these residues, such as nonspecific microbiological inhibitor tests or group-specific receptor tests, are relatively inexpensive, easy to use, and widely applied to ensure food safety. In contrast, specific detection by liquid chromatography-tandem mass spectrometry (LC-MS/MS)-although a critical, complimentary method to confirm the results of nonspecific testing-is relatively costly, time-consuming, and laborious. Furthermore, sample processing before LC-MS/MS analysis requires unique preparation procedures for different groups of antibiotic compounds. OBJECTIVE To simplify and speed up specific antibiotic residue detection, a low-cost, passive, and single-step method to fractionate analytes in raw milk was developed. METHODS Untreated raw milk was fractionated into its water and fat/protein phases using a Fractionation of Milk for Trace Analysis of Contaminants and Residues for Antibiotics (FraMiTrACR® AB) fractionation unit. The water fraction was then analyzed by LC-MS/MS. The analyte fractionation method was evaluated against a Quick Easy Cheap Effective Rugged and Safe (QuEChERS)-based method for sample preparation. RESULTS Our method allows qualitative and quantitative detection of substances from the penicillin, cephalosporin, macrolide, lincosamide, sulfonamide, tetracycline, and fluoroquinolone groups of antibiotics. Detection limits are below the legally prescribed maximum residue levels, allowing reliable, specific, and rapid validation of a positive result in nonspecific microbiological inhibitor tests. CONCLUSION Analyte fractionation by FraMiTrACR AB is a faster alternative to QuEChERS-based sample preparation for the detection of antibiotic substances in milk. HIGHLIGHT This method describes a low-cost, environmentally friendly, passive, and single-step milk analyte fractionation. As an alternative to QuEChERS-based preparation, this fractionation method simplifies and speeds up the process for specific antibiotic residue detection.
Collapse
Affiliation(s)
| | - Maren Lang
- Milchprüfring Baden-Württemberg e. V., Marie-Curie-Str. 19, D-73230 Kirchheim/Teck
| | - Melina Kraus
- Milchprüfring Baden-Württemberg e. V., Marie-Curie-Str. 19, D-73230 Kirchheim/Teck
| | - Klaus Schöne
- Sartorius Lab Instruments GmbH & Co.KG, Otto-Brenner-Straße 20, D-37079 Göttingen
| | - John Cashman
- Sartorius UK Ltd, Longmead Business Centre, Blenheim Road, Epsom KT19 9QQ
| | | |
Collapse
|
3
|
Wabnitz C, Canavan A, Chen W, Reisbeck M, Bakkour R. Quartz Crystal Microbalance as a Holistic Detector for Quantifying Complex Organic Matrices during Liquid Chromatography: 1. Coupling, Characterization, and Validation. Anal Chem 2024; 96:7429-7435. [PMID: 38683884 PMCID: PMC11099895 DOI: 10.1021/acs.analchem.3c05440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2024]
Abstract
A matrix in highly complex samples can cause adverse effects on the trace analysis of targeted organic compounds. A suitable separation of the target analyte(s) and matrix before the instrumental analysis is often a vital step for which chromatographic cleanup methods remain one of the most frequently used strategies, particularly high-performance liquid chromatography (HPLC). The lack of a simple real-time detection technique that can quantify the entirety of the matrix during this step, especially with gradient solvents, renders optimization of the cleanup challenging. This paper, along with a companion one, explores the possibilities and limitations of quartz crystal microbalance (QCM) dry-mass sensing for quantifying complex organic matrices during gradient HPLC. To this end, this work coupled a QCM and a microfluidic spray dryer with a commercial HPLC system using a flow splitter and developed a calibration and data processing strategy. The system was characterized in terms of detection and quantification limits, with LOD = 4.3-15 mg/L and LOQ = 16-52 mg/L, respectively, for different eluent compositions. Validation of natural organic matter in an environmental sample against offline total organic carbon analysis confirmed the approach's feasibility, with an absolute recovery of 103 ± 10%. Our findings suggest that QCM dry-mass sensing could serve as a valuable tool for analysts routinely employing HPLC cleanup methods, offering potential benefits across various analytical fields.
Collapse
Affiliation(s)
- Christopher Wabnitz
- TUM School of Natural Sciences, Chair of Analytical Chemistry and Water Chemistry, Technical University of Munich, Garching 85748, Germany
| | - Aoife Canavan
- TUM School of Natural Sciences, Chair of Analytical Chemistry and Water Chemistry, Technical University of Munich, Garching 85748, Germany
| | - Wei Chen
- TUM School of Natural Sciences, Chair of Analytical Chemistry and Water Chemistry, Technical University of Munich, Garching 85748, Germany
| | - Mathias Reisbeck
- TUM School of Computation, Information and Technology, Heinz Nixdorf Chair of Biomedical Electronics, Technical University of Munich, Munich 81675, Germany
| | - Rani Bakkour
- TUM School of Natural Sciences, Chair of Analytical Chemistry and Water Chemistry, Technical University of Munich, Garching 85748, Germany
| |
Collapse
|
4
|
Lian S, Li X, Lv X. Density Functional Theory Study on the Interaction between Aflatoxin B1/M1 and Gold Substrate. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:1804-1816. [PMID: 38183291 DOI: 10.1021/acs.langmuir.3c03069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2024]
Abstract
Aflatoxin M1 (AFM1) and its precursor, Aflatoxin B1 (AFB1), are highly pathogenic and mutagenic substances, making the detection and sensing of AFB1/M1 a long-standing focus of researchers. Among various detection techniques, surface-enhanced Raman spectroscopy (SERS) is considered an ideal method for AFB1/M1 detection due to its ability not only to enhance characteristic frequencies but also to detect shifts in these frequencies with high repeatability. Therefore, we employed density functional theory in conjunction with surface-enhanced Raman spectroscopy to investigate the interaction between AFB1/M1 and a Au substrate in the context of the SERS effect for the first time. To predict the potential binding sites of AFB1/M1 and Au within the SERS effect, we performed calculations on the molecular electrostatic potential of AFB1/M1. Considering the crucial role of the binding energy in molecular docking studies, we computed the binding energy between two molecules interacting with Au at different binding sites. The molecular frontier orbitals and related chemical parameters of AFB1/M1 and "molecular-Au" complexes were computed to elucidate the alterations in AFB1/M1 molecules under the SERS effect. Subsequently, the theoretical Raman spectra of AFB1/M1 and the complexes were compared and analyzed, enabling determination of the adsorption conformation of AFB1/M1 on the gold surface based on SERS surface selection rules. These findings not only provide a deeper understanding of the interaction mechanism between molecules and substrates in the SERS effect but also offer theoretical support for developing novel aflatoxin SERS sensors.
Collapse
Affiliation(s)
- Shuai Lian
- School of Medical Technology, Beijing Institute of Technology, Beijing 100081, China
| | - Xiaoqiong Li
- School of Medical Technology, Beijing Institute of Technology, Beijing 100081, China
| | - Xuefei Lv
- School of Medical Technology, Beijing Institute of Technology, Beijing 100081, China
| |
Collapse
|
5
|
Heydari M, Carbone K, Gervasi F, Parandi E, Rouhi M, Rostami O, Abedi-Firoozjah R, Kolahdouz-Nasiri A, Garavand F, Mohammadi R. Cold Plasma-Assisted Extraction of Phytochemicals: A Review. Foods 2023; 12:3181. [PMID: 37685115 PMCID: PMC10486403 DOI: 10.3390/foods12173181] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 08/13/2023] [Accepted: 08/18/2023] [Indexed: 09/10/2023] Open
Abstract
In recent years, there has been growing interest in bioactive plant compounds for their beneficial effects on health and for their potential in reducing the risk of developing certain diseases such as cancer, cardiovascular diseases, and neurodegenerative disorders. The extraction techniques conventionally used to obtain these phytocompounds, however, due to the use of toxic solvents and high temperatures, tend to be supplanted by innovative and unconventional techniques, in line with the demand for environmental and economic sustainability of new chemical processes. Among non-thermal technologies, cold plasma (CP), which has been successfully used for some years in the food industry as a treatment to improve food shelf life, seems to be one of the most promising solutions in green extraction processes. CP is characterized by its low environmental impact, low cost, and better extraction yield of phytochemicals, saving time, energy, and solvents compared with other classical extraction processes. In light of these considerations, this review aims to provide an overview of the potential and critical issues related to the use of CP in the extraction of phytochemicals, particularly polyphenols and essential oils. To review the current knowledge status and future insights of CP in this sector, a bibliometric study, providing quantitative information on the research activity based on the available published scientific literature, was carried out by the VOSviewer software (v. 1.6.18). Scientometric analysis has seen an increase in scientific studies over the past two years, underlining the growing interest of the scientific community in this natural substance extraction technique. The literature studies analyzed have shown that, in general, the use of CP was able to increase the yield of essential oil and polyphenols. Furthermore, the composition of the phytoextract obtained with CP would appear to be influenced by process parameters such as intensity (power and voltage), treatment time, and the working gas used. In general, the studies analyzed showed that the best yields in terms of total polyphenols and the antioxidant and antimicrobial properties of the phytoextracts were obtained using mild process conditions and nitrogen as the working gas. The use of CP as a non-conventional extraction technique is very recent, and further studies are needed to better understand the optimal process conditions to be adopted, and above all, in-depth studies are needed to better understand the mechanisms of plasma-plant matrix interaction to verify the possibility of any side reactions that could generate, in a highly oxidative environment, potentially hazardous substances, which would limit the exploitation of this technique at the industrial level.
