1
|
Fouad A, Adly FG, Soltan MK, Ghanem A. Lipase as a Chiral Selector Immobilised on Carboxylated Single-Walled Carbon Nanotubes and Encapsulated in the Organic Polymer Monolithic Capillary for Nano-High Performance Liquid Chromatography Enantioseparation of Racemic Pharmaceuticals. Molecules 2023; 28:6663. [PMID: 37764439 PMCID: PMC10534468 DOI: 10.3390/molecules28186663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 09/13/2023] [Accepted: 09/14/2023] [Indexed: 09/29/2023] Open
Abstract
Herein, we report the preparation of lipase immobilised on single-walled carbon nanotubes (SWCNTs) as an enantioselector for capillary monolithic columns and their application in the chiral separation of racemic pharmaceuticals. The columns were prepared through the encapsulation of functionalised SWCNTs (c-SWCNTs) within an organic monolithic polymer, followed by the immobilisation of lipase over the obtained monolith, over a three-day (L1) and five-day (L2) period. The prepared columns were tested for the enantioselective nano-HPLC separation of 50 racemic drugs. A suitable resolution was achieved for 25 drugs using nano-RP-HPLC conditions for both the L1 and L2 capillaries, while no specific resolution was detected under normal-phase HPLC conditions. The developed c-SWCNT-lipase-based polymeric monolithic capillaries are a promising expansion for separating pharmaceutical enantiomers' using nano-HPLC.
Collapse
Affiliation(s)
- Ali Fouad
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Al-Azhar University, Assiut 71524, Egypt;
| | - Frady G. Adly
- Complementary & Over the Counter Medicines Branch, Medicines Regulation Division, Therapeutic Goods Administration, Australian Department of Health and Aged Care, Canberra, ACT 2609, Australia;
| | - Moustafa K. Soltan
- Department of Medicinal Chemistry, Faculty of Pharmacy, Zagazig University, Zagazig 44519, Egypt;
- Oman College of Health Sciences, Ministry of Health, Muscat 132, Oman
| | - Ashraf Ghanem
- Chirality Program, Faculty of Science and Technology, University of Canberra, Canberra, ACT 2601, Australia
| |
Collapse
|
2
|
Daneshvar Tarigh G. Enantioseparation/Recognition based on nano techniques/materials. J Sep Sci 2023:e2201065. [PMID: 37043692 DOI: 10.1002/jssc.202201065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 03/15/2023] [Accepted: 03/18/2023] [Indexed: 04/14/2023]
Abstract
Enantiomers show different behaviors in interaction with the chiral environment. Due to their identical chemical structure and their wide application in various industries, such as agriculture, medicine, pesticide, food, and so forth, their separation is of great importance. Today, the term "nano" is frequently encountered in all fields. Technology and measuring devices are moving towards miniaturization, and the usage of nanomaterials in all sectors is expanding substantially. Given that scientists have recently attempted to apply miniaturized techniques known as nano-liquid chromatography/capillary-liquid chromatography, which were originally accomplished in 1988, as well as the widespread usage of nanomaterials for chiral resolution (back in 1989), this comprehensive study was developed. Searching the terms "nano" and "enantiomer separation" on scientific websites such as Scopus, Google Scholar, and Web of Science yields articles that either use miniaturized instruments or apply nanomaterials as chiral selectors with a variety of chemical and electrochemical detection techniques, which are discussed in this article.
