1
|
Sowa I, Wójciak M, Tyszczuk-Rotko K, Klepka T, Dresler S. Polyaniline and Polyaniline-Based Materials as Sorbents in Solid-Phase Extraction Techniques. MATERIALS (BASEL, SWITZERLAND) 2022; 15:8881. [PMID: 36556687 PMCID: PMC9786183 DOI: 10.3390/ma15248881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 12/09/2022] [Accepted: 12/09/2022] [Indexed: 06/17/2023]
Abstract
Polyaniline (PANI) is one of the best known and widely studied conducting polymers with multiple applications and unique physicochemical properties. Due to its porous structure and relatively high surface area as well as the affinity toward many analytes related to the ability to establish different types of interactions, PANI has a great potential as a sorbent in sample pretreatment before instrumental analyses. This study provides an overview of the applications of polyaniline and polyaniline composites as sorbents in sample preparation techniques based on solid-phase extraction, including conventional solid-phase extraction (SPE) and its modifications, solid-phase microextraction (SPME), dispersive solid-phase extraction (dSPE), magnetic solid-phase extraction (MSPE) and stir-bar sorptive extraction (SBSE). The utility of PANI-based sorbents in chromatography was also summarized. It has been shown that polyaniline is willingly combined with other components and PANI-based materials may be formed in a variety of shapes. Polyaniline alone and PANI-based composites were successfully applied for sample preparation before determination of various analytes, both metal ions and organic compounds, in different matrices such as environmental samples, food, human plasma, urine, and blood.
Collapse
Affiliation(s)
- Ireneusz Sowa
- Department of Analytical Chemistry, Medical University of Lublin, Chodźki 4a, 20-093 Lublin, Poland
| | - Magdalena Wójciak
- Department of Analytical Chemistry, Medical University of Lublin, Chodźki 4a, 20-093 Lublin, Poland
| | - Katarzyna Tyszczuk-Rotko
- Institute of Chemical Sciences, Faculty of Chemistry, Maria Curie-Skłodowska University in Lublin, 20-031 Lublin, Poland
| | - Tomasz Klepka
- Department of Technology and Polymer Processing, Faculty of Mechanical Engineering, Lublin University of Technology, Nadbystrzycka 36, 20-618 Lublin, Poland
| | - Sławomir Dresler
- Department of Analytical Chemistry, Medical University of Lublin, Chodźki 4a, 20-093 Lublin, Poland
- Department of Plant Physiology and Biophysics, Institute of Biological Science, Maria Curie-Skłodowska University, Akademicka 19, 20-033 Lublin, Poland
| |
Collapse
|
2
|
Patel DI, Roychowdhury T, Shah D, Jacobsen C, Herrington JS, Hoisington J, Myers C, Salazar BG, Walker AV, Bell DS, Linford MR. 6-Phenylhexyl silane derivatized, sputtered silicon solid phase microextraction fiber for the parts-per-trillion detection of polyaromatic hydrocarbons in water and baby formula. J Sep Sci 2021; 44:2824-2836. [PMID: 33989452 DOI: 10.1002/jssc.202100266] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 05/11/2021] [Accepted: 05/12/2021] [Indexed: 12/23/2022]
Abstract
We report the fabrication of 6-phenylhexylsilane derivatized, sputtered silicon, solid phase microextraction fibers that show parts per trillion detection limits for polyaromatic hydrocarbons, and negligible carry over and phase bleed. Their fabrication involves sputtering silicon on silica fibers under various conditions. Six different fibers were evaluated by generating three different thicknesses of sputtered silicon at two different throw distances, which altered the morphologies of the silicon surfaces. All of the fibers were coated with similar thicknesses of 6-phenylhexylsilane (ca. 2 nm). These fibers were characterized with multiple analytical techniques. The optimum fiber configuration was then used to analyze polyaromatic hydrocarbons via direct immersion, gas chromatography mass spectrometry. Our best fiber for the extraction of low molecular weight polyaromatic hydrocarbons in water had similar performance to that of a commercial fiber. However, our fiber demonstrated ca. 3 times the extraction efficiency for higher molecular weight polyaromatic hydrocarbons. In addition, it outperformed the commercial fiber by showing better linearity, repeatability, and detection limits. A method for analyzing polyaromatic hydrocarbons in baby formula was developed, which showed very good linearity (0.5-125 ppb), repeatability (2-26%), detection limits (0.12-0.81 ppb), and recoveries (103-135%). In addition, our fiber showed much less (negligible) carry over and phase bleed than the commercially available fibers.
