1
|
Jorge AMS, Pereira JFB. Aqueous two-phase systems - versatile and advanced (bio)process engineering tools. Chem Commun (Camb) 2024; 60:12144-12168. [PMID: 39350759 DOI: 10.1039/d4cc02663b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2024]
Abstract
Aqueous two-phase systems (ATPS), also known as Aqueous Biphasic Systems (ABS), have been extensively studied as platforms for the separation and purification of biomolecules and other valuable compounds. These liquid-liquid extraction (LLE) systems have been a tool for biotechnology since its origin (Albertsson, 1950's), recently expanding to exciting fields such as health, biomedicine and material sciences. Due to their biocompatibility, amenability, flexibility, and versatility, ATPS have been applied across various research areas, addressing many challenges associated with conventional methodologies. In this feature article, we first discuss the fundamentals of ATPS and the molecular mechanisms that govern their formation and are crucial for their application. We then explore the most prominent and innovative applications of these systems in downstream processing. Additionally, we provide insights into the design of in situ upstream-downstream integrated platforms, and their use as pre-treatment and analytical tools. The latest advancements in ATPS applications within disruptive bioengineering and biotechnology fields are presented, along with their pioneering use in emerging scientific areas, such as the formation of all-aqueous (water-in-water) emulsions, microfluidic systems, and membrane-free batteries. Overall, this work underscores the transformative potential of ATPS in various branches of science, pinpointing directions for future research to fully explore and maximize ATPS capabilities, overcome existing hurdles, and drive innovation forward.
Collapse
Affiliation(s)
- Alexandre M S Jorge
- University of Coimbra, CERES, FCTUC, Department of Chemical Engineering, Rua Sílvio Lima, Pólo II - Pinhal de Marrocos, 3030-790 Coimbra, Portugal.
| | - Jorge F B Pereira
- University of Coimbra, CERES, FCTUC, Department of Chemical Engineering, Rua Sílvio Lima, Pólo II - Pinhal de Marrocos, 3030-790 Coimbra, Portugal.
| |
Collapse
|
2
|
Meutelet R, Bisch LJ, Buerfent BC, Müller M, Hubbuch J. Partitioning behavior of short DNA fragments in polymer/salt aqueous two-phase systems. Biotechnol J 2024; 19:e2400394. [PMID: 39246125 DOI: 10.1002/biot.202400394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 08/02/2024] [Accepted: 08/08/2024] [Indexed: 09/10/2024]
Abstract
The development of liquid biopsy as a minimally invasive technique for tumor profiling has created a need for efficient biomarker extraction systems from body fluids. The analysis of circulating cell-free DNA (cfDNA) is especially promising, but the low amounts and high fragmentation of cfDNA found in plasma pose challenges to its isolation. While the potential of aqueous two-phase systems (ATPS) for the extraction and purification of various biomolecules has already been successfully established, there is limited literature on the applicability of these findings to short cfDNA-like fragments. This study presents the partitioning behavior of a 160 bp DNA fragment in polyethylene glycol (PEG)/salt ATPS at pH 7.4. The effect of PEG molecular weight, tie-line length, neutral salt additives, and phase volume ratio is evaluated to maximize DNA recovery. Selected ATPS containing a synthetic plasma solution spiked with human serum albumin and immunoglobulin G are tested to determine the separation of DNA fragments from the main plasma protein fraction. By adding 1.5% (w/w) NaCl to a 17.7% (w/w) PEG 400/17.3% (w/w) phosphate ATPS, 88% DNA recovery was achieved in the salt-rich bottom phase while over 99% of the protein was removed.
Collapse
Affiliation(s)
- Rafaela Meutelet
- Institute of Process Engineering in Life Sciences, Section IV: Biomolecular Separation Engineering, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
| | - Lea J Bisch
- Institute of Process Engineering in Life Sciences, Section IV: Biomolecular Separation Engineering, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
| | | | - Markus Müller
- BioEcho Life Sciences GmbH, BioCampus Cologne, Köln, Germany
| | - Jürgen Hubbuch
- Institute of Process Engineering in Life Sciences, Section IV: Biomolecular Separation Engineering, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
| |
Collapse
|
3
|
Neves CPG, Coffman JL, Farid SS. Evaluating end-to-end continuous antibody manufacture with column-free capture alternatives from economic, environmental, and robustness perspectives. Biotechnol Prog 2024; 40:e3427. [PMID: 38289674 DOI: 10.1002/btpr.3427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 10/03/2023] [Accepted: 12/23/2023] [Indexed: 08/20/2024]
Abstract
Process intensification efforts have renewed interest in the potential of end-to-end continuous manufacture with column-free capture alternatives. This article describes a decisional tool that encompasses mass balance and design equations, process economics, stochastic simulation and multi-criteria decision-making and enables the evaluation of different batch, and continuous flowsheets for monoclonal antibody (mAb) manufacture. The traditional batch process was compared with end-to-end continuous bioprocesses with either protein A capture or column-free capture employing aqueous two-phase extraction or precipitation from economic, environmental, and robustness perspectives. The cost of goods analysis predicted that continuous flowsheets could offer substantial cost savings (~20%-40%) over the batch process at low and medium annual commercial demands (100-500 kg); however, at tonnage demands they resulted in either comparable or higher costs. Comparing the continuous options, the continuous flowsheets with protein A or precipitation yielded similar COG/g values, while aqueous two-phase extraction presented higher costs. The analysis of overall process mass intensities accounting for water and consumables suggested that the continuous flowsheet with protein A would result in the lowest environmental burden. When the economic, environmental, and operational criteria were reconciled using multi-criteria decision-making analysis, the continuous protein A-based flowsheet was found to be the most favorable. A target analysis highlighted the need for process improvements in the following parameters to reduce the manufacturing costs of the continuous column-free capture options below that of protein A: the perfusion volumetric productivity, the harvested cell culture fluid percentage in column-free operations, the column-free step yields along with the implementation of buffer concentrates.
Collapse
Affiliation(s)
- Catarina P G Neves
- The Advanced Centre for Biochemical Engineering, Department of Biochemical Engineering, University College London, London, UK
| | - Jonathan L Coffman
- Bioprocess Technologies and Engineering, Biopharmaceuticals Development, R&D, AstraZeneca, Gaithersburg, Maryland, USA
| | - Suzanne S Farid
- The Advanced Centre for Biochemical Engineering, Department of Biochemical Engineering, University College London, London, UK
| |
Collapse
|
4
|
Zhang Y, Luo Y, Zhao J, Zheng W, Zhan J, Zheng H, Luo F. Emerging delivery systems based on aqueous two-phase systems: A review. Acta Pharm Sin B 2024; 14:110-132. [PMID: 38239237 PMCID: PMC10792979 DOI: 10.1016/j.apsb.2023.08.024] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Revised: 07/24/2023] [Accepted: 07/28/2023] [Indexed: 01/22/2024] Open
Abstract
The aqueous two-phase system (ATPS) is an all-aqueous system fabricated from two immiscible aqueous phases. It is spontaneously assembled through physical liquid-liquid phase separation (LLPS) and can create suitable templates like the multicompartment of the intracellular environment. Delicate structures containing multiple compartments make it possible to endow materials with advanced functions. Due to the properties of ATPSs, ATPS-based drug delivery systems exhibit excellent biocompatibility, extraordinary loading efficiency, and intelligently controlled content release, which are particularly advantageous for delivering drugs in vivo . Therefore, we will systematically review and evaluate ATPSs as an ideal drug delivery system. Based on the basic mechanisms and influencing factors in forming ATPSs, the transformation of ATPSs into valuable biomaterials is described. Afterward, we concentrate on the most recent cutting-edge research on ATPS-based delivery systems. Finally, the potential for further collaborations between ATPS-based drug-carrying biomaterials and disease diagnosis and treatment is also explored.