Collapse
Affiliation(s)
- Mahshid Heydari
- Student Research Committee, Department of Food Science and Technology, School of Nutrition Sciences and Food Technology, Kermanshah University of Medical Sciences, Kermanshah 6719851552, Iran; (M.H.)
| | - Katya Carbone
- CREA Research Centre for Olive, Fruit and Citrus Crops, Via di Fioranello 52, 00134 Rome, Italy;
| | - Fabio Gervasi
- CREA Research Centre for Olive, Fruit and Citrus Crops, Via di Fioranello 52, 00134 Rome, Italy;
| | - Ehsan Parandi
- Department of Food Science & Technology, Faculty of Agricultural Engineering and Technology, University of Tehran, Karaj 3158777871, Iran
| | - Milad Rouhi
- Department of Food Science and Technology, School of Nutrition Sciences and Food Technology, Research Center for Environmental Determinants of Health (RCEDH), Health Institute, Kermanshah University of Medical Sciences, Kermanshah 6719851552, Iran
| | - Omid Rostami
- Student Research Committee, Department of Food Science and Technology, National Nutrition and Food Technology Research Institute, Faculty of Nutrition Sciences, Food Science and Technology, Shahid Beheshti University of Medical Sciences, Tehran 1981619573, Iran
| | - Reza Abedi-Firoozjah
- Student Research Committee, Department of Food Science and Technology, School of Nutrition Sciences and Food Technology, Kermanshah University of Medical Sciences, Kermanshah 6719851552, Iran; (M.H.)
| | - Azin Kolahdouz-Nasiri
- Student Research Committee, Department of Food Science and Technology, School of Nutrition Sciences and Food Technology, Kermanshah University of Medical Sciences, Kermanshah 6719851552, Iran; (M.H.)
| | - Farhad Garavand
- Department of Food Chemistry & Technology, Teagasc Moorepark Food Research Centre, Fermoy, Co., P61 C996 Cork, Ireland
| | - Reza Mohammadi
- Department of Food Science and Technology, School of Nutrition Sciences and Food Technology, Research Center for Environmental Determinants of Health (RCEDH), Health Institute, Kermanshah University of Medical Sciences, Kermanshah 6719851552, Iran
| |
Collapse
|
6
|
Murugesan RC, Choudhury MTA, Rozhin A. 2D excitation-emission fluorescence mapping analysis of plant food pigments. Food Chem 2023; 418:135875. [PMID: 36965388 DOI: 10.1016/j.foodchem.2023.135875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 02/07/2023] [Accepted: 03/03/2023] [Indexed: 03/08/2023]
Abstract
Homogeneous dispersion of plant food pigments is indispensable to study their characteristic fluorescence features for non-destructive rapid monitoring of food systems. However, it is highly challenging to obtain such optical grade homogenized stable dispersion of various plant pigments in aqueous media for tracing their precise fluorescence signatures. Herein, we demonstrate a unique strategy to disperse various pigments, such as chlorophylls, carotenoids and phenolic compounds by the high-speed shear-force mixing of fresh green and red bell peppers (Capsicum annuum) in an aqueous medium with followed centrifugation and filtration. An advanced FLuorescence Excitation-emission (FLE) mapping and optical absorption analysis from the optical grade aqueous bell peppers dispersion allow simultaneous probing of chlorophylls, phenolic compounds and carotenoids by their characteristic electronic transitions. The demonstrated sampling protocols and spectroscopic analysis will be highly beneficial to obtain advanced spectroscopic databases from different food materials for rapid food analysis and quality control.
Collapse
Affiliation(s)
- Raghavan Chinnambedu Murugesan
- Nanoscience Research Group and The Wolfson Centre for Photonics for Food and Agri-Tech, Aston Institute of Photonic Technologies, College of Engineering and Physical Sciences, Aston University, Birmingham B4 7ET, United Kingdom
| | - Mohammed Thofike Ahmed Choudhury
- Nanoscience Research Group and The Wolfson Centre for Photonics for Food and Agri-Tech, Aston Institute of Photonic Technologies, College of Engineering and Physical Sciences, Aston University, Birmingham B4 7ET, United Kingdom
| | - Alex Rozhin
- Nanoscience Research Group and The Wolfson Centre for Photonics for Food and Agri-Tech, Aston Institute of Photonic Technologies, College of Engineering and Physical Sciences, Aston University, Birmingham B4 7ET, United Kingdom.
| |
Collapse
|
7
|
Combination of mixed mode dispersive solid phase extraction with magnetic ionic liquids based dispersive liquid–liquid microextraction for the extraction of anticoagulant drugs from urine samples. Microchem J 2022. [DOI: 10.1016/j.microc.2022.108065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
8
|
Ashley BK, Hassan U. Digital filtering dissemination for optimizing impedance cytometry signal quality and counting accuracy. Biomed Microdevices 2022; 24:36. [PMID: 36305954 PMCID: PMC9635870 DOI: 10.1007/s10544-022-00636-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/04/2022] [Indexed: 11/29/2022]
Abstract
Improving biosensor performance which utilize impedance cytometry is a highly interested research topic for many clinical and diagnostic settings. During development, a sensor's design and external factors are rigorously optimized, but improvements in signal quality and interpretation are usually still necessary to produce a sensitive and accurate product. A common solution involves digital signal processing after sample analysis, but these methods frequently fall short in providing meaningful signal outcome changes. This shortcoming may arise from a lack of investigative research into selecting and using signal processing functions, as many choices in current sensors are based on either theoretical results or estimated hypotheses. While a ubiquitous condition set is improbable across diverse impedance cytometry designs, there lies a need for a streamlined and rapid analytical method for discovering those conditions for unique sensors. Herein, we present a comprehensive dissemination of digital filtering parameters applied on experimental impedance cytometry data for determining the limits of signal processing on signal quality improvements. Various filter orders, cutoff frequencies, and filter types are applied after data collection for highest achievable noise reduction. After designing and fabricating a microfluidic impedance cytometer, 9 µm polystyrene particles were measured under flow and signal quality improved by 6.09 dB when implementing digital filtering. This approached was then translated to isolated human neutrophils, where similarly, signal quality improved by 7.50 dB compared to its unfiltered original data. By sweeping all filtering conditions and devising a system to evaluate filtering performance both by signal quality and object counting accuracy, this may serve as a framework for future systems to determine their appropriately optimized filtering configuration.
Collapse
Affiliation(s)
- Brandon K Ashley
- Department of Biomedical Engineering, Rutgers, the State University of New Jersey, Piscataway, NJ, 08854, USA
| | - Umer Hassan
- Department of Electrical Engineering, Department of Biomedical Engineering, and Global Health Institute Rutgers, the State University of New Jersey, Piscataway, NJ, 08854, USA.
| |
Collapse
|
9
|
Qiao L, Xu J, Yang Z, Li X, Chen L, Sun H, Mu Y. Residual Risk of Avermectins in Food Products of Animal Origin and Their Research Progress on Toxicity and Determination. FOOD REVIEWS INTERNATIONAL 2022. [DOI: 10.1080/87559129.2022.2132402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Affiliation(s)
- Lu Qiao
- Key Laboratory of Control of Quality and Safety for Aquatic Products, Ministry of Agriculture and Rural Affairs, Chinese Academy of Fishery Sciences, Beijing, China
| | - Jinhua Xu
- Key Laboratory of Control of Quality and Safety for Aquatic Products, Ministry of Agriculture and Rural Affairs, Chinese Academy of Fishery Sciences, Beijing, China
| | - Zhen Yang
- Key Laboratory of Control of Quality and Safety for Aquatic Products, Ministry of Agriculture and Rural Affairs, Chinese Academy of Fishery Sciences, Beijing, China
| | - Xingyang Li
- Key Laboratory of Control of Quality and Safety for Aquatic Products, Ministry of Agriculture and Rural Affairs, Chinese Academy of Fishery Sciences, Beijing, China
- College of Food Science and Engineering, Bohai University, Jinzhou, China
| | - Lu Chen
- Key Laboratory of Control of Quality and Safety for Aquatic Products, Ministry of Agriculture and Rural Affairs, Chinese Academy of Fishery Sciences, Beijing, China
- College of Food Science and Engineering, Bohai University, Jinzhou, China
| | - Huiwu Sun
- Key Laboratory of Control of Quality and Safety for Aquatic Products, Ministry of Agriculture and Rural Affairs, Chinese Academy of Fishery Sciences, Beijing, China
| | - Yingchun Mu
- Key Laboratory of Control of Quality and Safety for Aquatic Products, Ministry of Agriculture and Rural Affairs, Chinese Academy of Fishery Sciences, Beijing, China
| |
Collapse
|
10
|
Kochameshki BK, Javadi A, Afshar Mogaddam MR, Mirzaee H, Farajzadeh MA. Combination of microwave‐assisted extraction with dispersive micro solid‐phase extraction as an efficient sample pretreatment method for the extraction of some antiparasitic drugs from cow liver, meat, and kidney samples. J Sep Sci 2022; 45:3974-3984. [DOI: 10.1002/jssc.202200416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Revised: 08/29/2022] [Accepted: 08/30/2022] [Indexed: 11/10/2022]
Affiliation(s)
| | - Afshin Javadi
- Department of Food Hygiene, Faculty of Veterinary, Tabriz Medical Sciences Islamic Azad University Tabriz Iran
| | - Mohammad Reza Afshar Mogaddam
- Food and Drug Safety Research Center Tabriz University of Medical Sciences Tabriz Iran
- Pharmaceutical Analysis Research Center Tabriz University of Medical Sciences Tabriz Iran
| | - Hamid Mirzaee
- Department of Food Hygiene, Faculty of Veterinary, Tabriz Medical Sciences Islamic Azad University Tabriz Iran
| | - Mir Ali Farajzadeh
- Department of Analytical Chemistry, Faculty of Chemistry University of Tabriz Tabriz Iran
- Engineering Faculty Near East University Mersin 10 Turkey
| |
Collapse
|
11
|
Cloud point extraction coupled with ultrasonic-assisted back-extraction for the determination of metalaxyl, fludioxonil and fenarimol in fruits by gas chromatography with flame ionization detection. CHEMICAL PAPERS 2022. [DOI: 10.1007/s11696-022-02431-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
12
|
Nanomaterials with Excellent Adsorption Characteristics for Sample Pretreatment: A Review. NANOMATERIALS 2022; 12:nano12111845. [PMID: 35683700 PMCID: PMC9182308 DOI: 10.3390/nano12111845] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 05/24/2022] [Accepted: 05/25/2022] [Indexed: 12/10/2022]
Abstract
Sample pretreatment in analytical chemistry is critical, and the selection of materials for sample pretreatment is a key factor for high enrichment ability, good practicality, and satisfactory recoveries. In this review, the recent progress of the sample pretreatment methods based on various nanomaterials (i.e., carbon nanomaterials, porous nanomaterials, and magnetic nanomaterials) with excellent adsorption efficiency, selectivity, and reproducibility, as well as their applications, are presented. Due to the unique nanoscale physical–chemical properties, magnetic nanomaterials have been used for the extraction of target analytes by easy-to-handle magnetic separation under a magnetic field, which can avoid cumbersome centrifugation and filtration steps. This review also highlights the preparation process and reaction mechanism of nanomaterials used in the sample pretreatment methods, which have been applied for the extraction organophosphorus pesticides, fluoroquinolone antibiotics, phenoxy carboxylic acids, tetracycline antibiotics, hazardous metal ions, and rosmarinic acid. In addition, the remaining challenges and future directions for nanomaterials used as sorbents in the sample pretreatment are discussed.