Collapse
Affiliation(s)
- Ghazale Daneshvar Tarigh
- Department of Analytical Chemistry, University College of Science, University of Tehran, Tehran, Iran
| |
Collapse
|
3
|
Enantioseparation of β-Blockers Using Silica-Immobilised Eremomycin Derivatives as Chiral Stationary Phases in HPLC. Symmetry (Basel) 2023. [DOI: 10.3390/sym15020373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
The regularities of chromatographic retention and separation enantioselectivity of the selected β-blockers (propranolol, pindolol, alprenolol, atenolol, oxprenalol, metoprolol, clenbuterol, sotalol, pronethalol, salbutamol, and labetalol) were studied with eight chiral stationary phases (CSPs) in polar ionic mode (PIM) elution system. A range of novel CSPs was prepared by immobilisation of macrocyclic glycopeptide antibiotic eremomycin (E-CSP); structurally related antibiotics chloreremomycin (Chloro-E-CSP) and semi-synthetic oritavancin (O-CSP); and five eremomycin derivatives including amide- (Amide-E-CSP), adamantyl-2-amide- (Adamantylamide-E-CSP), eremomycin aglycon (EAg-CSP), eremosaminyl eremomycin aglycon (EEA-CSP), and des-eremosamynyl eremomycin (DEE-CSP) onto microspherical silica (Kromasil, particle size 5 micron, pore size 11 nm). The effect of different functional groups in eremomycin structure on chiral recognition of β-blockers was studied. The original E-CSP revealed moderate enantioseparation for all studied β-blockers. The presence of a free carboxylic group in a chiral selector molecule is found to be critical for the general retention of enantiomers as no separation enantioselectivity was recorded for Amide-E-CSP and Adamantyl-E-CSP. Modification of the aromatic system of eremomycin by the introduction of a chloro- substituent in the aromatic ring (Chloro-E-CSP) or a hydrophobic 4’-chlorobiphenylmethyl substituent to the disaccharide sugar residue (O-CSP) resulted in decreased enantioselectivity. The best enantioseparation of β-blockers was obtained for CSPs with eremosaminyl eremomycin aglycon and des-eremosamynyl eremomycin as chiral selectors.
Collapse
|
4
|
Nechvátalová M, Urban J. Current trends in the development of polymer-based monolithic stationary phases. ANALYTICAL SCIENCE ADVANCES 2022; 3:154-164. [PMID: 38715639 PMCID: PMC10989626 DOI: 10.1002/ansa.202100065] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 02/17/2022] [Accepted: 02/18/2022] [Indexed: 11/17/2024]
Abstract
This review focuses on the development and applications of organic polymer monoliths, with special attention to the literature published in 2021. The latest protocols in the preparation of polymer monoliths are discussed. In particular, tailored surface modification using nanomaterials, the development of chiral stationary phases and development of stationary phases for capillary electrochromatography are reviewed. Furthermore, the optimization of pore forming solvents composition is also discussed. Finally, the use of monolithic stationary phases in sample treatment using solid-phase extraction and enrichment methods, molecularly imprinted polymers and enzymatic reactors is mentioned.
Collapse
Affiliation(s)
| | - Jiří Urban
- Department of Chemistry, Faculty of ScienceMasaryk UniversityBrnoCzech Republic
| |
Collapse
|
5
|
Shan L, Jones B. Nano liquid chromatography, an updated review. Biomed Chromatogr 2022; 36:e5317. [PMID: 34981550 DOI: 10.1002/bmc.5317] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Revised: 12/04/2021] [Accepted: 12/09/2021] [Indexed: 11/11/2022]
Abstract
Low flow chromatography has a rich history of innovation but has yet to reach widespread implementation in bioanalytical applications. Improvements in pump technology, microfluidic connections, and nano-electrospray sources for mass spectrometry have laid the groundwork for broader application, and innovation in this space has accelerated in recent years. This article reviews the instrumentation used for nano-flow liquid chromatography , the types of columns employed, and strategies for multi-dimensionality of separations, which is key to the future state of the technique to the high-throughput needs of modern bioanalysis. An update of the current applications where nano-LC is widely used, such as proteomics and metabolomics, is discussed. But the trend towards biopharmaceutical development of increasingly complex, targeted, and potent therapeutics for the safe treatment of disease drives the need for ultimate selectivity and sensitivity of our analytical platforms for targeted quantitation in a regulated space. The selectivity needs are best addressed by mass spectrometric detection, especially at high resolutions, and exquisite sensitivity is provided by nano-electrospray ionization as the technology continues to evolve into an accessible, robust, and easy to use platform.