Collapse
Affiliation(s)
- Yaowen Zhang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu 610041, China
| | - Yankun Luo
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu 610041, China
| | - Jingqi Zhao
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu 610041, China
| | - Wenzhuo Zheng
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu 610041, China
| | - Jun Zhan
- Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Chengdu 610041, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu 610041, China
| | - Huaping Zheng
- Department of Dermatology, Rare Diseases Center, Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Feng Luo
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu 610041, China
- Department of Prosthodontics, West China School of Stomatology, Sichuan University, Chengdu 610041, China
| |
Collapse
|
5
|
Podlesny B, Hinkle KR, Hayashi K, Niidome Y, Shiraki T, Janas D. Highly-Selective Harvesting of (6,4) SWCNTs Using the Aqueous Two-Phase Extraction Method and Nonionic Surfactants. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2207218. [PMID: 36856265 DOI: 10.1002/advs.202207218] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 01/26/2023] [Indexed: 05/18/2023]
Abstract
Monochiral single-walled carbon nanotubes (SWCNTs) are indispensable for advancing the technology readiness level of nanocarbon-based concepts. In recent times, many separation techniques have been developed to obtain specific SWCNTs from raw unsorted materials to catalyze the development in this area. This work presents how the aqueous two-phase extraction (ATPE) method can be enhanced for the straightforward isolation of (6,4) SWCNTs in one step. Introducing nonionic surfactant into the typically employed mixture of anionic surfactants, which drive the partitioning, is essential to increasing the ATPE system's resolution. A thorough analysis of the parameter space by experiments and modeling reveals the underlying interactions between SWCNTs, surfactants, and phase-forming agents, which drive the partitioning. Based on new insight gained on this front, a separation mechanism is proposed. Notably, the developed method is highly robust, which is proven by isolating (6,4) SWCNTs from several raw SWCNT materials, including SWCNT waste generated over the years in the laboratory.
Collapse
Affiliation(s)
- Blazej Podlesny
- Department of Organic Chemistry, Bioorganic Chemistry and Biotechnology, Silesian University of Technology, B. Krzywoustego 4, Gliwice, 44-100, Poland
| | - Kevin R Hinkle
- Department of Chemical and Materials Engineering, University of Dayton, Dayton, OH, 45469, USA
| | - Keita Hayashi
- Department of Applied Chemistry, Graduate School of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan
| | - Yoshiaki Niidome
- Department of Applied Chemistry, Graduate School of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan
| | - Tomohiro Shiraki
- Department of Applied Chemistry, Graduate School of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan
| | - Dawid Janas
- Department of Organic Chemistry, Bioorganic Chemistry and Biotechnology, Silesian University of Technology, B. Krzywoustego 4, Gliwice, 44-100, Poland
| |
Collapse
|
6
|
Almeida C, Pedro AQ, Tavares APM, Neves MC, Freire MG. Ionic-liquid-based approaches to improve biopharmaceuticals downstream processing and formulation. Front Bioeng Biotechnol 2023; 11:1037436. [PMID: 36824351 PMCID: PMC9941158 DOI: 10.3389/fbioe.2023.1037436] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 01/23/2023] [Indexed: 02/10/2023] Open
Abstract
The emergence of biopharmaceuticals, including proteins, nucleic acids, peptides, and vaccines, revolutionized the medical field, contributing to significant advances in the prophylaxis and treatment of chronic and life-threatening diseases. However, biopharmaceuticals manufacturing involves a set of complex upstream and downstream processes, which considerably impact their cost. In particular, despite the efforts made in the last decades to improve the existing technologies, downstream processing still accounts for more than 80% of the total biopharmaceutical production cost. On the other hand, the formulation of biological products must ensure they maintain their therapeutic performance and long-term stability, while preserving their physical and chemical structure. Ionic-liquid (IL)-based approaches arose as a promise alternative, showing the potential to be used in downstream processing to provide increased purity and recovery yield, as well as excipients for the development of stable biopharmaceutical formulations. This manuscript reviews the most important progress achieved in both fields. The work developed is critically discussed and complemented with a SWOT analysis.
Collapse
Affiliation(s)
- Catarina Almeida
- CICECO-Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, Aveiro, Portugal
| | - Augusto Q. Pedro
- CICECO-Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, Aveiro, Portugal
| | - Ana P. M. Tavares
- CICECO-Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, Aveiro, Portugal
| | - Márcia C. Neves
- CICECO-Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, Aveiro, Portugal
| | | |
Collapse
|
7
|
Worrall SD, Wang J, Najdanovic-Visak V. Aqueous biphasic systems based on ethyl lactate: Molecular interactions and modelling. CHEM ENG COMMUN 2022. [DOI: 10.1080/00986445.2022.2142575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Affiliation(s)
- Stephen D. Worrall
- Chemical Engineering and Applied Chemistry, Energy & Bioproducts Research Institute, Aston University, Birmingham, UK
| | - Jiawei Wang
- Chemical Engineering and Applied Chemistry, Energy & Bioproducts Research Institute, Aston University, Birmingham, UK
| | - Vesna Najdanovic-Visak
- Chemical Engineering and Applied Chemistry, Energy & Bioproducts Research Institute, Aston University, Birmingham, UK
| |
Collapse
|
8
|
Aline Otaviano C, Ussemane Mussagy C, Roberto Paz-Cedeno F, Fernando Brandão Pereira J, Masarin F. Hydrothermal pretreatment of Eucalyptus by-product and refining of xylooligosaccharides from hemicellulosic hydrolysate. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.122520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
9
|
Xu W, Gao X, Zheng L, Lu F. Ionic-Liquid-Based Aqueous Two-Phase Systems Induced by Intra- and Intermolecular Hydrogen Bonds. Molecules 2022; 27:molecules27165307. [PMID: 36014543 PMCID: PMC9414173 DOI: 10.3390/molecules27165307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 08/16/2022] [Accepted: 08/17/2022] [Indexed: 11/16/2022] Open
Abstract
In recent years, aqueous two-phase systems (ATPSs) have been widely used in different fields and have become an increasingly attractive subject due to their application in the separation and purification of biomolecules. In this work, the aqueous phase behavior of ionic liquids (ILs) was modulated by changing the cis-trans structure of the anion in ILs. With the same tetra-butyl-phosphine as the cation, the cis-anion exhibited upper critical solution temperature (UCST) phenomena. In contrast, the trans-anion exhibited lower critical solution temperature (LCST) phenomena. The proposed mechanism shows that the main factors responsible for these phenomena include variations in the dissociation degree with temperature and the steric hindrance of the ILs. This phase behavior combines the chemical equilibrium in a solution with the microstructure of the molecule and is useful for constructing new chemical dynamic equilibria in ATPS. As an example of its application, aqueous solutions of both ILs can be used for the efficient separation and extraction of specific amino acids. The two ATPS systems reported in this work highlight a simple, effective, and environmentally friendly method for separating small biological molecules.
