1
|
Liu B, Sui J, Feng R, Lin H, Han X, Sun X, Cao L. Transformation of arsenic species from seafood consumption during in vitro digestion. Front Nutr 2023; 10:1207732. [PMID: 37899842 PMCID: PMC10602890 DOI: 10.3389/fnut.2023.1207732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 09/08/2023] [Indexed: 10/31/2023] Open
Abstract
Arsenic (As) species analysis is important for the risk evaluation of seafood. Until now, there has been limited information on the change of As species during digestion. Here, the As species in different types of seafood before and after in vitro digestion were investigated. Although inorganic As was not detected in digested fish samples, As(V) contents in digested crabs and scallops were 17.12 ± 1.76 and 138.69 ± 7.53, respectively, which were approximately 2-3 times greater than those of the pre-digestion samples. In further experiments, arsenocholine, dimethylarsinate, arsenobetaine, and monomethylarsonate were all convertible to As(V) during in vitro digestions with different rates. The transformation demonstrates a complex process and could be affected by many factors, such as pH, time, and digestion juice composition, of which pH seemed to be particularly important. Free radicals were responsible for the oxidation in the transformation reactions. Unlike arsenobetaine, arsenocholine seemed to be able to directly transform to monomethylarsonate without the intermediate dimethylarsinate. This study reveals and validates the potential of other species (oAs or/and unknown species) to convert to iAs, identifies the main factors affecting this process, and proposes a reaction pathway. There is an important implication for promoting a more accurate risk assessment of arsenic in foodstuffs.
Collapse
Affiliation(s)
| | | | | | | | | | - Xun Sun
- Food Safety Laboratory, College of Food Science and Engineering, Ocean University of China, Qingdao, China
| | - Limin Cao
- Food Safety Laboratory, College of Food Science and Engineering, Ocean University of China, Qingdao, China
| |
Collapse
|
2
|
Wang J, Xu D, Ni Z, Yu C, Wang J, Wu Q, Di L, Cheng H, Duan J, Zhou J, Ma H. Analyzing liver protein-bound DMA V by using size exclusion and ion exchange HPLC combined with ICP-MS and MRM mode in rats exposed to AS4S4. Talanta 2021; 234:122714. [PMID: 34364506 DOI: 10.1016/j.talanta.2021.122714] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 07/06/2021] [Accepted: 07/11/2021] [Indexed: 12/22/2022]
Abstract
Long-term exposure to high levels of arsenic (As) will result in damage to organs. Compared with free arsenic, protein-bound arsenic are more difficult to be excreted from the bodies due to their complexation with biological macromolecules. We developed a method of size exclusion chromatography (SEC) and ion exchange chromatography (IEC) combined with inductively coupled plasma-mass spectrometry (ICP-MS) and multiple reaction monitoring (MRM) mode, which was used to determine bound-arsenic species. DMAV was identified as bound arsenic species in rat livers after As4S4 overexposure. Subsequent proteomics analysis showed the potential binding partners included hemoglobin, glutathione S-transferases, superoxide dismutase [Cu-Zn] & [Mn], thiosulfate sulfurtransferase, and metallothionein-2. The method developed here was sensitive, repeatable, and conducive to arsenic analysis, especially for toxicity evaluation of arsenic-containing substances in vivo.
Collapse
Affiliation(s)
- Jiaojiao Wang
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, and Jiangsu Key Laboratory for High Technology Research of TCM Formulae, College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Dihui Xu
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, and Jiangsu Key Laboratory for High Technology Research of TCM Formulae, College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Zuyao Ni
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, ON, Canada
| | - Chengli Yu
- Jiangsu Key Laboratory for Functional Substances of Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Jiajia Wang
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, and Jiangsu Key Laboratory for High Technology Research of TCM Formulae, College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Qinan Wu
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, and Jiangsu Key Laboratory for High Technology Research of TCM Formulae, College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Liuqing Di
- Jiangsu Provincial TCM Engineering Technology Research Center of High Efficient Drug Delivery System (DDS), Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Haibo Cheng
- Translational Medicine Research Center, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Jinao Duan
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, and Jiangsu Key Laboratory for High Technology Research of TCM Formulae, College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| | - Jing Zhou
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, and Jiangsu Key Laboratory for High Technology Research of TCM Formulae, College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| | - Hongyue Ma
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, and Jiangsu Key Laboratory for High Technology Research of TCM Formulae, College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China; Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China.