Collapse
|
6
|
Dal Bosco C, Bonoli F, Gentili A, Fanali C, D’Orazio G. Chiral Nano-Liquid Chromatography and Dispersive Liquid-Liquid Microextraction Applied to the Analysis of Antifungal Drugs in Milk. Molecules 2021; 26:molecules26237094. [PMID: 34885676 PMCID: PMC8659161 DOI: 10.3390/molecules26237094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Revised: 11/11/2021] [Accepted: 11/22/2021] [Indexed: 11/16/2022] Open
Abstract
A novel chromatographic application in chiral separation by using the nano-LC technique is here reported. The chiral recognition of 12 antifungal drugs was obtained through a 75 µm I.D. fused-silica capillary, which was packed with a CSP-cellulose 3,5-dichlorophenylcarbamate (CDCPC), by means of a lab-made slurry packing procedure. The mobile phase composition and the experimental conditions were optimized in order to find the optimum chiral separation for some selected racemic mixtures of imidazole and triazole derivatives. Some important parameters, such as retention faction, enantioresolution, peak efficiency, and peak shape, were investigated as a function of the mobile phase (pH, water content, type and concentration of both the buffer and the organic modifier, and solvent dilution composition). Within one run lasting 25 min, at a flow rate of approximately 400 nL min-1, eight couples of enantiomers were baseline-resolved and four of them were separated in less than 25 min. The method was then applied to milk samples, which were pretreated using a classical dispersive liquid-liquid microextraction technique preceded by protein precipitation. Finally, the DLLME-nano-LC-UV method was validated in a matrix following the main FDA guidelines for bioanalytical methods.
Collapse
Affiliation(s)
- Chiara Dal Bosco
- Department of Chemistry, Sapienza University of Rome, 00185 Rome, Italy; (C.D.B.); (F.B.); (A.G.)
| | - Flavia Bonoli
- Department of Chemistry, Sapienza University of Rome, 00185 Rome, Italy; (C.D.B.); (F.B.); (A.G.)
| | - Alessandra Gentili
- Department of Chemistry, Sapienza University of Rome, 00185 Rome, Italy; (C.D.B.); (F.B.); (A.G.)
| | - Chiara Fanali
- Unit of Food Science and Nutrition, Department of Science and Technology for Humans and the Environment, Università Campus Bio-Medico di Roma, 00128 Rome, Italy;
| | - Giovanni D’Orazio
- Istituto per i Sistemi Biologici (ISB), CNR-Consiglio Nazionale delle Ricerche, Monterotondo, 00015 Rome, Italy
- Correspondence: ; Tel.: +39-0690672256
| |
Collapse
|
7
|
Bao W, Zhang C, Yang M, Nan D, Liu T, Guo X, Fang L. Preparation and modeling study of novel carboxymethyl-β-cyclodextrin silica hybrid monolithic column for enantioseparations in capillary electrochromatography. Microchem J 2021. [DOI: 10.1016/j.microc.2021.106719] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
8
|
Zhao Y, Si H, Zhao X, Li H, Ren J, Li S, Wang Q, Zhang J. Fabrication of an allyl-β-cyclodextrin based monolithic column with triallyl isocyanurate as co-crosslinker and its application in separation of lipopeptide antibiotics by HPLC. Microchem J 2021. [DOI: 10.1016/j.microc.2021.106462] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
9
|
Chiral Monolithic Silica-Based HPLC Columns for Enantiomeric Separation and Determination: Functionalization of Chiral Selector and Recognition of Selector-Selectand Interaction. Molecules 2021; 26:molecules26175241. [PMID: 34500675 PMCID: PMC8434329 DOI: 10.3390/molecules26175241] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Revised: 08/25/2021] [Accepted: 08/26/2021] [Indexed: 11/25/2022] Open
Abstract
This review draws attention to the use of chiral monolithic silica HPLC columns for the enantiomeric separation and determination of chiral compounds. Properties and advantages of monolithic silica HPLC columns are also highlighted in comparison to conventional particle-packed, fused-core, and sub-2-µm HPLC columns. Nano-LC capillary monolithic silica columns as well as polymeric-based and hybrid-based monolithic columns are also demonstrated to show good enantioresolution abilities. Methods for introducing the chiral selector into the monolithic silica column in the form of mobile phase additive, by encapsulation and surface coating, or by covalent functionalization are described. The application of molecular modeling methods to elucidate the selector–selectand interaction is discussed. An application for enantiomeric impurity determination is also considered.
