1
|
Dobó M, Dombi G, Köteles I, Fiser B, Kis C, Szabó ZI, Tóth G. Simultaneous Determination of Enantiomeric Purity and Organic Impurities of Dexketoprofen Using Reversed-Phase Liquid Chromatography-Enhancing Enantioselectivity through Hysteretic Behavior and Temperature-Dependent Enantiomer Elution Order Reversal on Polysaccharide Chiral Stationary Phases. Int J Mol Sci 2024; 25:2697. [PMID: 38473945 DOI: 10.3390/ijms25052697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 02/21/2024] [Accepted: 02/23/2024] [Indexed: 03/14/2024] Open
Abstract
A reversed-phase high-performance liquid chromatographic (HPLC) method was developed for the simultaneous determination of the potential impurities of dexketoprofen, including the distomer R-ketoprofen. After screening the separation capability of four polysaccharide columns (Lux Amylose-1, Lux Amylose-2, Lux Cellulose-1 and Lux Cellulose-2) in polar organic and in reversed-phase modes, appropriate enantioseparation was observed only on the Lux Amylose-2 column in an acidified acetonitrile/water mixture. A detailed investigation of the mobile phase composition and temperature for enantio- and chemoselectivity showed many unexpected observations. It was observed that both the resolution and the enantiomer elution order can be fine-tuned by varying the temperature and mobile phase composition. Moreover, hysteresis of the retention times and enantioselectivity was also observed in reversed-phase mode using methanol/water mixtures on amylose-type columns. This could indicate that the three-dimensional structure of the amylose column can change by transitioning from a polar organic to a reversed-phase mode, which affects the enantioseparation process. Temperature-dependent enantiomer elution order and rare enthalpic/entropic controlled enantioseparation in the operative temperature range were also observed in reversed-phase mode. To find the best methodological conditions for the determination of dexketoprofen impurities, a full factorial optimization design was performed. Using the optimized parameters (Lux Amylose-2 column with water/acetonitrile/acetic acid 50/50/0.1 (v/v/v) at a 1 mL/min flow rate at 20 °C), baseline separations were achieved between all compounds within 15 min. Our newly developed HPLC method was validated according to the current guidelines, and its application was tested on commercially available pharmaceutical formulations. According to the authors' knowledge, this is the first study to report hysteretic behavior on polysaccharide columns in reversed-phase mode.
Collapse
Affiliation(s)
- Máté Dobó
- Department of Pharmaceutical Chemistry, Semmelweis University, Hogyes 9, H-1092 Budapest, Hungary
| | - Gergely Dombi
- Department of Pharmaceutical Chemistry, Semmelweis University, Hogyes 9, H-1092 Budapest, Hungary
| | - István Köteles
- Department of Pharmaceutical Chemistry, Semmelweis University, Hogyes 9, H-1092 Budapest, Hungary
- Department of Chemistry and Molecular Biology, University of Gothenburg, Medicinaregatan 19, 41390 Göteborg, Sweden
| | - Béla Fiser
- Institute of Chemistry, University of Miskolc, H-3515 Miskolc, Hungary
- Ferenc Rakoczi II. Transcarpathian Hungarian College of Higher Education, 90200 Beregszasz, Ukraine
- Department of Physical Chemistry, Faculty of Chemistry, University of Lodz, 90-149 Lodz, Poland
| | - Csenge Kis
- Department of Pharmaceutical Industry and Management, George Emil Palade University of Medicine, Pharmacy, Science and Technology of Targu Mures, Gh. Marinescu 38, 540139 Targu Mures, Romania
| | - Zoltán-István Szabó
- Department of Pharmaceutical Industry and Management, George Emil Palade University of Medicine, Pharmacy, Science and Technology of Targu Mures, Gh. Marinescu 38, 540139 Targu Mures, Romania
- Sz-imfidum Ltd., Lunga nr. 504, 525401 Targu Mures, Romania
| | - Gergő Tóth
- Department of Pharmaceutical Chemistry, Semmelweis University, Hogyes 9, H-1092 Budapest, Hungary
| |
Collapse
|
2
|
Németi G, Berkecz R, Le TM, Szakonyi Z, Péter A, Ilisz I. High-performance liquid chromatographic enantioseparation of azole analogs of monoterpene lactones and amides focusing on the separation characteristics of polysaccharide-based chiral stationary phases. J Chromatogr A 2024; 1717:464660. [PMID: 38280361 DOI: 10.1016/j.chroma.2024.464660] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 01/10/2024] [Accepted: 01/13/2024] [Indexed: 01/29/2024]
Abstract
High-performance liquid chromatography-based enantioseparation of newly prepared azole analogs of monoterpene lactones and amides was studied. Effects of additives and mobile phase composition were evaluated both in normal and polar organic modes. Applying amylose tris-(3,5-dimethylphenylcarbamate) selector in normal and polar organic modes acid and base additives were found to affect the peak profiles, without significantly influencing the enantiorecognition ability of the studied selector. In most cases, differences observed in retention times and enantioselectivities were lower than 10 and 20 % under normal phase and polar organic conditions, respectively. Under normal phase conditions decreased retention was observed for all the studied analytes with increased eluent polarity. Interestingly, enantioselectivity was only slightly (<10 %) influenced by the variation in the n-hexane/2-propanol ratio between 80/20 and 20/80 v/v. In polar organic mode, five different neat solvents (acetonitrile, methanol, ethanol, 1-propanol, and 2-propanol) were tested, and the best results were obtained with acetonitrile and ethanol in the case of Lux Amylose-1 column with enantioresolutions most often above 2. Based on results obtained with amylose and cellulose-based columns the amylose tris-(3,5-dimethylphenylcarbamate) selector is found to offer a superior performance both in normal and polar organic modes. When evaluating the possible effects of the selector immobilization, no striking differences were found in the normal phase. Usually, enantioselectivities and resolutions were higher (10-20 %), while retention factors of the first peaks were lower (20-30 %), on the coated-type column. In contrast, in polar organic mode, the retention characteristics and enantiorecognition ability of the coated and immobilized selectors were heavily affected by the nature of the polar solvent. Special attention has been paid to the history-dependent behavior of polysaccharide-based selectors. A confidence interval-based evaluation is suggested to help comparison of the histereticity observed in different systems. Several examples are shown to confirm that the recently discovered hysteresis is a common characteristic of polysaccharide-based selectors.
Collapse
Affiliation(s)
- Gábor Németi
- Institute of Pharmaceutical Analysis, Interdisciplinary Excellence Centre, University of Szeged, H-6720 Szeged, Somogyi u. 4, Hungary
| | - Róbert Berkecz
- Institute of Pharmaceutical Analysis, Interdisciplinary Excellence Centre, University of Szeged, H-6720 Szeged, Somogyi u. 4, Hungary
| | - Tam Minh Le
- Institute of Pharmaceutical Chemistry, Interdisciplinary Excellence Centre, University of Szeged, H-6720 Szeged, Eötvös u. 6, Hungary
| | - Zsolt Szakonyi
- Institute of Pharmaceutical Chemistry, Interdisciplinary Excellence Centre, University of Szeged, H-6720 Szeged, Eötvös u. 6, Hungary
| | - Antal Péter
- Institute of Pharmaceutical Analysis, Interdisciplinary Excellence Centre, University of Szeged, H-6720 Szeged, Somogyi u. 4, Hungary
| | - István Ilisz
- Institute of Pharmaceutical Analysis, Interdisciplinary Excellence Centre, University of Szeged, H-6720 Szeged, Somogyi u. 4, Hungary.
| |
Collapse
|
3
|
Ferencz E, Kelemen ÉK, Obreja M, Tóth G, Urkon M, Zöldhegyi A, Sipos E, Szabó ZI. The Applicability of Chromatographic Retention Modeling on Chiral Stationary Phases in Reverse-Phase Mode: A Case Study for Ezetimibe and Its Impurities. Int J Mol Sci 2023; 24:16097. [PMID: 38003286 PMCID: PMC10671152 DOI: 10.3390/ijms242216097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 11/01/2023] [Accepted: 11/06/2023] [Indexed: 11/26/2023] Open
Abstract
Mechanistic modeling is useful for predicting and modulating selectivity even in early chromatographic method development. This approach is also in accordance with current analytical quality using design principles and is highly welcomed by the authorities. The aim of this study was to investigate the separation behavior of two different types of chiral stationary phases (CSPs) for the separation of ezetimibe and its related substances using the mechanistic retention modeling approach offered by the Drylab software (version 4.5) package. Based on the obtained results, both CSPs presented with chemoselectivity towards the impurities of ezetimibe. The cyclodextrin-based CSP displayed a higher separation capacity and was able to separate seven related substances from the active pharmaceutical ingredient, while the cellulose-based column enabled the baseline resolution of six impurities from ezetimibe. Generally, the accuracy of predicted retention times was lower for the polysaccharide CSP, which could indicate the presence of additional secondary interactions between the analytes and the CSP. It was also demonstrated that the combination of mechanistic modeling and an experimental design approach can be applied to method development on CSPs in reverse-phase mode. The applicability of the methods was tested on spiked artificial placebo samples, while intraday and long-term (2 years) method repeatability was also challenged through comparing the obtained retention times and resolution values. The results indicated the excellent robustness of the selected setpoints. Overall, our findings indicate that the chiral columns could offer orthogonal selectivity to traditional reverse-phase columns for the separation of structurally similar compounds.
