1
|
Modroiu A, Krait S, Hancu G, Scriba GKE. Quality by design-guided development of a capillary electrophoresis method for the simultaneous chiral purity determination and impurity profiling of tamsulosin. J Sep Sci 2023; 46:e2300604. [PMID: 37937344 DOI: 10.1002/jssc.202300604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 10/13/2023] [Accepted: 10/17/2023] [Indexed: 11/09/2023]
Abstract
Analytical Quality by Design principles using the design of experiments were applied for the development of a capillary electrophoresis method for the determination of enantiomeric purity and chemically related impurities of tamsulosin. From initial scouting experiments, a dual cyclodextrin (CD) system composed of sulfated β-CD and carboxymethyl-α-CD was selected as the chiral selector. A fractional factorial resolution V+ design was used for the identification of the critical process parameters, while a face-centered central composite design and Monte Carlo simulations were employed for final optimization and defining the design space of the method. The experimental conditions of the working point were: 30 mM sodium phosphate buffer, pH 3.0, containing 40 mg/mL sulfated β-CD and 7 mg/mL carboxymethyl-α-CD, capillary temperature 18°C, applied voltage -23 kV. Following the assessment of robustness by applying a Plackett-Burman design, the method was validated according to the International Council for Harmonization of Technical Requirements for Pharmaceuticals for Human Use guideline Q2(R1). The method allowed the quantification of the chiral impurity and three other related impurities at the 0.1 % level with acceptable accuracy and precision.
Collapse
Affiliation(s)
- Adriana Modroiu
- Department of Pharmaceutical/Medicinal Chemistry, Friedrich Schiller University, Jena, Germany
- Department of Pharmaceutical and Therapeutic Chemistry, Faculty of Pharmacy, George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Targu Mures, Targu Mures, Romania
| | - Sulaiman Krait
- Department of Pharmaceutical/Medicinal Chemistry, Friedrich Schiller University, Jena, Germany
| | - Gabriel Hancu
- Department of Pharmaceutical and Therapeutic Chemistry, Faculty of Pharmacy, George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Targu Mures, Targu Mures, Romania
| | - Gerhard K E Scriba
- Department of Pharmaceutical/Medicinal Chemistry, Friedrich Schiller University, Jena, Germany
| |
Collapse
|
2
|
MODELLING THE SIMULTANEOUS CHIRAL SEPARATION OF A GROUP OF DRUGS BY ELECTROKINETIC CHROMATOGRAPHY USING MIXTURES OF CYCLODEXTRINS. J Chromatogr A 2022; 1681:463444. [DOI: 10.1016/j.chroma.2022.463444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 08/18/2022] [Accepted: 08/22/2022] [Indexed: 11/20/2022]
|
3
|
Use of Gamithromycin as a Chiral Selector in Capillary Electrophoresis. J Chromatogr A 2020; 1624:461099. [PMID: 32327223 DOI: 10.1016/j.chroma.2020.461099] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 03/30/2020] [Accepted: 03/31/2020] [Indexed: 01/28/2023]
Abstract
In this short communication, we report the use of a second-generation macrolide antibiotic, gamithromycin (Gam), as a novel chiral selector for enantioseparation in capillary electrophoresis (CE). A preliminary analysis of the experiment results shows that Gam is especially suitable for the separation of chiral primary amines. Factors influencing enantioseparations were systematically investigated including the composition of the background electrolyte (BGE), concentration of Gam, the type and proportion of organic solvents, applied voltage, etc. In particular, N-Methylformamide (NMF) was successfully used as a non-aqueous solvent for Gam, and shown to be extremely effective for the separation of primaquine (PMQ) and 1-aminoindan (AMI) when used alone or mixed with other commonly used non-aqueous solvents (e.g. methanol). To our knowledge this was also the first application of NMF as a non-aqueous solvent for antibiotic chiral selectors in CE. The best separations were obtained with 100 mM Tris, 125 mM H3BO3 and 80 mM Gam in methanol/NMF (25:75) solvent for PMQ and AMI, or 80-100 mM Gam in methanol for the other model analytes. Among the analytes, the resolution (Rs) of amlodipine (AML) reached up to 15.65, which is to our knowledge the highest value ever reported in CE studies for this compound (except for using molecularly imprinted polymers technique).
