1
|
Fukuyama D, Sekimoto K. Functional Group Analysis of α-Pinene Oxidation Products Using Derivatization Reactions and High-Resolution Electrospray Ionization Collision-Induced Dissociation Mass Spectrometry. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2024; 35:728-737. [PMID: 38426451 DOI: 10.1021/jasms.3c00415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/02/2024]
Abstract
Oxidation products of monoterpenes (C10H16) play a significant role as precursors for secondary organic aerosol formation. They contain several structural isomers with multifunctional groups. However, only a few of these isomers have been identified experimentally. We describe a measurement technique for identifying oxygen-containing functional groups (carbonyl, carboxyl, and hydroxyl groups) included in monoterpene oxidation products. This technique involves (i) three derivatization reactions (oximation of carbonyls by O-(2,3,4,5,6-pentafluorobenzyl) hydroxylamine, methyl esterification of carboxylic acids by trimethylsilyl diazomethane, and acylation of alcohols by acetic anhydride), (ii) no preseparation high-resolution electrospray ionization mass spectrometry, and (iii) collision-induced dissociation. This technique was applied to functional group analysis of ozonolysis products for α-pinene. Multifunctional groups of known ozonolysis products were accurately identified. Furthermore, we successfully estimated the multifunctional groups of products that have not been previously reported.
Collapse
Affiliation(s)
- Daisuke Fukuyama
- Graduate School of Nanobioscience, Yokohama City University, 22-2 Seto, Kanazawa-ku, Yokohama 236-0027, Japan
| | - Kanako Sekimoto
- Graduate School of Nanobioscience, Yokohama City University, 22-2 Seto, Kanazawa-ku, Yokohama 236-0027, Japan
| |
Collapse
|
2
|
Ganneru S, Seetha BS, Mudiam MKR. A green deep eutectic solvent based dispersive liquid-liquid microextraction for the quantitative analysis of 21 polychlorinated biphenyl metabolites in food of animal origin using injector port silylation-gas chromatography-tandem mass spectrometry. J Chromatogr A 2023; 1708:464338. [PMID: 37703765 DOI: 10.1016/j.chroma.2023.464338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 08/24/2023] [Accepted: 08/27/2023] [Indexed: 09/15/2023]
Abstract
An analytical method was developed for the quantitative determination of 21 polychlorinated biphenyls (PCBs) metabolites (17 were -OH, 1 -MeO, and 3 were MeSO2) in foods of animal origin using deep eutectic solvent (DES) based dispersive liquid-liquid microextraction followed by injector port silylation-gas chromatography-tandem mass spectrometry. The type of DES (thymol: camphor, 1:1 molar ratio) and optimum volume of DES (300 µL), pH (7.0), and disperser solvent (acetonitrile) were optimized to attain the maximum extraction efficiency. The limit of detection, limit of quantification, and percent recovery were found to be in the range of 0.12-0.23 ng/mL, 0.40-0.76 ng/mL, and 80.1-111.4%, respectively. The expanded uncertainty was observed to be in the range of 7.2-22.8% for the targeted analytes. The proposed method was applied to real food samples (milk, meat, fish, and egg) and the levels were found to be in the range of 0.64-32.14 ng/g. This is first of its kind method using green solvent based method for the analysis of PCB metabolites (-OH, MeO, and MeSO2) and will find extensive application in routine testing for foods of animal origin.
Collapse
Affiliation(s)
- Sireesha Ganneru
- Analytical and Structural Chemistry Department, CSIR-Indian Institute of Chemical Technology, Tarnaka, Hyderabad, 500007, India
| | - Bala Subrahanyam Seetha
- Analytical and Structural Chemistry Department, CSIR-Indian Institute of Chemical Technology, Tarnaka, Hyderabad, 500007, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Mohana Krishna Reddy Mudiam
- Analytical and Structural Chemistry Department, CSIR-Indian Institute of Chemical Technology, Tarnaka, Hyderabad, 500007, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India; Analytical Division, Institute of Pesticide Formulation Technology (IPFT), Sector-20, Udyog Vihar, Gurugram 122016, Haryana, India.