Collapse
Affiliation(s)
- Wenzhuo Xu
- Key Laboratory of Colloid and Interface Chemistry, Shandong University, Ministry of Education, Jinan 250100, China
| | - Xinpei Gao
- Key Laboratory of Ministry of Education for Advanced Materials in Tropical Island Resources, Hainan University, No 58 Renmin Avenue, Haikou 570228, China
| | - Liqiang Zheng
- Key Laboratory of Colloid and Interface Chemistry, Shandong University, Ministry of Education, Jinan 250100, China
- Correspondence: (L.Z.); (F.L.); Tel.: +86-531-8836-6062 (L.Z.); Fax: +86-531-8836-4750 (L.Z.)
| | - Fei Lu
- Key Laboratory of Ministry of Education for Advanced Materials in Tropical Island Resources, Hainan University, No 58 Renmin Avenue, Haikou 570228, China
- Correspondence: (L.Z.); (F.L.); Tel.: +86-531-8836-6062 (L.Z.); Fax: +86-531-8836-4750 (L.Z.)
| |
Collapse
|
10
|
Leong HY, Fu XQ, Show PL, Yao SJ, Lin DQ. Downstream processing of virus-like particles with aqueous two-phase systems: applications and challenges. J Sep Sci 2022; 45:2064-2076. [PMID: 35191590 DOI: 10.1002/jssc.202100947] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Revised: 02/15/2022] [Accepted: 02/20/2022] [Indexed: 11/06/2022]
Abstract
The advancement of recombinant virus-like particle-based vaccines has attracted global attention owing to substantially safety and high efficacy in provoking a protective immunity against various chronic and infectious diseases in humans and animals. A robust, low-cost and scalability separation and purification technology is of utmost importance in the downstream processing of recombinant virus-like particles to produce affordable and safe vaccines. Being a relatively simple, environmentally friendly and efficient biomolecules recovery approach, aqueous two-phase systems have received great attention from researchers worldwide. This review aims to highlight the challenges and outlook in addition to the current applications of aqueous two-phase systems in downstream processing of virus-like particles. The efforts will confidently reinforce scholars' knowledge and fill in the valuable research gap in the aspect of concerning recombinant virus-like particle-based vaccines development, particularly related to the virus-like particles downstream production processes. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Hui Yi Leong
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, Zhejiang Key Laboratory of Smart Biomaterials, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Xiao-Qian Fu
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, Zhejiang Key Laboratory of Smart Biomaterials, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Pau Loke Show
- Department of Chemical and Environmental Engineering, Faculty of Science and Engineering, University of Nottingham Malaysia, Broga Road, Selangor Darul Ehsan, 43500 Semenyih, Malaysia
| | - Shan-Jing Yao
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, Zhejiang Key Laboratory of Smart Biomaterials, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Dong-Qiang Lin
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, Zhejiang Key Laboratory of Smart Biomaterials, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
| |
Collapse
|
11
|
Chen X, Guo Y, Yang T, Wan J, Cao X. Separation of antibody IgG201 by an aqueous two-phase system with recyclable pH-responsive polymers. Process Biochem 2022. [DOI: 10.1016/j.procbio.2021.12.017] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
12
|
Fang YM, Lin DQ, Yao SJ. Tetrapeptide ligands screening for antibody separation and purification by molecular simulation and experimental verification. Biochem Eng J 2021. [DOI: 10.1016/j.bej.2021.108213] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
13
|
Afzal Shoushtari B, Rahbar Shahrouzi J, Pazuki G, Shahriari S, Hadidi N. Separation of glatiramer acetate and its constituent amino acids using aqueous two-phase systems composed of maltodextrin and acetonitrile. J IND ENG CHEM 2021. [DOI: 10.1016/j.jiec.2021.09.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
14
|
García-Cruz L, Valle-Guadarrama S, Soto-Hernández RM, Guerra-Ramírez D, Zuleta-Prada H, Martínez-Damián MT, Ramírez-Valencia YD. Separation of Pitaya (Stenocereus pruinosus) Betaxanthins, Betacyanins, and Soluble Phenols Through Multistage Aqueous Two-phase Systems. FOOD BIOPROCESS TECH 2021. [DOI: 10.1007/s11947-021-02676-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
15
|
Lima ÁS, Oliveira BSD, Shabudin SV, Almeida M, Freire MG, Bica K. Purification of anthocyanins from grape pomace by centrifugal partition chromatography. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.115324] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
16
|
Wessner M, Bommarius B, Brandenbusch C, Bommarius AS. Purification of chimeric amine dehydrogenase using a tailor-made aqueous two-phase system - A case study. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2020.114991] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
17
|
|
18
|
Zinov’eva IV, Zakhodyaeva YA, Voshkin AA. Extraction of Lactic Acid Using the Polyethylene Glycol–Sodium Sulfate–Water System. THEORETICAL FOUNDATIONS OF CHEMICAL ENGINEERING 2021. [DOI: 10.1134/s0040579521010188] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
19
|
Sintra TE, Bagagem SS, Ghazizadeh Ahsaie F, Fernandes A, Martins M, Macário IP, Pereira JL, Gonçalves FJ, Pazuki G, Coutinho JA, Ventura SP. Sequential recovery of C-phycocyanin and chlorophylls from Anabaena cylindrica. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2020.117538] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
20
|
Li X, Heng JYY. Protein crystallisation facilitated by silica particles to compensate for the adverse impact from protein impurities. CrystEngComm 2021. [DOI: 10.1039/d1ce00983d] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Nanonucleants for protein crystallisation in the presence of impurities.