Collapse
|
13
|
Tang Z, Liu F, Fang F, Ding X, Han Q, Tan Y, Peng C. Solid-phase extraction techniques based on nanomaterials for mycotoxin analysis: An overview for food and agricultural products. J Sep Sci 2022; 45:2273-2300. [PMID: 35389521 DOI: 10.1002/jssc.202200067] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 04/01/2022] [Accepted: 04/04/2022] [Indexed: 11/06/2022]
Abstract
Mycotoxin contamination is a globally concerned problem for food and agricultural products since it may directly or indirectly induce severe threats to human health. Sensitive and selective screening is an efficient strategy to prevent or reduce human and animal exposure to mycotoxins. However, enormous challenges exist in the determination of mycotoxins, arising from complex sample matrices, trace-level analytes, and the co-occurrence of diverse mycotoxins. Appropriate sample preparation is essential to isolate, purify, and enrich mycotoxins from complicated matrices, thus decreasing sample matrix effects and lowering detection limits. With the cross-disciplinary development, new solid-phase extraction strategies have been exploited and integrated with nanotechnology to meet the challenges of mycotoxin analysis. This review summarizes the advance and progress of solid-phase extraction techniques as the methodological solutions for mycotoxin analysis. Emphases are paid on nanomaterials fabricated as trapping media of SPE techniques, including carbonaceous nanoparticles, metal/metal oxide-based nanoparticles, and nanoporous materials. Advantages and limitations are discussed, along with the potential prospects. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Zhentao Tang
- Key Laboratory of Southwestern Chinese Medicine Resources, Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Fei Liu
- Technology Center of Chengdu Customs District P. R. China, Chengdu, China
| | - Fang Fang
- Urumqi Customs District P. R. China, Urumqi, China
| | - Xuelu Ding
- School of Pharmacy, Qingdao University, Qingdao, China
| | - Qingrong Han
- Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yuzhu Tan
- Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Cheng Peng
- Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
14
|
Zoratto Romoli JC, Palma Scanferla DT, Gomes Aguera R, Lini RS, Pante GC, Bueno Junior CR, Castro JC, Mossini SAG, Marchioni C, Junior MM. Analytical and toxicological aspects of dithiocarbamates: an overview of the last 10 years. Toxicol Mech Methods 2022; 32:637-649. [PMID: 35387549 DOI: 10.1080/15376516.2022.2063096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Compilation studies related to toxicological aspects and also biological monitoring and analysis methods for specific fungicides and, mainly, those that belong to the class of the dithiocarbamates (DTCs) have not been carried out at least in the last ten years. DTCs - dimethyldithiocarbamates, ethylenebisditiocarbamates, propylenebisditiocarbamates - are organosulfur compounds that form complexes due to the presence of different chemical elements, which bind strongly and inhibit enzymes that are essential to the functioning of the organism, causing a serious proven adverse effect on biological systems, such as alteration of thyroid hormones, teratogenesis and neurotoxicity. It is still evident, as shown by world data, that the growing consumption of fungicides has increasingly exposed the population in general and, in particular, workers who deal with these substances. There is a scarcity of studies in the literature discussing the toxicological and analytical aspects that are important for understanding the real effects of DTCs and monitoring human exposure to them. Therefore, the aim of this work was to expose, in a comprehensive way and through a narrative review, the negligence of research related to the fungicides of the DTCs class, their metabolites, as well as the toxicological and analytical aspects involved. The review is divided into two parts: (1) Toxicological aspects, including toxicokinetics, toxicodynamics and toxidromes; and (2) Analytical Toxicology, which comprises biomarkers, sample preparation and identification/quantification methods.
Collapse
Affiliation(s)
- Jéssica Cristina Zoratto Romoli
- Department of Basic Health Science, State University of Maringa, Avenida Colombo N° 5790, Maringa, PR, CEP 87020-900, Brazil
| | - Deborah Thais Palma Scanferla
- Department of Basic Health Science, State University of Maringa, Avenida Colombo N° 5790, Maringa, PR, CEP 87020-900, Brazil
| | - Raul Gomes Aguera
- Department of Basic Health Science, State University of Maringa, Avenida Colombo N° 5790, Maringa, PR, CEP 87020-900, Brazil
| | - Renata Sano Lini
- Department of Basic Health Science, State University of Maringa, Avenida Colombo N° 5790, Maringa, PR, CEP 87020-900, Brazil
| | - Giseli Cristina Pante
- Department of Basic Health Science, State University of Maringa, Avenida Colombo N° 5790, Maringa, PR, CEP 87020-900, Brazil
| | - Carlos Roberto Bueno Junior
- Department of Basic Health Science, State University of Maringa, Avenida Colombo N° 5790, Maringa, PR, CEP 87020-900, Brazil
| | - Juliana Cristina Castro
- Department of Basic Health Science, State University of Maringa, Avenida Colombo N° 5790, Maringa, PR, CEP 87020-900, Brazil
| | | | - Camila Marchioni
- Department of Pathology, Federal University of Santa Catarina, Rua Delfino Conti S/N, Florianopolis, SC, CEP 88040-370, Brazil
| | - Miguel Machinski Junior
- Department of Basic Health Science, State University of Maringa, Avenida Colombo N° 5790, Maringa, PR, CEP 87020-900, Brazil
| |
Collapse
|
15
|
Chen T, Hu J, Chen Y, Liu Y, Li Y, Xu H. Tracking the environmental fate of fipronil and three of its metabolites in garlic based on sampling rate-corrected in vivo solid phase microextraction combined with gas chromatography-mass spectrometry. Anal Chim Acta 2022; 1190:339263. [PMID: 34857131 DOI: 10.1016/j.aca.2021.339263] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 11/03/2021] [Accepted: 11/06/2021] [Indexed: 11/01/2022]
Abstract
In this study, a sampling rate-corrected in vivo solid-phase microextraction-gas chromatography-mass spectrometry method (SR-in vivo SPME-GC-MS) was constructed to simultaneously detect fipronil and three of its metabolites in garlic, and their environmental behavior was long-term monitored in in vivo mode. All of three fipronil metabolites were more difficult to degrade than the parent pesticide. The final degradation rates of the metabolites in garlic were in the range of 4.4%-25.1%, much lower than that of the parent (78.6%-85.8%). While their total residues amount was about 3 times as high as fipronil, exceeding the maximum residue limits regulated by China and the European Union. The steady-state concentrations of fipronil and its metabolites in garlic were positively correlated with the pesticide stress dose. In short, the established in vivo tracking method is efficient and convenient. The features of simple operation, fast analysis, acceptable sensitivity, non-harmful or non-lethal to plants, available repeated and long-term monitoring of the same organism make it attractive for in vivo tracking assay, it is of great significance for the guidance of rational use of fipronil and protection of food safety.