| |
Collapse
|
3
|
Foguet-Romero E, Samarra I, Guirro M, Riu M, Joven J, Menendez JA, Canela N, DelPino-Rius A, Fernández-Arroyo S, Herrero P. Optimization of a GC-MS Injection-Port Derivatization Methodology to Enhance Metabolomics Analysis Throughput in Biological Samples. J Proteome Res 2022; 21:2555-2565. [PMID: 36180971 DOI: 10.1021/acs.jproteome.2c00119] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Advances in metabolomics analysis and data treatment increase the knowledge of complex biological systems. One of the most used methodologies is gas chromatography-mass spectrometry (GC-MS) due to its robustness, high separation efficiency, and reliable peak identification through curated databases. However, methodologies are not standardized, and the derivatization steps in GC-MS can introduce experimental errors and take considerable time, exposing the samples to degradation. Here, we propose the injection-port derivatization (IPD) methodology to increase the throughput in plasma metabolomics analysis by GC-MS. The IPD method was evaluated and optimized for different families of metabolites (organic acids, amino acids, fatty acids, sugars, sugar phosphates, etc.) in terms of residence time, injection-port temperature, and sample/derivatization reagent ratio. Finally, the method's usefulness was validated in a study consisting of a cohort of obese patients with or without nonalcoholic steatohepatitis. Our results show a fast, reproducible, precise, and reliable method for the analysis of biological samples by GC-MS. Raw data are publicly available at MetaboLights with Study Identifier MTBLS5151.
Collapse
Affiliation(s)
- Elisabet Foguet-Romero
- Centre for Omic Sciences (Joint Unit Eurecat─Universitat Rovira i Virgili), Unique Scientific and Technical Infrastructure (ICTS), Eurecat, Centre Tecnològic de Catalunya, Avda. De la Universitat, 1, 43204 Reus, Tarragona, Spain
| | - Iris Samarra
- Centre for Omic Sciences (Joint Unit Eurecat─Universitat Rovira i Virgili), Unique Scientific and Technical Infrastructure (ICTS), Eurecat, Centre Tecnològic de Catalunya, Avda. De la Universitat, 1, 43204 Reus, Tarragona, Spain
| | - Maria Guirro
- Centre for Omic Sciences (Joint Unit Eurecat─Universitat Rovira i Virgili), Unique Scientific and Technical Infrastructure (ICTS), Eurecat, Centre Tecnològic de Catalunya, Avda. De la Universitat, 1, 43204 Reus, Tarragona, Spain
| | - Marc Riu
- Centre for Omic Sciences (Joint Unit Eurecat─Universitat Rovira i Virgili), Unique Scientific and Technical Infrastructure (ICTS), Eurecat, Centre Tecnològic de Catalunya, Avda. De la Universitat, 1, 43204 Reus, Tarragona, Spain
| | - Jorge Joven
- Departament de Medicina i Cirurgia, Universitat Rovira i Virgili, 43201 Reus, Spain.,Institut d'investigació Sanitària Pere Virgili, Hospital Universitari de Sant Joan, Unitat de Recerca Biomèdica, 43204 Reus, Spain
| | - Javier A Menendez
- Girona Biomedical Research Institute (IdIBGi), Salt, 17190 Girona, Spain.,Metabolism & Cancer Group, ProCURE, Catalan Institute of Oncology, 17007 Girona, Spain
| | - Núria Canela
- Centre for Omic Sciences (Joint Unit Eurecat─Universitat Rovira i Virgili), Unique Scientific and Technical Infrastructure (ICTS), Eurecat, Centre Tecnològic de Catalunya, Avda. De la Universitat, 1, 43204 Reus, Tarragona, Spain
| | - Antoni DelPino-Rius
- Centre for Omic Sciences (Joint Unit Eurecat─Universitat Rovira i Virgili), Unique Scientific and Technical Infrastructure (ICTS), Eurecat, Centre Tecnològic de Catalunya, Avda. De la Universitat, 1, 43204 Reus, Tarragona, Spain
| | - Salvador Fernández-Arroyo
- Centre for Omic Sciences (Joint Unit Eurecat─Universitat Rovira i Virgili), Unique Scientific and Technical Infrastructure (ICTS), Eurecat, Centre Tecnològic de Catalunya, Avda. De la Universitat, 1, 43204 Reus, Tarragona, Spain
| | - Pol Herrero
- Centre for Omic Sciences (Joint Unit Eurecat─Universitat Rovira i Virgili), Unique Scientific and Technical Infrastructure (ICTS), Eurecat, Centre Tecnològic de Catalunya, Avda. De la Universitat, 1, 43204 Reus, Tarragona, Spain
| |
Collapse
|
4
|
Atapattu SN, Rosenfeld JM. Analytical derivatizations in environmental analysis. J Chromatogr A 2022; 1678:463348. [PMID: 35901668 DOI: 10.1016/j.chroma.2022.463348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 07/13/2022] [Accepted: 07/13/2022] [Indexed: 10/17/2022]
Abstract
