1
|
Yan Z, Feng C, Xu Y, Wang J, Huang N, Jin X, Wu F, Bai Y. Water temperature governs organophosphate ester dynamics in the aquatic food chain of Poyang Lake. ENVIRONMENTAL SCIENCE AND ECOTECHNOLOGY 2024; 21:100401. [PMID: 38487363 PMCID: PMC10937237 DOI: 10.1016/j.ese.2024.100401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 02/08/2024] [Accepted: 02/10/2024] [Indexed: 03/17/2024]
Abstract
Organophosphate esters (OPEs) are increasingly recognized as pervasive environmental contaminants, primarily from their extensive application in flame retardants and plasticizers. Despite their widespread presence, the intricacies of OPE bioaccumulation within aquatic ecosystems remain poorly understood, particularly the environmental determinants influencing their distribution and the bioaccumulation dynamics across aquatic food chains. Here we show that water temperature plays a crucial role in modulating the dispersion of OPE in the aquatic environment of Poyang Lake. We quantified OPE concentrations across various matrices, uncovering levels ranging from 0.198 to 912.622 ng L-1 in water, 0.013-493.36 ng per g dry weight (dw) in sediment, 0.026-41.92 ng per g wet weight (ww) in plankton, 0.13-2100.72 ng per g dw in benthic invertebrates, and 0.31-3956.49 ng per g dw in wild fish, highlighting a pronounced bioaccumulation gradient. Notably, the intestines emerged as the principal site for OPE absorption, displaying the highest concentrations among the seven tissues examined. Among the various OPEs, tris(chloroethyl) phosphate was distinguished by its significant bioaccumulation potential within the aquatic food web, suggesting a need for heightened scrutiny. The propensity for OPE accumulation was markedly higher in benthic invertebrates than wild fish, indicating a differential vulnerability within aquatic biota. This study lays a foundational basis for the risk assessment of OPEs as emerging contaminants and underscores the imperative to prioritize the examination of bioaccumulation effects, particularly in benthic invertebrates, to inform future environmental safeguarding strategies.
Collapse
Affiliation(s)
- Zhenfei Yan
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
- College of Environment, Hohai University, Nanjing, 210098, China
| | - Chenglian Feng
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Yiping Xu
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Jindong Wang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Nannan Huang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Xiaowei Jin
- China National Environmental Monitoring Centre, Beijing, 100012, China
| | - Fengchang Wu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
- College of Environment, Hohai University, Nanjing, 210098, China
| | - Yingchen Bai
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| |
Collapse
|
2
|
Shamai Yamin T, Madmon M, Hindi A, Shifrovich A, Prihed H, Blanca M, Weissberg A. Enhanced LC-ESI-MS/MS Sensitivity by Cationic Derivatization of Organophosphorus Acids. Molecules 2023; 28:6090. [PMID: 37630342 PMCID: PMC10459995 DOI: 10.3390/molecules28166090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 08/14/2023] [Accepted: 08/14/2023] [Indexed: 08/27/2023] Open
Abstract
The chemical derivatization to enhance the signal intensity and signal-to-noise (S/N) of several organophosphorus (OP) acids in liquid chromatography tandem mass spectrometry (LC-ESI-MS/MS) is illustrated. The OP class of compounds represents the environmental degradants of OP nerve agents and pesticides. N-(2-(bromomethyl)benzyl)-N,N-diethylethanaminium bromide (CAX-B) was utilized to derivatize a panel of eight acids consisting of five alkyl methylphosphonic acids (ethyl-, isopropyl-, isobutyl-, cyclohexyl-, and pinacolyl-methylphosphonic acid) along with three dialkylphosphate analogs (diethyl-, dibutyl-, and diethyl thio-phosphate). The derivatization reaction with CAX-B was conducted in acetonitrile in the presence of potassium carbonate at 70 °C for 1 h. The resulting acid derivatives were analyzed with an LC-Orbitrap-ESI-MS/MS, and their dissociation processes were investigated. It was found that the derivatization procedure increased the limits of identification (LOIs) by one to over two orders of magnitude from the range of 1 to 10 ng/mL for the intact OP-acids to the range of 0.02-0.2 ng/mL for the derivatized acids utilizing an LC-MS(QqQ) in MRM mode, regardless of the sample matrix (hair, concrete, or plant extracts). The interpretation of the corresponding ESI-MS/MS spectra for each type of derivatized sub-OP family revealed the formation of characteristic neutral losses and a characteristic ion for the organophosphorus core. This derivatization is beneficial and useful for screening and identifying target and "unknown" OP acids.
Collapse
Affiliation(s)
- Tamar Shamai Yamin
- Correspondence: (T.S.Y.); (A.W.); Tel.: +972-8-9381-689 (T.S.Y.); +972-8-9385-852 (A.W.); Fax: +972-8-9381-688 (T.S.Y. & A.W.)
| | | | | | | | | | | | - Avi Weissberg
- Department of Analytical Chemistry, Israel Institute for Biological Research (IIBR), P.O. Box 19, Ness Ziona 7410001, Israel
| |
Collapse
|
3
|
Lu Q, Lin N, Cheng X, Yuan T, Zhang Y, Gao Y, Xia Y, Ma Y, Tian Y. Simultaneous determination of 16 urinary metabolites of organophosphate flame retardants and organophosphate pesticides by solid phase extraction and ultra performance liquid chromatography coupled to tandem mass spectrometry. CHEMOSPHERE 2022; 300:134585. [PMID: 35427657 DOI: 10.1016/j.chemosphere.2022.134585] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 04/04/2022] [Accepted: 04/08/2022] [Indexed: 06/14/2023]
Abstract
Organophosphate flame retardants (OPFRs) and organophosphate pesticides (OPPs), pertaining to organophosphate esters, are ubiquitous in environment and have been verified to pose noticeable risks to human health. To evaluate human exposures to OPFRs and OPPs, a fast and sensitive approach based on a solid phase extraction (SPE) followed by the ultra-high-performance liquid chromatography coupled to tandem mass spectrometry (UPLC-MS/MS) detection has been developed for the simultaneous analysis of multiple organophosphorus metabolites in urine. The method allows the identification and quantification of ten metabolites of the most common OPFRs and all six dialkylphosphates (DAPs) of OPPs concerning the population exposure characteristics. The method provided good linearities (R2 = 0.998-0.999), satisfactory method detection limits (MDLs) (0.030-1.129 ng/mL) and only needed a small volume (200 μL) of urine. Recovery rates ranged 73.4-127.1% at three spiking levels (2, 10 and 25 ng/mL urine), with both intra- and inter-day precision less than 14%. The good correlations for DAPs in a cross-validation test with a previous gas chromatography-mass spectrometry (GC-MS) method and a good inter-laboratory agreement for several OPFR metabolites in a standard reference material (SRM 3673) re-enforced the precision and validity of our method. Finally, the established method was successfully applied to analyze 16 organophosphorus metabolites in 35 Chinese children's urine samples. Overall, by validating the method's sensitivity, accuracy, precision, reproducibility, etc., data reliability and robustness were ensured; and the satisfactory pilot application on real urine samples demonstrated feasibility and acceptability of this method for being implemented in large population-based studies.
Collapse
Affiliation(s)
- Qi Lu
- Department of Environmental Health, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Nan Lin
- Department of Environmental Health, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaomeng Cheng
- Department of Environmental Health, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Tao Yuan
- State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Yan Zhang
- Department of Environmental Health, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yu Gao
- Department of Environmental Health, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yankai Xia
- State Key Laboratory of Reproductive Medicine, Institute of Toxicology, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Yuning Ma
- State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, China.
| | - Ying Tian
- Department of Environmental Health, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China; MOE-Shanghai Key Laboratory of Children's Environmental Health, Xin Hua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
4
|
Hou M, Fang J, Shi Y, Tang S, Dong H, Liu Y, Deng F, Giesy JP, Godri Pollitt KJ, Cai Y, Shi X. Exposure to organophosphate esters in elderly people: Relationships of OPE body burdens with indoor air and dust concentrations and food consumption. ENVIRONMENT INTERNATIONAL 2021; 157:106803. [PMID: 34365320 DOI: 10.1016/j.envint.2021.106803] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 07/21/2021] [Accepted: 07/26/2021] [Indexed: 06/13/2023]
Abstract
Human exposure to OPEs is pervasive and should be of great concern due to associations with adverse health effects, especially in susceptible populations. In this study, body burdens and exposure pathways of OPEs were investigated for 76 healthy elderly people in Jinan, China based on the measured OPE and metabolite concentrations in human bio-samples (whole blood and urine) and paired environmental matrices (air and dust), as well as food frequency questionnaire. Eight of 16 OPEs and 5 of 11 metabolites were detected in > 50% of whole blood and urine samples, respectively. Tri(1-chloro-2-propyl) phosphate (TCIPP), tris(2-chloroethyl) phosphate (TCEP), tri-phenyl phosphate (TPHP), and 2-ethylhexyl di-phenyl phosphate (EHDPP) were frequently detected and abundant in whole blood, while their corresponding metabolites were detected at low frequencies or levels in urine. The reduced metabolic and/or excretory capacity of elderly people may be an important reason, implying a higher health risk to them. Fourteen OPEs had over 50% detection frequencies in indoor air and dust, while 6 di-esters in indoor dust. Tris(2-ethylhexyl) phosphate (TEHP) in indoor dust and tri-n-butyl phosphate (TnBP) in indoor air were positively correlated with paired levels in blood but not with their metabolites (BEHP and DnBP) in urine. Combined with the direct intakes of BEHP and DBP from dust, blood is indicated as more suitable biomarker for TEHP and TnBP exposure. High consumption frequencies of several foods were associated with higher blood concentrations of three OPEs and urinary levels of four di-OPEs, indicating the importance of dietary exposure pathway. Estimated daily total intakes of OPEs via inhalation, dust ingestion, and dermal absorption ranged from 2.78 to 42.0 ng/kg bw/day, which were far less than the reference dosage values. Further studies were warranted to explore the potential health effects of OPE exposure in the elderly populations.