Collapse
Affiliation(s)
- Xiaoyu Li
- Department of Chemical Engineering, South Kensington Campus, Imperial College London, London SW7 2AZ, UK
| | - Jerry Y. Y. Heng
- Department of Chemical Engineering, South Kensington Campus, Imperial College London, London SW7 2AZ, UK
| |
Collapse
|
21
|
Kruse T, Kampmann M, Greller G. Aqueous Two‐Phase Extraction of Monoclonal Antibodies from High Cell Density Cell Culture. CHEM-ING-TECH 2020. [DOI: 10.1002/cite.202000017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Affiliation(s)
- Thomas Kruse
- Sartorius Stedim Biotech GmbH, BioProcessing August-Spindler-Straße 11 37079 Göttingen Germany
| | - Markus Kampmann
- Sartorius Stedim Biotech GmbH, BioProcessing August-Spindler-Straße 11 37079 Göttingen Germany
| | - Gerhard Greller
- Sartorius Stedim Biotech GmbH, BioProcessing August-Spindler-Straße 11 37079 Göttingen Germany
| |
Collapse
|
22
|
Wessner M, Nowaczyk M, Brandenbusch C. Rapid identification of tailor-made aqueous two-phase systems for the extractive purification of high-value biomolecules. J Mol Liq 2020. [DOI: 10.1016/j.molliq.2020.113655] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
23
|
Roque ACA, Pina AS, Azevedo AM, Aires‐Barros R, Jungbauer A, Di Profio G, Heng JYY, Haigh J, Ottens M. Anything but Conventional Chromatography Approaches in Bioseparation. Biotechnol J 2020; 15:e1900274. [DOI: 10.1002/biot.201900274] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 04/03/2020] [Indexed: 12/28/2022]
Affiliation(s)
| | - Ana Sofia Pina
- UCIBIOChemistry DepartmentNOVA School of Science and Technology Caparica 2829‐516 Portugal
| | - Ana Margarida Azevedo
- IBB – Institute for Bioengineering and BiosciencesDepartment of BioengineeringInstituto Superior TécnicoUniversidade de Lisboa Av. Rovisco Pais Lisbon 1049‐001 Portugal
| | - Raquel Aires‐Barros
- IBB – Institute for Bioengineering and BiosciencesDepartment of BioengineeringInstituto Superior TécnicoUniversidade de Lisboa Av. Rovisco Pais Lisbon 1049‐001 Portugal
| | - Alois Jungbauer
- Department of BiotechnologyUniversity of Natural Resources and Life Sciences Muthgasse 18 Vienna Muthgasse 1190 Austria
| | - Gianluca Di Profio
- National Research Council of Italy (CNR) – Institute on Membrane Technology (ITM) via P. Bucci Cubo 17/C Rende (CS) 87036 Italy
| | - Jerry Y. Y. Heng
- Department of Chemical EngineeringImperial College London South Kensington Campus London SW7 2AZ UK
| | - Jonathan Haigh
- FUJIFILM Diosynth Biotechnologies UK Limited Belasis Avenue Billingham TS23 1LH UK
| | - Marcel Ottens
- Department of BiotechnologyDelft University of Technology Van der Maasweg 9 Delft 2629 HZ The Netherlands
| |
Collapse
|
24
|
Magalhães FF, Almeida MR, Soares SF, Trindade T, Freire MG, Daniel-da-Silva AL, Tavares APM. Recovery of immunoglobulin G from rabbit serum using κ-carrageenan-modified hybrid magnetic nanoparticles. Int J Biol Macromol 2020; 150:914-921. [PMID: 32068054 DOI: 10.1016/j.ijbiomac.2020.02.135] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 02/11/2020] [Accepted: 02/13/2020] [Indexed: 12/14/2022]
Abstract
Immunoglobulin G (IgG) has been used in the treatment of cancer, autoimmune diseases and neurological disorders, however, the current technologies to purify and recover IgG from biological media are of high-cost and time-consuming, resulting in high-cost products. In this sense, the search for cost-effective technologies to obtain highly pure and active IgG is highly required. The present work proposes a simple and efficient method for the purification and recovery of IgG from rabbit serum using magnetic iron oxide nanoparticles (magnetite, Fe3O4) coated with hybrid shells of a siliceous material modified with the anionic polysaccharide κ-carrageenan. Experimental parameters such as pH, contact time between the hybrid magnetic nanoparticles (HMNPs) and rabbit serum, and total protein concentration or dilution factor of serum were evaluated. The best results were achieved at pH 5.0, with a contact time of 60 min and using a rabbit serum with a total protein concentration of 4.8 mg·mL-1. Under these conditions, it was obtained an IgG purification factor and adsorption yield onto the HMNPs of 3.0 and 90%, respectively. The desorption of IgG from the HMNPs was evaluated using two strategies: a KCl aqueous solution and buffered aqueous solutions. Comparing to the initial rabbit serum, an IgG purification factor of 2.7 with a recovery yield of 74% were obtained using a buffered aqueous solution at pH 7.0. After desorption, the secondary structure of IgG and other proteins was evaluated by circular dichroism and no changes in the secondary structure were observed, meaning that the IgG integrity is kept after the adsorption and desorption steps. In summary, the application of HMNPs in the purification of IgG from serum samples has a high potential as a new downstream platform.
Collapse
Affiliation(s)
- Flávia F Magalhães
- CICECO - Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Mafalda R Almeida
- CICECO - Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Sofia F Soares
- CICECO - Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Tito Trindade
- CICECO - Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Mara G Freire
- CICECO - Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Ana Luísa Daniel-da-Silva
- CICECO - Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Ana P M Tavares
- CICECO - Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal.
| |
Collapse
|
25
|
Gharat NN, Rathod VK. Response surface methodology for the extraction of wedelolactone from Eclipta alba using aqueous two-phase extraction. Prep Biochem Biotechnol 2020; 50:827-833. [DOI: 10.1080/10826068.2020.1753071] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Neha N. Gharat
- Department of Chemical Engineering, Institute of Chemical Technology, Mumbai, India
| | - Virendra K. Rathod
- Department of Chemical Engineering, Institute of Chemical Technology, Mumbai, India
| |
Collapse
|
26
|
Pillaca-Pullo OS, Intiquilla A, Santos JHPM, Sánchez-Moguel I, Brandelli A, Zavaleta AI. Purification of Pseudomonas sp. proteases through aqueous biphasic systems as an alternative source to obtain bioactive protein hydrolysates. Biotechnol Prog 2020; 37:e3003. [PMID: 32281294 DOI: 10.1002/btpr.3003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 03/30/2020] [Accepted: 04/03/2020] [Indexed: 11/10/2022]
Abstract
Aqueous biphasic systems (ABSs) are an interesting alternative for separating industrial enzymes due to easy scale-up and low operational cost. The proteases of Pseudomonas sp. M211 were purified through ABS platforms formed by polyethylene glycol (PEG) and citrate buffer salt. Two experimental designs 23 + 4 were performed to evaluate the following parameters: molar mass of PEG (MPEG ), concentration of PEG (CPEG ), concentration of citrate buffer (CCit ), and pH. The partition coefficient (K), activity yield (Y), and purification factor (PF) were the responses analyzed. The best purification performance was obtained with the system composed of MPEG = 10,000 g/mol, CPEG = 22 wt%, CCit = 12 wt%, pH = 8.0; the responses obtained were K = 4.9, Y = 84.5%, PF = 15.1, and tie-line length = 52.74%. The purified proteases of Pseudomonas sp. (PPP) were used to obtain hydrolysates of Lupinus mutabilis (Peruvian lupin cultivar) seed protein in comparison with the commercial protease Alcalase® 2.4L. A strong correlation between hydrolysis degree and radical scavenging activity was observed, and the highest antioxidant activity was obtained with Alcalase® (1.40 and 3.47 μmol Trolox equivalent/mg protein, for 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid) and oxygen radical absorbance capacity, respectively) compared with PPP (0.55 and 1.03 μmol Trolox/mg protein). Nevertheless, the IC50 values were lower than those often observed for antioxidant hydrolysates from plant proteins. PEG/citrate buffer system is valuable to purify Pseudomonas proteases from the fermented broth, and the purified protease could be promising to produce antioxidant protein hydrolysates.
Collapse
Affiliation(s)
- Omar S Pillaca-Pullo
- Laboratorio de Biología Molecular, Facultad de Farmacia y Bioquímica, Universidad Nacional Mayor de San Marcos, Lima, Peru
| | - Arturo Intiquilla
- Laboratorio de Biología Molecular, Facultad de Farmacia y Bioquímica, Universidad Nacional Mayor de San Marcos, Lima, Peru
| | - João H P M Santos
- CICECO - Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, Aveiro, Portugal.,Department of Pharmaceutical-Biochemical Technology, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| | - Ignacio Sánchez-Moguel
- Department of Pharmaceutical-Biochemical Technology, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| | - Adriano Brandelli
- Laboratório de Bioquimica e Microbiologia Aplicada, Departamento de Ciência de Alimentos, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Amparo I Zavaleta
- Laboratorio de Biología Molecular, Facultad de Farmacia y Bioquímica, Universidad Nacional Mayor de San Marcos, Lima, Peru
| |
Collapse
|
27
|
Abstract
A well-known bioseparation technique namely liquid biphasic system (LBS) has attracted many researchers’ interest for being an alternative bioseparation technology for various kinds of biomolecules. The present review begins with an in-depth discussion on the fundamental principle of LBS and this is followed by the discussion on further development of various phase-forming components in LBS. Additionally, the implementation of various advance technologies to the LBS that is beneficial towards the efficiency of LBS for the extraction, separation, and purification of biomolecules was discussed. The key parameters affecting the LBS were presented and evaluated. Moreover, future prospect and challenges were highlighted to be a useful guide for future development of LBS. The efforts presented in this review will provide an insight for future researches in liquid-liquid separation techniques.
