1
|
Cavalera S, Anfossi L, Di Nardo F, Baggiani C. Mycotoxins-Imprinted Polymers: A State-of-the-Art Review. Toxins (Basel) 2024; 16:47. [PMID: 38251263 PMCID: PMC10818578 DOI: 10.3390/toxins16010047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Revised: 01/02/2024] [Accepted: 01/13/2024] [Indexed: 01/23/2024] Open
Abstract
Mycotoxins are toxic metabolites of molds which can contaminate food and beverages. Because of their acute and chronic toxicity, they can have harmful effects when ingested or inhaled, posing severe risks to human health. Contemporary analytical methods have the sensitivity required for contamination detection and quantification, but the direct application of these methods on real samples is not straightforward because of matrix complexity, and clean-up and preconcentration steps are needed, more and more requiring the application of highly selective solid-phase extraction materials. Molecularly imprinted polymers (MIPs) are artificial receptors mimicking the natural antibodies that are increasingly being used as a solid phase in extraction methods where selectivity towards target analytes is mandatory. In this review, the state-of-the-art about molecularly imprinted polymers as solid-phase extraction materials in mycotoxin contamination analysis will be discussed, with particular attention paid to the use of mimic molecules in the synthesis of mycotoxin-imprinted materials, to the application of these materials to food real samples, and to the development of advanced extraction methods involving molecular imprinting technology.
Collapse
Affiliation(s)
| | | | | | - Claudio Baggiani
- Laboratory of Bioanalytical Chemistry, Department of Chemistry, University of Torino, 10125 Torino, Italy; (S.C.); (L.A.); (F.D.N.)
| |
Collapse
|
2
|
Hou H, Jin Y, Sheng L, Huang Y, Zhao R. One-step synthesis of well-defined molecularly imprinted nanospheres for the class-selective recognition and separation of β-blockers in human serum. J Chromatogr A 2022; 1673:463204. [PMID: 35689880 DOI: 10.1016/j.chroma.2022.463204] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 06/02/2022] [Accepted: 06/06/2022] [Indexed: 01/20/2023]
Abstract
β-blockers are a class of medications that are used to treat abnormal heart rhythms and hypertension. Molecularly imprinted polymers (MIPs) capable of selective recognizing and extracting β-blockers from complex biological samples hold great promise in bioanalytical and biomedical applications, but developing such artificial receptor materials is still challenging. Herein, we introduce a simple one-step method for the synthesis of well-defined molecularly imprinted nanospheres in high yield (83.6-94.4%) via reversible addition-fragmentation chain transfer (RAFT) precipitation polymerization for the selective recognition and extraction of the β-blockers from human serum. The prepared MIPs are characterized in terms of morphology, pore properties, binding kinetics, capacity, selectivity, and recognition mechanisms. The uniform nanoscale-imprinted layer favored the rapid mass transfer of β-blockers. The binding studies showed the high adsorption capacity (126.8 μmol/g) and selectivity of the developed nanomaterial. The investigation on the recognition mechanism reveals that multiple driving forces participate in the binding between MIP and β-blockers, where hydrogen bonding plays as the dominating role for the specific recognition. The MIP was successfully applied for the direct enrichment of five β-blockers from human serum with HPLC recoveries ranging from 82.9 to 100.3% and RSD of 0.5-6.9% (n = 3).
Collapse
Affiliation(s)
- Huiqing Hou
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Analytical Chemistry for Living Biosystems, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China; School of Chemistry, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yulong Jin
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Analytical Chemistry for Living Biosystems, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China; School of Chemistry, University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Le Sheng
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Analytical Chemistry for Living Biosystems, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China; School of Chemistry, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yanyan Huang
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Analytical Chemistry for Living Biosystems, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China; School of Chemistry, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Rui Zhao
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Analytical Chemistry for Living Biosystems, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China; School of Chemistry, University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
3
|
Wang Y, Zhang C, Wang J, Knopp D. Recent Progress in Rapid Determination of Mycotoxins Based on Emerging Biorecognition Molecules: A Review. Toxins (Basel) 2022; 14:73. [PMID: 35202100 PMCID: PMC8874725 DOI: 10.3390/toxins14020073] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 01/14/2022] [Accepted: 01/15/2022] [Indexed: 12/12/2022] Open
Abstract
Mycotoxins are secondary metabolites produced by fungal species, which pose significant risk to humans and livestock. The mycotoxins which are produced from Aspergillus, Penicillium, and Fusarium are considered most important and therefore regulated in food- and feedstuffs. Analyses are predominantly performed by official laboratory methods in centralized labs by expert technicians. There is an urgent demand for new low-cost, easy-to-use, and portable analytical devices for rapid on-site determination. Most significant advances were realized in the field bioanalytical techniques based on molecular recognition. This review aims to discuss recent progress in the generation of native biomolecules and new bioinspired materials towards mycotoxins for the development of reliable bioreceptor-based analytical methods. After brief presentation of basic knowledge regarding characteristics of most important mycotoxins, the generation, benefits, and limitations of present and emerging biorecognition molecules, such as polyclonal (pAb), monoclonal (mAb), recombinant antibodies (rAb), aptamers, short peptides, and molecularly imprinted polymers (MIPs), are discussed. Hereinafter, the use of binders in different areas of application, including sample preparation, microplate- and tube-based assays, lateral flow devices, and biosensors, is highlighted. Special focus, on a global scale, is placed on commercial availability of single receptor molecules, test-kits, and biosensor platforms using multiplexed bead-based suspension assays and planar biochip arrays. Future outlook is given with special emphasis on new challenges, such as increasing use of rAb based on synthetic and naïve antibody libraries to renounce animal immunization, multiple-analyte test-kits and high-throughput multiplexing, and determination of masked mycotoxins, including stereoisomeric degradation products.
