1
|
Yan S, Ding N, Yao X, Song J, He W, Rehman F, Guo J. Effects of erythromycin and roxithromycin on river periphyton: Structure, functions and metabolic pathways. CHEMOSPHERE 2023; 316:137793. [PMID: 36640977 DOI: 10.1016/j.chemosphere.2023.137793] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 01/05/2023] [Accepted: 01/06/2023] [Indexed: 06/17/2023]
Abstract
Macrolides have been frequently detected in the surface waters worldwide, posing a threat to the aquatic microbes. Several studies have evaluated the ecotoxicological effects of macrolides on single algal and bacterial strains. However, without considering the species interaction in the aquatic microbial community, these results cannot be extrapolated to the field. Thus, the present study aimed to evaluate the effects of two macrolides (erythromycin and roxithromycin) on the structure, photosynthetic process, carbon utilization capacity, and the antibiotic metabolic pathways in river periphyton. The colonized periphyton was exposed to the graded concentration (0 μg/L (control), 0.5 μg/L (low), 5 μg/L (medium), 50 μg/L (high)) of ERY and ROX, respectively, for 7 days. Herein, high levels of ERY and ROX altered the community composition by reducing the relative abundance of Chlorophyta in the eukaryotic community. Also, the Shannon and Simpson diversity indexes of prokaryotes were reduced, although similar effects were seldomly detected in the low and medium groups. In contrast to the unchanged carbon utilization capacity, the PSII reaction center involved in the periphytic photosynthesis was significantly inhibited by macrolides at high levels. In addition, both antibiotics had been degraded by periphyton, with the removal rate of 51.63-66.87% and 41.85-48.27% for ERY and ROX, respectively, wherein the side chain and ring cleavage were the main degradation pathways. Overall, this study provides an insight into the structural and functional toxicity and degradation processes of macrolides in river periphyton.
Collapse
Affiliation(s)
- Shiwei Yan
- Shaanxi Key Laboratory of Earth Surface System and Environmental Carrying Capacity, College of Urban and Environmental Sciences, Northwest University, Xi'an, 710127, China
| | - Ning Ding
- Shaanxi Key Laboratory of Earth Surface System and Environmental Carrying Capacity, College of Urban and Environmental Sciences, Northwest University, Xi'an, 710127, China
| | - Xiunan Yao
- Shaanxi Key Laboratory of Earth Surface System and Environmental Carrying Capacity, College of Urban and Environmental Sciences, Northwest University, Xi'an, 710127, China
| | - Jinxi Song
- Shaanxi Key Laboratory of Earth Surface System and Environmental Carrying Capacity, College of Urban and Environmental Sciences, Northwest University, Xi'an, 710127, China
| | - Wei He
- Provincial Key Laboratory of Biotechnology of Shaanxi Province, College of Life Sciences, Northwest University, Xi'an, 710069, China
| | - Fozia Rehman
- Interdisciplinary Research Center in Biomedical Materials (IRCBM), COMSATS University Islamabad, Lahore Campus, Pakistan
| | - Jiahua Guo
- Shaanxi Key Laboratory of Earth Surface System and Environmental Carrying Capacity, College of Urban and Environmental Sciences, Northwest University, Xi'an, 710127, China.
