1
|
Kataoka H, Ishizaki A, Saito K, Ehara K. Developments and Applications of Molecularly Imprinted Polymer-Based In-Tube Solid Phase Microextraction Technique for Efficient Sample Preparation. Molecules 2024; 29:4472. [PMID: 39339467 PMCID: PMC11433927 DOI: 10.3390/molecules29184472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 09/15/2024] [Accepted: 09/18/2024] [Indexed: 09/30/2024] Open
Abstract
Despite advancements in the sensitivity and performance of analytical instruments, sample preparation remains a bottleneck in the analytical process. Currently, solid-phase extraction is more widely used than traditional organic solvent extraction due to its ease of use and lower solvent requirements. Moreover, various microextraction techniques such as micro solid-phase extraction, dispersive micro solid-phase extraction, solid-phase microextraction, stir bar sorptive extraction, liquid-phase microextraction, and magnetic bead extraction have been developed to minimize sample size, reduce solvent usage, and enable automation. Among these, in-tube solid-phase microextraction (IT-SPME) using capillaries as extraction devices has gained attention as an advanced "green extraction technique" that combines miniaturization, on-line automation, and reduced solvent consumption. Capillary tubes in IT-SPME are categorized into configurations: inner-wall-coated, particle-packed, fiber-packed, and rod monolith, operating either in a draw/eject system or a flow-through system. Additionally, the developments of novel adsorbents such as monoliths, ionic liquids, restricted-access materials, molecularly imprinted polymers (MIPs), graphene, carbon nanotubes, inorganic nanoparticles, and organometallic frameworks have improved extraction efficiency and selectivity. MIPs, in particular, are stable, custom-made polymers with molecular recognition capabilities formed during synthesis, making them exceptional "smart adsorbents" for selective sample preparation. The MIP fabrication process involves three main stages: pre-arrangement for recognition capability, polymerization, and template removal. After forming the template-monomer complex, polymerization creates a polymer network where the template molecules are anchored, and the final step involves removing the template to produce an MIP with cavities complementary to the template molecules. This review is the first paper to focus on advanced MIP-based IT-SPME, which integrates the selectivity of MIPs into efficient IT-SPME, and summarizes its recent developments and applications.
Collapse
Affiliation(s)
- Hiroyuki Kataoka
- School of Pharmacy, Shujitsu University, Nishigawara, Okayama 703-8516, Japan
| | - Atsushi Ishizaki
- School of Pharmacy, Shujitsu University, Nishigawara, Okayama 703-8516, Japan
| | - Keita Saito
- School of Pharmacy, Shujitsu University, Nishigawara, Okayama 703-8516, Japan
| | - Kentaro Ehara
- School of Pharmacy, Shujitsu University, Nishigawara, Okayama 703-8516, Japan
| |
Collapse
|
2
|
Yue B, Wang X, Lian L, Wang Y, Gao W, Zhang H, Zhao J, Lou D. A fiber-packed needle-type extraction device with ionic liquid-based molecularly imprinted polymer as coating for extraction of chlorobenzenes in water samples. Microchem J 2023. [DOI: 10.1016/j.microc.2023.108592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2023]
|
3
|
Suzaei FM, Daryanavard SM, Abdel-Rehim A, Bassyouni F, Abdel-Rehim M. Recent molecularly imprinted polymers applications in bioanalysis. CHEMICAL PAPERS 2023; 77:619-655. [PMID: 36213319 PMCID: PMC9524737 DOI: 10.1007/s11696-022-02488-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Accepted: 09/10/2022] [Indexed: 11/18/2022]
Abstract
Molecular imprinted polymers (MIPs) as extraordinary compounds with unique features have presented a wide range of applications and benefits to researchers. In particular when used as a sorbent in sample preparation methods for the analysis of biological samples and complex matrices. Its application in the extraction of medicinal species has attracted much attention and a growing interest. This review focus on articles and research that deals with the application of MIPs in the analysis of components such as biomarkers, drugs, hormones, blockers and inhibitors, especially in biological matrices. The studies based on MIP applications in bioanalysis and the deployment of MIPs in high-throughput settings and optimization of extraction methods are presented. A review of more than 200 articles and research works clearly shows that the superiority of MIP techniques lies in high accuracy, reproducibility, sensitivity, speed and cost effectiveness which make them suitable for clinical usage. Furthermore, this review present MIP-based extraction techniques and MIP-biosensors which are categorized on their classes based on common properties of target components. Extraction methods, studied sample matrices, target analytes, analytical techniques and their results for each study are described. Investigations indicate satisfactory results using MIP-based bioanalysis. According to the increasing number of studies on method development over the last decade, the use of MIPs in bioanalysis is growing and will further expand the scope of MIP applications for less studied samples and analytes.