Collapse
Affiliation(s)
- Yanru Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling, Xianyang 712100, China; (Y.W.); (C.Z.)
| | - Cui Zhang
- College of Food Science and Engineering, Northwest A&F University, Yangling, Xianyang 712100, China; (Y.W.); (C.Z.)
| | - Jianlong Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling, Xianyang 712100, China; (Y.W.); (C.Z.)
| | - Dietmar Knopp
- Chair for Analytical Chemistry and Water Chemistry, Institute of Hydrochemistry, Technische Universitat München, Elisabeth-Winterhalter-Weg 6, D-81377 München, Germany
| |
Collapse
|
4
|
Delaunay N, Combès A, Pichon V. Immunoaffinity Extraction and Alternative Approaches for the Analysis of Toxins in Environmental, Food or Biological Matrices. Toxins (Basel) 2020; 12:toxins12120795. [PMID: 33322240 PMCID: PMC7764248 DOI: 10.3390/toxins12120795] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Revised: 12/09/2020] [Accepted: 12/11/2020] [Indexed: 12/12/2022] Open
Abstract
The evolution of instrumentation in terms of separation and detection allowed a real improvement of the sensitivity and analysis time. However, the analysis of ultra-traces of toxins in complex samples requires often a step of purification and even preconcentration before their chromatographic analysis. Therefore, immunoaffinity sorbents based on specific antibodies thus providing a molecular recognition mechanism appear as powerful tools for the selective extraction of a target molecule and its structural analogs to obtain more reliable and sensitive quantitative analysis in environmental, food or biological matrices. This review focuses on immunosorbents that have proven their efficiency in selectively extracting various types of toxins of various sizes (from small mycotoxins to large proteins) and physicochemical properties. Immunosorbents are now commercially available, and their use has been validated for numerous applications. The wide variety of samples to be analyzed, as well as extraction conditions and their impact on extraction yields, is discussed. In addition, their potential for purification and thus suppression of matrix effects, responsible for quantification problems especially in mass spectrometry, is presented. Due to their similar properties, molecularly imprinted polymers and aptamer-based sorbents that appear to be an interesting alternative to antibodies are also briefly addressed by comparing their potential with that of immunosorbents.
Collapse
Affiliation(s)
- Nathalie Delaunay
- Department of Analytical, Bioanalytical Sciences and Miniaturization (LSABM), CBI ESPCI Paris, PSL University, CNRS, 75005 Paris, France; (N.D.); (A.C.)
| | - Audrey Combès
- Department of Analytical, Bioanalytical Sciences and Miniaturization (LSABM), CBI ESPCI Paris, PSL University, CNRS, 75005 Paris, France; (N.D.); (A.C.)
| | - Valérie Pichon
- Department of Analytical, Bioanalytical Sciences and Miniaturization (LSABM), CBI ESPCI Paris, PSL University, CNRS, 75005 Paris, France; (N.D.); (A.C.)
- Department of Chemistry, Sorbonne University, 75005 Paris, France
- Correspondence:
| |
Collapse
|
5
|
Casado N, Gañán J, Morante-Zarcero S, Sierra I. New Advanced Materials and Sorbent-Based Microextraction Techniques as Strategies in Sample Preparation to Improve the Determination of Natural Toxins in Food Samples. Molecules 2020; 25:E702. [PMID: 32041287 PMCID: PMC7038030 DOI: 10.3390/molecules25030702] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2019] [Revised: 02/03/2020] [Accepted: 02/05/2020] [Indexed: 02/05/2023] Open
Abstract
Natural toxins are chemical substances that are not toxic to the organisms that produce them, but which can be a potential risk to human health when ingested through food. Thus, it is of high interest to develop advanced analytical methodologies to control the occurrence of these compounds in food products. However, the analysis of food samples is a challenging task because of the high complexity of these matrices, which hinders the extraction and detection of the analytes. Therefore, sample preparation is a crucial step in food analysis to achieve adequate isolation and/or preconcentration of analytes and provide suitable clean-up of matrix interferences prior to instrumental analysis. Current trends in sample preparation involve moving towards "greener" approaches by scaling down analytical operations, miniaturizing the instruments and integrating new advanced materials as sorbents. The combination of these new materials with sorbent-based microextraction technologies enables the development of high-throughput sample preparation methods, which improve conventional extraction and clean-up procedures. This review gives an overview of the most relevant analytical strategies employed for sorbent-based microextraction of natural toxins of exogenous origin from food, as well as the improvements achieved in food sample preparation by the integration of new advanced materials as sorbents in these microextraction techniques, giving some relevant examples from the last ten years. Challenges and expected future trends are also discussed.