Collapse
Affiliation(s)
- Elek Ferencz
- Department of Physical Chemistry, Faculty of Pharmacy, George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Targu Mures, 540142 Targu Mures, Romania;
- Gedeon Richter Romania S.A., Analytical Development Department, 540306 Targu Mures, Romania
| | - Éva-Katalin Kelemen
- Gedeon Richter Romania S.A., Analytical Development Department, 540306 Targu Mures, Romania
| | - Mona Obreja
- Gedeon Richter Romania S.A., Analytical Development Department, 540306 Targu Mures, Romania
| | - Gergő Tóth
- Department of Pharmaceutical Chemistry, Semmelweis University, 1083 Budapest, Hungary
| | - Melinda Urkon
- Department of Pharmacology and Clinical Pharmacy, George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Targu Mures, 540142 Targu Mures, Romania
| | - Arnold Zöldhegyi
- Molnár-Institute for Applied Chromatography, 10407 Berlin, Germany
| | - Emese Sipos
- Department of Pharmaceutical Industry and Management, George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Targu Mures, 540142 Targu Mures, Romania
| | - Zoltán-István Szabó
- Department of Pharmaceutical Industry and Management, George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Targu Mures, 540142 Targu Mures, Romania
- Sz-imfidum Ltd., 525401 Lunga, Romania
| |
Collapse
|
4
|
Peluso P, Chankvetadze B. Recognition in the Domain of Molecular Chirality: From Noncovalent Interactions to Separation of Enantiomers. Chem Rev 2022; 122:13235-13400. [PMID: 35917234 DOI: 10.1021/acs.chemrev.1c00846] [Citation(s) in RCA: 76] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
It is not a coincidence that both chirality and noncovalent interactions are ubiquitous in nature and synthetic molecular systems. Noncovalent interactivity between chiral molecules underlies enantioselective recognition as a fundamental phenomenon regulating life and human activities. Thus, noncovalent interactions represent the narrative thread of a fascinating story which goes across several disciplines of medical, chemical, physical, biological, and other natural sciences. This review has been conceived with the awareness that a modern attitude toward molecular chirality and its consequences needs to be founded on multidisciplinary approaches to disclose the molecular basis of essential enantioselective phenomena in the domain of chemical, physical, and life sciences. With the primary aim of discussing this topic in an integrated way, a comprehensive pool of rational and systematic multidisciplinary information is provided, which concerns the fundamentals of chirality, a description of noncovalent interactions, and their implications in enantioselective processes occurring in different contexts. A specific focus is devoted to enantioselection in chromatography and electromigration techniques because of their unique feature as "multistep" processes. A second motivation for writing this review is to make a clear statement about the state of the art, the tools we have at our disposal, and what is still missing to fully understand the mechanisms underlying enantioselective recognition.
Collapse
Affiliation(s)
- Paola Peluso
- Istituto di Chimica Biomolecolare ICB, CNR, Sede secondaria di Sassari, Traversa La Crucca 3, Regione Baldinca, Li Punti, I-07100 Sassari, Italy
| | - Bezhan Chankvetadze
- Institute of Physical and Analytical Chemistry, School of Exact and Natural Sciences, Tbilisi State University, Chavchavadze Avenue 3, 0179 Tbilisi, Georgia
| |
Collapse
|
5
|
Tai HC, Lin Z, Fabiano A, Zhou Y, Saurer EM, Ye YK, He BL. Evaluation of Chiral Normal-Phase Liquid Chromatography as a Secondary Tier in Pharmaceutical Chiral Screening Strategy. J Chromatogr A 2022; 1672:463053. [DOI: 10.1016/j.chroma.2022.463053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 04/08/2022] [Accepted: 04/10/2022] [Indexed: 10/18/2022]
|
6
|
Comparative Chiral Separation of Thalidomide Class of Drugs Using Polysaccharide-Type Stationary Phases with Emphasis on Elution Order and Hysteresis in Polar Organic Mode. Molecules 2021; 27:molecules27010111. [PMID: 35011343 PMCID: PMC8746373 DOI: 10.3390/molecules27010111] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 12/16/2021] [Accepted: 12/22/2021] [Indexed: 01/10/2023] Open
Abstract
The enantioseparation of four phthalimide derivatives (thalidomide, pomalidomide, lenalidomide and apremilast) was investigated on five different polysaccharide-type stationary phases (Chiralpak AD, Chiralpak AS, Lux Amylose-2, Chiralcel OD and Chiralcel OJ-H) using neat methanol (MeOH), ethanol (EtOH), 1-propanol (PROP), 2-propanol (IPA) and acetonitrile (ACN) as polar organic mobile phases and also in combination. Along with the separation capacity of the applied systems, our study also focuses on the elution sequences, the effect of mobile phase mixtures and the hysteresis of retention and selectivity. Although on several cases extremely high resolutions (Rs > 10) were observed for certain compounds, among the tested conditions only Chiralcel OJ-H column with MeOH was successful for baseline-separation of all investigated drugs. Chiral selector- and mobile-phase-dependent reversals of elution order were observed. Reversal of elution order and hysteresis of retention and enantioselectivity were further investigated using different eluent mixtures on Chiralpak AD, Chiralcel OD and Lux Amylose-2 column. In an IPA/MeOH mixture, enantiomer elution-order reversal was observed depending on the eluent composition. Furthermore, in eluent mixtures, enantioselectivity depends on the direction from which the composition of the eluent is approached, regardless of the eluent pair used on amylose-based columns. Using a mixture of polar alcohols not only the selectivities but the enantiomer elution order can also be fine-tuned on Chiralpak AD column, which opens up the possibility of a new type of chiral screening strategy.
Collapse
|
7
|
Saleh B, Ding T, Wang Y, Zheng X, Liu R, He L. Analytical Separation of Closantel Enantiomers by HPLC. Molecules 2021; 26:molecules26237288. [PMID: 34885866 PMCID: PMC8659055 DOI: 10.3390/molecules26237288] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 11/10/2021] [Accepted: 11/12/2021] [Indexed: 11/30/2022] Open
Abstract
Closantel is an antiparasitic drug marketed in a racemic form with one chiral center. It is meaningful to develop a method for separating and analyzing the closantel enantiomers. In this work, two enantiomeric separation methods of closantel were explored by normal-phase high-performance liquid chromatography. The influences of the chiral stationary phase (CSP) structure, the mobile phase composition, the nature and proportion of different mobile phase modifiers (alcohols and acids), and the column temperature on the enantiomeric separation of closantel were investigated in detail. The two enantiomers were successfully separated on the novel CSP of isopropyl derivatives of cyclofructan 6 and n-hexane-isopropanol-trifluoroacetic acid (97:3:0.1, v/v/v) as a mobile phase with a resolution (Rs) of about 2.48. The enantiomers were also well separated on the CSP of tris-carbamates of amylose with a higher Rs (about 3.79) when a mixture of n-hexane-isopropanol-trifluoroacetic acid (55:45:0.1, v/v/v) was used as mobile phase. Thus, the proposed separation methods can facilitate molecular pharmacological and biological research on closantel and its enantiomers.
Collapse
Affiliation(s)
- Basma Saleh
- National Reference Laboratory of Veterinary Drug Residues (SCAU), College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; (B.S.); (T.D.); (X.Z.)
- Directorate of Veterinary Medicine, General Organization of Veterinary Services, Ministry of Agriculture, Port Said 42511, Egypt
| | - Tongyan Ding
- National Reference Laboratory of Veterinary Drug Residues (SCAU), College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; (B.S.); (T.D.); (X.Z.)
| | - Yuwei Wang
- Quality Supervision, Inspection and Testing Center for Domestic Animal Products Guangzhou, Ministry of Agriculture and Rural Affairs, Guangzhou 510642, China; (Y.W.); (R.L.)
| | - Xiantong Zheng
- National Reference Laboratory of Veterinary Drug Residues (SCAU), College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; (B.S.); (T.D.); (X.Z.)
| | - Rong Liu
- Quality Supervision, Inspection and Testing Center for Domestic Animal Products Guangzhou, Ministry of Agriculture and Rural Affairs, Guangzhou 510642, China; (Y.W.); (R.L.)
| | - Limin He
- National Reference Laboratory of Veterinary Drug Residues (SCAU), College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; (B.S.); (T.D.); (X.Z.)
- Quality Supervision, Inspection and Testing Center for Domestic Animal Products Guangzhou, Ministry of Agriculture and Rural Affairs, Guangzhou 510642, China; (Y.W.); (R.L.)