Collapse
Affiliation(s)
- Minmin Hou
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Science, Chinese Academy of Sciences, Beijing, 100083, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jianlong Fang
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China
| | - Yali Shi
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Science, Chinese Academy of Sciences, Beijing, 100083, China; University of Chinese Academy of Sciences, Beijing 100049, China; School of Environment, Hangzhou Institute for Advanced Study, UCAS, Hangzhou 310024, China.
| | - Song Tang
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China; Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu 211166, China.
| | - Haoran Dong
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China
| | - Yuanyuan Liu
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China
| | - Fuchang Deng
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China
| | - John P Giesy
- Toxicology Centre, University of Saskatchewan, Saskatoon, SK S7N 5B3, Canada; Department of Biomedical and Veterinary Biosciences, University of Saskatchewan, Saskatoon, SK S7N 5B4, Canada; Department of Environmental Science, Baylor University, Waco, TX 76798, USA
| | - Krystal J Godri Pollitt
- Department of Environmental Health Sciences, Yale School of Public Health, New Haven, CT 06520, USA
| | - Yaqi Cai
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Science, Chinese Academy of Sciences, Beijing, 100083, China; University of Chinese Academy of Sciences, Beijing 100049, China; School of Environment, Hangzhou Institute for Advanced Study, UCAS, Hangzhou 310024, China
| | - Xiaoming Shi
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China; Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| |
Collapse
|
5
|
Yan Z, Feng C, Jin X, Liu D, Hong Y, Qiao Y, Bai Y, Moon HB, Qadeer A, Wu F. In vitro metabolic kinetics of cresyl diphenyl phosphate (CDP) in liver microsomes of crucian carp (Carassius carassius). ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 274:116586. [PMID: 33529897 DOI: 10.1016/j.envpol.2021.116586] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 01/15/2021] [Accepted: 01/20/2021] [Indexed: 05/03/2023]
Abstract
Cresyl diphenyl phosphate (CDP), as a kind of aryl substituted organophosphate esters (OPEs), is commonly used as emerging flame retardants and plasticizers detected in environmental media. Due to the accumulation of CDP in organisms, it is very important to discover the toxicological mechanism and metabolic process of CDP. Hence, liver microsomes of crucian carps (Carassius carassius) were prepared for in vitro metabolism kinetics assay to estimate metabolism rates of CDP. After 140 min incubation, the depletion of CDP accounted for 58.1%-77.1% (expect 0.5 and 2 μM) of the administrated concentrations. The depletion rates were best fitted to the Michaelis-Menten model (R2 = 0.995), where maximum velocity (Vmax) and Michaelis-Menten constant (Km) were 12,700 ± 2120 pmol min-1·mg-1 protein and 1030 ± 212 μM, respectively. Moreover, the in vitro hepatic clearance (CLint) of CDP was 12.3 μL min-1·mg-1 protein. Log Kow and bioconcentration factor (BCF) of aryl-OPEs were both higher than those of alkyl- and chlorinated-OPEs, indicating that CDP may easily accumulate in aquatic organisms. The results made clear that the metabolism rate of CDP was greater than those of other OPEs detected in liver microsomes in previous research. This paper was first of its kind to comprehensively investigate the in vitro metabolic kinetics of CDP in fish liver microsomes. The present study might provide useful information to understand the environmental fate and metabolic processes of these kinds of substances, and also provide a theoretical basis for the ecological risk assessment of emerging contaminants.
Collapse
Affiliation(s)
- Zhenfei Yan
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Chenglian Feng
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China.
| | - Xiaowei Jin
- China National Environmental Monitoring Centre, Beijing, 100012, China
| | - Daqing Liu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Yajun Hong
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Yu Qiao
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Yingchen Bai
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Hyo-Bang Moon
- Department of Marine Sciences and Convergent Technology, College of Science and Technology, Hanyang University, Ansan, 426-791, Republic of Korea
| | - Abdul Qadeer
- Department of Marine Sciences and Convergent Technology, College of Science and Technology, Hanyang University, Ansan, 426-791, Republic of Korea; School of Geographic Sciences, East China Normal University, Shanghai, 200241, China
| | - Fengchang Wu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| |
Collapse
|
6
|
Hou R, Xu Y, Rao K, Feng C, Wang Z. Tissue-specific bioaccumulation, metabolism and excretion of tris (2-ethylhexyl) phosphate (TEHP) in rare minnow (Gobiocyprisrarus). ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 261:114245. [PMID: 32220757 DOI: 10.1016/j.envpol.2020.114245] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Revised: 02/05/2020] [Accepted: 02/19/2020] [Indexed: 06/10/2023]
Abstract
Tris (2-ethylhexyl) phosphate (TEHP) is one of the most commonly used organophosphorus flame retardant (OPFR) analogues and is commonly detected in surface water and sediments. Limited information is available about the metabolic pathway or metabolite formation related to TEHP in fish. In this study, rare minnows (Gobiocyprisrarus) were exposed to TEHP in static water for 30 d to investigate the bioaccumulation and metabolite distribution in the fish muscle, liver, kidney, gill, GI-tract, ovary and testis. Based on the estimated kup,parent and kd,parent values, the bioconcentration factors (BCFparent) of TEHP in fish tissues were calculated in the order of kidney > ovary ≈ liver ≈ testis > gill ≈ GI-tract > muscle; this finding was consistent with the results of our previous study on other alkyl-substituted OPFRs. In addition, this study identified the metabolic profiles of TEHP in the liver. TEHP was oxidatively metabolized by the fish to a dealkylated metabolite (di 2-ethylhexyl phosphate; DEHP) and hydroxylated TEHP (OH-TEHP). OH-TEHP further underwent extensive phase II metabolism to yield glucuronic acid conjugates. DEHP was mainly distributed in rare minnow in the following order: liver > GI-tract > kidney ≫ other tissues. However, the metabolite showed lower accumulation potential in fish tissues than TEHP, with metabolite parent concentration factors (MPCFs) for DEHP of less than 0.1 in all the investigated tissues. The BCFparent values of TEHP in various fish tissues were only 9.0 × 10-3-7.2 × 10-4 times its estimated tissue-water partition coefficient (Ktissue-water) values based on tissue lipid, protein and water contents, which indicated the significance of biotransformation in reducing the bioaccumulation potential of TEHP in fish. The toxicokinetic data in the present study help in understanding the tissue-specific bioaccumulation and metabolism pathways of TEHP in fish and highlight the importance of toxicology research on TEHP metabolites in aquatic organisms.
Collapse
Affiliation(s)
- Rui Hou
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, China
| | - Yiping Xu
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China.
| | - Kaifeng Rao
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Chenglian Feng
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Zijian Wang
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| |
Collapse
|
7
|
Lv Y, Bai H, Yang J, He Y, Ma Q. Direct Mass Spectrometry Analysis Using In-Capillary Dicationic Ionic Liquid-Based in Situ Dispersive Liquid–Liquid Microextraction and Sonic-Spray Ionization. Anal Chem 2019; 91:6661-6668. [DOI: 10.1021/acs.analchem.9b00597] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Yueguang Lv
- Chinese Academy of Inspection and Quarantine, Beijing 100176, P. R. China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Hua Bai
- Chinese Academy of Inspection and Quarantine, Beijing 100176, P. R. China
| | - Jingkui Yang
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Yujian He
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Qiang Ma
- Chinese Academy of Inspection and Quarantine, Beijing 100176, P. R. China
| |
Collapse
|
8
|
Shen J, Zhang Y, Yu N, Crump D, Li J, Su H, Letcher RJ, Su G. Organophosphate Ester, 2-Ethylhexyl Diphenyl Phosphate (EHDPP), Elicits Cytotoxic and Transcriptomic Effects in Chicken Embryonic Hepatocytes and Its Biotransformation Profile Compared to Humans. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2019; 53:2151-2160. [PMID: 30652482 DOI: 10.1021/acs.est.8b06246] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
The effects of 2-ethylhexyl diphenyl phosphate (EHDPP) on cytotoxicity and mRNA expression, as well as its metabolism, were investigated using a chicken embryonic hepatocyte (CEH) assay. After incubation for 36 h, the lethal concentration 50 (LC50) was 50 ± 11 μM, suggesting that EHDPP is one of a small cohort of highly toxic organophosphate esters (OPEs). By use of a ToxChip polymerase chain reaction (PCR) array, we report modulation of 6, 11, or 16/43 genes in CEH following exposure to 0.1, 1, or 10 μM EHDPP, respectively. The altered genes were from all nine biological pathways represented on the ToxChip including bile acids/cholesterol regulation, glucose metabolism, lipid homeostasis, and the thyroid hormone pathway. After incubation for 36 h, 92.5% of EHDPP was transformed, and one of its presumed metabolites, diphenyl phosphate (DPHP), only accounted for 12% of the original EHDPP concentration. Further screening by use of high-resolution mass spectrometry revealed a novel EHDPP metabolite, hydroxylated 2-ethylhexyl monophenyl phosphate (OH-EHMPP), which was also detected in a human blood pool. Additional EHDPP metabolites detected in the human blood pool included EHMPP and DPHP. Overall, this study provided novel information regarding the toxicity of EHDPP and identified a potential EHDPP metabolite, OH-EHMPP, in both avian species and humans.