Collapse
Affiliation(s)
- Foad Mashayekhi Suzaei
- Toxicology Laboratories, Monitoring the Human Hygiene Condition & Standard of Qeshm (MHCS Company), Qeshm Island, Iran
| | - Seyed Mosayeb Daryanavard
- grid.444744.30000 0004 0382 4371Department of Chemistry, Faculty of Science, University of Hormozgan, Bandar-Abbas, Iran
| | - Abbi Abdel-Rehim
- grid.5335.00000000121885934Department of Chemical Engineering and Biotechnology, Cambridge University, Cambridge, UK
| | - Fatma Bassyouni
- grid.419725.c0000 0001 2151 8157Chemistry of Natural and Microbial Products Department, Pharmaceutical industry Research Division, National Research Centre, Cairo, 12622 Egypt
| | - Mohamed Abdel-Rehim
- grid.5037.10000000121581746Functional Materials Division, Department of Applied Physics, School of Engineering Sciences, KTH Royal Institute of Technology, Stockholm, Sweden and Med. Solutions, Stockholm, Sweden
| |
Collapse
|
4
|
Wang H, Huang C, Ma S, Bo C, Ou J, Gong B. Recent advances of restricted access molecularly imprinted materials and their applications in food and biological samples analysis. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2022.116526] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
5
|
Selective analysis of interferon-alpha in human serum with boronate affinity oriented imprinting based plastic antibody. Talanta 2021; 230:122338. [PMID: 33934790 DOI: 10.1016/j.talanta.2021.122338] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2021] [Revised: 03/10/2021] [Accepted: 03/18/2021] [Indexed: 02/08/2023]
Abstract
Interferons are important biomolecules in human immune system. Cytokine interferon alpha (IFN-α), a type I interferon, is one of the major components of the innate immune response involved in autoimmune diseases. Thus, the analysis of interferons is of great importance for both biological and pharmaceutical purposes. In this work, an IFN-α specific plastic antibody is prepared via boronate affinity oriented surface imprinting. By combing with the magnetic nanoparticles, the imprinted material exhibits several advantages, including strong affinity (Kd: 75.2 nM), high specificity (cross reactivity<25%), excellent efficiency (imprinting efficiency: 44.1%), tolerance to interferences, and easy manipulation. By employing the prepared imprinted material as sorbent for selective enrichment of IFN-α, a good linearity is achieved in the range of 50 ng/mL-10 μg/mL, and the detection and quantifcation limits are 10 ng/mL and 50 ng/mL respectively. The recoveries of this approach are found within 75.8%-82.2% with relative standard deviations of 6.4-9.7%. Furthermore, the IFN-α in spiked human serum is analyzed with acceptable reliability (recovery: 77.3%, RSD: 7.9%). Because of these highly desirable properties, the IFN-α specific plastic antibody can find more applications in medical and pharmaceutical industry.