Collapse
|
4
|
Generalized model of the linear theory of electromigration and its application to electrokinetic chromatography: Capillary zone electrophoretic systems with complex-forming equilibria. J Chromatogr A 2020; 1610:460595. [DOI: 10.1016/j.chroma.2019.460595] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2019] [Revised: 09/27/2019] [Accepted: 09/30/2019] [Indexed: 12/25/2022]
|
5
|
Ren S, Xue S, Sun X, Rui M, Wang L, Zhang Q. Investigation of the synergistic effect of chiral ionic liquids as additives in non-aqueous capillary electrophoresis for enantioseparation. J Chromatogr A 2020; 1609:460519. [DOI: 10.1016/j.chroma.2019.460519] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Revised: 09/02/2019] [Accepted: 09/03/2019] [Indexed: 02/06/2023]
|
6
|
Casado N, Saz JM, García MÁ, Marina ML. Modeling-based optimization of the simultaneous enantiomeric separation of multicomponent mixtures of phenoxy acid herbicides using dual cyclodextrin systems by Capillary Electrophoresis. J Chromatogr A 2019; 1610:460552. [PMID: 31547959 DOI: 10.1016/j.chroma.2019.460552] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 09/12/2019] [Accepted: 09/16/2019] [Indexed: 10/26/2022]
Abstract
In this work, the Dubsky's model proposed for Capillary Electrophoresis (CE) enantioseparation systems with a mixture of chiral selectors was applied to the rapid optimization of the simultaneous enantiomeric separation of a multicomponent mixture of six phenoxy acid herbicides using a dual system of two cyclodextrins (CDs), (2-hydroxypropyl)-β-CD (HP-β-CD) and heptakis(2,3,6-tri-O-methyl)-β-CD (TM-β-CD). Simply by carrying out a small number of individual experiments separately with each CD, the Dubsky's model enabled to foresee the results that could be obtained for any possible combination of concentrations and relative proportion of both CDs in the mixture. Results obtained in this work demonstrated that the model was successful by improving the previous results experimentally obtained by the trial and error method for the simultaneous enantiomeric separation of the six phenoxy acid herbicides studied in this work. In fact, the separation was improved in terms of enantiomeric resolutions obtained (from 1.2 to 4.2 for concentrations of CDs of 4 mM HP-β-CD and 16 mM TM-β-CD) and by considerably reducing the time to optimize the separation conditions enabling to find, in a faster and efficient way, the most adequate proportion of both CDs and the concentration of each CD in the mixture to obtain baseline separation of the twelve enantiomers. Additionally, the apparent complexation constants between enantiomers and each CD were calculated. This is the first time that the above-mentioned model was applied to a multicomponent mixture of chiral compounds.
Collapse
Affiliation(s)
- Natalia Casado
- Departamento de Química Analítica, Química Física e Ingeniería Química, Universidad de Alcalá, Ctra. Madrid-Barcelona Km. 33.600, 28871 Alcalá de Henares (Madrid), Spain
| | - José María Saz
- Departamento de Química Analítica, Química Física e Ingeniería Química, Universidad de Alcalá, Ctra. Madrid-Barcelona Km. 33.600, 28871 Alcalá de Henares (Madrid), Spain
| | - María Ángeles García
- Departamento de Química Analítica, Química Física e Ingeniería Química, Universidad de Alcalá, Ctra. Madrid-Barcelona Km. 33.600, 28871 Alcalá de Henares (Madrid), Spain; Instituto de Investigación Química "Andrés M. del Río" (IQAR), Universidad de Alcalá, Ctra. Madrid-Barcelona Km. 33.600, 28871 Alcalá de Henares (Madrid), Spain
| | - María Luisa Marina
- Departamento de Química Analítica, Química Física e Ingeniería Química, Universidad de Alcalá, Ctra. Madrid-Barcelona Km. 33.600, 28871 Alcalá de Henares (Madrid), Spain; Instituto de Investigación Química "Andrés M. del Río" (IQAR), Universidad de Alcalá, Ctra. Madrid-Barcelona Km. 33.600, 28871 Alcalá de Henares (Madrid), Spain.