Collapse
Affiliation(s)
- Jinyou Shen
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering , Nanjing University of Science and Technology , Nanjing 210094 , People's Republic of China
| | - Yayun Zhang
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering , Nanjing University of Science and Technology , Nanjing 210094 , People's Republic of China
| | - Nanyang Yu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment , Nanjing University , Nanjing 210023 , China
| | - Doug Crump
- Ecotoxicology and Wildlife Health Division, Environment and Climate Change Canada, National Wildlife Research Centre , Carleton University , Ottawa , Onatrio K1A 0H3 , Canada
| | - Jianhua Li
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering , Nanjing University of Science and Technology , Nanjing 210094 , People's Republic of China
| | - Huijun Su
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering , Nanjing University of Science and Technology , Nanjing 210094 , People's Republic of China
| | - Robert J Letcher
- Ecotoxicology and Wildlife Health Division, Environment and Climate Change Canada, National Wildlife Research Centre , Carleton University , Ottawa , Onatrio K1A 0H3 , Canada
| | - Guanyong Su
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering , Nanjing University of Science and Technology , Nanjing 210094 , People's Republic of China
| |
Collapse
|
9
|
Mokra K, Bukowski K, Woźniak K. Effects of tris(1-chloro-2-propyl)phosphate and tris(2-chloroethyl)phosphate on cell viability and morphological changes in peripheral blood mononuclear cells (in vitro study). Hum Exp Toxicol 2018; 37:1336-1345. [PMID: 29945461 DOI: 10.1177/0960327118783529] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Organophosphorus flame retardants (OPFRs) are a group of chemicals widely used in various everyday use products. Tris(2-chloroethyl)phosphate (TCEP) and tris(1-chloro-2-propyl)phosphate (TCPP) are one of the commonly used chemicals belonging to this group. Due to the need of limitation of the use of polybrominated diphenyl ethers (PBDEs) as retardants, the share of the compounds tested in our experiments in chemicals production systematically increases. There is limited information about the influence of halogenated OPFRs on living cells, especially on the immune system cells. That is why the aim of this study was to assess the impact of TCEP and TCPP on viability and morphological alterations of human peripheral blood mononuclear cells (PBMCs). The cells were incubated with selected flame retardants in the concentrations ranging from 0.001 to 1 mM for 24 h. It was found that TCEP at 1 mM and TCPP at 0.5 mM decreased viability of PBMCs, while only TCPP induced morphological alterations in the incubated cells. The results of our experiments suggest that TCPP is more cytotoxic than TCEP, which can be explained by the presence of methyl groups in the molecule of this compound. Similar to other studies, our data also suggest that OPFRs are suitable replacements for PBDEs.
Collapse
Affiliation(s)
- K Mokra
- 1 Department of Biophysics Environmental Pollution, Faculty of Biology and Environmental Protection, University of Łódź, Łódź, Poland
| | - K Bukowski
- 2 Department of Molecular Genetics, Faculty of Biology and Environmental Protection, University of Łódź, Łódź, Poland
| | - K Woźniak
- 2 Department of Molecular Genetics, Faculty of Biology and Environmental Protection, University of Łódź, Łódź, Poland
| |
Collapse
|
10
|
Strobel A, Willmore WG, Sonne C, Dietz R, Letcher RJ. Organophosphate esters in East Greenland polar bears and ringed seals: Adipose tissue concentrations and in vitro depletion and metabolite formation. CHEMOSPHERE 2018; 196:240-250. [PMID: 29306196 DOI: 10.1016/j.chemosphere.2017.12.181] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Revised: 12/24/2017] [Accepted: 12/28/2017] [Indexed: 06/07/2023]
Abstract
East Greenland is a contamination "hot spot" for long-range transported anthropogenic chemicals, including organophosphate esters (OPEs). High concentrations of OPEs have been reported in arctic air while very little is known for wildlife where OPE tissue residues levels appear to be strongly influenced by biotransformation. In the present study, the hepatic in vitro metabolism of six environmentally relevant organophosphate (OP) triesters and corresponding OP diester formation were investigated in East Greenland polar bears (PBs) and ringed seals (RSs). The in vitro metabolism assay results were compared to adipose levels in field samples from the same individuals. In vitro OP triester metabolism was generally rapid and structure-dependent, where PBs metabolized OPEs more rapidly than RSs. Exceptions were the lack of triethyl phosphate (TEP) metabolism and slow metabolism of tris(2-ethylhexyl) phosphate (TEHP) in both species. OP diester metabolites were also formed with the exception of TEP which was not metabolized at all. Tris(1,3-dichloro-2-propyl) phosphate was completely converted to its corresponding diester. However, the mass balances showed that OP diester formation corresponding to TEHP, tri(n-butyl) phosphate, and tris(2-butyoxyethyl) phosphate did not account for 100% of the OP triester depletion, which indicated alternate pathways of OP triester metabolism had occurred. Triphenyl phosphate was completely converted to its OP diester metabolite in PBs but not in RSs suggesting species-specific differences. The results demonstrated that OP triester bioaccumulation and fate in PBs versus their RS prey is substantially influenced by biotransformation.
Collapse
Affiliation(s)
- Adelle Strobel
- Ecotoxicology and Wildlife Health Division, Environment and Climate Change Canada, National Wildlife Research Centre, Carleton University, Ottawa, ON, K1A 0H3, Canada; Department of Biology, Carleton University, Ottawa, ON, K1S 5B6, Canada
| | - William G Willmore
- Ecotoxicology and Wildlife Health Division, Environment and Climate Change Canada, National Wildlife Research Centre, Carleton University, Ottawa, ON, K1A 0H3, Canada
| | - Christian Sonne
- Department of Bioscience, Arctic Research Centre, Aarhus University, Roskilde, Denmark
| | - Rune Dietz
- Department of Bioscience, Arctic Research Centre, Aarhus University, Roskilde, Denmark
| | - Robert J Letcher
- Ecotoxicology and Wildlife Health Division, Environment and Climate Change Canada, National Wildlife Research Centre, Carleton University, Ottawa, ON, K1A 0H3, Canada; Department of Biology, Carleton University, Ottawa, ON, K1S 5B6, Canada.
| |
Collapse
|
11
|
A mixed-mode chromatographic separation method for the analysis of dialkyl phosphates. J Chromatogr A 2018; 1535:63-71. [DOI: 10.1016/j.chroma.2017.12.069] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Revised: 12/19/2017] [Accepted: 12/31/2017] [Indexed: 12/11/2022]
|
12
|
Hou R, Liu C, Gao X, Xu Y, Zha J, Wang Z. Accumulation and distribution of organophosphate flame retardants (PFRs) and their di-alkyl phosphates (DAPs) metabolites in different freshwater fish from locations around Beijing, China. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2017; 229:548-556. [PMID: 28688305 DOI: 10.1016/j.envpol.2017.06.097] [Citation(s) in RCA: 102] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Revised: 05/31/2017] [Accepted: 06/28/2017] [Indexed: 06/07/2023]
Abstract
Organophosphate flame retardants (PFRs) can be rapidly metabolized in the body, and recent studies have shown that the di-alkyl phosphates (DAPs) are important metabolites. The accumulation and distribution of 8 PFRs and their 4 DAPs metabolites were first investigated in whole-body samples and various tissues of three freshwater fish species (topmouth gudgeon, crucian carp and loach) with different feeding habits from locations around Beijing, China. Concentrations of ΣPFRs in whole-body samples across all sampling locations ranged from 264.7 to 1973 ng g-1 lipid weight (lw), while all the paired DAP metabolites were detected in the total range from 35.3 to 510 ng g-1 lw. The calculated log bioconcentration factors (BCFs) of PFRs in whole fish were correlated with their log KOW (P < 0.05). The metabolite/parent ratios (MPRs) of ΣDAPs were calculated and ranged from 0.10 to 1.12 in whole-fish of all species. The MPRs of BBOEP/TBOEP were the highest. With respect to their distribution in different tissues, both the parent PFRs and metabolites were found at relatively higher levels in the liver than in other tissues (muscle, intestine, kidney and ovary), which was markedly different from those observed in avian species in previous studies. The accumulation of PFRs and DAPs in various tissues was not significantly correlated with the lipid content. The highest PFRs level in the liver may be related to the active hepatic accumulation processes. Meanwhile, the MPRs for all 4 pairs were the highest in the kidney relative to the other tissues. To the best of our knowledge, this is first study of DAPs in wild animals, and our study may improve the understanding of the accumulation and metabolism of PFRs in the body.
Collapse
Affiliation(s)
- Rui Hou
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Cao Liu
- Beijing Water Sciences Technology Institute, Beijing 100085, China
| | - Xiaozhong Gao
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yiping Xu
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
| | - Jinmiao Zha
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Zijian Wang
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| |
Collapse
|
13
|
Eng ML, Letcher RJ, Williams TD, Elliott JE. In ovo tris(2-butoxyethyl) phosphate concentrations significantly decrease in late incubation after a single exposure via injection, with no evidence of effects on hatching success or latent effects on growth or reproduction in zebra finches. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2017; 36:83-88. [PMID: 27207485 DOI: 10.1002/etc.3502] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Revised: 05/12/2016] [Accepted: 05/17/2016] [Indexed: 06/05/2023]
Abstract
Zebra finch (Taeniopygia guttata) eggs were injected with the organophosphate triester flame retardant tris(2-butoxyethyl) phosphate (TBOEP) at 0 μg/g, 0.01 μg/g, 1 μg/g, 10 μg/g, or 50 μg/g egg. Subsets of high-dose eggs were collected throughout incubation to measure TBOEP, which started declining in late incubation and then decreased rapidly to 28% of injected concentration by hatching. The authors found no effects of TBOEP on survival, growth, or reproduction even at very high doses. Environ Toxicol Chem 2017;36:83-88. © 2016 SETAC.