| |
Collapse
|
3
|
Wolle MM, Conklin SD, Wittenberg J. Matrix-induced transformation of arsenic species in seafoods. Anal Chim Acta 2019; 1060:53-63. [DOI: 10.1016/j.aca.2019.02.027] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Revised: 02/11/2019] [Accepted: 02/18/2019] [Indexed: 02/08/2023]
|
4
|
Matoušek T, Wang Z, Douillet C, Musil S, Stýblo M. Direct Speciation Analysis of Arsenic in Whole Blood and Blood Plasma at Low Exposure Levels by Hydride Generation-Cryotrapping-Inductively Coupled Plasma Mass Spectrometry. Anal Chem 2017; 89:9633-9637. [PMID: 28809551 PMCID: PMC6611167 DOI: 10.1021/acs.analchem.7b01868] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
A method for analysis of toxicologically important arsenic species in blood plasma and whole blood by selective hydride generation with cryotrapping (HG-CT) coupled either to atomic absorption spectrometry (AAS) with a quartz multiatomizer or to inductively coupled plasma mass spectrometry (ICPMS) has been validated. Sample preparation, which involved only 5 times dilution with addition of Triton X-100, Antifoam B, and l-cysteine, suppressed excessive foaming in a hydride generator. Calibration slopes for whole blood and blood plasma spiked with arsenate, monomethylarsonate, and dimethylarsinate at 0.25-1 μg L-1 As and 0.025-0.1 μg L-1 As for AAS and ICPMS detection, respectively, did not differ from slopes in aqueous solutions. HG-CT-AAS was used to analyze samples with elevated levels of arsenic species-blood plasma from patients treated with arsenic trioxide for acute promyelocytic leukemia and whole blood from mice fed an arsenic-containing diet. A good agreement between results of the direct analysis and analysis after mild digestion in phosphoric acid proved the good efficiency of the direct HG-CT procedure for the arsenic species in these types of biological samples. In the next step, plasma and whole blood from healthy donors that were spiked with the plasma from leukemia patients at levels of 0.15-0.4 μg L-1 As were analyzed by direct HG-CT-ICPMS. Good recoveries for all species even at these low levels (88-104%) were obtained. Limits of detection in blood and plasma were 0.014 μg L-1 for inorganic arsenic and below 0.002 μg L-1 As for methylated arsenic species. Thus, the ultrasensitive direct HG-CT-ICPMS method is uniquely suited for analyses of blood plasma and whole blood from individuals at low exposure levels.
Collapse
Affiliation(s)
- Tomáš Matoušek
- Institute of Analytical Chemistry of the Czech Academy of Sciences, v. v. i., Veveří97, Brno 602 00, Czech Republic
| | - Zhifeng Wang
- Department of Nutrition, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, 2302 MHRC, Chapel Hill, North Carolina 27599-7461, United States
- School of Environmental Science and Engineering, Shandong University, 27 Shanda South Road, Jinan, Shandong 250100, China
| | - Christelle Douillet
- Department of Nutrition, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, 2302 MHRC, Chapel Hill, North Carolina 27599-7461, United States
| | - Stanislav Musil
- Institute of Analytical Chemistry of the Czech Academy of Sciences, v. v. i., Veveří97, Brno 602 00, Czech Republic
| | - Miroslav Stýblo
- Department of Nutrition, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, 2302 MHRC, Chapel Hill, North Carolina 27599-7461, United States
| |
Collapse
|
5
|
Yin R, Mo J, Dai J, Wang H. Nickel(II) Inhibits Tet-Mediated 5-Methylcytosine Oxidation by High Affinity Displacement of the Cofactor Iron(II). ACS Chem Biol 2017; 12:1494-1498. [PMID: 28467834 DOI: 10.1021/acschembio.7b00261] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Ten-eleven translocation (Tet) family proteins are Fe(II)- and 2-oxoglutarate-dependent dioxygenases that regulate the dynamics of DNA methylation by catalyzing the oxidation of DNA 5-methylcytosine (5mC). To exert physiologically important functions, redox-active iron chelated in the catalytic center of Tet proteins directly involves the oxidation of the multiple substrates. To understand the function and interaction network of Tet dioxygenases, it is interesting to obtain high affinity and a specific inhibitor. Surprisingly, here we found that natural Ni(II) ion can bind to the Fe(II)-chelating motif (HXD) with an affinity of 7.5-fold as high as Fe(II). Consistently, we further found that Ni(II) ion can displace the cofactor Fe(II) of Tet dioxygenases and inhibit Tet-mediated 5mC oxidation activity with an estimated IC50 of 1.2 μM. Essentially, Ni(II) can be used as a high affinity and selective inhibitor to explore the function and dynamics of Tet proteins.