Collapse
Affiliation(s)
- Dhananjay I Patel
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, Utah, 84602, USA
| | - Tuhin Roychowdhury
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, Utah, 84602, USA
| | - Dhruv Shah
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, Utah, 84602, USA
| | - Collin Jacobsen
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, Utah, 84602, USA
| | - Jason S Herrington
- Restek Corporation, 110 Benner Circle, Bellefonte, Pennsylvania, 16823, USA
| | - Jason Hoisington
- Restek Corporation, 110 Benner Circle, Bellefonte, Pennsylvania, 16823, USA
| | - Colton Myers
- Restek Corporation, 110 Benner Circle, Bellefonte, Pennsylvania, 16823, USA
| | - Bryan G Salazar
- Department of Chemistry and Biochemistry, University of Texas at Dallas, Richardson, Texas, 75080, USA
| | - Amy V Walker
- Department of Chemistry and Biochemistry, University of Texas at Dallas, Richardson, Texas, 75080, USA.,Department of Materials Science and Engineering, University of Texas at Dallas, Richardson, Texas, 75080, USA
| | - David S Bell
- Restek Corporation, 110 Benner Circle, Bellefonte, Pennsylvania, 16823, USA
| | - Matthew R Linford
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, Utah, 84602, USA
| |
Collapse
|
3
|
Mirzajani R, Kardani F, Ramezani Z. The fabrication of a novel polyacrylonitrile/reduced graphene oxide-amino-halloysite/bimetallic metal–organic framework electrospun nanofiber adsorbent for the ultrasonic-assisted thin-film microextraction of fatty acid methyl esters in dairy products with gas chromatography-flame ionization detection. RSC Adv 2021; 11:14686-14699. [PMID: 35423972 PMCID: PMC8697828 DOI: 10.1039/d0ra07674k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Accepted: 03/22/2021] [Indexed: 11/21/2022] Open
Abstract
In this work, electrospun polyacrylonitrile/reduced graphene oxide-amino-halloysite/bimetallic metal–organic framework (PAN/rGO-amino-HNT/Co0.5Zn0.5(MeIm)2) nanofiber film was synthesized and investigated as a novel adsorbent for the ultrasonic-assisted thin-film microextraction (UA-TFME) of fatty acid methyl esters (FAMEs), including palmitic methyl ester (PAME), oleic methyl ester (OAME), stearic methyl ester (SAME), and linoleic methyl ester (LAME), from dairy products. The hybrid nanocomposite was obtained via bonding halloysite nanotubes to reduced graphene oxide, followed by loading with bimetallic metal–organic frameworks. The determination of FAMEs with nanofiber film was performed in two stages of desorption and absorption where, initially, the analytes were adsorbed onto the nanofiber film and then desorbed with organic solvent. In this study, ultrasound was used for both the adsorption and desorption stages. The advantages of ultrasonication are extensive, overcoming the shortcomings of conventional techniques in terms of energy consumption and solvent use, allowing a shorter treatment time with a low cost of implementation. Based on PAN/rGO-amino-HNT/Co0.5Zn0.5(MeIm)2 thin film, a microextraction-gas chromatography-flame ionization detection (TFME-GC-FID) method was developed. Experimental parameters affecting the extraction and desorption steps were optimized. The desorption parameters, including desorption time and the properties of the desorption solvent, were investigated one factor at a time. Then, effective parameters in the adsorption step were optimized using a Box–Behnken design and Design-Expert 7 software. Under the optimal conditions, the method detection limits (S/N = 3) were in the range of 0.03–0.06 μg L−1 and the limits of quantification (S/N = 10) were within 0.11–0.23 μg L−1. The relative standard deviations for intra-day and inter-day precision were 2.4–4.7% and 2.6–3.4%, respectively. In the present work, the UA-TFME method was successfully applied for the quantification of fatty acid methyl esters in dairy products (milk, yogurt, cheese, yogurt soda and butter samples) for the first time. The fatty acids were transesterified using standard procedures and were subjected to UA-TFME treatment prior to GC-FID determination. The developed method possesses the advantages of simplicity, rapidity, cost-effectiveness, sensitivity, and non-invasiveness. Electrospun polyacrylonitrile/reduced graphene oxide-amino-halloysite/bimetallic metal–organic framework nanofiber film was synthesized and successfully applied to the ultrasonic-assisted thin-film microextraction (UA-TFME) of fatty acid methyl esters from dairy products.![]()
Collapse
Affiliation(s)
- R. Mirzajani
- Chemistry Department
- College of Science
- Shahid Chamran University of Ahvaz
- Ahvaz
- Iran
| | - F. Kardani
- Chemistry Department
- College of Science
- Shahid Chamran University of Ahvaz
- Ahvaz
- Iran
| | - Z. Ramezani
- Department of Medicinal Chemistry