Collapse
|
28
|
Li X, Chen W, Yang H, Yang Z, Heng JYY. Protein crystal occurrence domains in selective protein crystallisation for bio-separation. CrystEngComm 2020. [DOI: 10.1039/d0ce00642d] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Bio-separation is a key bottleneck in the manufacture of biopharmaceuticals.
Collapse
Affiliation(s)
- Xiaoyu Li
- Department of Chemical Engineering
- Imperial College London
- South Kensington Campus
- London
- UK
| | - Wenqian Chen
- Department of Chemical Engineering
- Imperial College London
- South Kensington Campus
- London
- UK
| | - Huaiyu Yang
- Department of Chemical Engineering
- Imperial College London
- South Kensington Campus
- London
- UK
| | - Zhongqiang Yang
- Department of Chemistry
- Tsinghua University
- Beijing 100084
- PR China
| | - Jerry Y. Y. Heng
- Department of Chemical Engineering
- Imperial College London
- South Kensington Campus
- London
- UK
| |
Collapse
|
29
|
Li Y, Stern D, Lock LL, Mills J, Ou SH, Morrow M, Xu X, Ghose S, Li ZJ, Cui H. Emerging biomaterials for downstream manufacturing of therapeutic proteins. Acta Biomater 2019; 95:73-90. [PMID: 30862553 DOI: 10.1016/j.actbio.2019.03.015] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Revised: 02/26/2019] [Accepted: 03/06/2019] [Indexed: 12/23/2022]
Abstract
Downstream processing is considered one of the most challenging phases of industrial manufacturing of therapeutic proteins, accounting for a large portion of the total production costs. The growing demand for therapeutic proteins in the biopharmaceutical market in addition to a significant rise in upstream titers have placed an increasing burden on the downstream purification process, which is often limited by high cost and insufficient capacities. To achieve efficient production and reduced costs, a variety of biomaterials have been exploited to improve the current techniques and also to develop superior alternatives. In this work, we discuss the significance of utilizing traditional biomaterials in downstream processing and review the recent progress in the development of new biomaterials for use in protein separation and purification. Several representative methods will be highlighted and discussed in detail, including affinity chromatography, non-affinity chromatography, membrane separations, magnetic separations, and precipitation/phase separations. STATEMENT OF SIGNIFICANCE: Nowadays, downstream processing of therapeutic proteins is facing great challenges created by the rapid increase of the market size and upstream titers, starving for significant improvements or innovations in current downstream unit operations. Biomaterials have been widely used in downstream manufacturing of proteins and efforts have been continuously devoted to developing more advanced biomaterials for the implementation of more efficient and economical purification methods. This review covers recent advances in the development and application of biomaterials specifically exploited for various chromatographic and non-chromatographic techniques, highlighting several promising alternative strategies.
Collapse
Affiliation(s)
- Yi Li
- Department of Chemical and Biomolecular Engineering, and Institute for NanoBioTechnology, The Johns Hopkins University, 3400 North Charles Street, Baltimore, MD 21218, United States
| | - David Stern
- Department of Chemical and Biomolecular Engineering, and Institute for NanoBioTechnology, The Johns Hopkins University, 3400 North Charles Street, Baltimore, MD 21218, United States
| | - Lye Lin Lock
- Biologics Process Development, Global Product Development and Supply, Bristol-Myers Squibb, Devens, MA 01434, United States
| | - Jason Mills
- Biologics Process Development, Global Product Development and Supply, Bristol-Myers Squibb, Devens, MA 01434, United States
| | - Shih-Hao Ou
- Department of Chemical and Biomolecular Engineering, and Institute for NanoBioTechnology, The Johns Hopkins University, 3400 North Charles Street, Baltimore, MD 21218, United States
| | - Marina Morrow
- Department of Chemical and Biomolecular Engineering, and Institute for NanoBioTechnology, The Johns Hopkins University, 3400 North Charles Street, Baltimore, MD 21218, United States
| | - Xuankuo Xu
- Biologics Process Development, Global Product Development and Supply, Bristol-Myers Squibb, Devens, MA 01434, United States.
| | - Sanchayita Ghose
- Biologics Process Development, Global Product Development and Supply, Bristol-Myers Squibb, Devens, MA 01434, United States
| | - Zheng Jian Li
- Biologics Process Development, Global Product Development and Supply, Bristol-Myers Squibb, Devens, MA 01434, United States
| | - Honggang Cui
- Department of Chemical and Biomolecular Engineering, and Institute for NanoBioTechnology, The Johns Hopkins University, 3400 North Charles Street, Baltimore, MD 21218, United States; Department of Oncology and Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21205, United States.
| |
Collapse
|
30
|
Xiang C, Chang J, Yue YY, Wang J, Fu Y. The Application of Aqueous Two-phase System in the Extraction of Natural Products from Chinese Herbal Medicine: A Review. CURR ORG CHEM 2019. [DOI: 10.2174/1385272823666190404163748] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Background:
In the past decades, Chinese herbal medicine has attracted
worldwide attention because they contain a variety of active ingredients which are beneficial
to human health. As a result, there is a growing interest in the extraction of these substances.
However, traditional extraction methods not only need a large amount of extractant,
but are also time-consuming, moreover, the extraction efficiency is extremely poor
and tedious purification steps are required to purify the crude extract. Thus, researchers
hope to find an alternative method for the extraction of these components and the aqueous
two-phase system (ATPS) seems to be one.
Objective:
This review focuses on introducing the properties of the aqueous two-phase
system and summarizing the application of ATPS in the extraction of natural products.
Meanwhile, this review also provided a guideline to researchers who wish to design a suitable ATPS for a specific
target and how to amplify it to industrial-scale.
Collapse
Affiliation(s)
- Cheng Xiang
- Key Laboratory of Heat Transfer Enhancement and Energy Conservation, Ministry of Education, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510641, China
| | - Jie Chang
- Key Laboratory of Heat Transfer Enhancement and Energy Conservation, Ministry of Education, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510641, China
| | - Ying Ying Yue
- Key Laboratory of Heat Transfer Enhancement and Energy Conservation, Ministry of Education, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510641, China
| | - Ju Wang
- Key Laboratory of Heat Transfer Enhancement and Energy Conservation, Ministry of Education, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510641, China
| | - Yan Fu
- Key Laboratory of Heat Transfer Enhancement and Energy Conservation, Ministry of Education, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510641, China
| |
Collapse
|
31
|
Rodríguez-Salazar N, Valle-Guadarrama S. Separation of phenolic compounds from roselle (Hibiscus sabdariffa) calyces with aqueous two-phase extraction based on sodium citrate and polyethylene glycol or acetone. SEP SCI TECHNOL 2019. [DOI: 10.1080/01496395.2019.1634730] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
32
|
Patil R, Walther J. Continuous Manufacturing of Recombinant Therapeutic Proteins: Upstream and Downstream Technologies. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2019; 165:277-322. [PMID: 28265699 DOI: 10.1007/10_2016_58] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Continuous biomanufacturing of recombinant therapeutic proteins offers several potential advantages over conventional batch processing, including reduced cost of goods, more flexible and responsive manufacturing facilities, and improved and consistent product quality. Although continuous approaches to various upstream and downstream unit operations have been considered and studied for decades, in recent years interest and application have accelerated. Researchers have achieved increasingly higher levels of process intensification, and have also begun to integrate different continuous unit operations into larger, holistically continuous processes. This review first discusses approaches for continuous cell culture, with a focus on perfusion-enabling cell separation technologies including gravitational, centrifugal, and acoustic settling, as well as filtration-based techniques. We follow with a review of various continuous downstream unit operations, covering categories such as clarification, chromatography, formulation, and viral inactivation and filtration. The review ends by summarizing case studies of integrated and continuous processing as reported in the literature.