Collapse
Affiliation(s)
- Margaret L Eng
- Department of Biological Sciences, Simon Fraser University, Burnaby, British Columbia, Canada
- Environment and Climate Change Canada, Ecotoxicology and Wildlife Health Division, Pacific Wildlife Research Centre, Delta, British Columbia, Canada
| | - Robert J Letcher
- Environment and Climate Change Canada, Ecotoxicology and Wildlife Health Division, National Wildlife Research Centre, Ottawa, Ontario, Canada
| | - Tony D Williams
- Department of Biological Sciences, Simon Fraser University, Burnaby, British Columbia, Canada
| | - John E Elliott
- Environment and Climate Change Canada, Ecotoxicology and Wildlife Health Division, Pacific Wildlife Research Centre, Delta, British Columbia, Canada
| |
Collapse
|
14
|
Greaves AK, Su G, Letcher RJ. Environmentally relevant organophosphate triesters in herring gulls: In vitro biotransformation and kinetics and diester metabolite formation using a hepatic microsomal assay. Toxicol Appl Pharmacol 2016; 308:59-65. [DOI: 10.1016/j.taap.2016.08.007] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Revised: 07/29/2016] [Accepted: 08/09/2016] [Indexed: 12/18/2022]
|
15
|
Greaves AK, Letcher RJ, Chen D, McGoldrick DJ, Gauthier LT, Backus SM. Retrospective analysis of organophosphate flame retardants in herring gull eggs and relation to the aquatic food web in the Laurentian Great Lakes of North America. ENVIRONMENTAL RESEARCH 2016; 150:255-263. [PMID: 27322497 DOI: 10.1016/j.envres.2016.06.006] [Citation(s) in RCA: 79] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Revised: 04/29/2016] [Accepted: 06/04/2016] [Indexed: 06/06/2023]
Abstract
With the phase-out and regulation of some flame retardant chemicals, the production and usage of organophosphate triester flame retardants (OPFRs) has increased in recent years. In the present study, 14 OPFRs (either chlorinated, brominated or non-halogenated) were analyzed in egg pools of 10-13 individual herring gull eggs from five colonial nesting sites for 11 years spanning 1990-2010, (for a total of n=55 egg pools) in the Laurentian Great Lakes of North America (Chantry Island, Fighting Island, Agawa Rocks, Toronto Harbour and Gull Island). OPFR profiles varied slightly between colony sites and collection years. For all five sites tris(2-chloroisopropyl) phosphate (TCIPP), tris(2-chloroethyl) phosphate (TCEP) and tris(2-butoxyethyl) phosphate (TBOEP) were detected, while triphenyl phosphate (TPHP) was only quantifiable in eggs from Chantry Island and Gull Island collected in 2008 and 2010. For the 2010 egg pools, the ΣOPFR concentrations were generally low and ranged from 2.02 to 6.69 ng/g wet weight (ww). ΣOPFR concentrations in 2010 were significantly higher (p<0.05) than they were between 1990 and 2004 (4.06 vs. 1.55 ng/g ww, respectively). In a pilot examination of Great Lakes aquatic food webs, 2010-collected alewife and rainbow smelt (major herring gull fish prey) and lake trout from western Lake Erie and Ontario, only contained TBOEP at low to sub ng/g ww concentrations. These results demonstrate that low to sub-ppb concentrations of at least three OPFRs, TCIPP, TCEP and TBOEP, have been persistent in herring gull eggs from the Great Lakes for at least the past 20 years, probably bioaccumulate mainly via the fish diet, and are transferred to the eggs of exposed herring gulls.
Collapse
Affiliation(s)
- Alana K Greaves
- Wildlife and Landscape Directorate, Science and Technology Branch, Environment and Climate Change Canada, National Wildlife Research Centre, Carleton University, Ottawa, ON K1A 0H3, Canada; Department of Chemistry, Carleton University, Ottawa, ON K1S 5B6, Canada
| | - Robert J Letcher
- Wildlife and Landscape Directorate, Science and Technology Branch, Environment and Climate Change Canada, National Wildlife Research Centre, Carleton University, Ottawa, ON K1A 0H3, Canada; Department of Chemistry, Carleton University, Ottawa, ON K1S 5B6, Canada.
| | - Da Chen
- Cooperative Wildlife Research Laboratory and Department of Zoology, Southern Illinois University, Carbondale IL 62901, USA
| | - Daryl J McGoldrick
- Water Science & Technology Directorate, Science and Technology Branch, Environment and Climate Change Canada, Canada Centre for Inland Waters, Burlington, ON L7S 1A1, Canada
| | - Lewis T Gauthier
- Wildlife and Landscape Directorate, Science and Technology Branch, Environment and Climate Change Canada, National Wildlife Research Centre, Carleton University, Ottawa, ON K1A 0H3, Canada
| | - Sean M Backus
- Water Science & Technology Directorate, Science and Technology Branch, Environment and Climate Change Canada, Canada Centre for Inland Waters, Burlington, ON L7S 1A1, Canada
| |
Collapse
|
16
|
Pan N, Rao W, Standke SJ, Yang Z. Using Dicationic Ion-Pairing Compounds To Enhance the Single Cell Mass Spectrometry Analysis Using the Single-Probe: A Microscale Sampling and Ionization Device. Anal Chem 2016; 88:6812-9. [PMID: 27239862 DOI: 10.1021/acs.analchem.6b01284] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
A unique mass spectrometry (MS) method has been developed to determine the negatively charged species in live single cells using the positive ionization mode. The method utilizes dicationic ion-pairing compounds through the miniaturized multifunctional device, the single-probe, for reactive MS analysis of live single cells under ambient conditions. In this study, two dicationic reagents, 1,5-pentanediyl-bis(1-butylpyrrolidinium) difluoride (C5(bpyr)2F2) and 1,3-propanediyl-bis(tripropylphosphonium) difluoride (C3(triprp)2F2), were added in the solvent and introduced into single cells to extract cellular contents for real-time MS analysis. The negatively charged (1- charged) cell metabolites, which form stable ion-pairs (1+ charged) with dicationic compounds (2+ charged), were detected in positive ionization mode with a greatly improved sensitivity. We have tentatively assigned 192 and 70 negatively charged common metabolites as adducts with (C5(bpyr)2F2) and (C3(triprp)2F2), respectively, in three separate SCMS experiments in the positive ion mode. The total number of tentatively assigned metabolites is 285 for C5(bpyr)2F2 and 143 for C3(triprp)2F2. In addition, the selectivity of dicationic compounds in the complex formation allows for the discrimination of overlapped ion peaks with low abundances. Tandem (MS/MS) analyses at the single cell level were conducted for selected adduct ions for molecular identification. The utilization of the dicationic compounds in the single-probe MS technique provides an effective approach to the detection of a broad range of metabolites at the single cell level.
Collapse
Affiliation(s)
- Ning Pan
- Department of Chemistry and Biochemistry, University of Oklahoma , Norman, Oklahoma 73019, United States
| | - Wei Rao
- Department of Chemistry and Biochemistry, University of Oklahoma , Norman, Oklahoma 73019, United States
| | - Shawna J Standke
- Department of Chemistry and Biochemistry, University of Oklahoma , Norman, Oklahoma 73019, United States
| | - Zhibo Yang
- Department of Chemistry and Biochemistry, University of Oklahoma , Norman, Oklahoma 73019, United States
| |
Collapse
|
17
|
Hou R, Xu Y, Wang Z. Review of OPFRs in animals and humans: Absorption, bioaccumulation, metabolism, and internal exposure research. CHEMOSPHERE 2016; 153:78-90. [PMID: 27010170 DOI: 10.1016/j.chemosphere.2016.03.003] [Citation(s) in RCA: 364] [Impact Index Per Article: 45.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Revised: 03/01/2016] [Accepted: 03/02/2016] [Indexed: 06/05/2023]
Abstract
Due to their widespread use, organophosphate flame retardants (OPFRs) are commonly detected in various environmental matrices and have been identified as emerging contaminants. Considering the adverse effects of OPFRs, many researchers have paid their attention on the absorption, bioaccumulation, metabolism and internal exposure processes of OPFRs in animals and humans. In this article, we first review the diverse absorption routes of OPFRs by animals and humans (e.g., inhalation, ingestion, dermal absorption and gill absorption). Bioaccumulation and biomagnification potentials of OPFRs in different types of organisms and food webs are also summarized, based on quite limited available data and results. For metabolism, we review the Phase-I and Phase-II metabolic processes for each type of OPFRs (chlorinated OPFRs, alkyl-OPFRs and aryl-OPFRs) in the animals and humans, as well as toxicokinetic information and putative exposure biomarkers on OPFRs. Finally, we highlight gaps in our knowledge and critical directions for future internal exposure studies of OPFRs in animals and humans.
Collapse
Affiliation(s)
- Rui Hou
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, PR China; State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, PR China
| | - Yiping Xu
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, PR China.
| | - Zijian Wang
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, PR China
| |
Collapse
|
18
|
Breitbach ZS, Berthod A, Huang K, Armstrong DW. Mass spectrometric detection of trace anions: The evolution of paired-ion electrospray ionization (PIESI). MASS SPECTROMETRY REVIEWS 2016; 35:201-218. [PMID: 25648413 DOI: 10.1002/mas.21448] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2014] [Revised: 05/04/2014] [Accepted: 05/04/2014] [Indexed: 06/04/2023]
Abstract
The negative-ion mode of electrospray ionization mass spectrometry (ESI-MS) is intrinsically less sensitive than the positive-ion mode. The detection and quantitation of anions can be performed in positive-ion mode by forming specific ion-pairs during the electrospray process. The paired-ion electrospray ionization (PIESI) method uses specially synthesized multifunctional cations to form positively charged adducts with the anions to be analyzed. The adducts are detected in the positive-ion mode and at higher m/z ratios to produce excellent signal-to-noise ratios and limits of detection that often are orders of magnitude better than those obtained with native anions in the negative-ion mode. This review briefly summarizes the different analytical approaches to detect and separate anions. It focuses on the recently introduced PIESI method to present the most effective dicationic, tricationic, and tetracationic reagents for the detection of singly and multiply charged anions and some zwitterions. The mechanism by which specific structural molecular architectures can have profound effects on signal intensities is also addressed.