- Correspondence: ; Tel.: +86-20-85280237; Fax: +86-20-85284896
| |
Collapse
|
8
|
Enantioselective Chromatographic Separation and Lipase Catalyzed Asymmetric Resolution of Biologically Important Chiral Amines. SEPARATIONS 2021. [DOI: 10.3390/separations8100165] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Cyanoacetamides are vital synthons in synthetic organic chemistry. However, methods to enantiopure cyanoacetamides have not yet been well explored. In this work, the preparation of cyanoacetamide synthons RS-(1a–4a) or methoxyacetamides RS-(1b–4b) in enantiopure/enriched form was investigated. Compounds S-1, S-2, R-1b, R-1a, andR-2b were prepared in enantiopure form (ee > 99%) while compounds S-4, R-2a, and R-4a were achieved in ee 9%, 80%, and 76%, respectively. Many baselines enantioselective HPLC separations of amines 1–4, their cyanoacetamides (1a–4a), and methoxyacetamides (1b–4b) were achieved by utilizing diverse mobile-phase compositions and two cellulose-based CSPs (ODH® and LUX-3® columns). Such enantioselective HPLC separations were used to monitor the lipase-catalyzed kinetic resolution of amines RS-(1–4).
Collapse
|
9
|
Shen X, Huang H, Qian H, Tang L, Zhang Y, Xu M, Wang H, Wang Z. Super Chirality Promotion of Helical Poly(Phenyl Isocyanide)s by Grafting onto Ethyl Cellulose. MACROMOL CHEM PHYS 2021. [DOI: 10.1002/macp.202100103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Xiaofei Shen
- Department of Polymer Science and Engineering School of Chemical Engineering Hefei University of Technology Anhui 230009 P. R. China
| | - Hailong Huang
- Shanghai Key Laboratory of Magnetic Resonance, School of Physics and Electronic Science East China Normal University Shanghai 200062 P. R. China
| | - Hao Qian
- Department of Polymer Science and Engineering School of Chemical Engineering Hefei University of Technology Anhui 230009 P. R. China
| | - Longxiang Tang
- Department of Polymer Science and Engineering School of Chemical Engineering Hefei University of Technology Anhui 230009 P. R. China
| | - Yan Zhang
- Department of Polymer Science and Engineering School of Chemical Engineering Hefei University of Technology Anhui 230009 P. R. China
| | - Min Xu
- Shanghai Key Laboratory of Magnetic Resonance, School of Physics and Electronic Science East China Normal University Shanghai 200062 P. R. China
| | - Huiqing Wang
- Department of Polymer Science and Engineering School of Chemical Engineering Hefei University of Technology Anhui 230009 P. R. China
| | - Zhongkai Wang
- Biomass Molecular Engineering Center, Department of Material Science and Engineering Anhui Agricultural University Hefei Anhui 230036 P. R. China
| |
Collapse
|
10
|
Varfaj I, Protti M, Cirrincione M, Carotti A, Mercolini L, Sardella R. Original enantioseparation of illicit fentanyls with cellulose-based chiral stationary phases under polar-ionic conditions. J Chromatogr A 2021; 1643:462088. [PMID: 33784502 DOI: 10.1016/j.chroma.2021.462088] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 03/16/2021] [Accepted: 03/19/2021] [Indexed: 10/21/2022]
Abstract
Fentanyl analogues used in therapy and a range of highly potent non-pharmaceutical fentanyl derivatives are subject to international control, as the latter are increasingly being synthesized illicitly and sold as 'synthetic heroin', or mixed with heroin. A significant number of hospitalizations and deaths have been reported in the EU and USA following the use of illicitly synthesized fentanyl derivatives. It has been unequivocally demonstrated that the enantiomers of fentanyl derivatives exhibit different pharmaco-toxicological profiles, which makes crucial to avail of suitable analytical methods enabling investigations at a "stereochemical level". Chromatographic methods useful to discriminate the enantioseparation of fentanyls and their derivatives are still missing in the literature. This is the first study in which the enantioseparation of four fentanyl derivatives, that is, (±)-trans-3-methyl norfentanyl, (±)-cis-3-methyl norfentanyl, β-hydroxyfentanyl, and β-hydroxythiofentanyl, has been obtained under polar-ionic conditions. Indeed, the use of ACN-based mobile phases with minor amounts of either 2-propanol or ethanol (plus diethylamine and formic acid as ionic additives) allowed obtaining enantioseparation and enantioresolution factors up to 1.83 and 7.02, respectively. For the study, the two chiral stationary phases cellulose tris(3-chloro-4-methylphenylcarbamate) and cellulose tris(4-chloro-3-methylphenylcarbamate) were used, displaying a remarkably different performance towards the enantioseparation of (±)-cis-3-methyl norfentanyl. Chiral LC analyses with a high-resolution mass spectrometry detector were also carried out in order to confirm the obtained data and demonstrate the suitability and compatibility of the optimized mobile phases with mass spectrometric systems.
Collapse
Affiliation(s)
- Ina Varfaj
- Department of Pharmaceutical Sciences, University of Perugia, Via Fabretti 48, 06123 Perugia, Italy
| | - Michele Protti
- Department of Pharmacy and Biotechnology (FaBiT), Alma Mater Studiorum, University of Bologna, Via Belmeloro 6, 40126 Bologna
| | - Marco Cirrincione
- Department of Pharmacy and Biotechnology (FaBiT), Alma Mater Studiorum, University of Bologna, Via Belmeloro 6, 40126 Bologna
| | - Andrea Carotti
- Department of Pharmaceutical Sciences, University of Perugia, Via Fabretti 48, 06123 Perugia, Italy
| | - Laura Mercolini
- Department of Pharmacy and Biotechnology (FaBiT), Alma Mater Studiorum, University of Bologna, Via Belmeloro 6, 40126 Bologna.
| | - Roccaldo Sardella
- Department of Pharmaceutical Sciences, University of Perugia, Via Fabretti 48, 06123 Perugia, Italy; Center for Perinatal and Reproductive Medicine, University of Perugia, Santa Maria della Misericordia University Hospital, 06132 Perugia, Italy.
| |
Collapse
|
11
|
Yang Y, Wang Y, Bao Z, Yang Q, Zhang Z, Ren Q. Progress in the Enantioseparation of β-Blockers by Chromatographic Methods. Molecules 2021; 26:molecules26020468. [PMID: 33477385 PMCID: PMC7830546 DOI: 10.3390/molecules26020468] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 01/11/2021] [Accepted: 01/12/2021] [Indexed: 12/31/2022] Open
Abstract
β-adrenergic antagonists (β-blockers) with at least one chiral center are an exceedingly important class of drugs used mostly to treat cardiovascular diseases. At least 70 β-blockers have been investigated in history. However, only a few β-blockers, e.g., timolol, are clinically marketed as an optically pure enantiomer. Therefore, the separation of racemates of β-blockers is essential both in the laboratory and industry. Many approaches have been explored to obtain the single enantiomeric β-blocker, including high performance liquid chromatography, supercritical fluid chromatography and simulated moving bed chromatography. In this article, a review is presented on different chromatographic methods applied for the enantioseparation of β-blockers, covering high performance liquid chromatography (HPLC), supercritical fluid chromatography (SFC) and simulated moving bed chromatography (SMB).
Collapse
Affiliation(s)
- Yiwen Yang
- Institute of Pharmaceutical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China; (Y.W.); (Z.B.); (Q.Y.); (Z.Z.); (Q.R.)
- Institute of Zhejiang University-Quzhou, Quzhou 324000, China
- Correspondence:
| | - Yehui Wang
- Institute of Pharmaceutical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China; (Y.W.); (Z.B.); (Q.Y.); (Z.Z.); (Q.R.)
| | - Zongbi Bao
- Institute of Pharmaceutical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China; (Y.W.); (Z.B.); (Q.Y.); (Z.Z.); (Q.R.)
- Institute of Zhejiang University-Quzhou, Quzhou 324000, China
| | - Qiwei Yang
- Institute of Pharmaceutical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China; (Y.W.); (Z.B.); (Q.Y.); (Z.Z.); (Q.R.)
- Institute of Zhejiang University-Quzhou, Quzhou 324000, China
| | - Zhiguo Zhang
- Institute of Pharmaceutical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China; (Y.W.); (Z.B.); (Q.Y.); (Z.Z.); (Q.R.)
- Institute of Zhejiang University-Quzhou, Quzhou 324000, China
| | - Qilong Ren
- Institute of Pharmaceutical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China; (Y.W.); (Z.B.); (Q.Y.); (Z.Z.); (Q.R.)