Collapse
Affiliation(s)
- Rohan Patil
- Bioprocess Development, Sanofi, Framingham, MA, 01701, USA
| | - Jason Walther
- Bioprocess Development, Sanofi, Framingham, MA, 01701, USA.
| |
Collapse
|
33
|
Shibata C, Iwashita K, Shiraki K. Salt-containing aqueous two-phase system shows predictable partition of proteins with surface amino acids residues. Int J Biol Macromol 2019; 133:1182-1186. [PMID: 31055113 DOI: 10.1016/j.ijbiomac.2019.04.185] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 04/28/2019] [Accepted: 04/28/2019] [Indexed: 11/24/2022]
Abstract
Aqueous two-phase system (ATPS) containing salts has been used for protein purification and enrichment. However, it is unclear how proteins are partitioned in the top or bottom phases of the system. In this study, we demonstrate that the partition of proteins in salt-containing ATPS (SATPS) depends only on the relation between the protein-surface amino acids and the type of salt using SATPS. The partition coefficients of four proteins changed depending on the kind of salt, according to the Hofmeister series. Interestingly, the partition coefficients of the proteins correlated to those of the combination of the amino acids in the surface of the protein with the correlation coefficients of >0.9. The results suggest that the interaction between the protein surface and aqueous ions plays an indispensable role for the partition of proteins in SATPS that can help in the design of protein partition in ATPS for purification and enrichment.
Collapse
Affiliation(s)
- Chika Shibata
- Faculty of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8573, Japan
| | - Kazuki Iwashita
- Faculty of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8573, Japan
| | - Kentaro Shiraki
- Faculty of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8573, Japan.
| |
Collapse
|
34
|
Binks BP, Shi H. Phase Inversion of Silica Particle-Stabilized Water-in-Water Emulsions. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:4046-4057. [PMID: 30848921 DOI: 10.1021/acs.langmuir.8b04151] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
An aqueous two-phase system (ATPS) is of great value in low calorie foods or oil-free cosmetics and pharmaceuticals. In contrast to the recent work on polymer/polymer ATPSs, a simple polymer/salt ATPS (polyethylene glycol/Na2SO4) was chosen to study water-in-water (w/w) emulsions stabilized by solid particles. The binodal curve and the tie lines were first determined for the mixture at room temperature. Above the binodal curve, two water-based phases coexist; the upper phase is rich in polymer, whereas the lower phase is rich in salt. Within the two-phase region, we attempted to prepare w/w emulsions with or without the addition of common emulsifiers. Ionic and nonionic surfactants, a polymer, and various solid particles (hydrophilic calcium carbonate particles of different sizes and shapes, wax microspheres) were selected, but no stable emulsion was possible. However, stable w/w emulsions of both types (polymer-in-salt and salt-in-polymer) were formed using dichlorodimethylsilane-modified nanosilica particles. Using partially hydrophobic fumed silica as the emulsifier, emulsions remained fully emulsified for over 1 year and we link the extent of hydrophobization of particles to the properties of the emulsions via contact angle measurements. Furthermore, systematic emulsion studies were conducted at different overall compositions such that changes in emulsion type and stability were mapped onto the phase diagram. Catastrophic phase inversion of emulsion type and evolution of emulsion stability were monitored along the tie lines. Importantly, stability to coalescence was found to decrease approaching conditions of phase inversion.
Collapse
Affiliation(s)
- Bernard P Binks
- Department of Chemistry and Biochemistry , University of Hull , Hull HU6 7RX . U.K
| | - Hui Shi
- Department of Chemistry and Biochemistry , University of Hull , Hull HU6 7RX . U.K
| |
Collapse
|
35
|
Teixeira-Pinto RGR, Molino JVD, Santos-Ebinuma VC, Pessoa A, Valentini SR, Pereira JFB, Lopes AM. Effect of electrolytes as adjuvants in GFP and LPS partitioning on aqueous two-phase systems: 2. Nonionic micellar systems. Sep Purif Technol 2019. [DOI: 10.1016/j.seppur.2018.07.078] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
36
|
Yang O, Qadan M, Ierapetritou M. Economic Analysis of Batch and Continuous Biopharmaceutical Antibody Production: A Review. J Pharm Innov 2019; 14:1-19. [PMID: 30923586 PMCID: PMC6432653 DOI: 10.1007/s12247-018-09370-4] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
PURPOSE There is a growing interest in continuous biopharmaceutical processing due to the advantages of small footprint, increased productivity, consistent product quality, high process flexibility and robustness, facility cost-effectiveness, and reduced capital and operating cost. To support the decision making of biopharmaceutical manufacturing, comparisons between conventional batch and continuous processing are provided. METHODS Various process unit operations in different operating modes are summarized. Software implementation, as well as computational methods used, are analyzed pointing to the advantages and disadvantages that have been highlighted in the literature. Economic analysis methods and their applications in different parts of the processes are also discussed with examples from publications in the last decade. RESULTS The results of the comparison between batch and continuous process operation alternatives are discussed. Possible improvements in process design and analysis are recommended. The methods used here do not reflect Lilly's cost structures or economic evaluation methods. CONCLUSION This paper provides a review of the work that has been published in the literature on computational process design and economic analysis methods on continuous biopharmaceutical antibody production and its comparison with a conventional batch process.