Collapse
Affiliation(s)
- Zachary S Breitbach
- Department of Chemistry, University of Texas at Arlington, Planetarium Place, Arlington, 76019, Texas
| | - Alain Berthod
- Institute of Analytical Sciences, University of Lyon, 5 rue de la Doua, Villeurbanne, 69100, France
| | - Ke Huang
- Department of Chemistry, University of Texas at Arlington, Planetarium Place, Arlington, 76019, Texas
| | - Daniel W Armstrong
- Department of Chemistry, University of Texas at Arlington, Planetarium Place, Arlington, 76019, Texas
| |
Collapse
|
19
|
Petropoulou SSE, Petreas M, Park JS. Analytical methodology using ion-pair liquid chromatography-tandem mass spectrometry for the determination of four di-ester metabolites of organophosphate flame retardants in California human urine. J Chromatogr A 2016; 1434:70-80. [PMID: 26818234 DOI: 10.1016/j.chroma.2016.01.020] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Revised: 12/11/2015] [Accepted: 01/07/2016] [Indexed: 12/23/2022]
Abstract
Alkyl- and aryl-esters of phosphoric acid (both halogenated and non-halogenated) are mainly used as flame retardants (FRs), among other applications, in furniture and consumer products and they are collectively known as organophosphate flame retardants (OPFRs). The absorption, biotransformation or elimination of many of these chemicals in humans and their possible health effects are not yet well known. A major reason for the limited information is the nature of these compounds, which causes several technical difficulties in their isolation and sensitive determination. A novel analytical liquid chromatography tandem mass spectrometry (LC-MS/MS) method for the accurate and sensitive determination of four urinary OPFR metabolites: bis(1,3-dichloro-2-propyl) phosphate (BDCIPP), bis(2-chloroethyl) phosphate (BCEP), bis(1-chloro-2-propyl) phosphate (BCIPP), and diphenyl phosphate (DPhP), using mixed-mode solid phase extraction and isotope. For the first time all four analytes can be identified in one chromatographic run. An extensive investigation of method development parameters (enzymatic hydrolysis, matrix effects, process efficiency, sources of background interferences, linearity, accuracy, precision, stabilities and limits of detection and quantification) was performed in order to address previously reported method inconsistencies and select a process with the highest accuracy and sensitivity. Chromatographic separation was achieved on a Luna C18 (2) (2.00 mm × 150 mm, 3 μm) with mobile phase 80:20 v/v water: MeOH and MeOH: water 95:5 v/v, both containing 1mM tributylamine and 1mM acetic acid. Limits of detection were 0.025 ng mL(-1) for BDCIPP and BCIPP and 0.1 ng mL(-1) for DPhP and BCEP. Absolute recoveries of all four analytes and their labeled compounds were in the range of 88-107%. The method was tested on 13 adult California urine samples. BCEP was detected at 0.4-15 ng mL(-1) with a geometric mean (GM): 1.9 ng mL(-1); BDCIPP at 0.5-7.3 ng mL(-1), (GM: 2.5 ng mL(-1)) and DPhP at <MDL-5.6 ng mL(-1), (GM: 1.7 ng mL(-1)). BCIPP was detected for the first time in US samples in 92.3% of the samples with two to three times lower values (range <MDL-3.5 ng mL(-1) and GM: 0.4 ng mL(-1)) than the other OPFRs.
Collapse
Affiliation(s)
- Syrago-Styliani E Petropoulou
- Environmental Chemistry Laboratory, Department of Toxic Substances Control, 700 Heinz Ave., Suite 100, Berkeley, CA 94710, United States.
| | - Myrto Petreas
- Environmental Chemistry Laboratory, Department of Toxic Substances Control, 700 Heinz Ave., Suite 100, Berkeley, CA 94710, United States
| | - June-Soo Park
- Environmental Chemistry Laboratory, Department of Toxic Substances Control, 700 Heinz Ave., Suite 100, Berkeley, CA 94710, United States
| |
Collapse
|
20
|
Rao W, Pan N, Tian X, Yang Z. High-Resolution Ambient MS Imaging of Negative Ions in Positive Ion Mode: Using Dicationic Reagents with the Single-Probe. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2016; 27:124-134. [PMID: 26489411 PMCID: PMC4924531 DOI: 10.1007/s13361-015-1287-7] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Revised: 09/28/2015] [Accepted: 09/30/2015] [Indexed: 05/30/2023]
Abstract
We have used the Single-probe, a miniaturized sampling device utilizing in-situ surface microextraction for ambient mass spectrometry (MS) analysis, for the high resolution MS imaging (MSI) of negatively charged species in the positive ionization mode. Two dicationic compounds, 1,5-pentanediyl-bis(1-butylpyrrolidinium) difluoride [C5(bpyr)2F2] and 1,3-propanediyl-bis(tripropylphosphonium) difluoride [C3(triprp)2F2], were added into the sampling solvent to form 1+ charged adducts with the negatively charged species extracted from tissues. We were able to detect 526 and 322 negatively charged species this way using [C5(bpyr)2F2] and [C3(triprp)2F2], respectively, including oleic acid, arachidonic acid, and several species of phosphatidic acid, phosphoethanolamine, phosphatidylserine, phosphatidylglycerol, phosphatidylinositol, and others. In conjunction with the identification of the non-adduct cations, we have tentatively identified a total number of 1200 and 828 metabolites from mouse brain sections using [C5(bpyr)2F2] and [C3(triprp)2F2], respectively, through high mass accuracy measurements (mass error <5 ppm); MS/MS analyses were also performed to verify the identity of selected species. In addition to the high mass accuracy measurement, we were able to generate high spatial resolution (~17 μm) MS images of mouse brain sections. Our study demonstrated that utilization of dicationic compounds in the surface microextraction with the Single-probe device can perform high mass and spatial resolution ambient MSI measurements of broader types of compounds in tissues. Other reagents can be potentially used with the Single-probe device for a variety of reactive MSI studies to enable the analysis of species that are previously intractable.
Collapse
|
21
|
Hallanger IG, Sagerup K, Evenset A, Kovacs KM, Leonards P, Fuglei E, Routti H, Aars J, Strøm H, Lydersen C, Gabrielsen GW. Organophosphorous flame retardants in biota from Svalbard, Norway. MARINE POLLUTION BULLETIN 2015; 101:442-447. [PMID: 26453403 DOI: 10.1016/j.marpolbul.2015.09.049] [Citation(s) in RCA: 83] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2015] [Revised: 09/28/2015] [Accepted: 09/30/2015] [Indexed: 06/05/2023]
Abstract
Eight arctic species, including fish, birds and mammals, from diverse habitats (marine and terrestrial) within the Svalbard Archipelago, Norway, were screened for 14 organophosphorus flame retardant (PFR) compounds. Ten PFRs were detected: tris(2-chloroethyl)phosphate (TCEP), tris(2-chloroisopropyl)phosphate (TCIPP), tris(1,3-dichloro-2-propyl)phosphate (TDCIPP), triphenyl phosphate (TPHP); 2-ethylhexyl diphenyl phosphate (EHDPP); tris(2-butoxyethyl)phosphate (TBOEP); tritolyl phosphate (TCrP); triisobutyl phosphate (TIBP); tris(2-ethylhexyl)phosphate (TEHP); and butyl diphenyl phosphate (DPhBP). The greatest number of different PFR compounds, and the highest detection frequency were measured in capelin (Mallotus villotus), and the lowest in Brünnich's guillemot (Uria lomvia). The highest concentrations of ΣPFR, as well as the highest concentration of a single PFR compound, TBOEP, were measured in arctic fox (Vulpes lagopus). The presence of PFR compounds in arctic biota indicates that these compounds can undergo long-range transport and are, to some degree, persistent and bioaccumulated. The potential for biomagnification from fish to higher trophic levels seems to be limited.