Analytical derivatization is a technique that alters the structure of an analyte and produces a product more suitable for analysis. While this process can be time-consuming and add reagents to the procedure, it can also facilitate the isolation of the analyte(s), enhance analytes' stability, improve separation and sensitivity, and reduce matrix interferences. Since derivatization is a functional group analysis, it improves selectivity by separating reactive from neutral compounds during sample preparation. This technique introduces detector-orientated tags into analytes that lack suitable physicochemical properties for detection at low concentrations. Notably, many regulatory bodies, especially those in the environmental field, require these characteristics in analytical methods. This review focuses on note-worthy analytical derivatization methods employed in environmental analyses with functional groups, phenol, carboxylic acid, aldehyde, ketone, and thiol in aqueous, soil, and atmospheric sample matrices. Both advantages and disadvantages of analytical derivatization techniques are discussed. In addition, we discuss the future directions of analytical derivatization methods in environmental analysis and the potential challenges.
Collapse
Affiliation(s)
| | - Jack M Rosenfeld
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, ON L8S 4K1, Canada
| |
Collapse
|
5
|
Zhai C, Wang M, Lu Y, Yan H. Green synthesis of phloroglucinol-urotropine porous polymer: Ingenious miniaturized solid phase extraction for efficient purification and determination of polycyclic aromatic hydrocarbons in lotus roots. Food Chem 2022; 396:133690. [PMID: 35868285 DOI: 10.1016/j.foodchem.2022.133690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 07/05/2022] [Accepted: 07/10/2022] [Indexed: 11/19/2022]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) posed a serious threat to food safety and human health due to long-term emission. In this work, a new method was established using phloroglucinol-urotropine porous polymer (PU-PP) in a pipette tip for solid phase extraction (PT-SPE) for the first time and used prior to determination of four PAHs (phenanthrene, anthracene, fluoranthene, and pyrene) in lotus roots. Synthesis of the PU-PP adsorbent was green compared with alternatives; urotropine was used as a cross-linker and ethanol-water as the solvent. PU-PP-based PT-SPE had the advantages of low solvent consumption, good purification, practicability, stability, and low-cost. The proposed pre-purification method offered low limits of detection (0.09-0.28 ng/g) and good recoveries (84.6-114.3 %, RSDs ≤ 5.6 %) for determination of the four PAHs, which were detected at trace concentrations in samples. This new method provides an alternative for monitoring trace pollutants in aquatic plant ingredients.
Collapse
Affiliation(s)
- Chengcheng Zhai
- Key Laboratory of Public Health Safety of Hebei Province, College of Public Health, School of Life Sciences, Hebei University, Baoding 071002, China
| | - Mingwei Wang
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, College of Pharmaceutical Sciences, Hebei University, Baoding 071002, China
| | - Yanke Lu
- Key Laboratory of Public Health Safety of Hebei Province, College of Public Health, School of Life Sciences, Hebei University, Baoding 071002, China
| | - Hongyuan Yan
- Key Laboratory of Public Health Safety of Hebei Province, College of Public Health, School of Life Sciences, Hebei University, Baoding 071002, China; Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, College of Pharmaceutical Sciences, Hebei University, Baoding 071002, China.
| |
Collapse
|
6
|
Ibragic S, Barbini S, Oberlerchner JT, Potthast A, Rosenau T, Böhmdorfer S. Antioxidant properties and qualitative analysis of phenolic constituents in Ephedra spp. by HPTLC together with injection port derivatization GC-MS. J Chromatogr B Analyt Technol Biomed Life Sci 2021; 1180:122877. [PMID: 34371347 DOI: 10.1016/j.jchromb.2021.122877] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 07/21/2021] [Accepted: 07/23/2021] [Indexed: 11/27/2022]
Abstract
Ephedra herb extracts are being extensively investigated in terms of their antioxidative, antimicrobial and antiproliferative properties, with phenolic components being the general carriers of these bioactivities. Here we describe a comprehensive set of analytical methods employed to determine and characterize both the antioxidative activity and the qualitative profile of phenolic acids and flavonoids present in several Ephedra species of different geographical origin. Spectrophotometric methods were used to determine the total phenolic content, total flavonoid content and antioxidative activity. Multi-development HPTLC enabled chemical fingerprinting which can be used for species differentiation. Individual spots of the thin-layer chromatogram were subjected to GC-MS with injection port derivatization for identification, which was based on both the detected mass spectra and recorded retention indices. The results were compared and complemented with GC-MS using offline derivatization.