Collapse
Affiliation(s)
- Tiantian Chen
- Key Laboratory of Insecticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan, 430079, China
| | - Jiajia Hu
- Key Laboratory of Insecticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan, 430079, China
| | - Yanyan Chen
- Key Laboratory of Insecticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan, 430079, China
| | - Ying Liu
- Key Laboratory of Insecticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan, 430079, China
| | - Yan Li
- Key Laboratory of Insecticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan, 430079, China
| | - Hui Xu
- Key Laboratory of Insecticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan, 430079, China.
| |
Collapse
|
16
|
Muguruma Y, Nunome M, Inoue K. A Review on the Foodomics Based on Liquid Chromatography Mass Spectrometry. Chem Pharm Bull (Tokyo) 2022; 70:12-18. [PMID: 34980727 DOI: 10.1248/cpb.c21-00765] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Due to the globalization of food production and distribution, the food chain has become increasingly complex, making it more difficult to evaluate unexpected food changes. Therefore, establishing sensitive, robust, and cost-effective analytical platforms to efficiently extract and analyze the food-chemicals in complex food matrices is essential, however, challenging. LC/MS-based metabolomics is the key to obtain a broad overview of human metabolism and understand novel food science. Various metabolomics approaches (e.g., targeted and/or untargeted) and sample preparation techniques in food analysis have their own advantages and limitations. Selecting an analytical platform that matches the characteristics of the analytes is important for food analysis. This review highlighted the recent trends and applications of metabolomics based on "foodomics" by LC-MS and provides the perspectives and insights into the methodology and various sample preparation techniques in food analysis.
Collapse
Affiliation(s)
- Yoshio Muguruma
- Graduate School of Pharmaceutical Sciences, Ritsumeikan University
| | - Mari Nunome
- Graduate School of Pharmaceutical Sciences, Ritsumeikan University
| | - Koichi Inoue
- Graduate School of Pharmaceutical Sciences, Ritsumeikan University
| |
Collapse
|
17
|
Moharkar S, Dhamole PB, Gole VL. Integrated ultrasound-mediated sugaring-out extraction of erythromycin from fermentation broth. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2021.119517] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
18
|
Ashley BK, Hassan U. Frequency-Time Domain (FTD) Impedance Data Analysis to Improve Accuracy of Microparticle Enumeration in a Microfluidic Electronic Counter. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2021; 2021:1201-1204. [PMID: 34891502 PMCID: PMC8764509 DOI: 10.1109/embc46164.2021.9630635] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Experimental background noise present in biosensors' data hinders the ability for sensitive and accurate detection of critical biomarkers. Here, we report our digital signal processing analysis with respect to frequency and time domain (FTD) data to reduce noise in an experimental microfluidic impedance cytometer. We evaluated the effectiveness of employed noise filtering techniques independently, including baseline drift correction, high frequency noise filtering, and powerline interference mitigation. We further explored the combined effect of all filters and determine improvements in signal-to-noise (SNR) ratio and particle counting accuracy. By removing noise regimes, SNR improved with this impedance cytometer device, and our future efforts will explore filtering effects of more specific and uncommon noise spectrums to greater optimize device performance.
Collapse
|
19
|
Raofie F, Falsafi Z. Development of a bimetal-organic framework-polypyrrole composite as a novel fiber coating for direct immersion solid phase microextraction in situ supercritical fluid extraction coupled with gas chromatography for simultaneous determination of furfurals in dates. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2021; 13:4941-4948. [PMID: 34617077 DOI: 10.1039/d1ay01211h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
A new, simple, hyphenated technique couples supercritical fluid extraction and direct immersion SPME with GC-FID (SFE-DI-SPME-GC-FID) for the determination of 2-furaldehyde (2-F) and 5-hydroxymethylfurfural (5-HMF) in solid foods. A bimetal-organic framework-polypyrrole composite was grown in situ on stainless steel wire in solution and used as a novel solid phase microextraction (SPME) fiber coating. A central composite design based on a 2n-1 fractional factorial experimental design was employed to optimize the SFE conditions for 2-F and 5-HMF at a pressure of 325 atm, temperature of 35 °C, dynamic extraction time of 15 min, and modifier volume of 150 μL. Also, the factors related to the solid-phase microextraction method including ionic strength, desorption time and temperature together with extraction time and temperature were optimized prior to the gas chromatography analysis. Under the optimal conditions, the limits of detection were in the range of 1.28-5.92 μg kg-1. This method showed good linearity for 2-F and 5-HMF in the ranges of 40-50 000 and 4540-500 000 μg kg-1, respectively, with coefficients of determination more than 0.9995. Single fiber repeatability and fiber-to-fiber reproducibility were less than 6.76% and 9.12%, respectively. The new method was successfully utilized to determine the amounts of 2-F and 5-HMF in the real solid food matrix without the need for tedious pretreatments.
Collapse
Affiliation(s)
- Farhad Raofie
- Department of Analytical Chemistry and Pollutants, Shahid Beheshti University, Tehran, 1983963113, Iran.
| | - Zohreh Falsafi
- Department of Analytical Chemistry and Pollutants, Shahid Beheshti University, Tehran, 1983963113, Iran.
| |
Collapse
|
20
|
Khodayari P, Jalilian N, Ebrahimzadeh H, Amini S. Trace-level monitoring of anti-cancer drug residues in wastewater and biological samples by thin-film solid-phase micro-extraction using electrospun polyfam/Co-MOF-74 composite nanofibers prior to liquid chromatography analysis. J Chromatogr A 2021; 1655:462484. [PMID: 34487879 DOI: 10.1016/j.chroma.2021.462484] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 08/18/2021] [Accepted: 08/19/2021] [Indexed: 12/15/2022]
Abstract
Sample preparation methods with high accuracy and matrix resistance will benefit the quick analysis of desired analytes in an intricate matrix, such as the monitoring of drug samples in biofluids. Herein, an electrospun composite, consisting of polyfam and a Co-metal organic framework- 74, was developed as a novel sorbent for the high-throughput solid-phase micro-extraction of certain anti-cancer drugs (sorafenib, dasatinib, and erlotinib hydrochloride) from wastewater and biological samples before high-performance liquid chromatography- ultraviolet analysis (HPLC-UV). The synthesis of the resulting composite nanofibers was confirmed using the techniques of Fourier transform-infrared spectroscopy, field emission scanning electron microscopy (FESEM), energy-dispersive X-ray spectroscopy (EDX), and powder X-ray diffraction (XRD). FESEM images illustrated irregular and bead-free nanofibers with a diameter range of 126.9-269.6 nm. Thanks to the incorporation of Co-MOF-74 into the polyfam network, the electrospun nanofibers displayed a large surface area, high porosity, and significant extraction efficiency toward target analytes. Under optimal experimental conditions, the linearity was achieved in the range of 0.1-1500.0 µg L-1 for sorafenib and 0.5-1500.0 µg L-1 for dasatinib and erlotinib hydrochloride, with a coefficient of determination of ≥0.9996. The detection limits (LODs) were calculated within the range of 0.03-0.20 µg L-1. The relative standard deviation values (RSDs %) were in the range of 3.1%-8.6% (intra-day, n = 6) and 7.0%-10.3% (inter-day, n=3) in the span of three days. Ultimately, the application of the developed method was appraised for the quantification of trace amounts of the intended analytes in various spiked samples.
Collapse
Affiliation(s)
- Parisa Khodayari
- Department of Analytical Chemistry and Pollutants, Faculty of Chemistry and Petroleum Sciences, Shahid Beheshti University, Tehran, Iran
| | - Niloofar Jalilian
- Department of Analytical Chemistry and Pollutants, Faculty of Chemistry and Petroleum Sciences, Shahid Beheshti University, Tehran, Iran
| | - Homeira Ebrahimzadeh
- Department of Analytical Chemistry and Pollutants, Faculty of Chemistry and Petroleum Sciences, Shahid Beheshti University, Tehran, Iran.
| | - Shima Amini
- Department of Analytical Chemistry and Pollutants, Faculty of Chemistry and Petroleum Sciences, Shahid Beheshti University, Tehran, Iran
| |
Collapse
|
21
|
Lenti L, Scortichini S, Pacetti D, Cespi M, Fiorini D. Polydimethylsiloxane/divinylbenzene overcoated fiber and its application to extract and analyse wine volatile compounds by solid-phase microextraction and gas chromatography coupled to mass spectrometry: direct immersion, headspace or both? Food Res Int 2021; 148:110632. [PMID: 34507775 DOI: 10.1016/j.foodres.2021.110632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 07/23/2021] [Accepted: 07/27/2021] [Indexed: 11/26/2022]
Abstract
In this study, a comparison of the efficiency of the commercially available polydimethylsiloxane/divinylbenzene (PDMS/DVB) overcoated (OC) fiber used in direct immersion (DI) or in headspace (HS), has been performed by extracting volatiles through solid-phase microextraction (SPME) from a red wine and from a wine model to confirm the results. It was also investigated if a combination of DI followed by HS in a single assay (DI-HS) can provide improvements as compared to the use in DI or in HS only. Furthermore, the use of OC fiber in HS mode was compared with the use of the triphasic phase (TP, in PDMS/CAR/DVB), known to provide good results in this application. To have information also on fiber specificity, the detected analytes were subdivided into three classes depending on their boiling point. Results show that: OC fiber gives slightly better performance as compared to TP fiber, demonstrating a high efficiency of the OC fiber also in HS mode. Then, comparing the use of the commercial OC fiber in HS, DI and in the combined DI-HS mode, explored for the first time in this study to extract volatiles from wine, the combination DI-HS resulted to provide a more balanced efficiency for all the three groups of analytes, thus being a good compromise when the analytes have a broad range of volatility. Principal component analysis (PCA) and the design of experiment (DoE) were exploited to plan experiments and to help interpreting the results, highlighting that the combined DI-HS approach can be successfully applied to the characterization of wines and of other matrices, where analytes of interest have a wide range of volatility.