Collapse
Affiliation(s)
- Ingeborg G Hallanger
- UiT, The Arctic University of Norway, Postboks 6050 Langnes, 9037 Tromsø, Norway.
| | - Kjetil Sagerup
- Akvalan-niva, Fram Centre, Postboks 6606, 9296 Tromsø, Norway.
| | - Anita Evenset
- UiT, The Arctic University of Norway, Postboks 6050 Langnes, 9037 Tromsø, Norway; Akvalan-niva, Fram Centre, Postboks 6606, 9296 Tromsø, Norway.
| | - Kit M Kovacs
- Norwegian Polar Institute, Fram Centre, Postboks 6606, 9296 Tromsø, Norway.
| | - Pim Leonards
- VU University Amsterdam, De Boelelaan 1105, 1081 HV, Amsterdam, Netherlands.
| | - Eva Fuglei
- Norwegian Polar Institute, Fram Centre, Postboks 6606, 9296 Tromsø, Norway.
| | - Heli Routti
- Norwegian Polar Institute, Fram Centre, Postboks 6606, 9296 Tromsø, Norway.
| | - Jon Aars
- Norwegian Polar Institute, Fram Centre, Postboks 6606, 9296 Tromsø, Norway.
| | - Hallvard Strøm
- Norwegian Polar Institute, Fram Centre, Postboks 6606, 9296 Tromsø, Norway.
| | - Christian Lydersen
- Norwegian Polar Institute, Fram Centre, Postboks 6606, 9296 Tromsø, Norway.
| | | |
Collapse
|
22
|
Su G, Letcher RJ, Yu H. Determination of organophosphate diesters in urine samples by a high-sensitivity method based on ultra high pressure liquid chromatography-triple quadrupole-mass spectrometry. J Chromatogr A 2015; 1426:154-60. [DOI: 10.1016/j.chroma.2015.11.018] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Revised: 10/14/2015] [Accepted: 11/05/2015] [Indexed: 12/19/2022]
|
23
|
Su G, Letcher RJ, Moore JN, Williams LL, Martin PA, de Solla SR, Bowerman WW. Spatial and temporal comparisons of legacy and emerging flame retardants in herring gull eggs from colonies spanning the Laurentian Great Lakes of Canada and United States. ENVIRONMENTAL RESEARCH 2015; 142:720-730. [PMID: 26406977 DOI: 10.1016/j.envres.2015.08.018] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Revised: 08/13/2015] [Accepted: 08/16/2015] [Indexed: 06/05/2023]
Abstract
In the Laurentian Great Lakes basin of North America, an increasing number of chemicals of emerging concern (CECs) are being investigated, including legacy and replacement flame retardants (FRs). In the present study, 14 polybrominated diphenyl ethers (PBDEs), 23 non-PBDEs halogenated FRs (NPHFRs) and 16 organophosphate ester FRs (OPE-FRs) were analyzed in 100 individual eggs collected in 2012 and 2013 and in 15 egg pools of herring gulls collected in 2012 from 20 colonies across the entire Laurentian Great Lakes basin. For CEC-FRs in eggs from all colonies, 14 PBDEs, 12 NPHFRs and 9 OPE-FRs were quantifiable in at least one of the 115 analyzed samples. The mean sum PBDE (Σ14PBDE) concentrations ranged from 244 to 657 ng/g wet weight (ww), and on average were 1-2 orders of magnitude greater than the Σ12NPHFR concentrations (13.8-35.6 ng/g ww), and 2-3 orders of magnitude greater than Σ9OPE-FR concentrations (0.31-2.14 ng/g ww). Mean Σ14PBDE and sum of syn- and anti-Dechlorane Plus isomer (Σ2DDC-CO) concentrations in eggs from colonies within Laurentian Great Lakes Areas of Concern (AOCs) were in most cases greater than in eggs from nearby colonies outside of AOCs. Comparing CEC-FR concentrations in eggs collected in 2012-2013 to those previously measured in eggs collected approximately 7 years earlier (2006 and 2008) showed that Σ7PBDE (BDE-28, -47, -100, -99, -154,-153 and -183) mean concentrations in eggs from 6 colonies were approximately 30% less than they were in eggs from the same colonies from the earlier time period, whereas 3 current-use FR (BDE-209, HBCDD and Σ2DDC-CO) concentrations were significantly greater (p<0.05) than previously measured. Between 2006 and 2013 there were significant changes in individual PBDE patterns for BDE-71, -138, -153, -203, -206 and -207. Among all of the examined CEC-FRs, concentrations of Σ4PBDE (BDE-47, -99, -100 and -153) and HBCDD in gull eggs from all colonies were greater than or comparable to their lowest observed effect concentrations (LOECs) based on in ovo egg injection studies. Overall, the current profiles of a broad suite of FRs in Laurentian Great Lakes herring gull eggs highlights the need to better understand e.g., exposure-effect implications and metabolism of FRs, i.e. OPE-FRs, and emphasizes the importance of continued monitoring of CEC-FRs whose concentrations appear to be increasing, including BDE-209, HBCDD and DDC-COs.
Collapse
Affiliation(s)
- Guanyong Su
- Ecotoxicology and Wildlife Health Division, Wildlife and Landscape Directorate, Science and Technology Branch, Environment Canada, National Wildlife Research Center, Carleton University, Ottawa, ON, Canada; Department of Chemistry, Carleton University, Ottawa, ON, Canada K1S 5B6
| | - Robert J Letcher
- Ecotoxicology and Wildlife Health Division, Wildlife and Landscape Directorate, Science and Technology Branch, Environment Canada, National Wildlife Research Center, Carleton University, Ottawa, ON, Canada; Department of Chemistry, Carleton University, Ottawa, ON, Canada K1S 5B6.
| | - Jeremy N Moore
- US Fish and Wildlife Service, East Lansing Ecological Services Field Office, East Lansing, MI, USA
| | - Lisa L Williams
- US Fish and Wildlife Service, East Lansing Ecological Services Field Office, East Lansing, MI, USA
| | - Pamela A Martin
- Ecotoxicology and Wildlife Health Division, Wildlife and Landscape Directorate, Science and Technology Branch, Environment Canada, Burlington, ON, Canada
| | - Shane R de Solla
- Ecotoxicology and Wildlife Health Division, Wildlife and Landscape Directorate, Science and Technology Branch, Environment Canada, Burlington, ON, Canada
| | - William W Bowerman
- Department of Environmental Science and Technology, University of Maryland, College Park, MD, USA
| |
Collapse
|
24
|
Malarvannan G, Belpaire C, Geeraerts C, Eulaers I, Neels H, Covaci A. Organophosphorus flame retardants in the European eel in Flanders, Belgium: Occurrence, fate and human health risk. ENVIRONMENTAL RESEARCH 2015; 140:604-610. [PMID: 26056994 DOI: 10.1016/j.envres.2015.05.021] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2015] [Revised: 04/30/2015] [Accepted: 05/22/2015] [Indexed: 06/04/2023]
Abstract
The present study investigated the levels, profiles and human health risk of organophosphorus flame retardants and plasticizers (PFRs) in wild European eels (Anguilla anguilla) from freshwater bodies in the highly populated and industrial Flanders region (Belgium). Yellow eels (n=170) were collected at 26 locations between 2000 and 2009 and for each site, muscle samples of 3-10 eels were pooled and analyzed (n=26). Muscle lipid percentages varied widely between 2.4% and 21%, with a median value of 10%. PFRs were detected in all pooled samples in the order of tris-2-chloroisopropyl phosphate (TCIPP)>triphenyl phosphate (TPHP)>2-ethylhexyl diphenyl phosphate (EHDPHP)>tris-2-butoxyethyl phosphate (TBOEP)>tris-2-chloroethyl phosphate (TCEP)>tris-1,3-dichloro-2-propyl phosphate (TDCIPP). The median sum PFR concentration for all 26 sites was 44 ng/g lw (8.4 ng/g ww), and levels ranged between 7.0 and 330 ng/g lw (3.5 and 45 ng/g ww). Levels and profiles of PFRs in eels showed that sampling locations and river basin catchments are possible drivers of spatial variation in the aquatic environment. Median PFR concentrations were lower than those of polybrominated diphenyl ethers (PBDEs) and hexabromocyclododecanes (HBCDs). No correlation was observed between the PFR concentrations and lipid contents, suggesting that the accumulation of PFRs is not primarily associated with lipids. Human exposure to PFRs, due to consumption of wild eels, seems to be of minor importance compared to other potential sources, such as inhalation and ingestion of indoor dust. Nevertheless, considering the very limited data available on PFRs in human dietary items and their expected increasing use after the phase out of PBDEs and HBCDs, further investigations on PFRs in biota and human food items are warranted.
Collapse
Affiliation(s)
- Govindan Malarvannan
- Toxicological Centre, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium
| | - Claude Belpaire
- Research Institute for Nature and Forest (INBO), Duboislaan 14, 1560 Hoeilaart, Belgium
| | - Caroline Geeraerts
- Research Institute for Nature and Forest (INBO), Gaverstraat 4, 9500 Geraardsbergen, Belgium
| | - Igor Eulaers
- Toxicological Centre, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium; Ethology Group, Department of Biology, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium
| | - Hugo Neels
- Toxicological Centre, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium
| | - Adrian Covaci
- Toxicological Centre, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium.
| |
Collapse
|
25
|
Fernie KJ, Palace V, Peters LE, Basu N, Letcher RJ, Karouna-Renier NK, Schultz SL, Lazarus RS, Rattner BA. Investigating endocrine and physiological parameters of captive American kestrels exposed by diet to selected organophosphate flame retardants. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2015; 49:7448-55. [PMID: 25988605 DOI: 10.1021/acs.est.5b00857] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Organophosphate triesters are high production volume additive flame retardants (OPFRs) and plasticizers. Shown to accumulate in abiotic and biotic environmental compartments, little is known about the risks they pose. Captive adult male American kestrels (Falco sparverius) were fed the same dose (22 ng OPFR/g kestrel/d) daily (21 d) of tris(2-butoxyethyl) phosphate (TBOEP), tris(2-chloroethyl) phosphate (TCEP), tris(2-chloroisopropyl) phosphate (TCIPP), or tris(1,2-dichloro-2-propyl) phosphate (TDCIPP). Concentrations were undetected in tissues (renal, hepatic), suggesting rapid metabolism. There were no changes in glutathione status, indicators of hepatic oxidative status, or the cholinergic system (i.e., cerebrum, plasma cholinesterases; cerebrum muscarinic, nicotinic receptors). Modest changes occurred in hepatocyte integrity and function (clinical chemistry). Significant effects on plasma free triiodothyronine (FT3) concentrations occurred with exposure to TBOEP, TCEP, TCIPP, and TDCIPP; TBOEP and TCEP had additional overall effects on free thyroxine (FT4), whereas TDCIPP also influenced total thyroxine (TT4). Relative increases (32%-96%) in circulating FT3, TT3, FT4, and/or TT4 were variable with each OPFR at 7 d exposure, but limited thereafter, which was likely maintained through decreased thyroid gland activity and increased hepatic deiodinase activity. The observed physiological and endocrine effects occurred at environmentally relevant concentrations and suggest parent OPFRs or metabolites may have been present despite rapid degradation.