Collapse
Affiliation(s)
- Saida Ibragic
- University of Sarajevo, Faculty of Science, Department of Chemistry, Zmaja od Bosne 33-35, 71000 Sarajevo, Bosnia and Herzegovina
| | - Stefano Barbini
- University of Natural Resources and Life Sciences, Vienna (BOKU University), Department of Chemistry, Institute of Chemistry of Renewable Resources, Konrad-Lorenz-Straße 24, A-3430 Tulln, Austria
| | - Josua Timotheus Oberlerchner
- University of Natural Resources and Life Sciences, Vienna (BOKU University), Department of Chemistry, Institute of Chemistry of Renewable Resources, Konrad-Lorenz-Straße 24, A-3430 Tulln, Austria
| | - Antje Potthast
- University of Natural Resources and Life Sciences, Vienna (BOKU University), Department of Chemistry, Institute of Chemistry of Renewable Resources, Konrad-Lorenz-Straße 24, A-3430 Tulln, Austria
| | - Thomas Rosenau
- University of Natural Resources and Life Sciences, Vienna (BOKU University), Department of Chemistry, Institute of Chemistry of Renewable Resources, Konrad-Lorenz-Straße 24, A-3430 Tulln, Austria
| | - Stefan Böhmdorfer
- University of Natural Resources and Life Sciences, Vienna (BOKU University), Department of Chemistry, Institute of Chemistry of Renewable Resources, Konrad-Lorenz-Straße 24, A-3430 Tulln, Austria.
| |
Collapse
|
7
|
Jain R, Singh M, Kumari A, Tripathi RM. A rapid and cost-effective method based on dispersive liquid-liquid microextraction coupled to injection port silylation-gas chromatography-mass spectrometry for determination of morphine in illicit opium. ANALYTICAL SCIENCE ADVANCES 2021; 2:387-396. [PMID: 38715954 PMCID: PMC10989588 DOI: 10.1002/ansa.202000121] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 11/05/2020] [Accepted: 11/05/2020] [Indexed: 11/17/2024]
Abstract
A simple, rapid, cost-effective and environment friendly analytical method based on dispersive liquid-liquid microextraction (DLLME) coupled to injection port silylation (IPS)-gas chromatography-mass spectrometry is described for the determination of morphine in illicit opium samples. Raw opium was dispersed in ultrapure water and 5 mL of aqueous sample was subjected to DLLME by rapidly injecting a mixture of chloroform and acetone (extraction and disperser solvent, respectively) followed by ultrasonication for 1 min and subsequent centrifugation for 3 min at 5000 rpm. The sedimented phase thus obtained was reconstituted in acetonitrile and 1 µL along with 1 µL of N,O-Bis(trimethylsilyl)acetamide (BSA) was injected manually into GC-MS injection port at a temperature of 250°C. The derivatization reaction was completed instantaneously inside the heated GC-MS injection port without any side product. Various parameters associated with IPS and DLLME have been thoroughly optimized. Under the optimized conditions, the method has been found linear in the range of 5-50 µg/mL with a correlation coefficient (R 2) of 0.997. The limit of detection (LOD) and limit of quantification (LOQ) for morphine-diTMS were found to be 1.6 and 4.8 µg/mL. The method has been successfully applied for the quantitative analysis of morphine in illicit opium samples. In conclusion, the proposed method has completely eliminated the time consuming and laborious steps of LLE and in-vial silylation and can be routinely used for analysis of opium and other polar analytes in forensic science laboratories.