| |
Collapse
|
7
|
Ma X, Du Y, Sun X, Liu J, Huang Z. Synthesis and application of amino alcohol-derived chiral ionic liquids, as additives for enantioseparation in capillary electrophoresis. J Chromatogr A 2019; 1601:340-349. [DOI: 10.1016/j.chroma.2019.04.040] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2018] [Revised: 04/12/2019] [Accepted: 04/14/2019] [Indexed: 12/20/2022]
|
8
|
Švecová P, Petr J. Separation of cetirizine enantiomers by capillary electrophoresis with a dual selector system based on borate-glucose complexes and sulfated-β-cyclodextrin. Talanta 2019; 198:154-158. [DOI: 10.1016/j.talanta.2019.01.097] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2018] [Revised: 01/14/2019] [Accepted: 01/17/2019] [Indexed: 12/30/2022]
|
9
|
Chankvetadze B. Contemporary theory of enantioseparations in capillary electrophoresis. J Chromatogr A 2018; 1567:2-25. [PMID: 30025609 DOI: 10.1016/j.chroma.2018.07.041] [Citation(s) in RCA: 78] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Revised: 07/05/2018] [Accepted: 07/12/2018] [Indexed: 11/17/2022]
Abstract
The first separation of enantiomers in capillary electrophoresis (CE) counts slightly longer than three decades. Fast development of the practice and theory of chiral CE occurred in the past 30 years and today one can consider this technology to have a solid and mature theoretical background. The goal of the present review is not only to summarize the history and contemporary theory of enantioseparations by using CE but also to present the authors personal view where shall we head to with this attractive technology not only from the viewpoint of separation of enantiomers but also for better understanding the mechanisms of non-covalent (enantioselective) interactions in chemistry, biology, medicine and related disciplines.
Collapse
Affiliation(s)
- Bezhan Chankvetadze
- Institute of Physical and Analytical Chemistry, School of Exact and Natural Sciences, Tbilisi State University, Chavchavadze Ave 1, 0179 Tbilisi, Georgia.
| |
Collapse
|
10
|
Huang XY, Quan KJ, Pei D, Liu JF, Di DL. The development of biphasic chiral recognition in chiral separation. Chirality 2018; 30:974-981. [PMID: 29864196 DOI: 10.1002/chir.22975] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2018] [Revised: 04/19/2018] [Accepted: 04/20/2018] [Indexed: 12/23/2022]
Abstract
In chiral separation, enantioseparation factor is an important parameter which influences the resolution of enantiomers. In this current overview, a biphasic chiral recognition method is introduced to the readers. This method can significantly improve the enantioseparation factor in two-phase solvent through adding lipophilic and hydrophilic chiral selectors which have opposite chiral recognition ability to organic and aqueous phases, respectively. This overview presents the development and applications of biphasic chiral recognition in liquid-liquid extraction and counter current chromatography. It mainly focuses on the topics of mechanism, advantages and limitations, applications, and key factors of biphasic chiral recognition. In addition, the future outlook on development of biphasic chiral recognition also has been discussed in this overview.
Collapse
Affiliation(s)
- Xin-Yi Huang
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, Gansu, China
| | - Kai-Jun Quan
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, Gansu, China
- University of the Chinese Academy of Sciences, Beijing, China
| | - Dong Pei
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, Gansu, China
| | - Jian-Fei Liu
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, Gansu, China
| | - Duo-Long Di
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, Gansu, China
| |
Collapse
|
11
|
Stavrou IJ, Agathokleous EA, Kapnissi-Christodoulou CP. Chiral selectors in CE: Recent development and applications (mid-2014 to mid-2016). Electrophoresis 2017; 38:786-819. [DOI: 10.1002/elps.201600322] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Revised: 11/22/2016] [Accepted: 11/23/2016] [Indexed: 11/05/2022]
|
12
|
Advances in the Use of Cyclodextrins as Chiral Selectors in Capillary Electrokinetic Chromatography: Fundamentals and Applications. Chromatographia 2016. [DOI: 10.1007/s10337-016-3167-0] [Citation(s) in RCA: 92] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
13
|
Dubský P, Ördögová M, Malý M, Riesová M. CEval: All-in-one software for data processing and statistical evaluations in affinity capillary electrophoresis. J Chromatogr A 2016; 1445:158-65. [DOI: 10.1016/j.chroma.2016.04.004] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2016] [Revised: 03/31/2016] [Accepted: 04/01/2016] [Indexed: 11/15/2022]
|
14
|
Michalska K, Gruba E, Cielecka-Piontek J, Bednarek E. Chiral separation of tedizolid using charge single isomer derivatives of cyclodextrins by capillary electrokinetic chromatography. J Pharm Biomed Anal 2016; 120:402-12. [DOI: 10.1016/j.jpba.2015.11.022] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2015] [Revised: 11/06/2015] [Accepted: 11/15/2015] [Indexed: 11/26/2022]