Collapse
Affiliation(s)
| | | | | | - Isabel Sierra
- Department of Chemical and Environmental Technology, E.S.C.E.T, Rey Juan Carlos University, C/Tulipán s/n, 28933 Móstoles, Madrid, Spain; (N.C.); (J.G.); (S.M.-Z.)
| |
Collapse
|
6
|
Su L, Jin Y, Huang Y, Zhao R. Surface-imprinted magnetic nanoparticles for the selective enrichment and fast separation of fluoroquinolones in human serum. J Sep Sci 2017; 40:2269-2277. [DOI: 10.1002/jssc.201700080] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2017] [Revised: 03/15/2017] [Accepted: 03/15/2017] [Indexed: 01/06/2023]
Affiliation(s)
- Liming Su
- Beijing National Laboratory for Molecular Sciences; CAS Key Laboratory of Analytical Chemistry for Living Biosystems; CAS Research/Education Center for Excellence in Molecular Sciences; Institute of Chemistry; Chinese Academy of Sciences; Beijing China
- University of Chinese Academy of Sciences; Beijing China
| | - Yulong Jin
- Beijing National Laboratory for Molecular Sciences; CAS Key Laboratory of Analytical Chemistry for Living Biosystems; CAS Research/Education Center for Excellence in Molecular Sciences; Institute of Chemistry; Chinese Academy of Sciences; Beijing China
- University of Chinese Academy of Sciences; Beijing China
| | - Yanyan Huang
- Beijing National Laboratory for Molecular Sciences; CAS Key Laboratory of Analytical Chemistry for Living Biosystems; CAS Research/Education Center for Excellence in Molecular Sciences; Institute of Chemistry; Chinese Academy of Sciences; Beijing China
- University of Chinese Academy of Sciences; Beijing China
| | - Rui Zhao
- Beijing National Laboratory for Molecular Sciences; CAS Key Laboratory of Analytical Chemistry for Living Biosystems; CAS Research/Education Center for Excellence in Molecular Sciences; Institute of Chemistry; Chinese Academy of Sciences; Beijing China
- University of Chinese Academy of Sciences; Beijing China
| |
Collapse
|
7
|
Multiclonal plastic antibodies for selective aflatoxin extraction from food samples. Food Chem 2017; 221:829-837. [DOI: 10.1016/j.foodchem.2016.11.090] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2016] [Revised: 11/10/2016] [Accepted: 11/20/2016] [Indexed: 11/17/2022]
|
8
|
Hashim SN, Schwarz LJ, Danylec B, Mitri K, Yang Y, Boysen RI, Hearn MT. Recovery of ergosterol from the medicinal mushroom, Ganoderma tsugae var. Janniae, with a molecularly imprinted polymer derived from a cleavable monomer-template composite. J Chromatogr A 2016; 1468:1-9. [DOI: 10.1016/j.chroma.2016.09.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Revised: 08/29/2016] [Accepted: 09/01/2016] [Indexed: 10/21/2022]
|
9
|
Zeng S, She Y, Jiao B, Liu G, Wang J, Su X, Ma X, Jin M, Jin F, Wang S. Molecularly imprinted polymer for selective extraction and simultaneous determination of four tropane alkaloids from Przewalskia tangutica Maxim. fruit extracts using LC-MS/MS. RSC Adv 2015. [DOI: 10.1039/c5ra18608k] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
A class-specific molecularly imprinted polymer (MIP) for selectively extracting four tropane alkaloids has been prepared using anisodine, methacrylic, and trimethylolpropane trimethacrylate as template, functional monomer and crosslinker, respectively.