Collapse
Affiliation(s)
| | - Vince Palace
- ‡Stantec Consulting Ltd., 386 Broadway Avenue, Winnipeg, MB, Canada R3C 3R6
| | - Lisa E Peters
- ‡Stantec Consulting Ltd., 386 Broadway Avenue, Winnipeg, MB, Canada R3C 3R6
| | - Nil Basu
- §McGill University, 21,111 Lakeshore Road, Ste Anne de Bellevue, PQ, Canada H9X 3V9
| | | | - Natalie K Karouna-Renier
- ⊥U.S. Geological Survey, Patuxent Wildlife Research Center, BARC East Building 308, 10300 Baltimore Avenue, Beltsville, Maryland 20705, United States
| | - Sandra L Schultz
- ⊥U.S. Geological Survey, Patuxent Wildlife Research Center, BARC East Building 308, 10300 Baltimore Avenue, Beltsville, Maryland 20705, United States
| | - Rebecca S Lazarus
- ⊥U.S. Geological Survey, Patuxent Wildlife Research Center, BARC East Building 308, 10300 Baltimore Avenue, Beltsville, Maryland 20705, United States
| | - Barnett A Rattner
- ⊥U.S. Geological Survey, Patuxent Wildlife Research Center, BARC East Building 308, 10300 Baltimore Avenue, Beltsville, Maryland 20705, United States
| |
Collapse
|
26
|
Dodson RE, Van den Eede N, Covaci A, Perovich LJ, Brody JG, Rudel RA. Urinary biomonitoring of phosphate flame retardants: levels in California adults and recommendations for future studies. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2014; 48:13625-33. [PMID: 25388620 PMCID: PMC4255275 DOI: 10.1021/es503445c] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Phosphate flame retardants (PFRs) are abundant and found at the highest concentrations relative to other flame retardant chemicals in house dust; however, little is known about the biological levels of PFRs and their relationship with house dust concentrations. These relationships provide insight into major exposure pathways and potential health risks. We analyzed urine samples from 16 California residents in 2011 for 6 chlorinated and nonchlorinated dialkyl or diaryl phosphates (DAPs), the expected major metabolites of the most prominent PFRs, and qualitatively screened for 18 other metabolites predicted from in vitro studies. We detected all 6 DAPs within the range of previously reported levels, although very few comparisons are available. We found weakly positive nonsignificant correlations between urine and dust concentrations and maxima urine corresponding to maxima dust for the pairs bis(1,3-dichloro-2-propyl) phosphate (BDCIPP)-tris(1,3-dichloro-isopropyl) phosphate (TDCIPP) and bis(2-chloroethyl) phosphate (BCEP)-tris(2-chloroethyl) phosphate (TCEP). Metabolite levels of PFRs were correlated for many PFR combinations, suggesting they commonly co-occur. As far as we know, this is the first study to measure these 6 DAP metabolites simultaneously and to detect other PFR metabolites in US urine samples. We recommend biomonitoring studies include these 6 DAPs as well as several additional compounds detected through qualitative screening and previous ADME studies. PFRs represent a class of poorly studied commercial chemicals with widespread exposure and raise concerns for health effects including carcinogenicity and neurotoxicity.
Collapse
Affiliation(s)
- Robin E Dodson
- Silent Spring Institute, 29 Crafts Street, Newton, Massachusetts 02458, United States.
| | | | | | | | | | | |
Collapse
|
27
|
Farhat A, Crump D, Porter E, Chiu S, Letcher RJ, Su G, Kennedy SW. Time-dependent effects of the flame retardant tris(1,3-dichloro-2-propyl) phosphate (TDCPP) on mRNA expression, in vitro and in ovo, reveal optimal sampling times for rapidly metabolized compounds. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2014; 33:2842-2849. [PMID: 25242413 DOI: 10.1002/etc.2755] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2014] [Revised: 08/23/2014] [Accepted: 09/12/2014] [Indexed: 06/03/2023]
Abstract
The flame retardant, tris(1,3-dichloro-2-propyl) phosphate (TDCPP), was previously shown to affect chicken embryo growth, gallbladder size, and lipid homeostasis. A microarray study, however, revealed only modest transcriptional alterations in liver tissue of pipping embryos (days 20-21), which was attributed to the rapid metabolism of TDCPP throughout incubation. To identify the most appropriate sampling time for rapidly metabolized compounds, the present study assessed the time-dependent effects of TDCPP on 27 genes, in ovo (50 µg [116 nmol] TDCPP/g egg) and in vitro (10 µM), using a chicken ToxChip polymerase chain reaction array. The greatest magnitude in dysregulation (up to 362-fold) occurred on day 8 of incubation (in ovo) with alterations of genes involved in phase I, II, and III metabolism, among others. Gallbladder hypotrophy was observed by embryonic day 12, corroborating the finding in pipping embryos from our previous study. From days 12 to 19, genes involved in lipid homeostasis, steroid hormone metabolism, and oxidative stress were affected. In chicken embryonic hepatoctyes (CEHs), TDCPP was completely metabolized to bis(1,3-dichloro-2-propyl) phosphate (BDCPP) within 36 h, but transcriptional changes remained significant up to 36 h. These changes were not attributed to BDCPP exposure as it only altered 1 gene (CYP1A4). An 18-h exposure in CEHs altered the greatest number of genes, making it an appropriate time point for high-throughput chemical screening; however, depending on the biological pathways of interest, shorter or longer incubation times may be more informative. Overall, TDCPP elicits the transcriptional and phenotypic alterations observed in vitro and in ovo, whereas its major metabolite, BDCPP, is far less biologically active.
Collapse
Affiliation(s)
- Amani Farhat
- National Wildlife Research Centre, Environment Canada, Ottawa, Ontario, Canada
| | | | | | | | | | | | | |
Collapse
|
28
|
Liquid chromatography-electrospray–tandem mass spectrometry method for determination of organophosphate diesters in biotic samples including Great Lakes herring gull plasma. J Chromatogr A 2014; 1374:85-92. [DOI: 10.1016/j.chroma.2014.11.022] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2014] [Revised: 11/07/2014] [Accepted: 11/10/2014] [Indexed: 11/18/2022]
|
29
|
Su G, Crump D, Letcher RJ, Kennedy SW. Rapid in vitro metabolism of the flame retardant triphenyl phosphate and effects on cytotoxicity and mRNA expression in chicken embryonic hepatocytes. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2014; 48:13511-9. [PMID: 25350880 DOI: 10.1021/es5039547] [Citation(s) in RCA: 168] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
The organophosphate flame retardant, triphenyl phosphate (TPHP), has been detected with increasing frequency in environmental samples and its primary metabolite is considered to be diphenyl phosphate (DPHP). Information on the adverse effects of these compounds in avian species is limited. Here, we investigate the effects of TPHP and DPHP on cytotoxicity and mRNA expression, as well as in vitro metabolism of TPHP, by use of a chicken embryonic hepatocyte (CEH) screening assay. After 36 h of exposure, CEH cytotoxicity was observed following exposure to >10 μM TPHP (LC50 = 47 ± 8 μM), whereas no significant cytotoxic effects were observed for DPHP concentrations up to 1000 μM. Using a custom chicken ToxChip polymerase chain reaction (PCR) array, the number of genes altered by 10 μM DPHP (9 out of 27) was greater than that by 10 μM TPHP (4 out of 27). Importantly, 4 of 6 genes associated with lipid/cholesterol metabolism were significantly dysregulated by DPHP, suggesting a potential pathway of importance for DPHP toxicity. Rapid degradation of TPHP was observed in CEH exposed to 10 μM, but the resulting concentration of DPHP accounted for only 17% of the initial TPHP dosing concentration. Monohydroxylated-TPHP (OH-TPHP) and two (OH)2-TPHP isomers were identified in TPHP-exposed CEH, and concentrations of these metabolites increased over 0 to 36 h. Overall, this is the first reported evidence that across 27 toxicologically relevant genes, DPHP altered more transcripts than its precursor, and that TPHP is also metabolized via a hydroxylation pathway in CEH.
Collapse
Affiliation(s)
- Guanyong Su
- Environment Canada, National Wildlife Research Centre, Carleton University , Ottawa, Ontario K1A 0H3, Canada
| | | | | | | |
Collapse
|
30
|
McGoldrick DJ, Letcher RJ, Barresi E, Keir MJ, Small J, Clark MG, Sverko E, Backus SM. Organophosphate flame retardants and organosiloxanes in predatory freshwater fish from locations across Canada. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2014; 193:254-261. [PMID: 25063913 DOI: 10.1016/j.envpol.2014.06.024] [Citation(s) in RCA: 84] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2014] [Revised: 06/20/2014] [Accepted: 06/23/2014] [Indexed: 06/03/2023]
Abstract
Whole body homogenates of Lake Trout (Salvelinus namaycush) or Walleye (Sander vitreus) collected from Canadian lakes were screened for organophosphate flame retardant (OPFR) and organosiloxane compounds. Six OPFR and five siloxane compounds were detected above quantitation limits in at least one individual fish from sampled lakes. The OPFRs, tris(2-chloroethyl) phosphate (TCEP) and tris(2-butoxyethyl) phosphate (TBOEP), were most frequently quantified with concentrations ranging from <0.07 to 9.8 ng/g (ww). Levels of TBOEP were highest in fish from the Great Lakes region while TCEP was detected only in fish from the northernmost lakes in our network. Concentrations of the cyclic siloxanes, octamethylcyclotetrasiloxane (D4), decamethylcyclopentasiloxane (D5) and dodecamethylcyclohexasiloxane (D6), were above quantitation limits in all fish. D5 was the most abundant siloxane across all sampling locations with the highest concentrations (45-719 ng/g ww) observed in Lake Trout from the western end of Lake Ontario near the mouth of the Niagara River.