Collapse
|
10
|
Samarehfekri H, Rahimi HR, Ranjbar M. Controlled and cellulose eco-friendly synthesis and characterization of Bi 2O 2CO 3 quantum dot nanostructures (QDNSs) and drug delivery study. Sci Rep 2020; 10:21302. [PMID: 33277600 PMCID: PMC7718884 DOI: 10.1038/s41598-020-78266-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Accepted: 11/23/2020] [Indexed: 12/21/2022] Open
Abstract
This work aimed to prepare solvent-free or green Bi2O2CO3 for quantum dot nanostructures (QDNSs) based on cellulose as a stabilizer and green capping agent to sorafenib delivery for liver targeting. Because the walnut tree is one of the most abundant trees in Iran, it was tried to synthesize Bi2O2CO3 QDNSs using a walnut skin extract. The saturation magnetization for Bi2O2CO3 QDNSs was calculated to be 68.1. Also, the size of products was measured at around 60–80 nm with the Debye–Scherrer equation. Moreover, the morphology, functional groups, and crystallography of the Bi2O2CO3 nanoparticles were investigated using atomic force microscopy, scanning electron microscopy, vibrating-sample magnetometer, and Uv–vis spectroscopy. The results demonstrated that Bi2O2CO3 QDNSs have opto-magnetic properties and they can be suggested as the candidate materials for the sorafenib delivery on the liver tissue. The optical band gap estimated for Bi2O2CO3 QDNSs was found to be red-shift from 3.22 eV. This study suggests the preparation of the Bi2O2CO3 QDNSs based on cellulose as new opto-magnetic materials at different temperatures of 180 °C, 200 °C, 220 °C, and 240 °C for sorafenib delivery as a type of biological therapy drug.
Collapse
Affiliation(s)
- Hojat Samarehfekri
- Student Research Committee, Kerman University of Medical Sciences, Kerman, Iran.,Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Hamid Reza Rahimi
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Kerman University of Medical Sciences, Kerman, Iran
| | - Mehdi Ranjbar
- Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran. .,Pharmaceutics Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, P.O. Box: 76175-493, 76169-11319, Kerman, Iran.
| |
Collapse
|
11
|
Lu Y, Sun G. Hydroxypropyl-β-cyclodextrin encapsulated stationary phase based on silica monolith particles for enantioseparation in liquid chromatography. J Sep Sci 2020; 44:735-743. [PMID: 33253443 DOI: 10.1002/jssc.202000978] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 11/21/2020] [Accepted: 11/26/2020] [Indexed: 01/13/2023]
Abstract
Hydroxypropyl-β-cyclodextrin-encapsulated stationary phase incorporated on silica monolith particles was prepared by physical embedding, providing a new method for the development of chiral stationary phase for enantioseparation in liquid chromatography. Ground silica monolith particles of about 2.0 μm were prepared via sol-gel reaction followed by differential sedimentation. Initially, the silica monolith particles were pretreated with 3-trimethoxysilyl propyl methacrylate to attach double-bonded ligands onto the surface, then a network structure was formed onto the surface of the particle using N-isopropyl acrylamide as functional monomer. Hydroxypropyl-β-cyclodextrin was encapsulated inside N-isopropyl acrylamide copolymerized layer on the surface of silica monolith particles. The effect of the amount of chiral selector on the chromatographic efficiency of the chiral stationary phase was examined. The glass lined stainless steel columns (1 mm internal diameter, 300 mm length) were packed with the stationary phase for estimation of the efficiency by separation of phenylsuccinic acid, oxybutynin, equol, and naproxen enantiomers in high-performance liquid chromatography, with the resolutions of 1.54, 1.72, 2.54, and 2.31, respectively. The column to column repeatabilities through relative standard deviation were found better than 3%. The experimental results indicate that the sol-gel ground silica particles modified with β-cyclodextrin provide a promising way for the separation of chiral enantiomers.
Collapse
Affiliation(s)
- Yao Lu
- Department of pharmacy, Jiangxi University of Traditional Chinese Medicine, Nanchang, P. R. China
| | - Genlin Sun
- Department of pharmacy, Jiangxi University of Traditional Chinese Medicine, Nanchang, P. R. China
| |
Collapse
|
12
|
Abstract
Background::
Nano level chiral separation is necessary and demanding in the development
of the drug, genomic, proteomic, and other chemical and the environmental sciences. Few drugs exist
in human body cells for some days at nano level concentrations, that are out of the jurisdiction of the
detection by standard separation techniques. Likewise, the separation and identification of xenobiotics
and other environmental contaminants (at nano or low levels) are necessary for our healthiness.
Discussion:
Conclusion:
This article will be beneficial for chiral chromatographers, academicians, pharmaceutical
industries, environmental researchers and Government regulation authorities.