Collapse
Affiliation(s)
- Shaomei Zeng
- School of Chemistry and Chemical Engineering
- Southwest University
- Chongqing 400715
- P. R. China
- Institute of Quality Standards and Testing Technology for Agri-Products
| | - Yongxin She
- Institute of Quality Standards and Testing Technology for Agri-Products
- Chinese Academy of Agricultural Sciences
- Beijing 100081
- P. R. China
| | - Bining Jiao
- Citrus Research Institute
- Chinese Academy of Agricultural Sciences
- Chongqing 400712
- P. R. China
| | - Guangyang Liu
- Institute of Quality Standards and Testing Technology for Agri-Products
- Chinese Academy of Agricultural Sciences
- Beijing 100081
- P. R. China
| | - Jing Wang
- Institute of Quality Standards and Testing Technology for Agri-Products
- Chinese Academy of Agricultural Sciences
- Beijing 100081
- P. R. China
| | - Xuesu Su
- School of Chemistry and Chemical Engineering
- Southwest University
- Chongqing 400715
- P. R. China
| | - Xinbing Ma
- Institute of Veterinary and Animal Husbandry
- Tibet Academy of Agricultural and Animal Husbandry Sciences
- Lhasa 850006
- P. R. China
| | - Maojun Jin
- Institute of Quality Standards and Testing Technology for Agri-Products
- Chinese Academy of Agricultural Sciences
- Beijing 100081
- P. R. China
| | - Fen Jin
- Institute of Quality Standards and Testing Technology for Agri-Products
- Chinese Academy of Agricultural Sciences
- Beijing 100081
- P. R. China
| | - Shanshan Wang
- Institute of Quality Standards and Testing Technology for Agri-Products
- Chinese Academy of Agricultural Sciences
- Beijing 100081
- P. R. China
| |
Collapse
|
10
|
Whitcombe MJ, Kirsch N, Nicholls IA. Molecular imprinting science and technology: a survey of the literature for the years 2004-2011. J Mol Recognit 2014; 27:297-401. [PMID: 24700625 DOI: 10.1002/jmr.2347] [Citation(s) in RCA: 275] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2013] [Revised: 10/28/2013] [Accepted: 12/01/2013] [Indexed: 12/11/2022]
Abstract
Herein, we present a survey of the literature covering the development of molecular imprinting science and technology over the years 2004-2011. In total, 3779 references to the original papers, reviews, edited volumes and monographs from this period are included, along with recently identified uncited materials from prior to 2004, which were omitted in the first instalment of this series covering the years 1930-2003. In the presentation of the assembled references, a section presenting reviews and monographs covering the area is followed by sections describing fundamental aspects of molecular imprinting including the development of novel polymer formats. Thereafter, literature describing efforts to apply these polymeric materials to a range of application areas is presented. Current trends and areas of rapid development are discussed.
Collapse
|
11
|
Gao X, Cao W, Chen M, Xiong H, Zhang X, Wang S. A High Sensitivity Electrochemical Sensor Based on Fe3+-Ion Molecularly Imprinted Film for the Detection of T-2 Toxin. ELECTROANAL 2014. [DOI: 10.1002/elan.201400237] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
12
|
Sobiech M, Żołek T, Luliński P, Maciejewska D. A computational exploration of imprinted polymer affinity based on voriconazole metabolites. Analyst 2014; 139:1779-88. [PMID: 24516859 DOI: 10.1039/c3an01721d] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The aim of this study was to create a new computational model capable of evaluating the affinity of imprinted materials to the specific target. A 1-(2,4-difluorophenyl)-2-(1H-1,2,4-triazol-1-yl)ethanone (L1), the main metabolite of voriconazole (L2)--a modern antifungal drug, was proposed as a template. In a computational analysis of polymerization systems composed of the template, the monomers and the cross-linker molecules the appropriate porogens were simulated. A non-covalent approach for the formation of a polymer matrix from eight functional monomers was employed in the theoretical and experimental studies. The binding affinities towards the template were measured for eight synthesized polymers. The experimental results confirmed that the proposed theoretical model properly showed isopropenylbenzene 1 as the most suitable monomer to synthesize the polymer with the best affinity to L1. The novel computational protocol was more suitable to predict the properties of polymer systems than the simple analysis of template-monomer interactions. On the basis of the polymerization complex P(MC1) (template-isopropenylbenzene 1-cross-linker), the adsorption cavity was modeled and the intermolecular interactions of the template molecule and the other voriconazole metabolites inside the cavity were analyzed to get an insight into the polymer matrix selectivity.
Collapse
Affiliation(s)
- M Sobiech
- Department of Organic Chemistry, Faculty of Pharmacy, Medical University of Warsaw, 02-097 Warsaw, Poland.
| | | | | | | |
Collapse
|
13
|
Sanders M, Guo Y, Iyer A, García YR, Galvita A, Heyerick A, Deforce D, Risseeuw MDP, Van Calenbergh S, Bracke M, Eremin S, Madder A, De Saeger S. An immunogen synthesis strategy for the development of specific anti-deoxynivalenol monoclonal antibodies. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2014; 31:1751-9. [PMID: 25230728 DOI: 10.1080/19440049.2014.955887] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
An immunogen synthesis strategy was designed to develop anti-deoxynivalenol (DON) monoclonal antibodies with low cross-reactivity against structurally similar trichothecenes. A total of eight different DON immunogens were synthesised, differing in the type and position of the linker on the DON molecule. After immunisation, antisera from mice immunised with different DON immunogens were checked for the presence of relevant antibodies. Then, both homologous and heterologous enzyme-linked immunosorbent assays (ELISAs) were performed for hybridoma screening. Finally, three monoclonal antibodies against DON and its analogues were generated. In addition, monoclonal antibody 13H1 could recognise DON and its analogues in the order of HT-2 toxin > 15-acetyldeoxynivalenol (15-ADON) > DON, with IC₅₀ ranging from 1.14 to 2.13 µg ml⁻¹. Another monoclonal antibody 10H10 manifested relatively close sensitivities to DON, 3-acetyldeoxynivalenol (3-ADON) and 15-ADON, with IC₅₀ values of 22, 15 and 34 ng ml⁻¹, respectively. Using an indirect ELISA format decreases the 10H10 sensitivity to 15-ADON with 92%. A third monoclonal antibody 2A9 showed to be very specific and sensitive to 3-ADON, with IC₅₀ of 0.38 ng ml⁻¹. Using both 2A9 and 10H10 monoclonal antibodies allows determining sole DON contamination.