Collapse
Affiliation(s)
- Lucia Lenti
- School of Science and Technology, Chemistry Division, University of Camerino, Via S. Agostino 1, I-62032 Camerino, MC, Italy
| | - Serena Scortichini
- School of Science and Technology, Chemistry Division, University of Camerino, Via S. Agostino 1, I-62032 Camerino, MC, Italy
| | - Deborah Pacetti
- Dipartimento di Scienze Agrarie, Alimentari e Ambientali, Università Politecnica delle Marche, Via Brecce Bianche, 60131 Ancona, AN, Italy
| | - Marco Cespi
- School of Pharmacy, University of Camerino, Via S. Agostino 1, I-62032 Camerino, MC, Italy.
| | - Dennis Fiorini
- School of Science and Technology, Chemistry Division, University of Camerino, Via S. Agostino 1, I-62032 Camerino, MC, Italy.
| |
Collapse
|
22
|
Egea MB, Bertolo MRV, de Oliveira Filho JG, Lemes AC. A Narrative Review of the Current Knowledge on Fruit Active Aroma Using Gas Chromatography-Olfactometry (GC-O) Analysis. Molecules 2021; 26:5181. [PMID: 34500614 PMCID: PMC8433627 DOI: 10.3390/molecules26175181] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 08/20/2021] [Accepted: 08/23/2021] [Indexed: 11/25/2022] Open
Abstract
Fruit aroma, a mixture of chemical compounds with odor, is a strong attractant derived from a complex mixture of different amounts and intensities (threshold) of chemical compounds found in fruits. The odor-producing compounds of fruit aroma are derived from carbohydrates, lipids, phenolic compounds, and mono- and sesquiterpenes, among others. The identification of compounds responsible for fruit aroma is usually conducted using gas chromatography coupled with olfactometry (GC-O). This technique separates the chemical compounds from the aroma of foods using a chromatographic column and divides the resultant outflow between the physical detector and a testing outlet (sniffing port). Trained judges describe the perceived odor in terms of the intensity of the odor zones perceived according to their training method. Moreover, the use of GC-O coupled with a mass detector (GC-MS-O) allows for the retrieval of chemical information such as identification and quantification of compounds, which can be correlated to sensory information. This review aimed to demonstrate the application of GC-MS-O in the identification of precursor compounds in fruit aroma, considering important factors for the application, main results, and most recent advances in this field.
Collapse
Affiliation(s)
- Mariana Buranelo Egea
- Campus Rio Verde, Goiano Federal Institute of Education, Science and Technology, Rodovia Sul Goiana, Km 01, Rural Area, Rio Verde 75901-970, GO, Brazil
| | - Mirella Romanelli Vicente Bertolo
- São Carlos Institute of Chemistry (IQSC), University of São Paulo (USP), Av. Trabalhador São-Carlense, 400, CP-780, São Carlos 13560-970, SP, Brazil;
| | | | - Ailton Cesar Lemes
- Department of Biochemical Engineering, School of Chemistry, Federal University of Rio de Janeiro (UFRJ), Av. Athos da Silveira Ramos, 149, Rio de Janeiro 21941-909, RJ, Brazil;
| |
Collapse
|
23
|
Chen T, Yu X, Tian X, Hu J, Chen Y, Long G, Xu H, Yang GF. Study on the environmental fate of three insecticides in garlic by in vivo sampling rate calibrated-solid phase microextraction-gas chromatography-mass spectrometry. Food Chem 2021; 367:130740. [PMID: 34375891 DOI: 10.1016/j.foodchem.2021.130740] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 07/29/2021] [Accepted: 07/29/2021] [Indexed: 11/19/2022]
Abstract
Traditional sample preparation methods for insecticide analysis are laborious and fatal to living organisms. In the work, an in vivo sampling rate calibrated-solid phase microextraction-gas chromatography-mass spectrometry method was established and successfully used for in vivo sampling and quantitative determination of three insecticides (hexachlorobenzene, fipronil and chlorfenapyr) by direct exposing micron-sized fiber in living garlic. Absorption, enrichment, migration and elimination behavior of insecticides in garlic were investigated. Bioaccumulative effects with obvious tissue differences were observed to all three insecticides, especially for chlorfenapyr. Bioconcentration factors (BCFs) ranging from 0.0342 to 1.0887 were obtained, and the closer to roots, the higher BCFs. The half-life of insecticides in garlic ranged from 0.43 to 0.96 d. In the first 24 h, 55.0% - 80.3% insecticides residues in garlic were eliminated with first-order elimination kinetics. The research provides in vivo insights into the environmental fates of insecticides in complex living system with minimized organism damage.
Collapse
Affiliation(s)
- Tiantian Chen
- Key Laboratory of Insecticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, China
| | - Xinhe Yu
- Key Laboratory of Insecticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, China
| | - Xinmeng Tian
- Key Laboratory of Insecticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, China
| | - Jiajia Hu
- Key Laboratory of Insecticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, China
| | - Yanyan Chen
- Key Laboratory of Insecticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, China
| | - Guangdou Long
- Key Laboratory of Insecticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, China
| | - Hui Xu
- Key Laboratory of Insecticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, China.
| | - Guang-Fu Yang
- Key Laboratory of Insecticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, China.
| |
Collapse
|
24
|
Analysis of cannabinoids in conventional and alternative biological matrices by liquid chromatography: Applications and challenges. J Chromatogr A 2021; 1651:462277. [PMID: 34091369 DOI: 10.1016/j.chroma.2021.462277] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 05/16/2021] [Accepted: 05/18/2021] [Indexed: 11/24/2022]
Abstract
Cannabis is by far the most widely abused illicit drug globe wide. The analysis of its main psychoactive components in conventional and non-conventional biological matrices has recently gained a great attention in forensic toxicology. Literature states that its abuse causes neurocognitive impairment in the domains of attention and memory, possible macrostructural brain alterations and abnormalities of neural functioning. This suggests the necessity for the development of a sensitive and a reliable analytical method for the detection and quantification of cannabinoids in human biological specimens. In this review, we focus on a number of analytical methods that have, so far, been developed and validated, with particular attention to the new "golden standard" method of forensic analysis, liquid chromatography mass spectrometry or tandem mass spectrometry. In addition, this review provides an overview of the effective and selective methods used for the extraction and isolation of cannabinoids from (i) conventional matrices, such as blood, urine and oral fluid and (ii) alternative biological matrices, such as hair, cerumen and meconium.
Collapse
|
25
|
Jagirani MS, Ozalp O, Soylak M. New Trend in the Extraction of Pesticides from the Environmental and Food Samples Applying Microextraction Based Green Chemistry Scenario: A Review. Crit Rev Anal Chem 2021; 52:1343-1369. [PMID: 33560139 DOI: 10.1080/10408347.2021.1874867] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
This review focused on the green microextraction methods used for the extraction of pesticides from the environmental and food samples. Microextraction techniques have been explored and applied in various fields of analytical chemistry since its beginning, as evinced by the numerous reviews published. The success of any technique in science and technology is measured by the simplicity, environmentally friendly, and its applications; and the microextraction technique is highly successive. Deliberations were attentive to studies where efforts have been made to validate the methods through the inter-laboratory comparison study to assess the analytical performance of microextraction techniques against conventional methods. Succinctly, developed microextraction methods are shown to impart significant benefits over conventional techniques. Provided that the analytical community continues to put forward attention and resources into the growth and validation of the microextraction technique, a promising future for microextraction is forecasted.
Collapse
Affiliation(s)
- Muhammad Saqaf Jagirani
- Faculty of Sciences, Department of Chemistry, Erciyes University, Kayseri, Turkey.,National Center of Excellence in Analytical Chemistry, University of Sindh, Sindh, Pakistan
| | - Ozgur Ozalp
- Faculty of Sciences, Department of Chemistry, Erciyes University, Kayseri, Turkey.,Technology Research and Application Center (TAUM), Erciyes University, Kayseri, Turkey
| | - Mustafa Soylak
- Faculty of Sciences, Department of Chemistry, Erciyes University, Kayseri, Turkey.,Technology Research and Application Center (TAUM), Erciyes University, Kayseri, Turkey
| |
Collapse
|
26
|
Bertoz V, Purcaro G, Conchione C, Moret S. A Review on the Occurrence and Analytical Determination of PAHs in Olive Oils. Foods 2021; 10:324. [PMID: 33546477 PMCID: PMC7913741 DOI: 10.3390/foods10020324] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 01/27/2021] [Accepted: 01/29/2021] [Indexed: 01/26/2023] Open
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are ubiquitous environmental and processing contaminants, which may contaminate vegetable oils due to atmospheric fall-out or bad production practices. Due to their carcinogenic and toxic effects, surveillance schemes and mitigation strategies are needed to monitor human exposure to PAHs. In particular, due to the lipophilic nature of these substances, edible oils may present unsafe levels of these compounds. Among these, olive oil, and in particular extra virgin olive oil, is a high-value commodity, also known for its health benefits. Therefore, the occurrence of contaminants in this product is not only of health concern but also causes economic and image damage. In this review, an overview of the occurrence of PAHs in all categories of olive oil is provided, as well as a description of the official methods available and the analytical developments in the last 10 years.