Collapse
Affiliation(s)
- Rajeev Jain
- Forensic Toxicology DivisionCentral Forensic Science Laboratory, Directorate of Forensic Science Services, Ministry of Home Affairs, Government of IndiaSector 36‐A, Dakshin MargChandigarh160036India
| | - Meenu Singh
- Explosives DivisionCentral Forensic Science Laboratory, Directorate of Forensic Science Services, Ministry of Home Affairs, Government of IndiaSector 36‐A, Dakshin MargChandigarh160036India
| | - Aparna Kumari
- Forensic Toxicology DivisionCentral Forensic Science Laboratory, Directorate of Forensic Science Services, Ministry of Home Affairs, Government of IndiaSector 36‐A, Dakshin MargChandigarh160036India
| | - Rohitshva Mani Tripathi
- Forensic Toxicology DivisionCentral Forensic Science Laboratory, Directorate of Forensic Science Services, Ministry of Home Affairs, Government of IndiaSector 36‐A, Dakshin MargChandigarh160036India
| |
Collapse
|
8
|
da Cunha KF, Lanaro R, Martins AF, Oliveira KD, Costa JL. Use of injection-port derivatization for the analysis of cocaine and its metabolites in urine by gas chromatography–tandem mass spectrometry. Forensic Toxicol 2020. [DOI: 10.1007/s11419-020-00545-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
9
|
Aresta A, Cotugno P, Zambonin C. Solid-phase microextraction and on-fiber derivatization for assessment of mammalian and vegetable milks with emphasis on the content of major phytoestrogens. Sci Rep 2019; 9:6398. [PMID: 31024018 PMCID: PMC6484104 DOI: 10.1038/s41598-019-42883-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Accepted: 04/05/2019] [Indexed: 12/02/2022] Open
Abstract
A new solvent-free method for the simultaneous determination of some major phytoestrogens (equol, enterodiol, daidzein, genistein, glycitein) in different commercial milks (cow, goat and soy-rice) was developed. After solid phase microextraction, performed by direct immersion of a 65 μm-polydimethylsiloxane–divinylbenzene fiber in diluted (1:100 with 0.2% formic acid - 30% sodium chloride) milk samples (18 °C for 20 min under stirring), a direct on-fiber silylation with N,O-bis (trimethylsilyl)trifluoroacetamide) containing 1% trimethylchlorosilane (70 °C for 20 min) was performed prior to gas chromatography–mass spectrometry analysis. Since the target compounds were determined as aglycones, the hydrolytic removal of the aglycone from the glycosides was performed. The method permitted the determination of the target analytes in all the considered milk samples as well as the detection of some major amphipathic fats indicating that the approach could potentially be applied in the future for further applications, such as milk profiling.
Collapse
Affiliation(s)
- Antonella Aresta
- Department of Chemistry, University of Bari "Aldo Moro", Via Orabona 4, 70125, Bari, Italy.
| | | | - Carlo Zambonin
- Department of Chemistry, University of Bari "Aldo Moro", Via Orabona 4, 70125, Bari, Italy
| |
Collapse
|
10
|
Makoś P, Fernandes A, Przyjazny A, Boczkaj G. Sample preparation procedure using extraction and derivatization of carboxylic acids from aqueous samples by means of deep eutectic solvents for gas chromatographic-mass spectrometric analysis. J Chromatogr A 2018; 1555:10-19. [DOI: 10.1016/j.chroma.2018.04.054] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Revised: 04/18/2018] [Accepted: 04/23/2018] [Indexed: 11/15/2022]
|
11
|
Li J, Ma LY, Li LS, Xu L. Photodegradation kinetics, transformation, and toxicity prediction of ketoprofen, carprofen, and diclofenac acid in aqueous solutions. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2017; 36:3232-3239. [PMID: 28718961 DOI: 10.1002/etc.3915] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Revised: 06/20/2017] [Accepted: 07/13/2017] [Indexed: 06/07/2023]
Abstract
Photodegradation of 3 commonly used nonsteroidal anti-inflammatory drugs, ketoprofen, carprofen, and diclofenac acid, was conducted under ultraviolet (UV) irradiation. The kinetic results showed that the 3 pharmaceuticals obeyed the first-order reaction with decreasing rate constants of 1.54 × 10-4 , 5.91 × 10-5 , and 7.78 × 10-6 s-1 for carprofen, ketoprofen, and diclofenac acid, respectively. Moreover, the main transformation products were identified by ion-pair liquid-liquid extraction combined with injection port derivatization-gas chromatography-mass spectrometry and high-performance liquid chromatography-quadrupole-time of flight mass spectrometric analysis. There were 8, 3, and 6 transformation products identified for ketoprofen, carprofen, and diclofenac acid, respectively. Decarboxylation, dechlorination, oxidation, demethylation, esterification, and cyclization were proposed to be associated with the transformation of the 3 pharmaceuticals. Toxicity prediction of the transformation products was conducted on the EPI Suite software based on ECOSAR model, and the results indicate that some of the transformation products were more toxic than the parent compounds. The present study provides the foundation to understand the transformation behavior of the studied pharmaceuticals under UV irradiation. Environ Toxicol Chem 2017;36:3232-3239. © 2017 SETAC.