Collapse
Affiliation(s)
- Ou Yang
- Department of Chemical and Biochemical Engineering, Rutgers—The State University of New Jersey, 98 Brett Road, Piscataway, New Jersey 08854-8058, United States
| | - Maen Qadan
- Eli Lilly and Company, Lilly Corporate Center, Indianapolis, IN 46285, United States
| | - Marianthi Ierapetritou
- Department of Chemical and Biochemical Engineering, Rutgers—The State University of New Jersey, 98 Brett Road, Piscataway, New Jersey 08854-8058, United States
| |
Collapse
|
37
|
Lopes AM, Molino JVD, dos Santos-Ebinuma VC, Pessoa A, Valentini SR, Pereira JFB. Effect of electrolytes as adjuvants in GFP and LPS partitioning on aqueous two-phase systems: 1. Polymer-polymer systems. Sep Purif Technol 2018. [DOI: 10.1016/j.seppur.2018.04.090] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
38
|
Kulkarni P, Uversky VN. Intrinsically Disordered Proteins: The Dark Horse of the Dark Proteome. Proteomics 2018; 18:e1800061. [DOI: 10.1002/pmic.201800061] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Revised: 09/07/2018] [Indexed: 12/27/2022]
Affiliation(s)
- Prakash Kulkarni
- Department of Medical Oncology and Therapeutics Research; City of Hope National Medical Center; Duarte CA 91010 USA
| | - Vladimir N. Uversky
- Department of Molecular Medicine; Morsani College of Medicine; University of South Florida; Tampa FL 33612 USA
- Laboratory of New methods in Biology; Institute for Biological Instrumentation; Russian Academy of Sciences; Pushchino Moscow Region 142290 Russia
| |
Collapse
|
39
|
Vázquez-Villegas P, Espitia-Saloma E, Torres-Acosta MA, Ruiz-Ruiz F, Rito-Palomares M, Aguilar O. Factorial and Economic Evaluation of an Aqueous Two-Phase Partitioning Pilot Plant for Invertase Recovery From Spent Brewery Yeast. Front Chem 2018; 6:454. [PMID: 30333971 PMCID: PMC6175986 DOI: 10.3389/fchem.2018.00454] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Accepted: 09/13/2018] [Indexed: 12/02/2022] Open
Abstract
Aqueous two-phase systems (ATPS) have been reported as an attractive biocompatible extraction system for recovery and purification of biological products. In this work, the implementation, characterization, and optimization (operational and economic) of invertase extraction from spent brewery yeast in a semi-automatized pilot plant using ATPS is reported. Gentian violet was used as tracer for the selection of phase composition through phase entrainment minimization. Yeast suspension was chosen as a complex cell matrix model for the recovery of the industrial relevant enzyme invertase. Flow rates of phases did not have an effect, given that a bottom continuous phase is given, while load of sample and number of agitators improved the recovery of the enzyme. The best combination of factors reached a recovery of 129.35 ± 2.76% and a purification factor of 4.98 ± 1.10 in the bottom phase of a PEG-Phosphate system, also resulting in the removal of inhibitor molecules increasing invertase activity as reported by several other authors. Then, an economic analysis was performed to study the production cost of invertase analyzing only the significant parameters for production. Results indicate that the parameters being analyzed only affect the production cost per enzymatic unit, while variations in the cost per batch are not significant. Moreover, only the sample load is significant, which, combined with operational optimization results, gives the same optimal result for operation, maximizing recovery yield (15% of sample load and 1 static mixer). Overall res ults of these case studies show continuous pilot-scale ATPS as a viable and reproducible extraction/purification system for high added-value biological compounds.
Collapse
Affiliation(s)
| | | | | | - Federico Ruiz-Ruiz
- Escuela de Ingenieria y Ciencias, Tecnologico de Monterrey, Monterrey, Mexico
| | - Marco Rito-Palomares
- Escuela de Medicina y Ciencias de la Salud, Tecnologico de Monterrey, Monterrey, Mexico
| | - Oscar Aguilar
- Escuela de Ingenieria y Ciencias, Tecnologico de Monterrey, Monterrey, Mexico
| |
Collapse
|
40
|
Campos CDM, Reyes FGR, Manz A, da Silva JAF. On-line electroextraction in capillary electrophoresis: Application on the determination of glutamic acid in soy sauces. Electrophoresis 2018; 40:322-329. [DOI: 10.1002/elps.201800203] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Revised: 09/14/2018] [Accepted: 09/18/2018] [Indexed: 11/08/2022]
Affiliation(s)
| | - Felix G. R. Reyes
- Department of Food Science; University of Campinas (UNICAMP); Campinas SP Brazil
| | | | - José A. F. da Silva
- Chemistry Institute; University of Campinas (UNICAMP); Campinas SP Brazil
- Instituto Nacional de Ciência e Tecnologia em Bioanalítica (INCTBio); Campinas SP Brazil
| |
Collapse
|
41
|
Silva OSD, Alves RO, Porto TS. PEG-sodium citrate aqueous two-phase systems to in situ recovery of protease from Aspergillus tamarii URM4634 by extractive fermentation. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2018. [DOI: 10.1016/j.bcab.2018.08.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
42
|
Torres-Acosta MA, Mayolo-Deloisa K, González-Valdez J, Rito-Palomares M. Aqueous Two-Phase Systems at Large Scale: Challenges and Opportunities. Biotechnol J 2018; 14:e1800117. [PMID: 29878648 DOI: 10.1002/biot.201800117] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Revised: 05/10/2018] [Indexed: 11/06/2022]
Abstract
Aqueous two-phase systems (ATPS) have proved to be an efficient and integrative operation to enhance recovery of industrially relevant bioproducts. After ATPS discovery, a variety of works have been published regarding their scaling from 10 to 1000 L. Although ATPS have achieved high recovery and purity yields, there is still a gap between their bench-scale use and potential industrial applications. In this context, this review paper critically analyzes ATPS scale-up strategies to enhance the potential industrial adoption. In particular, large-scale operation considerations, different phase separation procedures, the available optimization techniques (univariate, response surface methodology, and genetic algorithms) to maximize recovery and purity and economic modeling to predict large-scale costs, are discussed. ATPS intensification to increase the amount of sample to process at each system, developing recycling strategies and creating highly efficient predictive models, are still areas of great significance that can be further exploited with the use of high-throughput techniques. Moreover, the development of novel ATPS can maximize their specificity increasing the possibilities for the future industry adoption of ATPS. This review work attempts to present the areas of opportunity to increase ATPS attractiveness at industrial levels.
Collapse
Affiliation(s)
- Mario A Torres-Acosta
- Tecnologico de Monterrey, Escuela de Ingeniería y Ciencias, Av. Eugenio Garza Sada 2501 Sur, Monterrey, NL, 64849, México
| | - Karla Mayolo-Deloisa
- Tecnologico de Monterrey, Escuela de Ingeniería y Ciencias, Av. Eugenio Garza Sada 2501 Sur, Monterrey, NL, 64849, México
| | - José González-Valdez
- Tecnologico de Monterrey, Escuela de Ingeniería y Ciencias, Av. Eugenio Garza Sada 2501 Sur, Monterrey, NL, 64849, México
| | - Marco Rito-Palomares
- Tecnologico de Monterrey, Escuela de Ingeniería y Ciencias, Av. Eugenio Garza Sada 2501 Sur, Monterrey, NL, 64849, México.,Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Av. Morones Prieto 3000 Pte, Col. Los Doctores, Monterrey, NL, 64710, México
| |
Collapse
|
43
|
The solvent side of proteinaceous membrane-less organelles in light of aqueous two-phase systems. Int J Biol Macromol 2018; 117:1224-1251. [PMID: 29890250 DOI: 10.1016/j.ijbiomac.2018.06.030] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Accepted: 06/07/2018] [Indexed: 12/29/2022]
Abstract
Water represents a common denominator for liquid-liquid phase transitions leading to the formation of the polymer-based aqueous two-phase systems (ATPSs) and a set of the proteinaceous membrane-less organelles (PMLOs). ATPSs have a broad range of biotechnological applications, whereas PMLOs play a number of crucial roles in cellular compartmentalization and often represent a cellular response to the stress. Since ATPSs and PMLOs contain high concentrations of polymers (such as polyethylene glycol (PEG), polypropylene glycol (PPG), Ucon, and polyvinylpyrrolidone (PVP), Dextran, or Ficoll) or biopolymers (peptides, proteins and nucleic acids), it is expected that the separated phases of these systems are characterized by the noticeable changes in the solvent properties of water. These changes in solvent properties can drive partitioning of various compounds (proteins, nucleic acids, organic low-molecular weight molecules, metal ions, etc.) between the phases of ATPSs or between the PMLOs and their surroundings. Although there is a sizable literature on the properties of the ATPS phases, much less is currently known about PMLOs. In this perspective article, we first represent liquid-liquid phase transitions in water, discuss different types of biphasic (or multiphasic) systems in water, and introduce various PMLOs and some of their properties. Then, some basic characteristics of polymer-based ATPSs are presented, with the major focus being on the current understanding of various properties of ATPS phases and solvent properties of water inside them. Finally, similarities and differences between the polymer-based ATPSs and biological PMLOs are discussed.