Collapse
Affiliation(s)
- Melanie Sanders
- a Laboratory of Food Analysis , Ghent University , Ghent , Belgium
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Recent advances in solid-phase sorbents for sample preparation prior to chromatographic analysis. Trends Analyt Chem 2014. [DOI: 10.1016/j.trac.2014.03.011] [Citation(s) in RCA: 280] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
15
|
He Y, Huang Y, Jin Y, Liu X, Liu G, Zhao R. Well-defined nanostructured surface-imprinted polymers for highly selective magnetic separation of fluoroquinolones in human urine. ACS APPLIED MATERIALS & INTERFACES 2014; 6:9634-9642. [PMID: 24853973 DOI: 10.1021/am5020666] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
The construction of molecularly imprinted polymers on magnetic nanoparticles gives access to smart materials with dual functions of target recognition and magnetic separation. In this study, the superparamagnetic surface-molecularly imprinted nanoparticles were prepared via surface-initiated reversible addition-fragmentation chain transfer (RAFT) polymerization using ofloxacin (OFX) as template for the separation of fluoroquinolones (FQs). Benefiting from the living/controlled nature of RAFT reaction, distinct core-shell structure was successfully constructed. The highly uniform nanoscale MIP layer was homogeneously grafted on the surface of RAFT agent TTCA modified Fe3O4@SiO2 nanoparticles, which favors the fast mass transfer and rapid binding kinetics. The target binding assays demonstrate the desirable adsorption capacity and imprinting efficiency of Fe3O4@MIP. High selectivity of Fe3O4@MIP toward FQs (ofloxacin, pefloxacin, enrofloxacin, norfloxacin, and gatifloxacin) was exhibited by competitive binding assay. The Fe3O4@MIP nanoparticles were successfully applied for the direct enrichment of five FQs from human urine. The spiked human urine samples were determined and the recoveries ranging from 83.1 to 103.1% were obtained with RSD of 0.8-8.2% (n = 3). This work provides a versatile approach for the fabrication of well-defined MIP on nanomaterials for the analysis of complicated biosystems.
Collapse
Affiliation(s)
- Yonghuan He
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences , Beijing, China
| | | | | | | | | | | |
Collapse
|
16
|
Preparation of monodispersed macroporous core–shell molecularly imprinted particles and their application in the determination of 2,4-dichlorophenoxyacetic acid. J Chromatogr A 2014; 1323:11-7. [DOI: 10.1016/j.chroma.2013.11.002] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2013] [Revised: 10/31/2013] [Accepted: 11/01/2013] [Indexed: 01/07/2023]
|
17
|
Li P, Zhang Z, Hu X, Zhang Q. Advanced hyphenated chromatographic-mass spectrometry in mycotoxin determination: current status and prospects. MASS SPECTROMETRY REVIEWS 2013; 32:420-452. [PMID: 23804155 DOI: 10.1002/mas.21377] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2012] [Accepted: 01/04/2013] [Indexed: 06/02/2023]
Abstract
Mass spectrometric techniques are essential for advanced research in food safety and environmental monitoring. These fields are important for securing the health of humans and animals, and for ensuring environmental security. Mycotoxins, toxic secondary metabolites of filamentous fungi, are major contaminants of agricultural products, food and feed, biological samples, and the environment as a whole. Mycotoxins can cause cancers, nephritic and hepatic diseases, various hemorrhagic syndromes, and immune and neurological disorders. Mycotoxin-contaminated food and feed can provoke trade conflicts, resulting in massive economic losses. Risk assessment of mycotoxin contamination for humans and animals generally depends on clear identification and reliable quantitation in diversified matrices. Pioneering work on mycotoxin quantitation using mass spectrometry (MS) was performed in the early 1970s. Now, unambiguous confirmation and quantitation of mycotoxins can be readily achieved with a variety hyphenated techniques that combine chromatographic separation with MS, including liquid chromatography (LC) or gas chromatography (GC). With the advent of atmospheric pressure ionization, LC-MS has become a routine technique. Recently, the co-occurrence of multiple mycotoxins in the same sample has drawn an increasing amount of attention. Thus, modern analyses must be able to detect and quantitate multiple mycotoxins in a single run. Improvements in tandem MS techniques have been made to achieve this purpose. This review describes the advanced research that has been done regarding mycotoxin determination using hyphenated chromatographic-MS techniques, but is not a full-circle survey of all the literature published on this topic. The present work provides an overview of the various hyphenated chromatographic-MS-based strategies that have been applied to mycotoxin analysis, with a focus on recent developments. The use of chromatographic-MS to measure levels of mycotoxins, including aflatoxins, ochratoxins, patulin, trichothecenes, zearalenone, and fumonisins, is discussed in detail. Both free and masked mycotoxins are included in this review due to different methods of sample preparation. Techniques are described in terms of sample preparation, internal standards, LC/ultra performance LC (UPLC) optimization, and applications and survey. Several future hyphenated MS techniques are discussed as well, including multidimensional chromatography-MS, capillary electrophoresis-MS, and surface plasmon resonance array-MS.