- Institute of Zhejiang University-Quzhou, Quzhou 324000, China
| |
Collapse
|
12
|
Tok KC, Gumustas M, Jibuti G, Suzen HS, Ozkan SA, Chankvetadze B. The Effect of Enantiomer Elution Order on the Determination of Minor Enantiomeric Impurity in Ketoprofen and Enantiomeric Purity Evaluation of Commercially Available Dexketoprofen Formulations. Molecules 2020; 25:molecules25245865. [PMID: 33322449 PMCID: PMC7763306 DOI: 10.3390/molecules25245865] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 12/05/2020] [Accepted: 12/08/2020] [Indexed: 12/13/2022] Open
Abstract
In a recent study, opposite enantiomer elution order was observed for ketoprofen enantiomers on two amylose-phenylcarbamate-based chiral columns with the same chemical composition of the chiral selector but in one case with coated while in the other with an immobilized chiral selector. In the present study, the influence of this uncommon effect on method validation parameters for the determination of minor enantiomeric impurity in dexketoprofen was studied. The validated methods with two alternative elution orders for enantiomers were applied for the evaluation of enantiomeric impurity in six marketed dexketoprofen formulations from various vendors. In most of these formulations except one the content of enantiomeric impurity exceeded 0.1% (w/w).
Collapse
Affiliation(s)
- Kenan Can Tok
- Department of Forensic Toxicology, Institute of Forensic Sciences, Ankara University, Ankara 06590, Turkey; (K.C.T.); (M.G.); (H.S.S.)
| | - Mehmet Gumustas
- Department of Forensic Toxicology, Institute of Forensic Sciences, Ankara University, Ankara 06590, Turkey; (K.C.T.); (M.G.); (H.S.S.)
| | - Giorgi Jibuti
- Institute of Physical and Analytical Chemistry, School of Exact and Natural Sciences, Tbilisi State University, Chavchavadze Ave 3, 0179 Tbilisi, Georgia;
| | - Halit Sinan Suzen
- Department of Forensic Toxicology, Institute of Forensic Sciences, Ankara University, Ankara 06590, Turkey; (K.C.T.); (M.G.); (H.S.S.)
- Department of Pharmaceutical Toxicology, Faculty of Pharmacy, Ankara University, Ankara 06560, Turkey
| | - Sibel A. Ozkan
- Department of Analytical Chemistry, Faculty of Pharmacy, Ankara University, Ankara 06560, Turkey;
| | - Bezhan Chankvetadze
- Institute of Physical and Analytical Chemistry, School of Exact and Natural Sciences, Tbilisi State University, Chavchavadze Ave 3, 0179 Tbilisi, Georgia;
- Correspondence: ; Tel.: +995-595-631900
| |
Collapse
|
13
|
Cai L, Xue M, Lun J, Li S, Yu J, Guo X. Enantioseparation and molecular modeling study of eight psychoactive drugs on a coated polysaccharide-based chiral stationary phase. Electrophoresis 2020; 41:2092-2101. [PMID: 32885849 DOI: 10.1002/elps.202000224] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Revised: 08/28/2020] [Accepted: 08/30/2020] [Indexed: 01/28/2023]
Abstract
The enantioseparation of eight psychoactive drugs has been firstly performed on a coated cellulose-based chiral stationary phase (Chiralcel OJ-H). To obtain optimum separation conditions, the influences of alcohol modifiers and basic/acidic additives have been studied. As a result, except for the partial separation of oxybutynin enantiomers, the other seven drug enantiomers, including mirtazapine, sulpiride, promethazine, citalopram, oxazepam, donepezil, and cyamemazine, have been completely separated. Additionally, for gaining a better insight into the chiral recognition mechanisms, molecular docking was carried out using the Autodock software. Herein, binding energy and conformations of the chiral stationary phase complexes were provided, and it was found that the distinction in enantiomeric conformation determined the number and strength of intermolecular interactions between analytes and chiral stationary phase which resulted in the difference in binding energies of two enantiomers, and ultimately led to the different migration. These modeling results were in accordance with the observed enantioseparation results in high performance liquid chromatography experiments. At last, chiral separation mechanisms have been discussed in detail, and it has been confirmed that hydrogen bond, π-π, hydrophobic interactions, and some special interactions synergistically contributed to the enantioseparation of psychoactive drugs.
Collapse
Affiliation(s)
- Liangzhao Cai
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, Liaoning Province, P. R. China
| | - Mengyao Xue
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, Liaoning Province, P. R. China
| | - Jia Lun
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, Liaoning Province, P. R. China
| | - Shuang Li
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, Liaoning Province, P. R. China
| | - Jia Yu
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, Liaoning Province, P. R. China
| | - Xingjie Guo
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, Liaoning Province, P. R. China
| |
Collapse
|
14
|
Quantitative Explanation of Basic Compound Retention Mechanisms in Reversed-Phase Mode Liquid Chromatography. SEPARATIONS 2020. [DOI: 10.3390/separations7040061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The quantitative analysis of the chromatographic behavior of basic compounds measured with pentyl-, hexenyl-, and octyl-bonded silica gels were analyzed in silico employing model phases. The main retention force was the van der Waals (VW) interaction, and the main desorption force was an electrostatic (ES) interaction. The contribution of hydrogen bonding (HB) was weak compared to that for acidic compounds. The quantitative explanation was achieved utilizing the calculated VW, HB, and ES energy values obtained from a molecular mechanics program. The electron localization was observed at the molecular interaction-site calculated MOPAC program. This fundamental approach was like that of explaining chemical reactions. The difference was electron localization in chromatography or electron transfer in a chemical reaction.
Collapse
|
15
|
Application of chiral chromatography in radiopharmaceutical fields: A review. J Chromatogr A 2020; 1632:461611. [PMID: 33086153 DOI: 10.1016/j.chroma.2020.461611] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 10/07/2020] [Accepted: 10/08/2020] [Indexed: 01/20/2023]
Abstract
Chiral column chromatography (CCC) is a revolutionary analytical methodology for the enantioseparation of novel positron emission tomography (PET) tracers in the primary stages of drug development. Due to the different behaviors of tracer enantiomers (e.g. toxicity, metabolism and side effects) in administrated subjects, their separation and purification is a challenging endeavor. Over the last three decades, different commercial chiral columns have been applied for the enantioseparation of PET-radioligand (PET-RL) or radiotracers (PET-RT), using high-performance liquid chromatography (HPLC). The categorization and reviewing of them is a vital topic. This review presents a brief overview of advances, applications, and future prospectives of CCC in radiopharmaceutical approaches. In addition, the effective chromatographic parameters and degravitation trends to enhance enantioseparation resolution are addressed. Moreover, the application and potential of chiral super fluidical chromatography (CSFC) as an alternative for enantioseparation in the field of radiopharmaceutical is discussed. Finally, the crucial application challenges of CCC are explained and imminent tasks are suggested.
Collapse
|
16
|
Chiral separation of several pesticides on an immobilized amylose tris(3-chloro-5-methylphenylcarbamate) column under polar-organic conditions. Influence of mobile phase and temperature on enantioselectivity. J Chromatogr A 2020; 1624:461240. [DOI: 10.1016/j.chroma.2020.461240] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Revised: 04/28/2020] [Accepted: 05/13/2020] [Indexed: 12/13/2022]
|
17
|
Separation of enantiomers of chiral basic drugs with amylose- and cellulose- phenylcarbamate-based chiral columns in acetonitrile and aqueous-acetonitrile in high-performance liquid chromatography with a focus on substituent electron-donor and electron-acceptor effects. J Chromatogr A 2020; 1624:461218. [DOI: 10.1016/j.chroma.2020.461218] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Revised: 05/04/2020] [Accepted: 05/06/2020] [Indexed: 11/20/2022]
|
18
|
Horváth S, Eke Z, Németh G. Utilization of the hysteresis phenomenon for chiral high-performance liquid chromatographic method selection in polar organic mode. J Chromatogr A 2020; 1625:461280. [PMID: 32709331 DOI: 10.1016/j.chroma.2020.461280] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 05/21/2020] [Accepted: 05/25/2020] [Indexed: 12/12/2022]
Abstract
Polysaccharide-based chiral stationary phases (CSPs) are outstandingly suitable to play a key role in chiral HPLC method selection strategies, since they provide high success rates. One reason for this ability is that they adopt a diversity of higher order structures in various eluents, resulting in versatile chiral environments. A potential to extend this versatility further was expected and examined in the present study, based on the recently discovered hysteretic behavior of a widely used chiral selector (CS), amylose tris(3,5-dimethylphenylcarbamate). The hindered transitions of its structure, which are behind the history dependence of its separation ability, were used as a tool to identify distinct states of the chiral selector in order to exploit an extended selectivity space. The identification was carried out using a single diagnostic compound, as opposed to the common approach where testing a library of compounds is required. Eluent mixtures consisting of 2-propanol and either methanol or ethanol were scrutinized in terms of stability and robustness of the observed retentions. The solvent mixtures that were eligible for practical application in these respects were used to construct a screening sequence, including identical compositions combined with different column pretreatment. The gain achievable by using the proposed sequence was then evaluated using 15 enantiomer pairs with focus on resolution, enantiomer elution order and chemoselectivity.