Collapse
Affiliation(s)
- Valentina Bertoz
- Department of Agri-Food, Environmental and Animal Sciences, University of Udine, 33100 Udine, Italy; (V.B.); (C.C.); (S.M.)
| | - Giorgia Purcaro
- Gembloux Agro-Bio Tech, University of Liège Bât, G1 Chimie des Agro-Biosystèmes, Passage des Déportés 2, 5030 Gembloux, Belgium
| | - Chiara Conchione
- Department of Agri-Food, Environmental and Animal Sciences, University of Udine, 33100 Udine, Italy; (V.B.); (C.C.); (S.M.)
| | - Sabrina Moret
- Department of Agri-Food, Environmental and Animal Sciences, University of Udine, 33100 Udine, Italy; (V.B.); (C.C.); (S.M.)
| |
Collapse
|
27
|
Moga A, Vergara-Barberán M, Lerma-García MJ, Carrasco-Correa EJ, Herrero-Martínez JM, Simó-Alfonso EF. Determination of antibiotics in meat samples using analytical methodologies: A review. Compr Rev Food Sci Food Saf 2021; 20:1681-1716. [PMID: 33522137 DOI: 10.1111/1541-4337.12702] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 11/30/2020] [Accepted: 12/01/2020] [Indexed: 01/01/2023]
Abstract
Antibiotics are widely used to prevent or treat some diseases in human and veterinary medicine and also as animal growth promoters. The presence of these compounds in foods derived from food-producing animals can be a risk for human health. Consequently, regulatory agencies have set maximum residue limits for antibiotics in food samples. Therefore, the development of novel methodologies for its determination in food samples is required. Specifically, the analysis and quantification of these substances in meat tissues is a challenge for the analytical chemistry research community. This is due to the complexity of the matrix and the low detection limits required by the regulatory agencies. In this sense, a comprehensive review on the development of new sample preparation treatments involving extraction, cleanup, and enrichment steps of antibiotics in meat samples in combination with sensitive and sophisticated determination techniques that have been carry out in the last years is necessary. Therefore, the aim of this work is to summarize the published methodologies for the determination of antibiotics from 2016 until the beginning of the second semester of 2020. The first part of this review includes an introduction about antibiotic families, followed by sample preparation and determination techniques applied to the different families. Finally, a detailed discussion of the current trends and the future possible perspectives in this field are also included.
Collapse
Affiliation(s)
- Ancuta Moga
- Department of Analytical Chemistry, Burjassot, University of Valencia, Valencia, Spain
| | | | | | | | | | | |
Collapse
|
28
|
Majidi SM, Hadjmohammadi MR. Development of magnetic dispersive micro-solid phase extraction based on magnetic agarose nanoparticles and deep eutectic solvents for the isolation and pre-concentration of three flavonoids in edible natural samples. Talanta 2021; 222:121649. [PMID: 33167276 DOI: 10.1016/j.talanta.2020.121649] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 08/05/2020] [Accepted: 09/08/2020] [Indexed: 12/17/2022]
Abstract
In the present study, an environmentally friendly magnetic dispersive micro-solid phase extraction was developed based on magnetic agarose nanoparticles and deep eutectic solvents for the isolation and pre-concentration of three flavonoids (morin, quercetin, and kaempferol) from dark tea, chocolate, vegetable, and fruit juice samples. In this method, deep eutectic solvents were synthesized from less toxic and low-cost substances under feasible conditions and used as eluents in the desorption process. These solvents can be considered as a green alternative to traditional organic reagents to increase the adsorption capacity and reduce the matrix interferences, dangerous waste generation and environmental pollution. A Plackett-Burman design was employed for screening the experimental variables. The effective variables were then optimized by Box-Behnken design (BBD). Under the optimial conditions, the presented method demonstrated wide linear ranges of 1-500 μg. L-1 for morin and quercetin, and 5-500 μg. L-1 for kaempferol with satisfactory recoveries above 91%. Limit of detections (LODs) and quantifications (LOQs) of flavonoids varied in 0.2-1.1 μg. L-1 and 0.66-3.63 μg. L-1, respectively. The precision of the proposed method was the range of 2.6-5.7%.
Collapse
Affiliation(s)
- Seyedeh Maedeh Majidi
- Department of Analytical Chemistry, Faculty of Chemistry, University of Mazandaran, Niroo Havayiiboulevard, 47416-95447, Babolsar, Iran
| | - Mohammad Reza Hadjmohammadi
- Department of Analytical Chemistry, Faculty of Chemistry, University of Mazandaran, Niroo Havayiiboulevard, 47416-95447, Babolsar, Iran.
| |
Collapse
|
29
|
Tutorial: design and fabrication of nanoparticle-based lateral-flow immunoassays. Nat Protoc 2020; 15:3788-3816. [PMID: 33097926 DOI: 10.1038/s41596-020-0357-x] [Citation(s) in RCA: 229] [Impact Index Per Article: 57.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Accepted: 05/12/2020] [Indexed: 12/20/2022]
Abstract
Lateral-flow assays (LFAs) are quick, simple and cheap assays to analyze various samples at the point of care or in the field, making them one of the most widespread biosensors currently available. They have been successfully employed for the detection of a myriad of different targets (ranging from atoms up to whole cells) in all type of samples (including water, blood, foodstuff and environmental samples). Their operation relies on the capillary flow of the sample throughout a series of sequential pads, each with different functionalities aiming to generate a signal to indicate the absence/presence (and, in some cases, the concentration) of the analyte of interest. To have a user-friendly operation, their development requires the optimization of multiple, interconnected parameters that may overwhelm new developers. In this tutorial, we provide the readers with: (i) the basic knowledge to understand the principles governing an LFA and to take informed decisions during lateral flow strip design and fabrication, (ii) a roadmap for optimal LFA development independent of the specific application, (iii) a step-by-step example procedure for the assembly and operation of an LF strip for the detection of human IgG and (iv) an extensive troubleshooting section addressing the most frequent issues in designing, assembling and using LFAs. By changing only the receptors, the provided example procedure can easily be adapted for cost-efficient detection of a broad variety of targets.
Collapse
|
30
|
Taylor BM, Thurbide KB. Characteristics of a novel on-line micro pressurized liquid extraction method. CAN J CHEM 2020. [DOI: 10.1139/cjc-2020-0107] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
A novel on-line micro pressurized liquid extraction (μPLE) method is introduced, which directly interfaces miniaturized solid sample preparation with HPLC for fast analysis. The technique employs rapid heating to remove analytes from 5–10 mg samples in typically 20–40 s using only about 300 μL of solvent. The resulting extract is then internally transferred to an HPLC injector for chromatographic analysis. Results show that good analyte recoveries can be achieved, similar to conventional PLE and off-line μPLE approaches, without manual sample handling. For example, 103% ± 3% (n = 4) of the acetylsalicylic acid present in pharmaceutical tablets was extracted into methanol after 20 s at 180 °C. Further, 105% ± 9% (n = 4) of the caffeine present in a green tea sample was extracted into methanol after 40 s at 275 °C. Typical time to analysis was about 95 s total for most samples, and solvents could also be easily alternated during trials to increase extract selectivity. The on-line μPLE system was applied to the extraction of model PAHs from a biochar matrix and was found to extract 97% ± 5% (n = 4) of anthracene present in the sample after a 30 s static and 60 s dynamic extraction at 220 °C. This yield is much better than results obtained by previous approaches and is attributed to the small size, high temperature, low thermal mass, and dynamic flow of the system. Findings indicate that the on-line μPLE system can greatly assist in such extractions and provide a useful method for rapidly preparing solid samples for analysis using little solvent.
Collapse
Affiliation(s)
- Bradley M. Taylor
- Department of Chemistry, University of Calgary, Calgary, AB T2N 1N4, Canada
- Department of Chemistry, University of Calgary, Calgary, AB T2N 1N4, Canada
| | - Kevin B. Thurbide
- Department of Chemistry, University of Calgary, Calgary, AB T2N 1N4, Canada
- Department of Chemistry, University of Calgary, Calgary, AB T2N 1N4, Canada
| |
Collapse
|
31
|
Taylor BM, Thurbide KB. On-Line Coupling of a Micro-Pressurized Liquid Extraction Method to Liquid Chromatography Via Solid-Phase Trapping. Chromatographia 2020. [DOI: 10.1007/s10337-020-03949-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
32
|
Hormones and Hormonal Anabolics: Residues in Animal Source Food, Potential Public Health Impacts, and Methods of Analysis. J FOOD QUALITY 2020. [DOI: 10.1155/2020/5065386] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The demand for nutritious food, especially food of animal origin, is globally increasing due to escalating population growth and a dietary shift to animal source food. In order to fulfill the requirements, producers are using veterinary drugs such as hormones and hormone-like anabolic agents. Hormones such as steroidal (estrogens, gestagens, and androgens), nonsteroidal, semisynthetic, and synthetic or designer drugs are all growth-promoting and body-partitioning agents. Hence, in food animal production practice, farm owners use these chemicals to improve body weight gain, increase feed conversion efficiency, and productivity. However, the use of these hormones and hormonal growth-promoting agents eventually ends up with the occurrence of residues in the animal-originated food. The incidence of hormone residues in such types of food and food products beyond the tolerance acts as a risk factor for the occurrence of potential public health problems. Currently, different international and national regulatory bodies have placed requirements and legislative frameworks, which enable them to implement residue monitoring test endeavors that safeguard the public and facilitate the trading activity. To make the tests on the animal-origin food matrix, there are different sample extraction techniques such as accelerated solvent extraction, supercritical fluid extraction, solid phase extraction, solid-phase microextraction, and hollow-fiber liquid-phase microextraction. After sample preparation steps, the analytes of interest can be assayed by screening and confirmatory methods of analysis. For screening, immunological tests such as ELISA and radioimmunoassay are used. Detection and determination of the specific residues will be done by chromatographic or instrumental analysis. Mainly, among high-performance liquid chromatography, liquid chromatography with mass spectrometry (LC-MS, LC-MS/MS), and gas chromatography with mass spectrometry (GC-MS and GC-MS/MS) methods, LC-MS/MS is being preferred because of easier sample preparation without a derivatization step and high detection and quantification capacity.