Collapse
Affiliation(s)
- Peiwu Li
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan 430062, P.R. China; Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Wuhan 430062, P.R. China; Key Laboratory of Detection for Mycotoxins, Ministry of Agriculture, Wuhan 430062, P.R. China; Laboratory of Risk Assessment for Oilseeds Products (Wuhan), Ministry of Agriculture, Wuhan 430062, P.R. China; Quality Inspection and Test Center for Oilseeds Products, Ministry of Agriculture, Wuhan 430062, P.R. China
| | | | | | | |
Collapse
|
18
|
Molecularly imprinted polymer-based solid phase clean-up for analysis of ochratoxin A in ginger and LC-MS/MS confirmation. Food Control 2013. [DOI: 10.1016/j.foodcont.2013.03.023] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
19
|
Lenain P, Diana Di Mavungu J, Dubruel P, Robbens J, De Saeger S. Development of Suspension Polymerized Molecularly Imprinted Beads with Metergoline as Template and Application in a Solid-Phase Extraction Procedure toward Ergot Alkaloids. Anal Chem 2012; 84:10411-8. [DOI: 10.1021/ac302671h] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
| | | | | | - Johan Robbens
- Animal Sciences Unit—Fisheries, Institute for Agricultural and Fisheries Research,
Ostend, Belgium
| | | |
Collapse
|
20
|
Rubert J, Dzuman Z, Vaclavikova M, Zachariasova M, Soler C, Hajslova J. Analysis of mycotoxins in barley using ultra high liquid chromatography high resolution mass spectrometry: comparison of efficiency and efficacy of different extraction procedures. Talanta 2012; 99:712-9. [PMID: 22967615 DOI: 10.1016/j.talanta.2012.07.010] [Citation(s) in RCA: 90] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2012] [Revised: 06/26/2012] [Accepted: 07/05/2012] [Indexed: 11/25/2022]
Abstract
The effectiveness of four extraction methods (modified QuEChERS, matrix solid-phase dispersion (MSPD), solid-liquid extraction (SLE) and solid-phase extraction (SPE) clean-up) were evaluated for simultaneous determination of 32 mycotoxins produced by the genus Fusarium, Claviceps, Aspergillus, Penicillium and Alternaria in barley by ultra high pressure liquid chromatography coupled to ultra-high resolution mass spectrometry (UHPLC-Orbitrap(®) MS). The efficiency and efficacy of extraction methods were evaluated and compared in number of extracted mycotoxins and obtained recoveries. From the one point of view, QuEChERS procedure was fast and easy, as well as it was able to successfully extract all selected mycotoxins. On the other hand, SLE method, MSPD and SPE clean-up method did not extract adequately all selected mycotoxins and recoveries were not suitable enough. Thereby, method employing QuEChERS extraction connected with UHPLC-Orbitrap(®) MS was developed to quantify 32 mycotoxins in barley within this study. Analytical method was validated and recoveries ranged from 72% to 101% for selected mycotoxins with only one exception nivalenol (NIV) and deoxynivalenol-3-glucoside (D3G), which were lower than 67%. Relative standard deviations (RSD) were lower than 17.4% for all target mycotoxins. The lowest calibration levels (LCLs) ranged from 1 to 100 μg/kg. Validated method was finally used for monitoring mycotoxins in a total of 15 Czech barley samples, when only Fusarium toxins representatives were detected in 53% of samples and the mycotoxins with the highest incidence were enniatins.
Collapse
Affiliation(s)
- Josep Rubert
- Departament de Medicina Preventiva, Facultat de Farmàcia, Universitat de Valencia, Av. Vicent Andrès Estellès s/n, 46100 Burjassot (València), Spain.
| | | | | | | | | | | |
Collapse
|
21
|
Liu Y, Huang Y, Liu J, Wang W, Liu G, Zhao R. Superparamagnetic surface molecularly imprinted nanoparticles for water-soluble pefloxacin mesylate prepared via surface initiated atom transfer radical polymerization and its application in egg sample analysis. J Chromatogr A 2012; 1246:15-21. [DOI: 10.1016/j.chroma.2012.01.045] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2011] [Revised: 01/10/2012] [Accepted: 01/16/2012] [Indexed: 10/14/2022]
|
22
|
Shephard G, Berthiller F, Burdaspal P, Crews C, Jonker M, Krska R, MacDonald S, Malone R, Maragos C, Sabino M, Solfrizzo M, Van Egmond H, Whitaker T. Developments in mycotoxin analysis: an update for 2010-2011. WORLD MYCOTOXIN J 2012. [DOI: 10.3920/wmj2011.1338] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
This review highlights developments in mycotoxin analysis and sampling over a period between mid-2010 and mid-2011. It covers the major mycotoxins: aflatoxins, Alternaria toxins, ergot alkaloids, fumonisins, ochratoxin, patulin, trichothecenes, and zearalenone. Analytical methods for mycotoxins continue to be developed and published. Despite much interest in immunochemical methods and in the rapid development of LC-MS methodology, more conventional methods, sometimes linked to novel clean-up protocols, have also been the subject of research publications over the above period. Occurrence of mycotoxins falls outside the main focus of this review; however, where relevant to analytical method development, this has been mentioned.