Collapse
Affiliation(s)
- Simon Horváth
- György Hevesy Doctoral School of Chemistry, Eötvös Loránd University, Pázmány Péter stny. 1/A, H-1117 Budapest, Hungary; Drug Substance Development Division, Egis Pharmaceuticals PLC, P. O. Box 100, H-1475 Budapest, Hungary
| | - Zsuzsanna Eke
- Joint Research and Training Laboratory on Separation Science, Eötvös Loránd University, Pázmány Péter stny. 1/A, H-1117 Budapest, Hungary; Wessling International Research and Educational Center, Anonymus u. 6., H-1045 Budapest, Hungary
| | - Gábor Németh
- Drug Substance Development Division, Egis Pharmaceuticals PLC, P. O. Box 100, H-1475 Budapest, Hungary.
| |
Collapse
|
19
|
Valliappan Kannappan, Selvakumar Kanthiah. Development and Optimization of Stereoselective Liquid Chromatographic Method for Chiral Separation of (±)-cetirizine and Enantiopurity Assessment of R-levocetirizine. JOURNAL OF ANALYTICAL CHEMISTRY 2020. [DOI: 10.1134/s1061934820030090] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
20
|
Fu Y, Borrull F, Fontanals N, Marcé RM. Comparison of polysaccharide‐based and protein‐based chiral liquid chromatography columns for enantioseparation of drugs. Chirality 2020; 32:876-884. [DOI: 10.1002/chir.23198] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 02/06/2020] [Accepted: 02/11/2020] [Indexed: 11/07/2022]
Affiliation(s)
- Yandi Fu
- Department of Analytical Chemistry and Organic ChemistryUniversitat Rovira i Virgili Tarragona Spain
| | - Francesc Borrull
- Department of Analytical Chemistry and Organic ChemistryUniversitat Rovira i Virgili Tarragona Spain
| | - Núria Fontanals
- Department of Analytical Chemistry and Organic ChemistryUniversitat Rovira i Virgili Tarragona Spain
| | - Rosa Maria Marcé
- Department of Analytical Chemistry and Organic ChemistryUniversitat Rovira i Virgili Tarragona Spain
| |
Collapse
|
21
|
Separation of 4C-Substituted Pyrrolidin-2-One Derivatives on Polysaccharide-Based Coated Chiral Stationary Phases. Chromatographia 2020. [DOI: 10.1007/s10337-020-03862-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
22
|
Huang Z, Guo D, Fan J, Zhong Y, Zhang M, He L, Zhang W. HPLC semi-preparative separation of diclazuril enantiomers and racemization in solution. J Sep Sci 2020; 43:1240-1247. [PMID: 31909564 DOI: 10.1002/jssc.201901201] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 01/02/2020] [Accepted: 01/02/2020] [Indexed: 01/20/2023]
Abstract
Diclazuril has been widely used in poultry feed for prevention and treatment of coccidiosis, and its chiral separation is rarely reported. Herein, semi-preparative separation method of diclazuril enantiomers has been developed through normal-phase high-performance liquid chromatography. Effects of chiral stationary phases, alcoholic modifiers, and column temperature on separation of diclazuril were discussed in detail. Both the single-urea-bound 4-chlorophenylcarbamoylated β-cyclodextrin and amylose tris(3,5-dimethylphenylcarbamate)-coated chiral stationary phases showed strong ability in separation of diclazuril by using n-hexane-trifluoroacetic acid-ethanol. Then, semi-preparative separation of diclazuril was carried out through stacked injection, and the "enantiomeric excess" purities of two fractions were over 98%. Next, the electronic circular dichroism profiles of these two fractions in ethanol solution displayed the mirror image of each other in the range 360-200 nm. Moreover, effects of acidic/basic additive, time, and temperature on racemization of diclazuril enantiomers in ethanol solution have been studied in detail through normal-phase high-performance liquid chromatography. Racemization of diclazuril enantiomers was remarkably accelerated through adding triethylamine at high temperature. We envision that this systematic investigation of diclazuril at an enantiomeric level would provide valuable information in future studies involving enantioselective bioactive, metabolic, and toxicological activities.
Collapse
Affiliation(s)
- Zhan Huang
- School of Chemistry, South China Normal University, Guangzhou, P. R. China
| | - Dong Guo
- School of Chemistry, South China Normal University, Guangzhou, P. R. China.,Guangzhou Research & Creativity Biotechnology Co. Ltd., Guangzhou, P. R. China
| | - Jun Fan
- School of Chemistry, South China Normal University, Guangzhou, P. R. China
| | - Yujing Zhong
- School of Chemistry, South China Normal University, Guangzhou, P. R. China
| | - Meiyu Zhang
- National Reference Laboratory of Veterinary Drug Residues, College of Veterinary Medicine, South China Agricultural University, Guangzhou, P. R. China
| | - Limin He
- National Reference Laboratory of Veterinary Drug Residues, College of Veterinary Medicine, South China Agricultural University, Guangzhou, P. R. China
| | - Weiguang Zhang
- School of Chemistry, South China Normal University, Guangzhou, P. R. China
| |
Collapse
|
23
|
Ali I, Suhail M, Asnin L, Aboul-Enein HY. Effect of Various Parameters and Mechanism of Reversal Order of Elution in Chiral HPLC. CURR ANAL CHEM 2020. [DOI: 10.2174/1573411015666190103145916] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Background:
Chiral separation involves many phenomena in which the elution order of
the enantiomers has its unique position. The phenomenon of elution order of the enantiomers has also
been used in the determination of optical purity which is favorable to elute the major component after
minor enantiomeric impurity but the main problem is that, this phenomenon is rare.
Results:
This review rumors the reversal order of elution of many chiral molecules in HPLC. Besides,
this review pronounces the effects of pH, derivatisation of drugs, the composition of the mobile
phase, and temperature on the reversal order of elution of chiral drugs. The efforts are also made
to discuss the possible future perspectives of reversal order of elution.
Conclusion:
Various parameters such as pH, mobile phase composition, temperature, and chemical
structure of the analytes play a role in the phenomena of the reversal order of elution of many chiral
molecules which are discussed in the article.
Collapse
Affiliation(s)
- Imran Ali
- Department of Chemistry, College of Science, Taibah University, Madinah, Saudi Arabia
| | - Mohd. Suhail
- Department of Chemistry, College of Science, Taibah University, Madinah, Saudi Arabia
| | - Leonind Asnin
- Perm National Research Polytechnic University, Perm, Russian Federation
| | - Hassan Y. Aboul-Enein
- Pharmaceutical and Medicinal Chemistry Department, Pharmaceutical and Drug Industries Research Division, National Research Centre, Dokki, Cairo 12311, Egypt
| |
Collapse
|
24
|
Shedania Z, Kakava R, Volonterio A, Farkas T, Chankvetadze B. Separation of enantiomers of chiral sulfoxides in high-performance liquid chromatography with cellulose-based chiral selectors using acetonitrile and acetonitrile-water mixtures as mobile phases. J Chromatogr A 2020; 1609:460445. [DOI: 10.1016/j.chroma.2019.460445] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 08/03/2019] [Accepted: 08/08/2019] [Indexed: 10/26/2022]
|
25
|
Echevarría RN, Keunchkarian S, Villarroel-Rocha J, Sapag K, Reta M. Organic monolithic capillary columns coated with cellulose tris(3,5-dimethylphenyl carbamate) for enantioseparations by capillary HPLC. Microchem J 2019. [DOI: 10.1016/j.microc.2019.104011] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
26
|
Ferencz E, Kovács B, Boda F, Foroughbakhshfasaei M, Kelemen ÉK, Tóth G, Szabó ZI. Simultaneous determination of chiral and achiral impurities of ivabradine on a cellulose tris(3-chloro-4-methylphenylcarbamate) chiral column using polar organic mode. J Pharm Biomed Anal 2019; 177:112851. [PMID: 31499427 DOI: 10.1016/j.jpba.2019.112851] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Revised: 08/29/2019] [Accepted: 08/30/2019] [Indexed: 11/15/2022]
Abstract
A high performance liquid chromatographic method was developed for the simultaneous determination of the related substances (R-ivabradine, dehydro-S-ivabradine, N-demethyl-S-ivabradine, ((S)-3,4-dimethoxy-bicyclo[4.2.0]octa-1,3,5-triene-7-yl-methyl)-methyl-amine) and 1-(7,8-dimethoxy-1,3,4,5-tetrahydro-2H-3-benzazepine-2-on-3-yl)-3-chloro-propane) of the heart-rate lowering drug, ivabradine. The separation capability of seven different polysaccharide-type chiral columns (Lux Amylose-1, Lux i-Amylose-1, Lux Amylose-2, Lux Cellulose-1, Lux Cellulose-2, Lux Cellulose-3 and Lux Cellulose-4) was investigated with a mobile phase consisting of 0.1% diethylamine in methanol, 2-propanol and acetonitrile. During the screnning experiments the best results were obtained on Lux Cellulose-2 (based on cellulose tris(3-chloro-4-methylphenylcarbamate) column with methanol with an ideal case, where all the impurities eluted before the S-ivabradine peak. Chromatographic parameters (flow rate, temperature and mobile phase constituents) were optimized by a full factorial screening design. Using optimized parameters (Lux Cellulose-2 column with 0.06% (v/v) diethylamine in methanol/acetonitrile 98/2 (v/v) with 0.45 mL/min flow rate at 12 °C) baseline separations were achieved between all compounds. The optimized method was validated according to the International Council on Harmonization Q2(R1) guideline and proved to be reliable, linear, precise and accurate for determination of at least 0.05% for all impurities in S-ivabradine samples. Method application was tested on a commercial tablet formulation and proved to be suitable for routine quality control of both chiral and achiral related substances of S-ivabradine.