Collapse
|
6
|
Gutiérrez-Climente R, Clavié M, Dumy P, Mehdi A, Subra G. Sol-gel process: the inorganic approach in protein imprinting. J Mater Chem B 2021; 9:2155-2178. [PMID: 33624655 DOI: 10.1039/d0tb02941f] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Proteins play a central role in the signal transmission in living systems since they are able to recognize specific biomolecules acting as cellular receptors, antibodies or enzymes, being themselves recognized by other proteins in protein/protein interactions, or displaying epitopes suitable for antibody binding. In this context, the specific recognition of a given protein unlocks a range of interesting applications in diagnosis and in targeted therapies. Obviously, this role is already fulfilled by antibodies with unquestionable success. However, the design of synthetic artificial systems able to endorse this role is still challenging with a special interest to overcome limitations of antibodies, in particular their production and their stability. Molecular Imprinted Polymers (MIPs) are attractive recognition systems which could be an alternative for the specific capture of proteins in complex biological fluids. MIPs can be considered as biomimetic receptors or antibody mimics displaying artificial paratopes. However, MIPs of proteins remains a challenge due to their large size and conformational flexibility, their complex chemical nature with multiple recognition sites and their low solubility in most organic solvents. Classical MIP synthesis conditions result in large polymeric cavities and unspecific binding sites on the surface. In this review, the potential of the sol-gel process as inorganic polymerization strategy to overcome the drawbacks of protein imprinting is highlighted. Thanks to the mild and biocompatible experimental conditions required and the use of water as a solvent, the inorganic polymerization approach better suited to proteins than organic polymerization. Through numerous examples and applications of MIPs, we proposed a critical evaluation of the parameters that must be carefully controlled to achieve sol-gel protein imprinting (SGPI), including the choice of the monomers taking part in the polymerization.
Collapse
Affiliation(s)
| | | | - Pascal Dumy
- IBMM, Univ. Montpellier, CNRS, ENSCM, France.
| | - Ahmad Mehdi
- ICGM, Univ. Montpellier, CNRS, ENSCM, France
| | | |
Collapse
|
7
|
Xu L, Hu ZS, Duan R, Wang X, Yang YS, Dong LY, Wang XH. Advances and applications of in-tube solid-phase microextraction for analysis of proteins. J Chromatogr A 2021; 1640:461962. [PMID: 33582517 DOI: 10.1016/j.chroma.2021.461962] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 01/27/2021] [Accepted: 01/28/2021] [Indexed: 12/29/2022]
Abstract
In-tube solid-phase microextraction (IT-SPME) with capillary column as extraction device is a well-established green extraction technique with a lot of applications in the fields of biomedicine, food and environment. This article reviews the research contributions of IT-SPME for analysis of proteins. The paper first briefly describes the history of IT-SPME. Then, the development and principle of IT-SPME for analysis of proteins are introduced, in which capillary column configurations of IT-SPME and instruments for quantitative analysis of proteins are summarized. Subsequently, the synthesis strategy and recognition principle of different recognition units, including antibodies, aptamers, molecularly imprinted polymers, and boronate affinity materials, are discussed in detail. This part also introduces several rare recognition units, including lectins, restricted access materials, lysine modified with β-cyclodextrin and cell membrane. The development trend and possible future direction of IT-SPME for analysis of proteins are mentioned.
Collapse
Affiliation(s)
- Liang Xu
- School of Pharmacy, Tianjin Medical University, Tianjin, 300070, PR China; Tianjin Medical College, Tianjin, 300222, PR China.
| | - Zhan-Song Hu
- Department of pharmacy, Tianjin Chest Hospital, 300222, PR China
| | - Rui Duan
- School of Pharmacy, Tianjin Medical University, Tianjin, 300070, PR China
| | - Xuan Wang
- School of Pharmacy, Tianjin Medical University, Tianjin, 300070, PR China
| | - Yuan-Shuo Yang
- School of Pharmacy, Tianjin Medical University, Tianjin, 300070, PR China
| | - Lin-Yi Dong
- School of Pharmacy, Tianjin Medical University, Tianjin, 300070, PR China
| | - Xian-Hua Wang
- School of Pharmacy, Tianjin Medical University, Tianjin, 300070, PR China.
| |
Collapse
|
8
|
Kataoka H. In-tube solid-phase microextraction: Current trends and future perspectives. J Chromatogr A 2020; 1636:461787. [PMID: 33359971 DOI: 10.1016/j.chroma.2020.461787] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 12/02/2020] [Accepted: 12/04/2020] [Indexed: 01/01/2023]
Abstract
In-tube solid-phase microextraction (IT-SPME) was developed about 24 years ago as an effective sample preparation technique using an open tubular capillary column as an extraction device. IT-SPME is useful for micro-concentration, automated sample cleanup, and rapid online analysis, and can be used to determine the analytes in complex matrices simple sample processing methods such as direct sample injection or filtration. IT-SPME is usually performed in combination with high-performance liquid chromatography using an online column switching technology, in which the entire process from sample preparation to separation to data analysis is automated using the autosampler. Furthermore, IT-SPME minimizes the use of harmful organic solvents and is simple and labor-saving, making it a sustainable and environmentally friendly green analytical technique. Various operating systems and new sorbent materials have been developed to improve its extraction efficiency by, for example, enhancing its sorption capacity and selectivity. In addition, IT-SPME methods have been widely applied in environmental analysis, food analysis and bioanalysis. This review describes the present state of IT-SPME technology and summarizes its current trends and future perspectives, including method development and strategies to improve extraction efficiency.