- School of Pharmacy
- Ahvaz Jundishapur University of Medical Sciences
- Ahvaz
- Iran
| |
Collapse
|
4
|
Pelit L, Pelit F, Ertaş H, Ertaş FN. Electrochemically Fabricated Solid Phase Microextraction Fibers and Their Applications in Food, Environmental and Clinical Analysis. CURR ANAL CHEM 2019. [DOI: 10.2174/1573411015666190314155440] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Background:Designing an analytical methodology for complicated matrices, such as biological and environmental samples, is difficult since the sample preparation procedure is the most demanding step affecting the whole analytical process. Nowadays, this step has become more challenging by the legislations and environmental concerns since it is a prerequisite to eliminate or minimize the use of hazardous substances in traditional procedures by replacing with green techniques suitable for the sample matrix.Methods:In addition to the matrix, the nature of the analyte also influence the ease of creating green analytical techniques. Recent developments in the chemical analysis provide us new methodologies introducing microextraction techniques and among them, solid phase microextraction (SPME) has emerged as a simple, fast, low cost, reliable and portable sample preparation technique that minimizes solvent consumption.Results:The use of home-made fibers is popular in the last two decades since the selectivity can be tuned by changing the surface characteristics through chemical and electrochemical modifications. Latter technique is preferred since the electroactive polymers can be coated onto the fiber under controlled electrochemical conditions and the film thicknesses can be adjusted by simply changing the deposition parameters. Thermal resistance and mechanical strength can be readily increased by incorporating different dopant ions into the polymeric structure and selectivity can be tuned by inserting functional groups and nanostructures. A vast number of analytes with wide range of polarities extracted by this means can be determined with a suitable chromatographic detector coupled to the system. Therefore, the main task is to improve the physicochemical properties of the fiber along with the extraction efficiency and selectivity towards the various analytes by adjusting the electrochemical preparation conditions.Conclusion:This review covers the fine tuning conditions practiced in electrochemical preparation of SPME fibers and in-tube systems and their applications in environmental, food and clinical analysis.
Collapse
Affiliation(s)
- Levent Pelit
- Department of Chemistry, Science Faculty, Ege University, Bornova, 35 100, İzmir, Turkey
| | - Füsun Pelit
- Department of Chemistry, Science Faculty, Ege University, Bornova, 35 100, İzmir, Turkey
| | - Hasan Ertaş
- Department of Chemistry, Science Faculty, Ege University, Bornova, 35 100, İzmir, Turkey
| | - Fatma Nil Ertaş
- Department of Chemistry, Science Faculty, Ege University, Bornova, 35 100, İzmir, Turkey
| |
Collapse
|
5
|
Electrospun polydimethylsiloxane/polyacrylonitrile/titanium dioxide nanofibers as a new coating for determination of alpha-linolenic acid in milk by direct immersion-solid phase nanoextraction. J Chromatogr B Analyt Technol Biomed Life Sci 2018; 1073:43-50. [DOI: 10.1016/j.jchromb.2017.11.042] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2017] [Revised: 11/21/2017] [Accepted: 11/30/2017] [Indexed: 12/22/2022]
|
6
|
Novel proton-type ionic liquid doped polyaniline for the headspace solid-phase microextraction of amines. Anal Chim Acta 2015; 880:60-6. [DOI: 10.1016/j.aca.2015.04.028] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2014] [Revised: 03/27/2015] [Accepted: 04/16/2015] [Indexed: 10/23/2022]
|
7
|
Sun M, Feng J, Bu Y, Wang X, Duan H, Luo C. Palladium-coated stainless-steel wire as a solid-phase microextraction fiber. J Sep Sci 2015; 38:1584-90. [DOI: 10.1002/jssc.201401283] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2014] [Revised: 02/01/2015] [Accepted: 02/03/2015] [Indexed: 11/06/2022]
Affiliation(s)
- Min Sun
- Key Laboratory of Chemical Sensing and Analysis in Universities of Shandong; School of Chemistry and Chemical Engineering; University of Jinan; Jinan China
| | - Juanjuan Feng
- Key Laboratory of Chemical Sensing and Analysis in Universities of Shandong; School of Chemistry and Chemical Engineering; University of Jinan; Jinan China
| | - Yanan Bu
- Key Laboratory of Chemical Sensing and Analysis in Universities of Shandong; School of Chemistry and Chemical Engineering; University of Jinan; Jinan China
| | - Xiaojiao Wang
- Key Laboratory of Chemical Sensing and Analysis in Universities of Shandong; School of Chemistry and Chemical Engineering; University of Jinan; Jinan China
| | - Huimi Duan