Collapse
|
44
|
González-Mora A, Ruiz-Ruiz F, Benavides J, Rito-Palomares M. Improved recovery of bacteriophage M13 using an ATPS-based bioprocess. Biotechnol Prog 2018; 34:1177-1184. [PMID: 29882325 DOI: 10.1002/btpr.2663] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Revised: 05/07/2018] [Indexed: 11/07/2022]
Abstract
Aqueous two-phase systems (ATPS) have been widely exploited for the recovery and partial purification of biological compounds. Recently our research group characterized the primary recovery and partial purification of bacteriophage M13 using polymer-salt and ionic liquid-salt ATPS. From such study, it was concluded that PEG 400-potassium phosphate ATPS with a volume ratio (VR ) of 1 and 25% w/w TLL were the best suitable for the primary recovery of bacteriophage M13 from a crude extract, achieving a recovery yield of 83.3%. Although such system parameters were proven to be adequate for the recovery of the product of interest, it was concluded that further optimization was desirable and attainable by studying the effect of additional system parameters such as VR , concentration of neutral salt (M) and sample load (% w/w). This research work presents an optimization of a previously reported process for the recovery of bacteriophage M13 directly from a crude extract using ATPS. The increase in VR and sample load showed a positive effect in the recovery of M13 indicating an improved performance of the proposed ATPS. According to the results presented here, a system composed of PEG 400 17.2% (w/w), potassium phosphate 15.5% (w/w) and a sample load of 30% (w/w) allowed the recovery of M13 directly from a crude extract with a top phase recovery of 80.1%, representing an increase of 4.8 times in the final concentration and a reduction of 2.65 times in the processing costs. © 2018 American Institute of Chemical Engineers Biotechnol. Prog., 2018 © 2018 American Institute of Chemical Engineers Biotechnol. Prog., 34:1177-1184, 2018.
Collapse
Affiliation(s)
- Alejandro González-Mora
- Tecnologico de Monterrey, Escuela de Ingeniería y Ciencias, Departamento de Bioingeniería, Ave. Eugenio Garza, Sada, 2501, Monterrey, N.L., , México 64849
| | - Federico Ruiz-Ruiz
- Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Departmento: Escuela de Medicina y Ciencias de la Salud, Ave. Morones Prieto 3000, Monterrey, N.L., , México 64710
| | - Jorge Benavides
- Tecnologico de Monterrey, Escuela de Ingeniería y Ciencias, Departamento de Bioingeniería, Ave. Eugenio Garza, Sada, 2501, Monterrey, N.L., , México 64849
| | - Marco Rito-Palomares
- Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Departmento: Escuela de Medicina y Ciencias de la Salud, Ave. Morones Prieto 3000, Monterrey, N.L., , México 64710
| |
Collapse
|
45
|
Badhwar P, Kumar P, Dubey KK. Development of aqueous two-phase systems comprising poly ethylene glycol and dextran for purification of pullulan: Phase diagrams and fiscal analysis. Eng Life Sci 2018; 18:524-531. [PMID: 32624933 DOI: 10.1002/elsc.201700156] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2017] [Revised: 01/27/2018] [Accepted: 03/14/2018] [Indexed: 11/05/2022] Open
Abstract
Pullulan is a commercially important Exopolysaccharide (EPS) with wide-spread applications which is produced by Aureobasidium pullulans. The alternative α (1 4) & α (1 6) configuration in pullulan provides it the specific structural and conformational properties. Pullulan is currently being exploited in food, health care, pharmacy, lithography, cosmetics. The fermented broth is processed by organic solvent precipitation for isolation and purification of pullulan. In this study, we have tried to analyze the potential of aqueous two phase system as an alternate technique to extract pullulan from fermented broth. Including this viability of ATPS was also compared with conventional organic solvent precipitation system in terms of cost and time. It was found that ATPS process produced a higher yield of pullulan (80.56%) than organic solvent precipitation method (71.6%). ATPS was also found more economical and less time consuming method.
Collapse
Affiliation(s)
- Parul Badhwar
- Microbial Process Development Laboratory University Institute of Engineering and Technology Maharshi Dayanand University Rohtak Haryana India
| | - Punit Kumar
- Microbial Process Development Laboratory University Institute of Engineering and Technology Maharshi Dayanand University Rohtak Haryana India
| | - Kashyap Kumar Dubey
- Microbial Process Development Laboratory University Institute of Engineering and Technology Maharshi Dayanand University Rohtak Haryana India.,Department of Biotechnology Central University of Haryana Mahendergarh Haryana India
| |
Collapse
|
46
|
Ebeler M, Lind O, Norrman N, Palmgren R, Franzreb M. One-step integrated clarification and purification of a monoclonal antibody using Protein A Mag Sepharose beads and a cGMP-compliant high-gradient magnetic separator. N Biotechnol 2018; 42:48-55. [DOI: 10.1016/j.nbt.2018.02.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Revised: 01/18/2018] [Accepted: 02/18/2018] [Indexed: 11/24/2022]
|
47
|
Hong MS, Severson KA, Jiang M, Lu AE, Love JC, Braatz RD. Challenges and opportunities in biopharmaceutical manufacturing control. Comput Chem Eng 2018. [DOI: 10.1016/j.compchemeng.2017.12.007] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
48
|
Wan PK, Lan JCW, Chen PW, Tan JS, Ng HS. Recovery of intracellular ectoine from Halomonas salina cells with poly(propylene) glycol/salt aqueous biphasic system. J Taiwan Inst Chem Eng 2018. [DOI: 10.1016/j.jtice.2017.11.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
49
|
Effect of molecular weight of starch on the properties of cassava starch microspheres prepared in aqueous two-phase system. Carbohydr Polym 2017; 177:334-340. [DOI: 10.1016/j.carbpol.2017.08.074] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Revised: 08/16/2017] [Accepted: 08/17/2017] [Indexed: 11/20/2022]
|
50
|
Li Y, Wu Y, Chen K, Wu B, Ji L, Zhu J. Partition behavior of spiramycin in an aqueous two-phase system based on polyethylene glycol and sulfates. SEP SCI TECHNOL 2017. [DOI: 10.1080/01496395.2017.1396341] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Yajuan Li
- Chemical Engineering Research Center, East China University of Science & Technology, Shanghai China
| | - Yanyang Wu
- Chemical Engineering Research Center, East China University of Science & Technology, Shanghai China
| | - Kui Chen
- Chemical Engineering Research Center, East China University of Science & Technology, Shanghai China
| | - Bin Wu
- Chemical Engineering Research Center, East China University of Science & Technology, Shanghai China
| | - Lijun Ji
- Chemical Engineering Research Center, East China University of Science & Technology, Shanghai China
| | - Jiawen Zhu
- Chemical Engineering Research Center, East China University of Science & Technology, Shanghai China
| |
Collapse
|