Collapse
Affiliation(s)
- Hiroyuki Kataoka
- School of Pharmacy, Shujitsu University, Nishigawara, Okayama 703-8516, Japan.
| |
Collapse
|
9
|
Restrict access material for paper spray ionization mass spectrometry: A versatile tool for catecholamines and antidepressants determination in plasma samples. Microchem J 2020. [DOI: 10.1016/j.microc.2020.105245] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
10
|
Manousi N, Tzanavaras PD, Zacharis CK. Bioanalytical HPLC Applications of In-Tube Solid Phase Microextraction: A Two-Decade Overview. Molecules 2020; 25:molecules25092096. [PMID: 32365828 PMCID: PMC7248733 DOI: 10.3390/molecules25092096] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 04/28/2020] [Accepted: 04/29/2020] [Indexed: 12/18/2022] Open
Abstract
In-tube solid phase microextraction is a cutting-edge sample treatment technique offering significant advantages in terms of miniaturization, green character, automation, and preconcentration prior to analysis. During the past years, there has been a considerable increase in the reported publications, as well as in the research groups focusing their activities on this technique. In the present review article, HPLC bioanalytical applications of in-tube SPME are discussed, covering a wide time frame of twenty years of research reports. Instrumental aspects towards the coupling of in-tube SPME and HPLC are also discussed, and detailed information on materials/coatings and applications in biological samples are provided.
Collapse
Affiliation(s)
- Natalia Manousi
- Laboratory of Analytical Chemistry, School of Chemistry, Faculty of Sciences, Aristotle University of Thessaloniki, GR-54124 Thessaloniki, Greece; (N.M.); (P.D.T.)
| | - Paraskevas D. Tzanavaras
- Laboratory of Analytical Chemistry, School of Chemistry, Faculty of Sciences, Aristotle University of Thessaloniki, GR-54124 Thessaloniki, Greece; (N.M.); (P.D.T.)
| | - Constantinos K. Zacharis
- Laboratory of Pharmaceutical Analysis, Department of Pharmaceutical Technology, School of Pharmacy, Aristotle University of Thessaloniki, GR-54124 Thessaloniki, Greece
- Correspondence: ; Tel.: +30-231-099-7663
| |
Collapse
|
11
|
Matys J, Gieroba B, Jóźwiak K. Recent developments of bioanalytical methods in determination of neurotransmitters in vivo. J Pharm Biomed Anal 2020; 180:113079. [DOI: 10.1016/j.jpba.2019.113079] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 12/20/2019] [Accepted: 12/23/2019] [Indexed: 12/24/2022]
|
12
|
Synthesis and application of magnetic-surfaced pseudo molecularly imprinted polymers for zearalenone pretreatment in cereal samples. Food Chem 2019; 308:125696. [PMID: 31655482 DOI: 10.1016/j.foodchem.2019.125696] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 10/10/2019] [Accepted: 10/10/2019] [Indexed: 01/29/2023]
Abstract
Zearalenone (ZEA) is a fungal contaminant widely found in grains. In cereal samples, trace zearalenone was extracted and enriched using magnetic-surfaced pseudo molecularly imprinted polymers (SPMIPs) and detected. SPMIPs were prepared with Fe3O4 as the magnetic core, modified halloysites nanotubes as supporting materials, and selective imprinted polymers as shells. Vinyl was modified on the surface of halloysites nanotube. SPMIPs were synthesized with pseudo templates. SPMIPs as the adsorbent of dispersed-solid phase extraction (μ-SPE) were used to purify and enrich ZEA from maize samples. After optimized, the pretreatment method was evaluated. The linearity of the method was ranged within 10-200 ng mL-1. LOD and LOQ were 2.5 ng mL-1 and 8 ng mL-1 respectively. The ZEA spiking recoveries in maize samples ranged within 74.95-88.41% were with good RSDs lower than 4.25%. The developed method was successful applied in maize, oat, and wheat sample treatments and compared.