Collapse
Affiliation(s)
- Elek Ferencz
- Faculty of Pharmacy, University of Medicine, Pharmacy, Sciences and Technology of Targu Mures, Gh. Marinescu 38, RO-540139, Tîrgu Mureș, Romania; Gedeon Richter Romania S.A., RO-540306, Tîrgu Mureș, Romania
| | - Béla Kovács
- Faculty of Pharmacy, University of Medicine, Pharmacy, Sciences and Technology of Targu Mures, Gh. Marinescu 38, RO-540139, Tîrgu Mureș, Romania; Gedeon Richter Romania S.A., RO-540306, Tîrgu Mureș, Romania
| | - Francisc Boda
- Faculty of Pharmacy, University of Medicine, Pharmacy, Sciences and Technology of Targu Mures, Gh. Marinescu 38, RO-540139, Tîrgu Mureș, Romania
| | | | | | - Gergő Tóth
- Department of Pharmaceutical Chemistry, Semmelweis University, Hőgyes E. u. 9, Budapest, Hungary.
| | - Zoltán-István Szabó
- Faculty of Pharmacy, University of Medicine, Pharmacy, Sciences and Technology of Targu Mures, Gh. Marinescu 38, RO-540139, Tîrgu Mureș, Romania; Gedeon Richter Romania S.A., RO-540306, Tîrgu Mureș, Romania.
| |
Collapse
|
27
|
Wang X, House DW, Oroskar PA, Oroskar A, Oroskar A, Jameson CJ, Murad S. Molecular dynamics simulations of the chiral recognition mechanism for a polysaccharide chiral stationary phase in enantiomeric chromatographic separations. Mol Phys 2019. [DOI: 10.1080/00268976.2019.1647360] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- Xiaoyu Wang
- Department of Chemical Engineering, Illinois Institute of Technology, Chicago, IL, USA
| | | | | | | | | | - Cynthia J. Jameson
- Department of Chemistry, University of Illinois at Chicago, Chicago, IL, USA
| | - Sohail Murad
- Department of Chemical Engineering, Illinois Institute of Technology, Chicago, IL, USA
| |
Collapse
|
28
|
Knežević A, Novak J, Vinković V. New Brush-Type Chiral Stationary Phases for Enantioseparation of Pharmaceutical Drugs. Molecules 2019; 24:molecules24040823. [PMID: 30823585 PMCID: PMC6412842 DOI: 10.3390/molecules24040823] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Revised: 02/20/2019] [Accepted: 02/21/2019] [Indexed: 11/25/2022] Open
Abstract
The importance of chirality in drug development is unquestionable, with chiral liquid chromatography (LC) being the most adequate technique for its analysis. Among the various types of chiral stationary phases (CSPs) for LC, brush-type CSPs provide the base for interaction analysis of CSPs and enantiomers, which provide valuable results that can be applied to interaction studies of other CSP types. In order to analyze the influence of aromatic interactions in chiral recognition, we designed a set of ten new brush-type CSPs based on (S)-N-(1-aryl-propyl)-3,5-dinitrobenzamides which differ in the aromatic unit directly linked to the chiral center. Thirty diverse racemates, including several nonsteroidal anti-inflammatory drugs and 3-hydroxybenzodiazepine drugs, were used to evaluate the prepared CSPs. Chromatographic analysis showed that the three new CSPs separate enantiomers of a wide range of compounds and their chromatographic behavior is comparable to the most versatile brush-type CSP—Whelk-O1. The critical role of the nonbonding interactions in positioning of the analyte (naproxen) in the cleft of CSP-6, as well as the analysis of interactions that make enantioseparation possible, were elucidated using computational methods. Furthermore, the influence of acetic acid as a mobile phase additive, on this enantiorecognition process was corroborated by calculations.
Collapse
Affiliation(s)
- Anamarija Knežević
- Division of Organic Chemistry and Biochemistry, Ruđer Bošković Institute, Bijenička cesta 54, Zagreb 10000, Croatia.
| | - Jurica Novak
- Division of Physical Chemistry, Ruđer Bošković Institute, Bijenička cesta 54, Zagreb 10000, Croatia.
- South Ural State University, 20-A, Tchaikovsky Str., Chelyabinsk 454080, Russia.
| | - Vladimir Vinković
- Division of Organic Chemistry and Biochemistry, Ruđer Bošković Institute, Bijenička cesta 54, Zagreb 10000, Croatia.
| |
Collapse
|
29
|
Zhang J, Sun J, Liu Y, Yu J, Guo X. Immobilized Cellulose-Based Chiralpak IC Chiral Stationary Phase for Enantioseparation of Eight Imidazole Antifungal Drugs in Normal-Phase, Polar Organic Phase and Reversed-Phase Conditions Using High-Performance Liquid Chromatography. Chromatographia 2019. [DOI: 10.1007/s10337-019-03688-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
30
|
Abstract
Stereospecific recognition of chiral molecules plays an important role in nature as the basis of the interaction of chiral bioactive compounds with the chiral target structures. In separation sciences such as chromatographic and capillary electromigration techniques, interactions between chiral analytes and chiral selectors, i.e., the formation of transient diastereomeric complexes in thermodynamic equilibria, are the basis for chiral separations. Due to the large structural variety of chiral selectors, different structural features contribute to the overall chiral recognition process. This introductory chapter briefly summarizes the present understanding of the structural enantioselective recognition processes for various types of chiral selectors.
Collapse
Affiliation(s)
- Gerhard K E Scriba
- Department of Pharmaceutical Chemistry, University of Jena, Jena, Germany.
| |
Collapse
|
31
|
Lipka E, Dascalu AE, Messara Y, Tsutsqiridze E, Farkas T, Chankvetadze B. Separation of enantiomers of native amino acids with polysaccharide-based chiral columns in supercritical fluid chromatography. J Chromatogr A 2019; 1585:207-212. [DOI: 10.1016/j.chroma.2018.11.049] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Revised: 11/14/2018] [Accepted: 11/20/2018] [Indexed: 11/15/2022]
|
32
|
Ishidate R, Sato T, Ikai T, Kanoh S, Yashima E, Maeda K. Helicity induction and memory effect in poly(biphenylylacetylene)s bearing various functional groups and their use as switchable chiral stationary phases for HPLC. Polym Chem 2019. [DOI: 10.1039/c9py01425j] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Poly(biphenylylacetylene)s bearing various functional groups were demonstrated to be used as elution order switchable chiral stationary phases for HPLC.
Collapse
Affiliation(s)
- Ryoma Ishidate
- Graduate School of Natural Science and Technology
- Kanazawa University
- Kanazawa 920-1192
- Japan
- Department of Molecular Design and Engineering
| | - Toru Sato
- Graduate School of Natural Science and Technology
- Kanazawa University
- Kanazawa 920-1192
- Japan
| | - Tomoyuki Ikai
- Graduate School of Natural Science and Technology
- Kanazawa University
- Kanazawa 920-1192
- Japan
- Department of Molecular Design and Engineering
| | - Shigeyoshi Kanoh
- Graduate School of Natural Science and Technology
- Kanazawa University
- Kanazawa 920-1192
- Japan
| | - Eiji Yashima
- Department of Molecular Design and Engineering
- Graduate School of Engineering
- Nagoya University
- Nagoya 464-8603
- Japan
| | - Katsuhiro Maeda
- Graduate School of Natural Science and Technology
- Kanazawa University
- Kanazawa 920-1192
- Japan
- Nano Life Science Institute (WPI-NanoLSI)
| |
Collapse
|
33
|
Jeevanandam J, Kulabhusan PK, Danquah MK. Biofunctional Nanoparticles for Protein Separation, Purification and Detection. HORIZONS IN BIOPROCESS ENGINEERING 2019:113-156. [DOI: 10.1007/978-3-030-29069-6_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
34
|
Cirilli R, Carradori S, Casulli A, Pierini M. A chromatographic study on the retention behavior of the amylose tris(3-chloro-5-methylphenylcarbamate) chiral stationary phase under aqueous conditions. J Sep Sci 2018; 41:4014-4021. [PMID: 30194899 DOI: 10.1002/jssc.201800696] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Revised: 08/28/2018] [Accepted: 08/29/2018] [Indexed: 01/02/2023]
Abstract
In this study, the retention properties of the immobilized polysaccharide-derived Chiralpak IG-3 chiral stationary phase under aqueous-organic conditions were investigated. A systematic evaluation of the retention factors of the enantiomers of the chiral sulfoxide oxfendazole, endowed with anthelmintic activity and selected as test compound, was carried out changing progressively the water content in hydro-organic eluents containing methanol, ethanol or acetonitrile. From the results obtained with acetonitrile/water mobile phases and the associated retention plots, clear U-shape retention dependencies, indicative of the interplay of both hydrophilic interaction liquid chromatography and reversed-phase modes, were highlighted. A U-turn point of retention mechanism was recorded in correspondence of the acetonitrile/water 100:40 v/v mobile phase. Retention was significantly affected by small percentages of trifluoroacetic acid or diethylamine additives incorporated in the mobile phase. It is worth emphasizing that the basic additive was more effective in reducing retention in the reversed-phase region, while the action of acid additive was more pronounced in the hydrophilic interaction liquid chromatography region. Finally, either in the transition from hydrophilic interaction liquid chromatography to reversed-phase conditions or after additive addition, the enantioselectivity did not vary significantly.