| |
Collapse
|
2
|
Feng H, Tang M, Han Z, Luan X, Ma C, Yang M, Li J, Zhang Y. Simultaneous determination of erythromycin and its transformation products in treated erythromycin fermentation residue and amended soil. CHEMOSPHERE 2023; 313:137414. [PMID: 36455662 DOI: 10.1016/j.chemosphere.2022.137414] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 11/14/2022] [Accepted: 11/26/2022] [Indexed: 06/17/2023]
Abstract
Erythromycin fermentation residue (EFR) is a solid waste generated from the fermentation process of erythromycin A production. Some byproducts are produced during the fermentation process of erythromycin A production, and erythromycin A can also undergo hydrolysis and biodegradation reactions in the environment with the formation of transformation products. Herein, an accurate analytical method was established and validated to quantify erythromycin A, two byproducts and five hydrolysis or biodegradation products, in solid or semi-solid media of waste EFR and the amended soil. The method mainly included ultrasonic solvent extraction, solid phase extraction, and ultra-performance liquid chromatography-tandem mass spectrometry quantification. All analytes could be effectively extracted in a single process, and the recoveries ranged from 76% to 122% for different matrices. Low matrix effects and excellent precision were achieved by optimizing the mass spectrometry parameters, extraction solution, number of extractions and eluent. This method was applied to evaluate the residual analytes in EFR, treated EFR after industrial-scale hydrothermal treatment, and the subsequent soil application. Seven analytes were detected in the EFR, while six were found in the treated EFR and amended soils. The concentration of erythromycin A in EFR was 1,629 ± 100 mg/kg·TS, and the removal efficiency of hydrothermal treatment (180 °C, 60 min) was about 99.6%. Three hydrolysis products were the main residuals in treated EFR, with anhydroerythromycin A showing the highest concentration. The concentrations of the analytes in soil ranged from 2.17 ± 1.04 to 92.33 ± 20.70 μg/kg·TS, and anhydroerythromycin A contributed 65%-77% of the total concentration. Erythromycin B, a byproduct, was still detected in soil. This work provides an accurate analytical method which would be useful to evaluate the potential risk of byproducts and transformation products of erythromycin A in environment.
Collapse
Affiliation(s)
- Haodi Feng
- Department of Municipal and Environmental Engineering, Beijing Jiaotong University, Beijing, 100044, China; State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Mei Tang
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Ziming Han
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiao Luan
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Chunmeng Ma
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Min Yang
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jiuyi Li
- Department of Municipal and Environmental Engineering, Beijing Jiaotong University, Beijing, 100044, China.
| | - Yu Zhang
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
3
|
Erythromycin Formulations—A Journey to Advanced Drug Delivery. Pharmaceutics 2022; 14:pharmaceutics14102180. [PMID: 36297615 PMCID: PMC9608461 DOI: 10.3390/pharmaceutics14102180] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 10/06/2022] [Accepted: 10/10/2022] [Indexed: 11/29/2022] Open
Abstract
Erythromycin (ERY) is a macrolide compound with a broad antimicrobial spectrum which is currently being used to treat a large number of bacterial infections affecting the skin, respiratory tract, intestines, bones and other systems, proving great value from a clinical point of view. It became popular immediately after its discovery in 1952, due to its therapeutic effect against pathogens resistant to other drugs. Despite this major advantage, ERY exhibits several drawbacks, raising serious clinical challenges. Among them, the very low solubility in water and instability under acidic conditions cause a limited efficacy and bioavailability. Apart from this, higher doses promote drug resistance and undesirable effects. In order to overcome these disadvantages, during the past decades, a large variety of ERY formulations, including nanoparticles, have emerged. Despite the interest in ERY-(nano)formulations, a review on them is lacking. Therefore, this work was aimed at reviewing all efforts made to encapsulate ERY in formulations of various chemical compositions, sizes and morphologies. In addition, their preparation/synthesis, physico-chemical properties and performances were carefully analysed. Limitations of these studies, particularly the quantification of ERY, are discussed as well.