Collapse
|
13
|
Boysen RI. Advances in the development of molecularly imprinted polymers for the separation and analysis of proteins with liquid chromatography. J Sep Sci 2018; 42:51-71. [PMID: 30411488 DOI: 10.1002/jssc.201800945] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Revised: 10/23/2018] [Accepted: 10/24/2018] [Indexed: 12/20/2022]
Abstract
This review documents recent advances in the design, synthesis, characterization, and application of molecularly imprinted polymers in the form of monoliths and particles/beads for the use in the separation and analysis of proteins with solid-phase extraction or liquid chromatography. The merits of three-dimensional molecular imprinting, whereby the molecular template is randomly embedded in the polymer, and two-dimensional imprinting, in which the template is confined to the surface, are described. Target protein binding can be achieved by either using the entire protein as a template or by using a protein substructure as template, that is, a peptide, as in the "epitope" approach. The intended approach and strategy then determine the choice of polymerization method. A synopsis has been provided on methods used for the physical, chemical, and functional characterizations and associated performance evaluations of molecularly imprinted and nonimprinted control polymers, involving a diverse range of analytical techniques commonly used for low and high molecular mass analytes. Examples of recent applications demonstrate that, due to the versatility of imprinting methods, molecularly imprinted monoliths or particles/beads can be adapted to protein extraction/depletion and separation procedures relevant to, for example, protein biomarker detection and quantification in biomedical diagnostics and targeted proteomics.
Collapse
|
14
|
Tavares LS, Carvalho TC, Romão W, Vaz BG, Chaves AR. Paper Spray Tandem Mass Spectrometry Based on Molecularly Imprinted Polymer Substrate for Cocaine Analysis in Oral Fluid. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2018; 29:566-572. [PMID: 29196983 DOI: 10.1007/s13361-017-1853-2] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Revised: 10/28/2017] [Accepted: 11/04/2017] [Indexed: 05/05/2023]
Abstract
This study proposes a new direct and fast method of analysis employing paper spray mass spectrometry (PS-MS). The paper used in the proposed method was modified with molecularly imprinted polymers (MIP) to create a specific site for cocaine analysis in oral fluid. MIP membrane was successfully synthetized and employed. The developed method showed to be linear in a concentration range from LOQ to 100 ng mL-1. The experimental value of LOQ obtained was 1 ng mL-1. The inter-day and intra-day precision and accuracy of the PS-MS method presented values lower than 15%. The total recoveries were also evaluated. The PS-MS method for the analysis of cocaine in oral fluid showed to be very promising and the validation parameters showed a good correlation with the literature. Graphical abstract ᅟ.
Collapse
Affiliation(s)
- Ludmyla S Tavares
- Instituto de Química, Universidade Federal de Goiás, Goiânia, GO, 74690-900, Brazil
| | - Thays C Carvalho
- Instituto de Química, Universidade Federal de Goiás, Goiânia, GO, 74690-900, Brazil
| | - Wanderson Romão
- Departamento de Química, Universidade Federal do Espírito Santo, Vitória, ES, 29075-910, Brazil
| | - Boniek G Vaz
- Instituto de Química, Universidade Federal de Goiás, Goiânia, GO, 74690-900, Brazil
- Instituto Nacional de Ciência e Tecnologia em Ciências Forenses, Porto Alegre, RS, Brazil
| | - Andréa R Chaves
- Instituto de Química, Universidade Federal de Goiás, Goiânia, GO, 74690-900, Brazil.