Collapse
Affiliation(s)
- Roberto Cirilli
- Centro nazionale per il controllo e la valutazione dei farmaci, Istituto Superiore di Sanità, Rome, Italy
| | - Simone Carradori
- Dipartimento di Farmacia, Università "G. D'Annunzio" di Chieti-Pescara, Chieti, Italy
| | - Adriano Casulli
- European Union Reference Laboratory for Parasites, Department of infectious diseases, Istituto Superiore di Sanità, Rome, Italy.,World Health Organization Collaborating Centre for the epidemiology, detection and control of cystic and alveolar echinococcosis, Istituto Superiore di Sanità, Rome, Italy
| | - Marco Pierini
- Dipartimento di Chimica e Tecnologie del Farmaco, "Sapienza" Università di Roma, Rome, Italy
| |
Collapse
|
35
|
Simultaneous determination of dextromepromazine and related substances 2-methoxyphenothiazine and levomepromazine sulfoxide in levomepromazine on a cellulose tris(4-methylbenzoate) chiral column. J Pharm Biomed Anal 2018; 158:294-299. [DOI: 10.1016/j.jpba.2018.06.012] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Revised: 06/06/2018] [Accepted: 06/07/2018] [Indexed: 11/18/2022]
|
36
|
Separation of enantiomers of chiral sulfoxides in high-performance liquid chromatography with cellulose-based chiral selectors using methanol and methanol-water mixtures as mobile phases. J Chromatogr A 2018; 1557:62-74. [DOI: 10.1016/j.chroma.2018.05.002] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Revised: 05/01/2018] [Accepted: 05/02/2018] [Indexed: 11/23/2022]
|
37
|
Padró JM, Keunchkarian S. State-of-the-art and recent developments of immobilized polysaccharide-based chiral stationary phases for enantioseparations by high-performance liquid chromatography (2013–2017). Microchem J 2018. [DOI: 10.1016/j.microc.2018.04.017] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
38
|
Tunable normal phase enantioselectivity of amino acid esters via mobile phase composition. J Chromatogr A 2018; 1562:128-133. [PMID: 29859686 DOI: 10.1016/j.chroma.2018.05.054] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Revised: 05/25/2018] [Accepted: 05/26/2018] [Indexed: 11/23/2022]
Abstract
The ability to tune chiral selectivity through mobile phase modifiers is a powerful tool in chiral separations. Beyond improving efficiency and/or resolution, some mobile phase systems can even invert elution order, a highly desirable result for trace analyses or preparative scale isolations. Previous work has demonstrated that acidic modifiers, such as ethanesulfonic acid (ESA), can greatly impact separations of enantiomers. However, prior studies were primarily performed on coated chiral stationary phases (CSPs), which limited the selection of the bulk mobile phase component. In this work, the effect of ESA modifier was studied for the enantioseparation of six pairs of amino acid esters on a CHIRALPAK® IA column, an immobilized amylose-based CSP, with different combinations of standard solvents (hexane and ethanol) as well as "non-standard" solvents, such as methyl t-butyl ether, ethyl acetate, tetrahydrofuran, acetone, or 1,4-dioxane. ESA generally improved selectivity, and multiple instances of elution order reversal were observed. A Van Deemter plot study reveals that ESA exerts its effect by pulling the enantiomer deeper into the chiral cavity of the chiral polymer to increase the interactions between the analytes and the stationary phase, which is the main reason for the increased enantioselectivity.
Collapse
|
39
|
Yu B, Zhang S, Li G, Cong H. Light-assisted preparation of vancomycin chiral stationary phase based on diazotized silica and its enantioseparation evaluation by high-performance liquid chromatography. Talanta 2018; 182:171-177. [DOI: 10.1016/j.talanta.2018.01.066] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Revised: 01/12/2018] [Accepted: 01/29/2018] [Indexed: 12/18/2022]
|
40
|
Ferretti R, Zanitti L, Casulli A, Cirilli R. Unusual retention behavior of omeprazole and its chiral impurities B and E on the amylose tris (3-chloro-5-methylphenylcarbamate) chiral stationary phase in polar organic mode. J Pharm Anal 2018; 8:234-239. [PMID: 30140487 PMCID: PMC6104149 DOI: 10.1016/j.jpha.2018.04.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Revised: 04/10/2018] [Accepted: 04/18/2018] [Indexed: 12/19/2022] Open
Abstract
Recent reports have demonstrated that the new commercially available immobilized-type chiral stationary phases (CSPs) containing amylose tris(3-chloro-5-methylphenylcarbamate) (ACMPC) as a selector exhibit not only an exceptionally high enantioselectivity in high-performance liquid chromatography (HPLC) but they are also applicable to a wide range of chiral analytes. Herein, we report the results obtained in the HPLC analysis of omeprazole and its impurities B and E on the ACMPC-based Chiralpak IG-3 CSP (CSP) under polar organic conditions. A systematic evaluation of the retention characteristics of the selected benzimidazole chiral probes was carried out by changing the composition of the mobile phase and the column temperature. It is worth emphasizing that the high affinity of both enantiomers of all analytes recorded in pure methanol mode dramatically decreased incorporating small volumes of either basic or acid additives in the mobile phase. Unspecified sites of the IG-3 CSP presumably involved in strong and non-stereoselective H-bonding contacts with chiral analytes are assumed responsible for the unproductive retention process.
Collapse
Affiliation(s)
- Rosella Ferretti
- Centro nazionale per il controllo e la valutazione dei farmaci, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy
| | - Leo Zanitti
- Centro nazionale per il controllo e la valutazione dei farmaci, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy
| | - Adriano Casulli
- European Union Reference Laboratory for the Parasites, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy.,World Health Organization Collaborating Centre for the Epidemiology, Detection and Control of Cystic and Alveolar Echinococcosis (In Animals and Humans), Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy
| | - Roberto Cirilli
- Centro nazionale per il controllo e la valutazione dei farmaci, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy
| |
Collapse
|
41
|
Hassan RM, Yehia AM, Saleh OA, El-Azzouny AA, Aboul-Enein HY. Structure-retention relationship for enantioseparation of selected fluoroquinolones. Chirality 2018; 30:828-836. [DOI: 10.1002/chir.22861] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2018] [Revised: 03/08/2018] [Accepted: 03/09/2018] [Indexed: 11/10/2022]
Affiliation(s)
- Rasha M. Hassan
- Medicinal and Pharmaceutical Chemistry Department, Pharmaceutical and Drug Industries Research Division; National Research Centre (ID: 60014618); Giza Egypt
| | - Ali M. Yehia
- Analytical Chemistry Department, Faculty of Pharmacy; Cairo University; Cairo Egypt
| | - Ola A. Saleh
- Medicinal and Pharmaceutical Chemistry Department, Pharmaceutical and Drug Industries Research Division; National Research Centre (ID: 60014618); Giza Egypt
| | - Aida A. El-Azzouny
- Medicinal and Pharmaceutical Chemistry Department, Pharmaceutical and Drug Industries Research Division; National Research Centre (ID: 60014618); Giza Egypt
| | - Hassan Y. Aboul-Enein
- Medicinal and Pharmaceutical Chemistry Department, Pharmaceutical and Drug Industries Research Division; National Research Centre (ID: 60014618); Giza Egypt
| |
Collapse
|
42
|
Tang Q, Yu B, Gao L, Cong H, Zhang S. Light-assisted preparation of a cyclodextrin-based chiral stationary phase and its separation performance in liquid chromatography. NEW J CHEM 2018. [DOI: 10.1039/c7nj02911j] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
A facile light-assisted preparation procedure of a cyclodextrin-based chiral stationary phase was developed for enantioseparations in HPLC.