Collapse
|
4
|
Temel F. Real-time and selective recognition of erythromycin by self-assembly of calix[4]arene on QCM sensor. J Mol Liq 2020. [DOI: 10.1016/j.molliq.2019.111818] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
5
|
Lin Q, de Waal T, Van Schepdael A, Adams E. A mass spectrometer-compatible liquid chromatographic method for the analysis of tylosin and its impurities using a superficially porous particle column. J Pharm Biomed Anal 2019; 165:147-154. [DOI: 10.1016/j.jpba.2018.12.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Revised: 11/30/2018] [Accepted: 12/02/2018] [Indexed: 10/27/2022]
|
6
|
Identification of impurities in macrolides by liquid chromatography-mass spectrometric detection and prediction of retention times of impurities by constructing quantitative structure-retention relationship (QSRR). J Pharm Biomed Anal 2017; 145:262-272. [PMID: 28700970 DOI: 10.1016/j.jpba.2017.06.069] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Revised: 06/30/2017] [Accepted: 06/30/2017] [Indexed: 11/23/2022]
Abstract
Macrolides are multicomponent drugs whose impurity control is always a challenge demanding analysis method with good sensitivity and selectivity. Three separate, sensitive, accurate liquid chromatography tandem mass spectrometry methods (LC-MS) were developed for the measurement of three 16-membered ring macrolides (josamycin, josamycin propionate and midecamycin acetate) and related substances in commercial samples. The characteristics of impurities in macrolides were summarized as useful guidance for the impurity analysis of this class of drugs. For each drug, a large number of unknown components have been detected with the high-sensitive MS detector and possible structures of the majority of them were postulated based on the summarized fragmentation rules of 16-membered ring macrolides. A QSRR model was constructed by multilinear regression to predict the retention times of identified impurities which were not detected by the LC-MS methods, without obtaining their reference standards. Satisfactory performance was obtained during leave-one-out cross-validation with a predictive ability (Q2) of 0.95. The generalisation ability of the model was further confirmed by an average error of 2.3% in external prediction. The best QSRR model, based on eight molecular descriptors, exhibited a promising predictive performance and robustness.
Collapse
|
7
|
Characterization of Nineteen Impurities in Roxithromycin by HPLC/TOF and Ion Trap Mass Spectrometry. Chromatographia 2013. [DOI: 10.1007/s10337-013-2557-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
8
|
Characterization of impurities in tylosin using dual liquid chromatography combined with ion trap mass spectrometry. Talanta 2013; 106:29-38. [DOI: 10.1016/j.talanta.2012.12.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2012] [Revised: 12/04/2012] [Accepted: 12/06/2012] [Indexed: 11/20/2022]
|
9
|
Lian W, Liu S, Yu J, Xing X, Li J, Cui M, Huang J. Electrochemical sensor based on gold nanoparticles fabricated molecularly imprinted polymer film at chitosan–platinum nanoparticles/graphene–gold nanoparticles double nanocomposites modified electrode for detection of erythromycin. Biosens Bioelectron 2012; 38:163-9. [DOI: 10.1016/j.bios.2012.05.017] [Citation(s) in RCA: 183] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2012] [Revised: 05/08/2012] [Accepted: 05/15/2012] [Indexed: 11/16/2022]
|
10
|
Combined use of liquid chromatography with mass spectrometry and nuclear magnetic resonance for the identification of degradation compounds in an erythromycin formulation. Anal Bioanal Chem 2011; 402:781-90. [DOI: 10.1007/s00216-011-5450-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2011] [Revised: 09/16/2011] [Accepted: 09/26/2011] [Indexed: 10/17/2022]
|
11
|
Pendela M, Mamade DA, Hoogmartens J, Van Schepdael A, Adams E. Characterization of emtricitabine related substances by liquid chromatography coupled to an ion trap mass spectrometer. Talanta 2010; 82:125-8. [DOI: 10.1016/j.talanta.2010.04.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2009] [Revised: 04/06/2010] [Accepted: 04/07/2010] [Indexed: 11/25/2022]
|
12
|
Pendela M, Hoogmartens J, Van Schepdael A, Adams E. LC-MS of streptomycin following desalting of a nonvolatile mobile phase and pH gradient. J Sep Sci 2010; 32:3418-24. [PMID: 19764048 DOI: 10.1002/jssc.200900238] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Streptomycin (SM) is composed of streptidine, streptose and N-methyl glucosamine sugar moieties. For the determination of SM and its related substances, an ion-pair LC-UV detection method using a Supelcosil LC-ABZ column was developed previously. While analyzing commercial samples, several unknown compounds were detected. Most of these compounds are not yet characterized. In this study, the above LC method was coupled to MS for impurity profiling in a selected commercial sample. However, it could not be directly coupled to MS due to the presence of the nonvolatile salt, buffer and ion-pair reagent in the mobile phase. So, for structural characterization, each peak eluted from the nonvolatile eluent system was collected and transferred to MS after the desalting process. In total, 16 compounds were studied, 15 compounds including 12 unknowns could be identified.