| |
Collapse
|
15
|
Molecularly imprinted polymer (MIP) membrane assisted direct spray ionization mass spectrometry for agrochemicals screening in foodstuffs. Talanta 2018; 178:507-514. [DOI: 10.1016/j.talanta.2017.09.080] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Revised: 09/27/2017] [Accepted: 09/28/2017] [Indexed: 12/27/2022]
|
16
|
Feng J, Wang X, Tian Y, Luo C, Sun M. Poly(ionic liquids)-coated stainless-steel wires packed into a polyether ether ketone tube for in-tube solid-phase microextraction. J Sep Sci 2017; 40:4773-4779. [DOI: 10.1002/jssc.201700975] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Revised: 10/09/2017] [Accepted: 10/09/2017] [Indexed: 11/07/2022]
Affiliation(s)
- Juanjuan Feng
- Key Laboratory of Interfacial Reaction and Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering; University of Jinan; Jinan P. R. China
| | - Xiuqin Wang
- Key Laboratory of Interfacial Reaction and Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering; University of Jinan; Jinan P. R. China
| | - Yu Tian
- Key Laboratory of Interfacial Reaction and Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering; University of Jinan; Jinan P. R. China
| | - Chuannan Luo
- Key Laboratory of Interfacial Reaction and Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering; University of Jinan; Jinan P. R. China
| | - Min Sun
- Key Laboratory of Interfacial Reaction and Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering; University of Jinan; Jinan P. R. China
| |
Collapse
|
17
|
Bu Y, Feng J, Tian Y, Wang X, Sun M, Luo C. An organically modified silica aerogel for online in-tube solid-phase microextraction. J Chromatogr A 2017; 1517:203-208. [PMID: 28843602 DOI: 10.1016/j.chroma.2017.07.075] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Revised: 07/18/2017] [Accepted: 07/23/2017] [Indexed: 10/19/2022]
Abstract
Aerogels have received considerable attentions because of its porous, high specific surface, unique properties and environmental friendliness. In this work, an organically modified silica aerogel was functionalized on the basalt fibers (BFs) and filled into a poly(ether ether ketone) (PEEK) tube, which was coupled with high performance liquid chromatography (HPLC) for in-tube solid-phase microextraction (IT-SPME). The aerogel was characterized by scanning electron microscopy (SEM) and fourier transform infrared spectrometry (FT-IR). The extraction efficiency of the tube was systematically investigated and shown enrichment factors from 2346 to 3132. An automated, sensitive and selective method was developed for the determination of five estrogens. The linear range was from 0.03 to 100μgL-1 with correlation coefficients (r) higher than 0.9989, and low detection limits (LODs) were 0.01-0.05μgL-1. The relative standard deviations (RSDs) for intra-day and inter-day were less than 4.5% and 6.7% (n=6), respectively. Finally, the analysis method was successfully applied to detect estrogens in sewage and emollient water samples.
Collapse
Affiliation(s)
- Yanan Bu
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, PR China
| | - Juanjuan Feng
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, PR China
| | - Yu Tian
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, PR China
| | - Xiuqin Wang
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, PR China
| | - Min Sun
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, PR China.
| | - Chuannan Luo
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, PR China.
| |
Collapse
|
18
|
Pinto MAL, de Souza ID, Queiroz MEC. Determination of drugs in plasma samples by disposable pipette extraction with C18-BSA phase and liquid chromatography–tandem mass spectrometry. J Pharm Biomed Anal 2017; 139:116-124. [DOI: 10.1016/j.jpba.2017.02.052] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Revised: 02/24/2017] [Accepted: 02/28/2017] [Indexed: 11/16/2022]
|
19
|
Recent progress, challenges and trends in trace determination of drug analysis using molecularly imprinted solid-phase microextraction technology. Talanta 2017; 164:612-625. [DOI: 10.1016/j.talanta.2016.11.007] [Citation(s) in RCA: 105] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Revised: 11/03/2016] [Accepted: 11/04/2016] [Indexed: 01/11/2023]
|
20
|
Serra-Mora P, Moliner-Martínez Y, Molins-Legua C, Herráez-Hernández R, Verdú-Andrés J, Campíns-Falcó P. Trends in Online Intube Solid Phase Microextraction. COMPREHENSIVE ANALYTICAL CHEMISTRY 2017. [DOI: 10.1016/bs.coac.2017.01.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