Collapse
Affiliation(s)
- Daryl J McGoldrick
- Water Science and Technology Directorate, Environment Canada, Burlington, ON, L7R 4A6, Canada.
| | - Robert J Letcher
- Ecotoxicology and Wildlife Health Division, Science and Technology Branch, Environment Canada, National Wildlife Research Centre, Carleton University, Ottawa, ON, K1A 0H3, Canada
| | - Enzo Barresi
- Water Science and Technology Directorate, Environment Canada, Burlington, ON, L7R 4A6, Canada
| | - Michael J Keir
- Water Science and Technology Directorate, Environment Canada, Burlington, ON, L7R 4A6, Canada
| | - Jeff Small
- Water Science and Technology Directorate, Environment Canada, Burlington, ON, L7R 4A6, Canada
| | - Mandi G Clark
- Water Science and Technology Directorate, Environment Canada, Burlington, ON, L7R 4A6, Canada
| | - Ed Sverko
- Water Science and Technology Directorate, Environment Canada, Burlington, ON, L7R 4A6, Canada
| | - Sean M Backus
- Water Science and Technology Directorate, Environment Canada, Burlington, ON, L7R 4A6, Canada
| |
Collapse
|
31
|
Greaves AK, Letcher RJ. Comparative body compartment composition and in ovo transfer of organophosphate flame retardants in North American Great Lakes herring gulls. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2014; 48:7942-50. [PMID: 24905208 DOI: 10.1021/es501334w] [Citation(s) in RCA: 151] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Although recent usage of organophosphate (OP) flame retardants has increased substantially, very few studies have reported on OPs in biota including wildlife, and essentially there is no information on OP body compartment composition and in ovo or in utero transfer for any given wildlife species. Concentrations and patterns of 16 OP triesters were presently screened for and/or determined in six body compartments from female herring gulls (Larus argentatus; n=8) and the separate egg yolk and albumen of their entire clutches of eggs (n=16) (collected in 2010 from a Lake Huron colony site, Laurentian Great Lakes of North America). Fat (32.3±9.8 ng/g wet weight; ww) contained the highest ΣOP concentration, followed by egg yolk (14.8±2.4 ng/g ww)≈egg albumen (14.8±5.9 ng/g ww)>muscle (10.9±5.1 ng/g ww)≫red blood cells (1.00±0.62 ng/g ww), whereas in liver, blood plasma, and brain all OPs were not detectable. Nine OPs accumulated in herring gulls, but the concentrations and proportions of OPs were dependent on the body and egg compartment. For example, tris(2-butoxyethyl) phosphate (TBOEP) accounted for 66% of the ΣOP concentration in albumen, but only for 13% in yolk. Tri-n-butyl phosphate (TNBP) accounted for 25% of the ΣOP concentration in yolk, but was not detected in albumen. Estimates showed that overall OP burdens in the body (3.5 μg) were greater than in the whole egg (1.2 μg), although depuration via in ovo transfer was substantial.
Collapse
Affiliation(s)
- Alana K Greaves
- Department of Chemistry, Carleton University , Ottawa, Ontario K1S 5B6, Canada
| | | |
Collapse
|
32
|
Rao W, Mitchell D, Licence P, Barrett DA. The use of dicationic ion-pairing compounds to enhance the ambient detection of surface lipids in positive ionization mode using desorption electrospray ionisation mass spectrometry. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2014; 28:616-624. [PMID: 24519824 DOI: 10.1002/rcm.6826] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2013] [Revised: 01/02/2014] [Accepted: 01/04/2014] [Indexed: 06/03/2023]
Abstract
RATIONALE Lipids are typically analysed in negative ionisation mode in desorption electrospray ionisation mass spectrometry (DESI-MS), which can result in reduced sensitivity. In this study we examine the use of dicationic compounds as reactive DESI-MS agents to detect a range of lipid standards from the surface in positive ionisation mode. METHODS Nine dicationic compounds were tested for their ability to detect seven representative lipid species (palmitoleic acid, linoleic acid, phosphatidic acid (34:1), phosphoethanolamine (34:2), phosphatidylglycerol (34:1), phosphatidylserine (36:1), and phosphoinositol (34:2)) with a 2D DESI source on hydrophobic surfaces. Two different solvent systems (methanol/chloroform (1:1) and methanol) were tested with each dicationic compound, with the DESI-MS analysis performed in the positive ionisation mode. RESULTS Most of the dications tested were able to form stable ion-pairs with the negatively charged lipid species when analysed from the surface with DESI-MS, and were detected readily in positive ionisation electrospray mode as singly charged species. The optimal solvent system was found to be methanol. The dicationic compound [C6(C1Pyrr)2][Br]2 was found to enhance the detection of palmitoleic acid (638%), linoleic acid (304%) and phosphoethanolamine (269%) compared with the negative ionisation mode. CONCLUSIONS We demonstrate the first successful application of dicationic compounds in DESI-MS for the ambient surface detection of model lipids in positive electrospray ionisation mode. Dicationic compounds could potentially be used as reactive DESI-MS agents to improve the ambient detection of a number of negatively charged analytes.
Collapse
Affiliation(s)
- Wei Rao
- Centre for Analytical Bioscience, School of Pharmacy, University of Nottingham, Nottingham, NG7 2RD, UK
| | | | | | | |
Collapse
|
33
|
Van den Eede N, Neels H, Jorens PG, Covaci A. Analysis of organophosphate flame retardant diester metabolites in human urine by liquid chromatography electrospray ionisation tandem mass spectrometry. J Chromatogr A 2013; 1303:48-53. [DOI: 10.1016/j.chroma.2013.06.042] [Citation(s) in RCA: 122] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2013] [Revised: 06/07/2013] [Accepted: 06/19/2013] [Indexed: 10/26/2022]
|
34
|
Analytical methods for selected emerging contaminants in human matrices—a review. Anal Bioanal Chem 2012; 404:2555-81. [DOI: 10.1007/s00216-012-6053-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2012] [Revised: 04/04/2012] [Accepted: 04/15/2012] [Indexed: 02/05/2023]
|
35
|
Crump D, Chiu S, Kennedy SW. Effects of tris(1,3-dichloro-2-propyl) phosphate and tris(1-chloropropyl) phosphate on cytotoxicity and mRNA expression in primary cultures of avian hepatocytes and neuronal cells. Toxicol Sci 2012; 126:140-8. [PMID: 22268003 DOI: 10.1093/toxsci/kfs015] [Citation(s) in RCA: 108] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Tris(1,3-dichloro-2-propyl) phosphate (TDCPP) and tris(1-chloropropyl) phosphate (TCPP) belong to a group of chemicals collectively known as triester organophosphate flame retardants (OPFRs). OPFRs are used in a wide range of consumer products and have been detected in biota, including free-living avian species; however, data on toxicological and molecular effects of exposure are limited. An in vitro screening approach was used to compare concentration-dependent effects of TDCPP and TCPP on cytotoxicity and messenger RNA (mRNA) expression in cultured hepatocytes and neuronal cells derived from embryonic chickens. TDCPP was toxic to hepatocytes (LC₅₀ = 60.3 ± 45.8μM) and neuronal cells (LC₅₀ = 28.7 ± 19.1μM), whereas TCPP did not affect viability in either cell type up to the highest concentration administered, 300μM. Real-time reverse transcription-PCR revealed alterations in mRNA abundance of genes associated with phase I and II metabolism, the thyroid hormone (TH) pathway, lipid regulation, and growth in hepatocytes. None of the transcripts measured in neuronal cells (D2, D3, RC3, and Oct-1) varied in response to TDCPP or TCPP exposure. Exposure to ≥ 10μM TDCPP and TCPP resulted in significant upregulation of CYP2H1 (4- to 8-fold), CYP3A37 (13- to 127-fold), and UGT1A9 (3.5- to 7-fold) mRNA levels. Transthyretin was significantly downregulated more than twofold by TCPP at 100μM; however, TDCPP did not alter its expression. Liver fatty acid-binding protein, TH-responsive spot 14-α, and insulin-like growth factor-1 were all downregulated (up to 10-fold) in hepatocytes exposed to ≥ 0.01μM TDCPP and TCPP. Taken together, our results indicate that genes associated with xenobiotic metabolism, the TH pathway, lipid regulation, and growth are vulnerable to TDCPP and TCPP administration in cultured avian hepatocytes. The mRNA expression data were similar to those from a previous study with hexabromocyclododecane.
Collapse
Affiliation(s)
- Doug Crump
- Environment Canada, National Wildlife Research Centre, 1125 Colonel By Drive, Ottawa, Ontario, Canada K1A 0H3.
| | | | | |
Collapse
|
36
|
Chen D, Letcher RJ, Chu S. Determination of non-halogenated, chlorinated and brominated organophosphate flame retardants in herring gull eggs based on liquid chromatography–tandem quadrupole mass spectrometry. J Chromatogr A 2012; 1220:169-74. [PMID: 22186491 DOI: 10.1016/j.chroma.2011.11.046] [Citation(s) in RCA: 133] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2011] [Revised: 11/04/2011] [Accepted: 11/23/2011] [Indexed: 11/16/2022]
Affiliation(s)
- Da Chen
- Ecotoxicology and Wildlife Health Division, Science and Technology Branch, Environment Canada, National Wildlife Research Centre, Carleton University, Ottawa, ON K1A 0H3, Canada
| | | | | |
Collapse
|