- Key Laboratory of Chemical Sensing and Analysis in Universities of Shandong; School of Chemistry and Chemical Engineering; University of Jinan; Jinan China
| | - Chuannan Luo
- Key Laboratory of Chemical Sensing and Analysis in Universities of Shandong; School of Chemistry and Chemical Engineering; University of Jinan; Jinan China
| |
Collapse
|
8
|
Sanagi MM, Hussain I, Ibrahim WAW, Yahaya N, Kamaruzaman S, Abidin NNZ, Ali I. Micro-extraction of Xenobiotics and Biomolecules from Different Matrices on Nanostructures. SEPARATION AND PURIFICATION REVIEWS 2014. [DOI: 10.1080/15422119.2014.973507] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
9
|
|
10
|
Zhao S, Wu M, Zhao F, Zeng B. Electrochemical preparation of polyaniline–polypyrrole solid-phase microextraction coating and its application in the GC determination of several esters. Talanta 2013; 117:146-51. [DOI: 10.1016/j.talanta.2013.08.060] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2013] [Revised: 08/29/2013] [Accepted: 08/31/2013] [Indexed: 10/26/2022]
|
11
|
Electrochemically prepared solid-phase microextraction coatings—A review. Anal Chim Acta 2013; 781:1-13. [DOI: 10.1016/j.aca.2013.03.012] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2012] [Revised: 02/25/2013] [Accepted: 03/01/2013] [Indexed: 11/21/2022]
|
12
|
Abdelwahab NA, Ghoneim AM, Abd El-Ghaffar MA. Characterization and Electrical Properties of Poly(aniline-co-2,4-dimethoxyaniline) Nanostructures Prepared by Interfacial Polymerization. INT J POLYM MATER PO 2013. [DOI: 10.1080/00914037.2012.735298] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
13
|
Feng J, Qiu H, Liu X, Jiang S, Feng J. The development of solid-phase microextraction fibers with metal wires as supporting substrates. Trends Analyt Chem 2013. [DOI: 10.1016/j.trac.2013.01.015] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
14
|
Conductive polymer-based microextraction methods: A review. Anal Chim Acta 2013; 767:1-13. [DOI: 10.1016/j.aca.2012.12.013] [Citation(s) in RCA: 140] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2012] [Revised: 12/06/2012] [Accepted: 12/08/2012] [Indexed: 11/22/2022]
|
15
|
Recent advances in nanomaterials utilized in fiber coatings for solid-phase microextraction. Trends Analyt Chem 2013. [DOI: 10.1016/j.trac.2012.09.013] [Citation(s) in RCA: 110] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
16
|
Li X, Wang Y, Yang X, Chen J, Fu H, Cheng T, Wang Y. Conducting polymers in environmental analysis. Trends Analyt Chem 2012. [DOI: 10.1016/j.trac.2012.06.003] [Citation(s) in RCA: 89] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
17
|
Rong X, Zhao F, Zeng B. Electrochemical preparation of poly(p-phenylenediamine-co-aniline) composite coating on a stainless steel wire for the headspace solid-phase microextraction and gas chromatographic determination of some derivatives of benzene. Talanta 2012; 98:265-71. [DOI: 10.1016/j.talanta.2012.07.024] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2012] [Revised: 07/05/2012] [Accepted: 07/08/2012] [Indexed: 10/28/2022]
|
18
|
Gao Q, Zheng HB, Luo D, Ding J, Feng YQ. Facile synthesis of magnetic one-dimensional polyaniline and its application in magnetic solid phase extraction for fluoroquinolones in honey samples. Anal Chim Acta 2012; 720:57-62. [DOI: 10.1016/j.aca.2011.12.067] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2011] [Revised: 12/22/2011] [Accepted: 12/24/2011] [Indexed: 10/14/2022]
|
19
|
Mehdinia A, Bashour F, Roohi F, Jabbari A. A strategy to enhance the thermal stability of a nanostructured polypyrrole-based coating for solid phase microextraction. Mikrochim Acta 2012. [DOI: 10.1007/s00604-012-0771-z] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
20
|
Mehdinia A, Bashour F, Roohi F, Jabbari A, Saleh A. Preparation and evaluation of thermally stable nano-structured self-doped polythiophene coating for analysis of phthalate ester trace levels. J Sep Sci 2012; 35:563-70. [DOI: 10.1002/jssc.201100713] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
21
|
Solvent-free microextraction techniques in gas chromatography. Anal Bioanal Chem 2011; 402:565-71. [DOI: 10.1007/s00216-011-5511-4] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2011] [Revised: 10/12/2011] [Accepted: 10/17/2011] [Indexed: 10/15/2022]
|
22
|
Nano-structured polyaniline-ionic liquid composite film coated steel wire for headspace solid-phase microextraction of organochlorine pesticides in water. J Chromatogr A 2011; 1218:6285-91. [DOI: 10.1016/j.chroma.2011.07.041] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2011] [Accepted: 07/12/2011] [Indexed: 11/18/2022]
|
23
|
Application of Self-Assembled Monolayers in the Preparation of Solid-Phase Microextraction Coatings. Chromatographia 2011. [DOI: 10.1007/s10337-011-2091-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|