21
|
Sun M, Feng J, Bu Y, Luo C. Ionic liquid coated copper wires and tubes for fiber-in-tube solid-phase microextraction. J Chromatogr A 2016; 1458:1-8. [DOI: 10.1016/j.chroma.2016.06.023] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Revised: 06/05/2016] [Accepted: 06/06/2016] [Indexed: 10/21/2022]
|
22
|
Fernández-Amado M, Prieto-Blanco M, López-Mahía P, Muniategui-Lorenzo S, Prada-Rodríguez D. Strengths and weaknesses of in-tube solid-phase microextraction: A scoping review. Anal Chim Acta 2016; 906:41-57. [DOI: 10.1016/j.aca.2015.12.007] [Citation(s) in RCA: 85] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2015] [Revised: 11/30/2015] [Accepted: 12/11/2015] [Indexed: 12/01/2022]
|
23
|
Feng J, Sun M, Bu Y, Luo C. Development of a cheap and accessible carbon fibers-in-poly(ether ether ketone) tube with high stability for online in-tube solid-phase microextraction. Talanta 2016; 148:313-20. [DOI: 10.1016/j.talanta.2015.11.001] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Revised: 10/27/2015] [Accepted: 11/01/2015] [Indexed: 10/22/2022]
|
24
|
|
25
|
Sarafraz-Yazdi A, Razavi N. Application of molecularly-imprinted polymers in solid-phase microextraction techniques. Trends Analyt Chem 2015. [DOI: 10.1016/j.trac.2015.05.004] [Citation(s) in RCA: 90] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
26
|
Abstract
Biomedical analyses of drugs and their metabolites are important in new drug development, therapeutic drug monitoring and forensic toxicology. In these analyses, sample preparation is very important to isolate target compounds from complex biological matrices and markedly influences the reliability and accuracy of determination. SPME is a simple and convenient sample preparation technique that has enabled automation, miniaturization and high-throughput performance. This article focuses on current developments, their biomedical applications and future trends with emphasis on new extraction devices using selective polymer coating materials in novel SPME techniques, including fiber SPME, in-tube SPME and related techniques.
Collapse
|
27
|
Fumes BH, Silva MR, Andrade FN, Nazario CED, Lanças FM. Recent advances and future trends in new materials for sample preparation. Trends Analyt Chem 2015. [DOI: 10.1016/j.trac.2015.04.011] [Citation(s) in RCA: 104] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
28
|
Moliner-Martinez Y, Herráez-Hernández R, Verdú-Andrés J, Molins-Legua C, Campíns-Falcó P. Recent advances of in-tube solid-phase microextraction. Trends Analyt Chem 2015. [DOI: 10.1016/j.trac.2015.02.020] [Citation(s) in RCA: 105] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
29
|
Sun M, Feng J, Bu Y, Luo C. Nanostructured-silver-coated polyetheretherketone tube for online in-tube solid-phase microextraction coupled with high-performance liquid chromatography. J Sep Sci 2015; 38:3239-3246. [DOI: 10.1002/jssc.201500545] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2015] [Revised: 06/26/2015] [Accepted: 06/29/2015] [Indexed: 11/11/2022]
Affiliation(s)
- Min Sun
- Key Laboratory of Chemical Sensing & Analysis in Universities of Shandong (University of Jinan); School of Chemistry and Chemical Engineering, University of Jinan; China
| | - Juanjuan Feng
- Key Laboratory of Chemical Sensing & Analysis in Universities of Shandong (University of Jinan); School of Chemistry and Chemical Engineering, University of Jinan; China
| | - Yanan Bu
- Key Laboratory of Chemical Sensing & Analysis in Universities of Shandong (University of Jinan); School of Chemistry and Chemical Engineering, University of Jinan; China
| | - Chuannan Luo
- Key Laboratory of Chemical Sensing & Analysis in Universities of Shandong (University of Jinan); School of Chemistry and Chemical Engineering, University of Jinan; China
| |
Collapse
|
30
|
Sun M, Feng J, Bu Y, Luo C. Highly sensitive copper fiber-in-tube solid-phase microextraction for online selective analysis of polycyclic aromatic hydrocarbons coupled with high performance liquid chromatography. J Chromatogr A 2015; 1408:41-8. [DOI: 10.1016/j.chroma.2015.07.024] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2015] [Revised: 07/04/2015] [Accepted: 07/06/2015] [Indexed: 11/30/2022]
|
31
|