Collapse
|
33
|
Khatibi SA, Hamidi S, Siahi-Shadbad MR. Current trends in sample preparation by solid-phase extraction techniques for the determination of antibiotic residues in foodstuffs: a review. Crit Rev Food Sci Nutr 2020; 61:3361-3382. [DOI: 10.1080/10408398.2020.1798349] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Seyed Amin Khatibi
- Food and Drug Safety Research Center, Tabriz University of Medical Science, Tabriz, Iran
| | - Samin Hamidi
- Food and Drug Safety Research Center, Tabriz University of Medical Science, Tabriz, Iran
| | - Mohammad Reza Siahi-Shadbad
- Food and Drug Safety Research Center, Tabriz University of Medical Science, Tabriz, Iran
- Faculty of Pharmacy, Department of Pharmaceutical and Food Control, Tabriz University of Medical Science, Tabriz, Iran
| |
Collapse
|
34
|
Labban TA, AlMohaimdi KM, AlAhmadi S, Shaikh Ishaqe M, AlSuhaimi AO. Synthesis of 8-hydroxyquinoline-Amberlite IRC-50 chelator for solid phase extraction of trace metals from groundwater samples. JOURNAL OF TAIBAH UNIVERSITY FOR SCIENCE 2020. [DOI: 10.1080/16583655.2020.1766191] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Tamadur A. Labban
- Department of Chemistry, College of Science, Taibah University, AlMedinah AlMunwarah
| | - Khaled M. AlMohaimdi
- Department of Education in Al Madinah Al Munawwarah, Ministry of Education, Saudi Arabia
| | - Snan AlAhmadi
- Department of Chemistry, College of Science, Taibah University, AlMedinah AlMunwarah
| | - Mansour Shaikh Ishaqe
- Department of Chemistry, College of Science, Taibah University, AlMedinah AlMunwarah
| | - Awadh O. AlSuhaimi
- Department of Chemistry, College of Science, Taibah University, AlMedinah AlMunwarah
| |
Collapse
|
35
|
Mejía-Carmona K, Lanças FM. Modified graphene-silica as a sorbent for in-tube solid-phase microextraction coupled to liquid chromatography-tandem mass spectrometry. Determination of xanthines in coffee beverages. J Chromatogr A 2020; 1621:461089. [PMID: 32362360 DOI: 10.1016/j.chroma.2020.461089] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Revised: 03/10/2020] [Accepted: 03/29/2020] [Indexed: 02/03/2023]
Abstract
Given the increasing need for analyzing natural or contaminating compounds in complex food matrices in a simple and automated way, coupling miniaturized sample preparation techniques with chromatographic systems have become a growing field of research. In this regard, given the low extraction efficiency of conventional sorbent phases, the development of materials with enhanced extraction capabilities is of particular interest. Here we present several synthesized graphene-based materials supported on aminopropyl silica as sorbents for the extraction of xanthines. The synthesized materials were characterized by infrared spectroscopy and scanning electron microscopy. Aminopropyl silica coated with graphene oxide and functionalized with octadecylsilane/end-capped (SiGOC18ecap) showed the best performance for xanthines extraction. Hence, this material was employed as an in-tube solid phase microextraction (in-tube SPME) device coupled online with ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) and applied for the analysis of xanthines in roasted coffee samples. Extraction parameters and detection conditions were optimized. The method showed low limits of quantification (0.3-1.0 µg L-1), precision as relative standard deviation (RSD) values lower than 10%, recoveries between 73 and 109%, and pre-concentration factors from 5.6 to 7.2. Caffeine was determined in all ground roasted and instant coffee samples, in a wide range (0.9 to 36.8 mg g-1), and small amounts of theobromine and theophylline were also detected in some samples. This work demonstrated that functionalized graphene-based materials represent a promising new sorbent class for in-tube SPME, showing improved extraction capacity. The method was efficient, simple, and fast for the analysis of xanthines, demonstrating an excellent potential to be applied in other matrices.
Collapse
Affiliation(s)
- Karen Mejía-Carmona
- São Carlos Institute of Chemistry, University of São Paulo, 13560-970 São Carlos SP, Brazil
| | - Fernando M Lanças
- São Carlos Institute of Chemistry, University of São Paulo, 13560-970 São Carlos SP, Brazil.
| |
Collapse
|
36
|
Analytical Scheme for Simultaneous Determination of Phthalates and Bisphenol A in Honey Samples Based on Dispersive Liquid-Liquid Microextraction Followed by GC-IT/MS. Effect of the Thermal Stress on PAE/BP-A Levels. Methods Protoc 2020; 3:mps3010023. [PMID: 32213842 PMCID: PMC7189663 DOI: 10.3390/mps3010023] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2020] [Revised: 03/19/2020] [Accepted: 03/21/2020] [Indexed: 12/26/2022] Open
Abstract
In this paper, an analytical protocol was developed for the simultaneous determination of phthalates (di-methyl phthalate DMP, di-ethyl phthalate DEP, di-isobutyl phthalate DiBP, di-n-butyl phthalate DBP, bis-(2-ethylhexyl) phthalate DEHP, di-n-octyl phthalate DNOP) and bisphenol A (BPA). The extraction technique used was the ultrasound vortex assisted dispersive liquid–liquid microextraction (UVA-DLLME). The method involves analyte extraction using 75 µL of benzene and subsequent analysis by gas chromatography combined with ion trap mass spectrometry (GC-IT/MS). The method is sensitive, reliable, and reproducible with a limit of detection (LOD) below 13 ng g−1 and limit of quantification (LOQ) below 22 ng g−1 and the intra- and inter-day errors below 7.2 and 9.3, respectively. The method developed and validated was applied to six honey samples (i.e., four single-use commercial ones and two home-made ones. Some phthalates were found in the samples at concentrations below the specific migration limits (SMLs). Furthermore, the commercial samples were subjected to two different thermal stresses (24 h and 48 h at 40 °C) for evidence of the release of plastic from the containers. An increase in the phthalate concentrations was observed, especially during the first phase of the shock, but the levels were still within the limits of the regulations.
Collapse
|
37
|
Determination of optimal sample preparation for aldehyde extraction from pale malts and their quantification via headspace solid-phase microextraction followed by gas chromatography and mass spectrometry. J Chromatogr A 2020; 1612:460647. [PMID: 31767258 DOI: 10.1016/j.chroma.2019.460647] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Revised: 09/25/2019] [Accepted: 10/21/2019] [Indexed: 11/21/2022]
Abstract
Aldehydes originating from malt play an important role in beer flavour deterioration. In order to better understand the influence of malting process on beer staling, it is necessary to acquire a reliable analytical methodology for determination of beer staling aldehydes in malt. Therefore, the aim of this study was to evaluate extraction parameters, which allow quantification of beer staling aldehydes present in pale malts. The method was validated with respect to linearity (R > 0.9988), limit of detection (0.28 - 0.99 μg/L), limit of quantification (0.92 - 3.31 μg/L), accuracy (± 5%), repeatability (1.3 - 5.3%) and intermediate precision (>20%). The following parameters of sample preparation were evaluated: sample amount, extraction time and temperature, ultrasonication time and oxygen level. Consequently, the best extraction conditions were successfully applied on pale malts. After extraction, the samples were analysed by headspace solid-phase microextraction (HS-SPME) with on fibre carbonyl derivatisation followed by gas chromatography and mass spectrometry (GC-MS). In addition, the salting-out effect during HS-SPME was studied. The method application allowed to identify significant differences (p ≤ 0.05) in the levels of aldehydes among various industrial scale, pale malts. The optimised method could give the information on the aldehyde content introduced into the brewing process and its potential contribution to the overall beer quality.
Collapse
|
38
|
Abstract
The demand for the recovery of valuable metals and the need to understand the impact of heavy metals in the environment on human and aquatic life has led to the development of new methods for the extraction, recovery, and analysis of metal ions. With special emphasis on environmentally friendly approaches, efforts have been made to consider strategies that minimize the use of organic solvents, apply micromethodology, limit waste, reduce costs, are safe, and utilize benign or reusable materials. This review discusses recent developments in liquid- and solid-phase extraction techniques. Liquid-based methods include advances in the application of aqueous two- and three-phase systems, liquid membranes, and cloud point extraction. Recent progress in exploiting new sorbent materials for solid-phase extraction (SPE), solid-phase microextraction (SPME), and bulk extractions will also be discussed.