Collapse
Affiliation(s)
- Jian Li
- Tongji School of Pharmacy, Huazhong University of Science and Technology, Wuhan, China
- Yichang Central People's Hospital, Yichang, China
| | - Li-Yun Ma
- Tongji School of Pharmacy, Huazhong University of Science and Technology, Wuhan, China
| | - Lu-Shuang Li
- Tongji School of Pharmacy, Huazhong University of Science and Technology, Wuhan, China
| | - Li Xu
- Tongji School of Pharmacy, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
12
|
Makoś P, Fernandes A, Boczkaj G. Method for the determination of carboxylic acids in industrial effluents using dispersive liquid-liquid microextraction with injection port derivatization gas chromatography-mass spectrometry. J Chromatogr A 2017; 1517:26-34. [PMID: 28855089 DOI: 10.1016/j.chroma.2017.08.045] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Revised: 08/14/2017] [Accepted: 08/15/2017] [Indexed: 10/19/2022]
Abstract
The paper presents a new method for the determination of 15 carboxylic acids in samples of postoxidative effluents from the production of petroleum bitumens using ion-pair dispersive liquid-liquid microextraction and gas chromatography coupled to mass spectrometry with injection port derivatization. Several parameters related to the extraction and derivatization efficiency were optimized. Under optimized experimental conditions, the obtained limit of detection and quantification ranged from 0.0069 to 1.12μg/mL and 0.014 to 2.24μg/mL, respectively. The precision (RSD ranged 1.29-6.42%) and recovery (69.43-125.79%) were satisfactory. Nine carboxylic acids at concentrations ranging from 0.10μg/mL to 15.06μg/mL were determined in the raw wastewater and in samples of effluents treated by various oxidation methods. The studies revealed a substantial increase of concentration of benzoic acids, in samples of wastewater after treatment, which confirms the need of carboxylic acids monitoring during industrial effluent treatment processes.
Collapse
Affiliation(s)
- Patrycja Makoś
- Gdansk University of Technology, Faculty of Chemistry, Department of Chemical and Process Engineering, 80-233 Gdansk, G. Narutowicza St. 11/12, Poland
| | - Andre Fernandes
- Gdansk University of Technology, Faculty of Chemistry, Department of Chemical and Process Engineering, 80-233 Gdansk, G. Narutowicza St. 11/12, Poland
| | - Grzegorz Boczkaj
- Gdansk University of Technology, Faculty of Chemistry, Department of Chemical and Process Engineering, 80-233 Gdansk, G. Narutowicza St. 11/12, Poland.
| |
Collapse
|
13
|
Rapid multiresidue determination of bisphenol analogues in soil with on-line derivatization. Anal Bioanal Chem 2017; 409:4571-4580. [DOI: 10.1007/s00216-017-0399-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Revised: 04/24/2017] [Accepted: 05/08/2017] [Indexed: 10/19/2022]
|
14
|
Ma L, Li J, Xu L. Aqueous chlorination of fenamic acids: Kinetic study, transformation products identification and toxicity prediction. CHEMOSPHERE 2017; 175:114-122. [PMID: 28211324 DOI: 10.1016/j.chemosphere.2017.02.045] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2016] [Revised: 02/04/2017] [Accepted: 02/07/2017] [Indexed: 06/06/2023]
Abstract
Fenamic acids, one important type of non-steroidal anti-inflammatory drugs, are ubiquitous in environmental matrices. Thus it is of high significance to know the fate of them during chlorination disinfection considering their potential toxicity to the environment and humans. In the present study, the chlorination kinetics of three fenamic acids, i.e. mefenamic acid (MEF), tolfenamic acid (TOL) and clofenamic acid (CLO), were examined at different pHs, which followed second-order reaction under studied conditions. The studied fenamic acids degraded fast, with the largest apparent second-order rate coefficient (kapp) values of 446.7 M-1 s-1 (pH 7), 393.3 M-1 s-1 (pH 8) and 360.0 M-1 s-1 (pH 6) for MEF, TOL and CLO, respectively. The transformation products (TPs) were identified by solid-phase extraction-liquid chromatography-mass spectrometer and ion-pair liquid-liquid extraction and injection port derivatization-gas chromatography-mass spectrometer. Despite different numbers of TPs were detected for each studied fenamic acid through these two analytical methods, the types of TPs were almost the same; chlorine substitution, oxidation and the joint oxidation with chlorine substitution are transformation reactions involved in chlorination. Moreover, the total toxicity of the TPs was assayed based on luminescent bacteria. Under different pHs, the different types of TPs might form, resulting in the varied total toxicity. The toxicity of all three fenamic acids chlorinated at pH of 8 was greater than those at pHs of 6 and 7. This study provided the information about the kinetics, transformation and toxicity of three fenamic acids during water chlorination, which is important to the drinking water safety.