Collapse
Affiliation(s)
- Ruichuan Yin
- State
Key Laboratory of Environmental Chemistry and Ecotoxicology, Research
Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Jiezhen Mo
- State
Key Laboratory of Environmental Chemistry and Ecotoxicology, Research
Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Jiayin Dai
- Key
Laboratory of Animal Ecology and Conservation Biology, Institute of
Zoology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Hailin Wang
- State
Key Laboratory of Environmental Chemistry and Ecotoxicology, Research
Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| |
Collapse
|
6
|
Liu Q, Peng H, Lu X, Le XC. Enzyme-assisted extraction and liquid chromatography mass spectrometry for the determination of arsenic species in chicken meat. Anal Chim Acta 2015; 888:1-9. [PMID: 26320952 DOI: 10.1016/j.aca.2015.05.001] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2015] [Revised: 04/28/2015] [Accepted: 05/03/2015] [Indexed: 01/15/2023]
Abstract
Chicken is the most consumed meat in North America. Concentrations of arsenic in chicken range from μg kg(-1) to mg kg(-1). However, little is known about the speciation of arsenic in chicken meat. The objective of this research was to develop a method enabling determination of arsenic species in chicken breast muscle. We report here enzyme-enhanced extraction of arsenic species from chicken meat, separation using anion exchange chromatography (HPLC), and simultaneous detection with both inductively coupled plasma mass spectrometry (ICPMS) and electrospray ionization tandem mass spectrometry (ESIMS). We compared the extraction of arsenic species using several proteolytic enzymes: bromelain, papain, pepsin, proteinase K, and trypsin. With the use of papain-assisted extraction, 10 arsenic species were extracted and detected, as compared to 8 detectable arsenic species in the water/methanol extract. The overall extraction efficiency was also improved using a combination of ultrasonication and papain digestion, as compared to the conventional water/methanol extraction. Detection limits were in the range of 1.0-1.8 μg arsenic per kg chicken breast meat (dry weight) for seven arsenic species: arsenobetaine (AsB), inorganic arsenite (As(III)), dimethylarsinic acid (DMA), monomethylarsonic acid (MMA), inorganic arsenate (As(V)), 3-nitro-4-hydroxyphenylarsonic acid (Roxarsone), and N-acetyl-4-hydroxy-m-arsanilic acid (NAHAA). Analysis of breast meat samples from six chickens receiving feed containing Roxarsone showed the presence of (mean±standard deviation μg kg(-1)) AsB (107±4), As(III) (113±7), As(V) (7±2), MMA (51±5), DMA (64±6), Roxarsone (18±1), and four unidentified arsenic species (approximate concentration 1-10 μg kg(-1)).
Collapse
Affiliation(s)
- Qingqing Liu
- Department of Laboratory Medicine and Pathology, Faculty of Medicine and Dentistry, 10-102 Clinical Sciences Building, University of Alberta, Edmonton, Alberta T6G 2G3, Canada
| | - Hanyong Peng
- Department of Laboratory Medicine and Pathology, Faculty of Medicine and Dentistry, 10-102 Clinical Sciences Building, University of Alberta, Edmonton, Alberta T6G 2G3, Canada
| | - Xiufen Lu
- Department of Laboratory Medicine and Pathology, Faculty of Medicine and Dentistry, 10-102 Clinical Sciences Building, University of Alberta, Edmonton, Alberta T6G 2G3, Canada
| | - X Chris Le
- Department of Laboratory Medicine and Pathology, Faculty of Medicine and Dentistry, 10-102 Clinical Sciences Building, University of Alberta, Edmonton, Alberta T6G 2G3, Canada.
| |
Collapse
|
7
|
Affiliation(s)
- Shengwen Shen
- Department
of Laboratory Medicine
and Pathology, 10-102 Clinical Sciences Building, University
of Alberta, Edmonton, Alberta, Canada, T6G 2G3
| | - Xing-Fang Li
- Department
of Laboratory Medicine
and Pathology, 10-102 Clinical Sciences Building, University
of Alberta, Edmonton, Alberta, Canada, T6G 2G3
| | - William R. Cullen
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver,
British Columbia, Canada, V6T 1Z1
| | - Michael Weinfeld
- Department of Oncology, Cross
Cancer Institute, University of Alberta, 11560 University Avenue, Edmonton, Alberta, Canada, T6G 1Z2
| | - X. Chris Le
- Department
of Laboratory Medicine
and Pathology, 10-102 Clinical Sciences Building, University
of Alberta, Edmonton, Alberta, Canada, T6G 2G3
| |
Collapse
|