Collapse
Affiliation(s)
- Murali Pendela
- Laboratorium voor Farmaceutische Analyse, Faculteit Farmaceutische Wetenschappen, Katholieke Universiteit Leuven, Leuven, Belgium
| | | | | | | |
Collapse
|
13
|
Pendela M, Hoogmartens J, Van Schepdael A, Adams E. Characterization of dihydrostreptomycin-related substances by liquid chromatography coupled to ion trap mass spectrometry. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2009; 23:1856-1862. [PMID: 19449319 DOI: 10.1002/rcm.4080] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Dihydrostreptomycin sulphate (DHS) is a water-soluble, broad-spectrum aminoglycoside antibiotic. For quantitative analysis, the European Pharmacopoeia (Ph. Eur.) prescribes an ion-pairing liquid chromatography/ultraviolet (LC/UV) method using a C18 stationary phase. Several unknown compounds were detected in commercial samples. Hence, for characterization of these unknown peaks in a commercial DHS sample, the Ph. Eur. method was coupled to mass spectrometry (MS). However, since the Ph. Eur. method uses a non-volatile mobile phase, each peak eluted was collected and desalted before introduction into the mass spectrometer. The desalting procedure was applied to remove the non volatile salt, buffer and ion-pairing reagent in the collected fraction. In total, 20 impurities were studied and 14 of them were newly characterized. Five impurities which are already reported in the literature were also traced in this LC/UV method.
Collapse
Affiliation(s)
- Murali Pendela
- Katholieke Universiteit Leuven, Faculteit Farmaceutische Wetenschappen, Laboratorium voor Farmaceutische Analyse, O&N2, PB 923, Herestraat 49, B-3000 Leuven, Belgium
| | | | | | | |
Collapse
|
14
|
Kim KM, Henderson GN, Ouyang X, Frye RF, Sautin YY, Feig DI, Johnson RJ. A sensitive and specific liquid chromatography-tandem mass spectrometry method for the determination of intracellular and extracellular uric acid. J Chromatogr B Analyt Technol Biomed Life Sci 2009; 877:2032-8. [PMID: 19520625 DOI: 10.1016/j.jchromb.2009.05.037] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2009] [Revised: 04/21/2009] [Accepted: 05/18/2009] [Indexed: 12/13/2022]
Abstract
Uric acid (UA) is known to be a major biological antioxidant in plasma. However, there is a strong correlation between UA levels and cardiovascular risk. Recent studies suggest that in the intracellular environment, UA can become a prooxidant that causes endothelial dysfunction. For conducting detailed studies of UA's role in human pathogenesis, there is a critical need for a sensitive and specific method for the determination of intracellular UA levels. We therefore developed a simple, sensitive method for determination of trace amounts of intracellular UA, as well as comparatively large amounts of UA in plasma and urine (for the determination of extracellular concentrations of UA), based on liquid chromatography and tandem mass spectrometry (LC-MS/MS). UA was separated from interferences by HPLC and quantified by mass spectrometry in the negative ESI mode using single reaction monitoring (SRM). For the identification and quantification of UA, the parent ions selected were m/z 167.0, which corresponds to the urate anion, and m/z 169.0, which corresponds to the 1,3-(15)N(2)-UA anion. 1,3-(15)N(2)-UA is used as an internal standard to ensure accuracy of the measurement. After precipitation of proteins with 10% TCA solution, UA was subjected to LC-MS/MS analysis. The correlation coefficient was 0.9998-1.0000 based on the calibration curve. The intra- and inter-day precision (C.V. %) ranged from 0.01 to 3.07 and 0.01 to 3.68 for in vivo and in vitro systems, respectively. Recovery tests of added standards have been successfully performed and the values ranged from 90.10 to 103.59% and 98.74 to 106.12% for in vivo and in vitro analyses, respectively. This study demonstrates that intracellular levels of UA can be measured using LC-MS/MS with isotope labeled UA as an internal standard.
Collapse
Affiliation(s)
- Kyung Mee Kim
- Department of Medicine, Division of Nephrology, Hypertension and Transplantation, University of Florida, Gainesville, FL 32610, USA.
| | | | | | | | | | | | | |
Collapse
|