Collapse
Affiliation(s)
- Liyun Ma
- Tongji School of Pharmacy, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Jian Li
- Tongji School of Pharmacy, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Li Xu
- Tongji School of Pharmacy, Huazhong University of Science and Technology, Wuhan 430030, China.
| |
Collapse
|
15
|
Djatmika R, Hsieh CC, Chen JM, Ding WH. Determination of paraben preservatives in seafood using matrix solid-phase dispersion and on-line acetylation gas chromatography−mass spectrometry. J Chromatogr B Analyt Technol Biomed Life Sci 2016; 1036-1037:93-99. [DOI: 10.1016/j.jchromb.2016.10.005] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2016] [Revised: 10/03/2016] [Accepted: 10/07/2016] [Indexed: 11/25/2022]
|
16
|
Simultaneous analysis of fructose and creatinine in urine samples using GC–MS/MS and enzymatic methods. MONATSHEFTE FUR CHEMIE 2016. [DOI: 10.1007/s00706-016-1770-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
17
|
Chen JM, Yang CC, Chung WH, Ding WH. Vortex-homogenized matrix solid-phase dispersion coupled with gas chromatography – electron-capture negative-ion mass spectrometry to determine halogenated phenolic compounds in seafood. RSC Adv 2016. [DOI: 10.1039/c6ra20680h] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
This work represents the development of vortex-homogenized matrix solid-phase dispersion (VH-MSPD) as an effective and simple method to rapidly extract halogenated phenolic compounds in marketed seafood samples.
Collapse
Affiliation(s)
- Jhih-Ming Chen
- Department of Chemistry
- National Central University
- Chung-Li 320
- Taiwan
| | - Chun-Chuan Yang
- Department of Chemistry
- National Central University
- Chung-Li 320
- Taiwan
| | - Wu-Hsun Chung
- Department of Chemistry
- National Central University
- Chung-Li 320
- Taiwan
- Department of Chemical Engineering
| | - Wang-Hsien Ding
- Department of Chemistry
- National Central University
- Chung-Li 320
- Taiwan
| |
Collapse
|
18
|
Current status and recent advantages in derivatization procedures in human doping control. Bioanalysis 2015; 7:2537-56. [DOI: 10.4155/bio.15.172] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Derivatization is one of the most important steps during sample preparation in doping control analysis. Its main purpose is the enhancement of chromatographic separation and mass spectrometric detection of analytes in the full range of laboratory doping control activities. Its application is shown to broaden the detectable range of compounds, even in LC–MS analysis, where derivatization is not a prerequisite. The impact of derivatization initiates from the stage of the metabolic studies of doping agents up to the discovery of doping markers, by inclusion of the screening and confirmation procedures of prohibited substances in athlete's urine samples. Derivatization renders an unlimited number of opportunities to advanced analyte detection.