|
15
|
Müllerová L, Dubský P, Ördögová M, Gaš B. Determination of relative enantiomer migration order using a racemic sample. J Chromatogr A 2015; 1424:139-43. [DOI: 10.1016/j.chroma.2015.10.058] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2015] [Revised: 10/14/2015] [Accepted: 10/15/2015] [Indexed: 10/22/2022]
|
16
|
Dubský P, Müllerová L, Dvořák M, Gaš B. Generalized model of electromigration with 1:1 (analyte:selector) complexation stoichiometry: Part I. Theory. J Chromatogr A 2015; 1384:142-6. [DOI: 10.1016/j.chroma.2015.01.029] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2014] [Revised: 01/07/2015] [Accepted: 01/11/2015] [Indexed: 11/15/2022]
|
17
|
Müllerová L, Dubský P, Gaš B. Generalized model of electromigration with 1:1 (analyte:selector) complexation stoichiometry: Part II. Application to dual systems and experimental verification. J Chromatogr A 2015; 1384:147-54. [DOI: 10.1016/j.chroma.2015.01.055] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2014] [Revised: 01/16/2015] [Accepted: 01/18/2015] [Indexed: 10/24/2022]
|
18
|
Determination of thermodynamic values of acidic dissociation constants and complexation constants of profens and their utilization for optimization of separation conditions by Simul 5 Complex. J Chromatogr A 2014; 1364:276-88. [DOI: 10.1016/j.chroma.2014.08.070] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2014] [Revised: 08/20/2014] [Accepted: 08/21/2014] [Indexed: 11/23/2022]
|
19
|
Müllerová L, Dubský P, Gaš B. Twenty years of development of dual and multi-selector models in capillary electrophoresis: a review. Electrophoresis 2014; 35:2688-700. [PMID: 24946108 DOI: 10.1002/elps.201400149] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2014] [Revised: 05/28/2014] [Accepted: 05/29/2014] [Indexed: 11/05/2022]
Abstract
It has been 20 years since Lurie et al. first published their model of electromigration of an analyte under simultaneous interaction with two cyclodextrins as chiral selectors. Since then, the theory of (enantio)separation in dual and complex mixtures of (chiral) selectors is well understood. In spite of this, a trial-and-error approach still prevails in analytical practice. Such a situation is likely caused by the fact that the entire theory is spread over numerous papers and the relations between various models are not always clear. The present review condenses the theory for the first time. Available mathematical models and feasible practical approaches are summarized and their advantages and limitations discussed.
Collapse
Affiliation(s)
- Ludmila Müllerová
- Department of Physical and Macromolecular Chemistry, Faculty of Science, Charles University in Prague, Prague, Czech Republic
| | | | | |
Collapse
|
20
|
Escuder-Gilabert L, Martín-Biosca Y, Medina-Hernández MJ, Sagrado S. Cyclodextrins in capillary electrophoresis: recent developments and new trends. J Chromatogr A 2014; 1357:2-23. [PMID: 24947884 DOI: 10.1016/j.chroma.2014.05.074] [Citation(s) in RCA: 85] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2014] [Revised: 05/27/2014] [Accepted: 05/28/2014] [Indexed: 02/07/2023]
Abstract
Despite the fact that extensive research in the field of separations by capillary electrophoresis (CE) has been carried out and many reviews have been published in the last years, a specific review on the use and future potential of cyclodextrins (CDs) in CE is not available. This review focuses the attention in the CD-CE topic over the January 2013-February 2014 period (not covered by previous more general CE-reviews). Recent contributions (reviews and research articles) including practical uses (e.g. solute-CD binding constant estimation and further potentials; 19% of publications), developments and applications (mainly chiral and achiral analysis; 38 and 24% of publications, respectively) are summarized in nine comprehensive tables and are commented. Statistics and predictions related to the CD-CE publications are highlighted in order to infer the current and expected research interests. Finally, trends and initiatives on CD-CE attending to real needs or practical criteria are outlined.
Collapse
Affiliation(s)
- L Escuder-Gilabert
- Departamento de Química Analítica, Universidad de Valencia, Burjassot, Valencia, Spain
| | - Y Martín-Biosca
- Departamento de Química Analítica, Universidad de Valencia, Burjassot, Valencia, Spain
| | - M J Medina-Hernández
- Departamento de Química Analítica, Universidad de Valencia, Burjassot, Valencia, Spain
| | - S Sagrado
- Departamento de Química Analítica, Universidad de Valencia, Burjassot, Valencia, Spain; Centro Interuniversitario de Reconocimiento Molecular y Desarrollo Tecnológico (IDM), Unidad Mixta Universidad Politécnica de Valencia-Universidad de Valencia, Valencia, Spain.
| |
Collapse
|