Tan F, Zhao C, Li L, Liu M, He X, Gao J. Graphene oxide based in-tube solid-phase microextraction combined with liquid chromatography tandem mass spectrometry for the determination of triazine herbicides in water. J Sep Sci 2015; 38:2312-9. [DOI: 10.1002/jssc.201500070] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2015] [Revised: 04/02/2015] [Accepted: 04/10/2015] [Indexed: 01/01/2023]
Affiliation(s)
- Feng Tan
- Key Laboratory of Industrial Ecology and Environmental Engineering (MOE); School of Environmental Science & Technology, Dalian University of Technology; Dalian China
| | - Cong Zhao
- Key Laboratory of Industrial Ecology and Environmental Engineering (MOE); School of Environmental Science & Technology, Dalian University of Technology; Dalian China
| | - Lianjun Li
- Key Laboratory of Industrial Ecology and Environmental Engineering (MOE); School of Environmental Science & Technology, Dalian University of Technology; Dalian China
| | - Min Liu
- Key Laboratory of Industrial Ecology and Environmental Engineering (MOE); School of Environmental Science & Technology, Dalian University of Technology; Dalian China
| | - Xin He
- Key Laboratory of Industrial Ecology and Environmental Engineering (MOE); School of Environmental Science & Technology, Dalian University of Technology; Dalian China
| | - Jinsuo Gao
- Key Laboratory of Industrial Ecology and Environmental Engineering (MOE); School of Environmental Science & Technology, Dalian University of Technology; Dalian China
| |
Collapse
|
32
|
Zhang J, Zhang W, Bao T, Chen Z. Polydopamine-based immobilization of zeolitic imidazolate framework-8 for in-tube solid-phase microextraction. J Chromatogr A 2015; 1388:9-16. [DOI: 10.1016/j.chroma.2015.02.010] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2015] [Accepted: 02/03/2015] [Indexed: 01/06/2023]
|
33
|
Liu Q, Yin X, Sha B, You J. Porous membrane ultrafiltration-A novel method for enrichment of the active compounds from micro-plasma samples. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2014; 131:22-29. [PMID: 24815198 DOI: 10.1016/j.saa.2014.04.070] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2013] [Revised: 04/09/2014] [Accepted: 04/17/2014] [Indexed: 06/03/2023]
Abstract
To enrich the active compounds from plasma samples, a novel and simple method has been developed using a porous membrane envelope based on the ultrafiltration technique combining with high-performance liquid chromatography. The ultrafiltration device is a sealed porous membrane envelope prepared with a polypropylene sheet to effectively separate the active small molecules and large biomolecules, and a sample carrier is held inside the envelope to load plasma samples. The enrichment of hyperoside and isoquercitrin from rat plasma was used as an example. Significant factors of this method, such as membrane types, the desorption solvent, and the desorption time were optimized for the ultrafiltration method. Under the optimal conditions, correlation coefficients of 0.999 and 0.998 were obtained for hyperoside and isoquercitrin, respectively, with a linear range between 0.5 and 100μg/mL. The absolute extraction recoveries from 83.2% to 86.8% were achieved. The detection limits of the method for hyperoside and isoquercitrin were 0.22 and 0.20μg/mL, respectively. Compared with protein precipitation, solid-phase extraction and commercial ultrafiltration membrane methods, our proposed method demonstrates lower detection limits and lower cost for extraction. Also, it consumes less plasma samples and is found to be applicable to biological samples.
Collapse
Affiliation(s)
- Qingshan Liu
- National Research Center for Chinese Minority Medicine, Minzu University of China, Beijing 100081, China
| | - Xiaoying Yin
- College of Pharmacy, Jiangxi University of Traditional Chinese Medicine, Nanchang 330004, China.
| | - Biying Sha
- College of Pharmacy, Jiangxi University of Traditional Chinese Medicine, Nanchang 330004, China
| | - Jingjing You
- College of Pharmacy, Jiangxi University of Traditional Chinese Medicine, Nanchang 330004, China
| |
Collapse
|
34
|
Queiroz M, Melo L. Selective capillary coating materials for in-tube solid-phase microextraction coupled to liquid chromatography to determine drugs and biomarkers in biological samples: A review. Anal Chim Acta 2014; 826:1-11. [DOI: 10.1016/j.aca.2014.03.024] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2013] [Revised: 03/10/2014] [Accepted: 03/17/2014] [Indexed: 11/25/2022]
|