Collapse
|
19
|
Novosjolova I, Turks M. User Friendly Synthesis of Vogel’S Silyl Sulfinate and its Application in Quantitative Gc–Ms Analysis. PHOSPHORUS SULFUR 2015. [DOI: 10.1080/10426507.2014.996644] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
- Irina Novosjolova
- Faculty of Material Science and Applied Chemistry, Riga Technical University, Paula Valdena Str. 3, Riga, LV-1007, Latvia
| | - Māris Turks
- Faculty of Material Science and Applied Chemistry, Riga Technical University, Paula Valdena Str. 3, Riga, LV-1007, Latvia
| |
Collapse
|
20
|
Gupta MK, Jain R, Singh P, Ch R, Mudiam MKR. Determination of Urinary PAH Metabolites Using DLLME Hyphenated to Injector Port Silylation and GC-MS-MS. J Anal Toxicol 2015; 39:365-73. [PMID: 25845603 DOI: 10.1093/jat/bkv023] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are ubiquitous environmental pollutants and well-known carcinogens. Hydroxy derivatives of PAH are considered as biomarkers of PAH exposure, and there is a need to measure these metabolites at low concentrations. So, a precise and eco-friendly analytical method has been developed for rapid determination of PAH metabolites. For the first time, a new analytical method based on coupling of dispersive liquid-liquid microextraction (DLLME) with auto-injector port silylation (auto-IPS) followed by gas chromatography-tandem mass spectrometry (GC-MS-MS) analysis is reported for the analysis of seven urinary PAH metabolites. Factors affecting DLLME and IPS, such as type and volume of extraction and disperser solvent, pH, ionic strength, injector port temperature, volume of N,O-bis(trimethylsilyl)trifluoroacetamide and type of solvent were investigated. Under optimized conditions, the limit of detection and limit of quantification were found to be in the range of 1-9 and 3-29 ng/mL, respectively. Satisfactory recoveries of metabolites in urine samples in the range of 87-95% were found. The developed method has been successfully applied for the determination of PAH metabolites in urine samples of exposed workers. DLLME-auto-IPS-GC-MS-MS method is time, labor, solvent and reagent saving, which can be routinely used for the analysis of urinary PAH metabolites.
Collapse
Affiliation(s)
- Manoj Kumar Gupta
- Academy of Scientific and Innovative Research (AcSIR), CSIR-Indian Institute of Toxicology Research (CSIR-IITR), PO Box 80, MG Marg, Lucknow 226001, India Analytical Chemistry Section, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), PO Box 80, MG Marg, Lucknow 226001, India
| | - Rajeev Jain
- Analytical Chemistry Section, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), PO Box 80, MG Marg, Lucknow 226001, India
| | - Pratibha Singh
- Analytical Chemistry Section, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), PO Box 80, MG Marg, Lucknow 226001, India
| | - Ratnasekhar Ch
- Academy of Scientific and Innovative Research (AcSIR), CSIR-Indian Institute of Toxicology Research (CSIR-IITR), PO Box 80, MG Marg, Lucknow 226001, India Analytical Chemistry Section, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), PO Box 80, MG Marg, Lucknow 226001, India
| | - Mohana Krishna Reddy Mudiam
- Academy of Scientific and Innovative Research (AcSIR), CSIR-Indian Institute of Toxicology Research (CSIR-IITR), PO Box 80, MG Marg, Lucknow 226001, India Analytical Chemistry Section, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), PO Box 80, MG Marg, Lucknow 226001, India
| |
Collapse
|
21
|
Płotka-Wasylka JM, Morrison C, Biziuk M, Namieśnik J. Chemical derivatization processes applied to amine determination in samples of different matrix composition. Chem Rev 2015; 115:4693-718. [PMID: 26023865 DOI: 10.1021/cr4006999] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Justyna M Płotka-Wasylka
- †Department of Analytical Chemistry, Faculty of Chemistry, Gdańsk University of Technology, 11/12 Narutowicza Street, 80-233 Gdańsk, Poland
| | - Calum Morrison
- ‡Forensic Medicine and Science, School of Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, United Kingdom
| | - Marek Biziuk
- †Department of Analytical Chemistry, Faculty of Chemistry, Gdańsk University of Technology, 11/12 Narutowicza Street, 80-233 Gdańsk, Poland
| | - Jacek Namieśnik
- †Department of Analytical Chemistry, Faculty of Chemistry, Gdańsk University of Technology, 11/12 Narutowicza Street, 80-233 Gdańsk, Poland
| |
Collapse
|
22
|
Cavalheiro J, Monperrus M, Amouroux D, Preud’Homme H, Prieto A, Zuloaga O. In-port derivatization coupled to different extraction techniques for the determination of alkylphenols in environmental water samples. J Chromatogr A 2014; 1340:1-7. [DOI: 10.1016/j.chroma.2014.03.013] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2013] [Revised: 03/02/2014] [Accepted: 03/04/2014] [Indexed: 11/15/2022]
|