Collapse
Affiliation(s)
- G. Shephard
- PROMEC Unit, Medical Research Council, P.O. Box 19070, Tygerberg 7505, South Africa
| | - F. Berthiller
- Department for Agrobiotechnology (IFA-Tulln), University of Natural Resources and Life Sciences Vienna, Center for Analytical Chemistry, Konrad Lorenz Str. 20, 3430 Tulln, Austria
| | - P. Burdaspal
- National Centre for Food, Spanish Food Safety and Nutrition Agency, Ctra. Pozuelo a Majadahonda km 5.100, 28220 Majadahonda (Madrid), Spain
| | - C. Crews
- The Food and Environment Research Agency, Sand Hutton, York YO41 1LZ, United Kingdom
| | - M. Jonker
- RIKILT Institute of Food Safety, Wageningen University and Research Centre, Cluster Natural Toxins and Pesticides, P.O. Box 230, 6700 AE Wageningen, the Netherlands
| | - R. Krska
- Department for Agrobiotechnology (IFA-Tulln), University of Natural Resources and Life Sciences Vienna, Center for Analytical Chemistry, Konrad Lorenz Str. 20, 3430 Tulln, Austria
| | - S. MacDonald
- The Food and Environment Research Agency, Sand Hutton, York YO41 1LZ, United Kingdom
| | - R. Malone
- Trilogy Analytical Laboratory, 870 Vossbrink Drive, Washington, MO 63090, USA
| | - C. Maragos
- USDA, ARS National Center for Agricultural Utilization Research, 1815 N. University St., Peoria, IL 61604, USA
| | - M. Sabino
- Instituto Adolfo Lutz, Av. Dr Arnaldo 355, 01246-902, São Paulo/SP, Brazil
| | - M. Solfrizzo
- Institute of Sciences of Food Production, National Research Council, Via Amendola 122/o, 700126 Bari, Italy
| | - H. Van Egmond
- RIKILT Institute of Food Safety, Wageningen University and Research Centre, Cluster Natural Toxins and Pesticides, P.O. Box 230, 6700 AE Wageningen, the Netherlands
| | - T. Whitaker
- Biological and Agricultural Engineering Department, N.C. State University, P.O. Box 7625, Raleigh, NC 27695-7625 USA
| |
Collapse
|
23
|
Mausia T, De Smet D, Guorun Q, Van Peteghem C, Zhang D, Wu A, De Saeger S. Molecularly Imprinted Polymers as Specific Adsorbents for Zearalenone Produced by Precipitation Polymerization and Applied to Mycotoxin Production. ANAL LETT 2011. [DOI: 10.1080/00032719.2011.553009] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
|
24
|
Zołek T, Luliński P, Maciejewska D. A computational model for selectivity evaluation of 2-(3,4-dimethoxyphenyl)ethylamine (homoveratrylamine) imprinted polymers towards biogenic compounds. Anal Chim Acta 2011; 693:121-9. [PMID: 21504819 DOI: 10.1016/j.aca.2011.03.009] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2010] [Revised: 02/04/2011] [Accepted: 03/03/2011] [Indexed: 12/01/2022]
Abstract
A computational model was proposed to evaluate the affinity and selectivity of 2-(3,4-dimethoxyphenyl)ethylamine (homoveratrylamine) imprinted polymers. Four functional monomers: methacrylic acid, 1-vinylimidazole, 4-vinylpyridine, and allylamine were taken into account. Two dielectric constants were used for solvent simulations: a value of ɛ=2.38r(ij) for toluene was used in the analysis of prepolymerization complexes, and a value of ɛ=36r(ij) for methanol-water was used in the investigations of adsorption. Theoretical analysis predicted the highest affinity for the polymer synthesized from methacrylic acid. Experimental results confirmed the finding. The prepolymerization complex formed by homoveratrylamine and four methacrylic acid molecules was used to design the polymer cavity. The selectivity of the polymer was analyzed as a simulation of adsorption of six compounds in the cavity by docking procedure. Selected compounds are structurally related to the template or can be present in biological samples. The designed polymer has high selectivity towards homoveratrylamine. The proposed computational procedure could be used for successful evaluation of the imprinted polymers.