Collapse
Affiliation(s)
- Qi Tang
- Institute of Biomedical Materials and Engineering
- College of Chemistry and Chemical Engineering
- Qingdao University
- Qingdao 266071
- China
| | - Bing Yu
- Institute of Biomedical Materials and Engineering
- College of Chemistry and Chemical Engineering
- Qingdao University
- Qingdao 266071
- China
| | - Lilong Gao
- Institute of Biomedical Materials and Engineering
- College of Chemistry and Chemical Engineering
- Qingdao University
- Qingdao 266071
- China
| | - Hailin Cong
- Institute of Biomedical Materials and Engineering
- College of Chemistry and Chemical Engineering
- Qingdao University
- Qingdao 266071
- China
| | - Shuai Zhang
- Institute of Biomedical Materials and Engineering
- College of Chemistry and Chemical Engineering
- Qingdao University
- Qingdao 266071
- China
| |
Collapse
|
43
|
Deng H, Wang Y, Bian Z, Liu S, Fan Z, Li Z, Yang F, Tang G. Enantioseparation of nornicotine in tobacco by ultraperformance convergence chromatography with tandem mass spectrometry. J Sep Sci 2017; 40:4645-4652. [PMID: 28960905 DOI: 10.1002/jssc.201700759] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Revised: 09/17/2017] [Accepted: 09/17/2017] [Indexed: 11/08/2022]
Abstract
Nornicotine, an alkaloid constituent of tobacco, is a precursor to the carcinogen N-nitrosonornicotine that is produced during the curing and processing of tobacco. Accumulating evidence reveals that nornicotine enantiomers have different neurochemical and behavioral effects. In the present study, an accurate and rapid method was developed for the enantioseparation of (R)-(+)-nornicotine and (S)-(-)-nornicotine enantiomers in tobacco by ultra-performance convergence chromatography with tandem mass spectrometry. Chromatographic conditions were investigated to achieve the optimal resolution of two enantiomers. Results indicated that (R)-(+)-nornicotine and (S)-(-)-nornicotine could be separated within 5 min when ammonium hydroxide was added into the cosolvent, and the best resolution (Rs = 4.76) was achieved on a immobilized cellulose tris-(3,5-dichlorophenylcarbamate) chiral stationary phase. The proposed method was validated and was finally applied to analyze the compositions of (R)-(+)-nornicotine and (S)-(-)-nornicotine in three typical types of tobaccos (flue-cured, burley, and oriental). It was found that, enantiomer fraction of nornicotine (the proportion of (S)-(-)-nornicotine in the nornicotine pool) in burley tobacco samples was relatively high and constant compared with flue-cured and oriental tobaccos. The effective and rapid enantioseparation of nornicotine may help the understanding of alkaloid metabolites in different tobacco varieties and may also benefit pharmacological studies of alkaloid enantiomers.
Collapse
Affiliation(s)
- Huimin Deng
- China National Tobacco Quality Supervision and Test Center, High and New Technology Industries Development Zone, Zhengzhou, China
| | - Ying Wang
- China National Tobacco Quality Supervision and Test Center, High and New Technology Industries Development Zone, Zhengzhou, China
| | - Zhaoyang Bian
- China National Tobacco Quality Supervision and Test Center, High and New Technology Industries Development Zone, Zhengzhou, China
| | - Shanshan Liu
- China National Tobacco Quality Supervision and Test Center, High and New Technology Industries Development Zone, Zhengzhou, China
| | - Ziyan Fan
- China National Tobacco Quality Supervision and Test Center, High and New Technology Industries Development Zone, Zhengzhou, China
| | - Zhonghao Li
- China National Tobacco Quality Supervision and Test Center, High and New Technology Industries Development Zone, Zhengzhou, China
| | - Fei Yang
- China National Tobacco Quality Supervision and Test Center, High and New Technology Industries Development Zone, Zhengzhou, China
| | - Gangling Tang
- China National Tobacco Quality Supervision and Test Center, High and New Technology Industries Development Zone, Zhengzhou, China
| |
Collapse
|
44
|
Lin C, Fan J, Liu W, Chen X, Ruan L, Zhang W. A new single-urea-bound 3,5-dimethylphenylcarbamoylated β-cyclodextrin chiral stationary phase and its enhanced separation performance in normal-phase liquid chromatography. Electrophoresis 2017; 39:348-355. [DOI: 10.1002/elps.201700273] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2017] [Revised: 10/04/2017] [Accepted: 10/06/2017] [Indexed: 11/05/2022]
Affiliation(s)
- Chun Lin
- School of Chemistry and Environment; South China Normal University; Guangzhou P. R. China
- School of Logistics; Beijing Normal University; Zhuhai Campus, Zhuhai P. R. China
| | - Jun Fan
- School of Chemistry and Environment; South China Normal University; Guangzhou P. R. China
| | - Wenna Liu
- School of Chemistry and Environment; South China Normal University; Guangzhou P. R. China
| | - Xiaodong Chen
- School of Chemistry and Environment; South China Normal University; Guangzhou P. R. China
- Guangdong Yanjie Pharmatech Co. Ltd.; Guangzhou P. R. China
| | - Lijun Ruan
- School of Chemistry and Environment; South China Normal University; Guangzhou P. R. China
- Guangdong Yanjie Pharmatech Co. Ltd.; Guangzhou P. R. China
| | - Weiguang Zhang
- School of Chemistry and Environment; South China Normal University; Guangzhou P. R. China
| |
Collapse
|
45
|
Li X, Yao X, Xiao Y, Wang Y. Enantioseparation of single layer native cyclodextrin chiral stationary phases: Effect of cyclodextrin orientation and a modeling study. Anal Chim Acta 2017; 990:174-184. [DOI: 10.1016/j.aca.2017.07.033] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Revised: 07/03/2017] [Accepted: 07/08/2017] [Indexed: 10/19/2022]
|
46
|
Integrating a post-column makeup pump into preparative supercritical fluid chromatography systems to address stability and recovery issues during purifications. J Chromatogr A 2017; 1511:101-106. [DOI: 10.1016/j.chroma.2017.06.063] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Revised: 06/22/2017] [Accepted: 06/23/2017] [Indexed: 11/22/2022]
|
47
|
Speybrouck D, Doublet C, Cardinael P, Fiol-Petit C, Corens D. The effect of high concentration additive on chiral separations in supercritical fluid chromatography. J Chromatogr A 2017; 1510:89-99. [DOI: 10.1016/j.chroma.2017.06.049] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Revised: 06/15/2017] [Accepted: 06/16/2017] [Indexed: 11/17/2022]
|
48
|
Ramisetti NR, Arnipalli MS, Nimmu NV, Bondigalla R. UHPLC Determination of Besifloxacin Enantiomers on Immobilized Amylose Tris(3,5-dichlorophenylcarbamate) Chiral Stationary Phase. Chromatographia 2017. [DOI: 10.1007/s10337-017-3346-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
49
|
Ali I, Suhail M, Asnin L, Aboul-Enein HY. Reverse elution order of β-blockers in chiral separation. J LIQ CHROMATOGR R T 2017. [DOI: 10.1080/10826076.2017.1327443] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Imran Ali
- Department of Chemistry, Jamia Millia Islamia (Central University), New Delhi, India
| | - Mohd. Suhail
- Department of Chemistry, Jamia Millia Islamia (Central University), New Delhi, India
| | - Leonid Asnin
- Perm National Research Polytechnic University, Perm, Russia
| | - Hassan Y. Aboul-Enein
- Department of Pharmaceutical and Medicinal Chemistry, Pharmaceutical and Drug Industries Research Division, National Research Centre, Cairo, Egypt
| |
Collapse
|
50
|
Gogolashvili A, Tatunashvili E, Chankvetadze L, Sohajda T, Szeman J, Salgado A, Chankvetadze B. Separation of enilconazole enantiomers in capillary electrophoresis with cyclodextrin-type chiral selectors and investigation of structure of selector-selectand complexes by using nuclear magnetic resonance spectroscopy. Electrophoresis 2017; 38:1851-1859. [DOI: 10.1002/elps.201700078] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Revised: 03/12/2017] [Accepted: 03/12/2017] [Indexed: 01/26/2023]
Affiliation(s)
- Ann Gogolashvili
- Institute of Physical and Analytical Chemistry, School of Exact and Natural Sciences; Tbilisi State University; Tbilisi Georgia
| | - Elene Tatunashvili
- Institute of Physical and Analytical Chemistry, School of Exact and Natural Sciences; Tbilisi State University; Tbilisi Georgia
| | - Lali Chankvetadze
- Institute of Physical and Analytical Chemistry, School of Exact and Natural Sciences; Tbilisi State University; Tbilisi Georgia
| | | | | | - Antonio Salgado
- Centro de Espectroscopía de RMN (CERMN), Faculty of Pharmacy, University of Alcalá; University Campus; Madrid Spain
| | - Bezhan Chankvetadze
- Institute of Physical and Analytical Chemistry, School of Exact and Natural Sciences; Tbilisi State University; Tbilisi Georgia
| |
Collapse
|