Collapse
|
39
|
Gao W, Li J, Li P, Huang Z, Cao Y, Liu X. Preparation of Magnetic Molecularly Imprinted Polymer (MMIP) Nanoparticles (NPs) for the Selective Extraction of Tetracycline from Milk. ANAL LETT 2019. [DOI: 10.1080/00032719.2019.1698049] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Wanru Gao
- College of Food Science and Technology, Hunan Provincial Key Laboratory of Food Science and Biotechnology, Hunan Agricultural University, Changsha, China
| | - Jiayin Li
- College of Food Science and Technology, Hunan Provincial Key Laboratory of Food Science and Biotechnology, Hunan Agricultural University, Changsha, China
| | - Pao Li
- College of Food Science and Technology, Hunan Provincial Key Laboratory of Food Science and Biotechnology, Hunan Agricultural University, Changsha, China
| | - Zhao Huang
- College of Food Science and Technology, Hunan Provincial Key Laboratory of Food Science and Biotechnology, Hunan Agricultural University, Changsha, China
| | - Yanan Cao
- College of Food Science and Technology, Hunan Provincial Key Laboratory of Food Science and Biotechnology, Hunan Agricultural University, Changsha, China
| | - Xia Liu
- College of Food Science and Technology, Hunan Provincial Key Laboratory of Food Science and Biotechnology, Hunan Agricultural University, Changsha, China
| |
Collapse
|
40
|
Chen T, Xu H. In vivo investigation of pesticide residues in garlic using solid phase microextraction-gas chromatography-mass spectrometry. Anal Chim Acta 2019; 1090:72-81. [DOI: 10.1016/j.aca.2019.09.011] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2019] [Revised: 09/01/2019] [Accepted: 09/04/2019] [Indexed: 12/11/2022]
|
41
|
Electrospun acrylonitrile butadiene styrene nanofiber film as an efficient nanosorbent for head space thin film microextraction of polycyclic aromatic hydrocarbons from water and urine samples. Talanta 2019; 205:120080. [DOI: 10.1016/j.talanta.2019.06.080] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Revised: 06/18/2019] [Accepted: 06/20/2019] [Indexed: 12/29/2022]
|
42
|
Zhang C, Deng Y, Zheng J, Zhang Y, Yang L, Liao C, Su L, Zhou Y, Gong D, Chen L, Luo A. The application of the QuEChERS methodology in the determination of antibiotics in food: A review. Trends Analyt Chem 2019. [DOI: 10.1016/j.trac.2019.06.012] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
43
|
Gao Y, Liu G, Gao M, Huang X, Xu D. Recent Advances and Applications of Magnetic Metal-Organic Frameworks in Adsorption and Enrichment Removal of Food and Environmental Pollutants. Crit Rev Anal Chem 2019; 50:472-484. [DOI: 10.1080/10408347.2019.1653166] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Affiliation(s)
- Yuhang Gao
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Vegetables Quality and Safety Control, Laboratory of Quality & Safety Risk Assessment for Vegetable Products, Ministry of Agriculture and Rural Affairs of China, Beijing, China
| | - Guangyang Liu
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Vegetables Quality and Safety Control, Laboratory of Quality & Safety Risk Assessment for Vegetable Products, Ministry of Agriculture and Rural Affairs of China, Beijing, China
| | - Mingkun Gao
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Vegetables Quality and Safety Control, Laboratory of Quality & Safety Risk Assessment for Vegetable Products, Ministry of Agriculture and Rural Affairs of China, Beijing, China
| | - Xiaodong Huang
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Vegetables Quality and Safety Control, Laboratory of Quality & Safety Risk Assessment for Vegetable Products, Ministry of Agriculture and Rural Affairs of China, Beijing, China
| | - Donghui Xu
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Vegetables Quality and Safety Control, Laboratory of Quality & Safety Risk Assessment for Vegetable Products, Ministry of Agriculture and Rural Affairs of China, Beijing, China
| |
Collapse
|
44
|
Chen J, Ying GG, Deng WJ. Antibiotic Residues in Food: Extraction, Analysis, and Human Health Concerns. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:7569-7586. [PMID: 31198037 DOI: 10.1021/acs.jafc.9b01334] [Citation(s) in RCA: 233] [Impact Index Per Article: 46.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
The abundant use of antibiotics leads to antibiotic residues in frequently consumed foods. Residual antibiotics in food may have adverse effects on humans by directly causing disease via low-dose exposure and indirect harm via antibiotic resistance. However, the current methods for antibiotic extraction and analysis in food have not yet formed a uniform standard, and only a few data exist regarding the residual antibiotic condition in various types of foods. Hence, we review the literature since 2008 to summarize analytical methods and residue status of antibiotics in food. Then, we discuss the causes of antibiotic residues in food and the possible hazards to human health. We hope that the joint efforts of the scientific community and political circles will lead to the formation of a unified standard for the extraction and analysis of antibiotics in food, to allow for comprehensive monitoring of residual antibiotics and ensure human health.
Collapse
Affiliation(s)
- Jun Chen
- Department of Science and Environmental Studies , The Education University of Hong Kong , Tai Po , New Territories , Hong Kong Special Administrative Region, People's Republic of China
- The Environmental Research Institute, Ministry of Education (MOE) Key Laboratory of Environmental Theoretical Chemistry , South China Normal University , Guangzhou , Guangdong 510006 , People's Republic of China
| | - Guang-Guo Ying
- The Environmental Research Institute, Ministry of Education (MOE) Key Laboratory of Environmental Theoretical Chemistry , South China Normal University , Guangzhou , Guangdong 510006 , People's Republic of China
| | - Wen-Jing Deng
- Department of Science and Environmental Studies , The Education University of Hong Kong , Tai Po , New Territories , Hong Kong Special Administrative Region, People's Republic of China
| |
Collapse
|
45
|
Bai L, Liu J, Liu Q, Xu T, Liu H, Wu T, Zhang S, Li Y, You J. Surfactant-induced magnetic cationic phenolic resin and its application in the enrichment of the migrants from food contacting materials. J LIQ CHROMATOGR R T 2019. [DOI: 10.1080/10826076.2018.1544147] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Ling Bai
- Shandong Province Key Laboratory of Life-Organic Analysis, Qufu Normal University, Qufu, PR China
| | - Jiamin Liu
- Shandong Province Key Laboratory of Life-Organic Analysis, Qufu Normal University, Qufu, PR China
| | - Qian Liu
- Shandong Province Key Laboratory of Life-Organic Analysis, Qufu Normal University, Qufu, PR China
| | - Ting Xu
- Shandong Province Key Laboratory of Life-Organic Analysis, Qufu Normal University, Qufu, PR China
| | - Hongzhan Liu
- Shandong Province Key Laboratory of Life-Organic Analysis, Qufu Normal University, Qufu, PR China
| | - Ting Wu
- Shandong Province Key Laboratory of Life-Organic Analysis, Qufu Normal University, Qufu, PR China
| | - Shijuan Zhang
- Shandong Province Key Laboratory of Life-Organic Analysis, Qufu Normal University, Qufu, PR China
| | - Yanxin Li
- Shandong Province Key Laboratory of Life-Organic Analysis, Qufu Normal University, Qufu, PR China
| | - Jinmao You
- Shandong Province Key Laboratory of Life-Organic Analysis, Qufu Normal University, Qufu, PR China
| |
Collapse
|
46
|
Development of a nitrogen-rich hyperbranched polymer as adsorbent for enrichment and determination of auxins in plants. Anal Bioanal Chem 2019; 411:1409-1419. [PMID: 30635663 DOI: 10.1007/s00216-018-01571-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Revised: 12/19/2018] [Accepted: 12/29/2018] [Indexed: 10/27/2022]
Abstract
In this study, a novel nitrogen-rich hyperbranched polymer was designed and synthesized via one-step precipitation copolymerization strategy. As possessing the lone-pair-electron-containing nitrogen atoms and positive-charged amine groups, as well as π electron-conjugated system, the prepared polymer displayed a strong tendency to adsorb protons acid, and negative-charged and conjugated compounds according to acid-base interaction, electrostatic interaction, and π-π stacking interaction. Based on these properties, a novel approach for assembling the proposed polymer coupled with high-performance liquid chromatography was successfully employed for selective enrichment and determination of auxins in plants. The extraction and desorption conditions were evaluated and the limits of detection and the limits of quantification of the proposed method were in the range of 0.15-0.29 μg L-1 and 0.49-0.98 μg L-1 for the four auxins based on the signal-to-noise ratio of 3:1 and 10:1, respectively. The recoveries of the target auxins from spiked plant samples were in the range from 85.0 to 116.3% with relative standard deviations lower than 9.6%. This study presented an inspiring thought for the construction of the versatile polymer adsorbent with highly efficient capturing of analytes from complex samples. Graphical abstract.
Collapse
|
47
|
Owczarek K, Szczepańska N, Płotka-Wasylka J, Namieśnik J. New Achievements in the Field of Extraction of Trace Analytes from Samples Characterized by Complex Composition of the Matrix. GREEN CHEMISTRY AND SUSTAINABLE TECHNOLOGY 2019. [DOI: 10.1007/978-981-13-9105-7_5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
48
|
Gorji S, Biparva P, Bahram M, Nematzadeh G. Rapid and Direct Microextraction of Pesticide Residues from Rice and Vegetable Samples by Supramolecular Solvent in Combination with Chemometrical Data Processing. FOOD ANAL METHOD 2018. [DOI: 10.1007/s12161-018-1371-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
49
|
Gherghel S, Morgan RM, Arrebola-Liébanas J, Romero-González R, Blackman CS, Garrido-Frenich A, Parkin IP. Development of a HS-SPME/GC–MS method for the analysis of volatile organic compounds from fabrics for forensic reconstruction applications. Forensic Sci Int 2018; 290:207-218. [DOI: 10.1016/j.forsciint.2018.07.015] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Revised: 06/29/2018] [Accepted: 07/17/2018] [Indexed: 11/24/2022]
|
50
|
Li N, Song Y, Qiu J, Zhao YC, Qian YZ. Polymer brushes-containing coordination polymer networks on monolith for rapid solid phase extraction of multi-class drug residues in meat samples. Talanta 2018; 185:573-580. [DOI: 10.1016/j.talanta.2018.03.077] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Revised: 03/12/2018] [Accepted: 03/24/2018] [Indexed: 10/17/2022]
|