Collapse
Affiliation(s)
- Teresa Zołek
- Department of Organic Chemistry, Faculty of Pharmacy, The Medical University of Warsaw, Poland
| | | | | |
Collapse
|
25
|
Design of an imprinted clean-up method for mycophenolic acid in maize. J Chromatogr A 2011; 1218:1122-30. [DOI: 10.1016/j.chroma.2010.12.085] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2010] [Revised: 12/17/2010] [Accepted: 12/20/2010] [Indexed: 11/21/2022]
|
26
|
De Smet D, Dubruel P, Van Peteghem C, De Saeger S. Development of a molecularly imprinted polymer for patulin in apple juice. WORLD MYCOTOXIN J 2011. [DOI: 10.3920/wmj2010.1276] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The design of imprinted polymers selective towards patulin (PAT) and their application in food analysis are reported for the first time. Different templates, functional monomers and molar ratios were evaluated related to binding capacity and specificity. Besides the toxin itself, the implementation of structural analogues (2-hydroxynicotinic acid, 5-indanol and 3-hydroxyphtalic anhydride) as templates was evaluated. A molecularly imprinted solid-phase extraction (MISPE) procedure was optimised for the selective clean-up of apple juice samples. Depending on the spiked concentration, recoveries after MISPE and non-imprinted solid-phase extraction varied respectively from 60% to 66% and from 40% to 41%. Limit of detection and limit of quantification were 10.0 µg/kg and 33.3 µg/kg, respectively. Equilibrium experiments and Scatchard analysis disclosed the presence of two classes of binding sites in the imprinted polymer. The dissociation constant (KD) of the higher affinity binding sites was 3.3 µmol/l, while the KD of the lower affinity binding sites was 260.7 µmol/l. The performance of the molecularly imprinted polymer throughout the clean-up was compared to liquid-liquid extraction and a C18 sorbent. Cross-reactivity experiments demonstrated that MISPE was substantially more selective than C18 clean-up. Moreover chromatograms, with less interfering peaks, were observed with MISPE resulting in a sensitive and reliable quantification of PAT.
Collapse
Affiliation(s)
- D. De Smet
- Faculty of Pharmaceutical Sciences, Laboratory of Food Analysis, Ghent University, Harelbekestraat 72, 9000 Ghent, Belgium
| | - P. Dubruel
- Faculty of Sciences, Polymer Chemistry and Biomaterials Research Group, Ghent University, Krijgslaan 281, 9000 Ghent, Belgium
| | - C. Van Peteghem
- Faculty of Pharmaceutical Sciences, Laboratory of Food Analysis, Ghent University, Harelbekestraat 72, 9000 Ghent, Belgium
| | - S. De Saeger
- Faculty of Pharmaceutical Sciences, Laboratory of Food Analysis, Ghent University, Harelbekestraat 72, 9000 Ghent, Belgium
| |
Collapse
|
27
|
Tothill I. Biosensors and nanomaterials and their application for mycotoxin determination. WORLD MYCOTOXIN J 2011. [DOI: 10.3920/wmj2011.1318] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Mycotoxin analysis and detection in food and drinks is vital for ensuring food quality and safety, eliminating and controlling the risk of consuming contaminated foods, and complying with the legislative limits set by food authorities worldwide. Most analysis of these toxins is still conducted using conventional methods; however, biosensor methods are currently being developed as screening tools for use in field analysis. Biosensors have demonstrated their ability to provide rapid, sensitive, robust and cost-effective quantitative methods for on-site testing. The development of biosensor devices for different mycotoxins has attracted much research interest in recent years with a range of devices being designed and reported in the scientific literature. However, with the advent of nanotechnology and its impact on the evolution of ultrasensitive devices, mycotoxin analysis is also benefiting from the advances taking place in applying nanomaterials in sensors development. This paper reviews the developments in the area of biosensors and their applications for mycotoxin analysis, as well as the development of micro/nanoarray transducers and nanoparticles and their use in the development of new rapid devices.
Collapse
Affiliation(s)
- I. Tothill
- Cranfield University, Cranfield Health, Vincent Building, Cranfield, Bedfordshire MK 43 0AL, United Kingdom
| |
Collapse
|
28
|
Del Sole R, Scardino A, Lazzoi MR, Vasapollo G. Molecularly imprinted polymer for solid phase extraction of nicotinamide in pork liver samples. J Appl Polym Sci 2010. [DOI: 10.1002/app.33267] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
29
|
Tse Sum Bui B, Haupt K. Molecularly imprinted polymers: synthetic receptors in bioanalysis. Anal Bioanal Chem 2010; 398:2481-92. [PMID: 20845034 DOI: 10.1007/s00216-010-4158-x] [Citation(s) in RCA: 139] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2010] [Revised: 08/19/2010] [Accepted: 08/19/2010] [Indexed: 10/19/2022]
Abstract
Molecularly imprinted polymers (MIPs) are tailor-made synthetic materials possessing specific cavities designed for a target molecule. Since they recognise their target analyte with affinities and selectivities comparable to those of antibody-antigen, enzyme-substrate and ligand-receptor interactions, they are often referred to as synthetic receptors or plastic antibodies. In this review, we describe the great potential and recent developments of MIPs in affinity separations, with emphasis on their application to the solid-phase extraction (SPE) of analytes from complex matrices. Research efforts made in this field to obtain water-compatible polymers for their applicability in aqueous environments are described. We particularly discuss problems encountered in the use of MIPs in SPE and the attempts carried out to improve their efficiency.
Collapse
|