Collapse
Affiliation(s)
- Al Arsh Basheer
- State University of New York, Flint Entrance, Amherst, NY 14260, Buffalo, United States
| | - Iqbal Hussain
- Department of General Studies, Jubail Industrial College, Jubail Industrial City, Jubail, Saudi Arabia
| | - Marcus T. Scotti
- Cheminformatics Laboratory - Postgraduate Program in Natural Products and Synthetic Bioactive, Federal University of Paraiba-Campus I, 58051-970, Joao Pessoa, PB, Brazil
| | - Luciana Scotti
- Teaching and Research Management - University Hospital, Cheminformatics Laboratory - Postgraduate Program in Natural Products and Synthetic Bioactive, Federal University of Paraiba-Campus I, 58051-970, Joao Pessoa, PB, Brazil
| | - Imran Ali
- Department of Chemistry, College of Sciences, Taibah University, Al-Medina Al-Munawara - 41477, Saudi Arabia
| |
Collapse
|
13
|
|
14
|
Recent advances in preparation and applications of monolithic chiral stationary phases. Trends Analyt Chem 2020. [DOI: 10.1016/j.trac.2019.115774] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
15
|
Preparation of a hydroxypropyl-β-cyclodextrin functionalized monolithic column by one-pot sequential reaction and its application for capillary electrochromatographic enantiomer separation. J Chromatogr A 2019; 1603:269-277. [PMID: 31279475 DOI: 10.1016/j.chroma.2019.06.044] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Revised: 06/21/2019] [Accepted: 06/22/2019] [Indexed: 02/08/2023]
Abstract
In this study, a hydroxypropyl-β-cyclodextrin (HP-β-CD) functionalized monolithic capillary column was prepared by one-pot sequential reaction for the first time. The preparation of the HP-β-CD functionalized monolithic column involves two sequential reactions in one pot: (1) the ring opening reaction between HP-β-CD and glycidyl methacrylate (GMA) catalyzed by 1,8-diazabicyclo[5.4.0]undec-7-ene (DBU); (2) the copolymerization of GMA-HP-β-CD, ethylene dimethacrylate (EDMA) and 2-acrylamido-2-methyl propane sulfonic acid (AMPS). A series of monolithic columns were successfully prepared by varying the temperature of the ring opening reaction or several copolymerization parameters (the type and composition of porogenic solvents, ratio of GMA-HP-β-CD to EDMA and polymerization temperature). Then, the morphologies and structures of the resulting monolithic stationary phases were characterized by optical microscopy, scanning electron microscopy (SEM) and nitrogen adsorption analysis. Raman spectroscopy clearly indicated the successful bonding of HP-β-CD onto the monolith. When the prepared chiral stationary phase (CSP) was applied for the separation of a set of racemic compounds by capillary electrochromatography (CEC), including racemic anticholinergic drugs, β-adrenergic drugs, meptazinol and its intermediates, satisfactory separation selectivities were obtained. Additionally, the column also showed excellent separation abilities towards four flavanone glycosides epimers. Furthermore, the prepared monolithic columns exhibited satisfactory stability and reproducibilities of retention time, resolution and column efficiency. These results demonstrated the potential and usefulness of the developed one-pot sequential strategy in the preparation of other derivatized CD functionalized monolithic columns.
Collapse
|
16
|
Fouad A, Ibrahim D, Adly FG, Ghanem A. An insight into chiral monolithic stationary phases for enantioselective high-performance liquid chromatography applications. J Sep Sci 2019; 42:2303-2340. [PMID: 31050176 DOI: 10.1002/jssc.201900159] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Revised: 04/17/2019] [Accepted: 04/17/2019] [Indexed: 02/02/2023]
Abstract
In this review, three main classes of chiral monolithic stationary phases, namely silica-, organic polymer-, and hybrid-based monolithic stationary phases, are covered. Their preparations, applications, and advantages compared with the conventional-packed and open-tubular capillary columns are discussed. A detailed description of the different types and techniques used for the introduction of chiral selectors into the monolithic matrices such as immobilization, functionalization, coating, encapsulation, and bonding. Special emphasis is given to the recent developments of chiral selectors in HPLC monolithic stationary phases during the past 18 years.
Collapse
Affiliation(s)
- Ali Fouad
- Chirality Program, School of Science, Faculty of Science and Technology, University of Canberra, ACT, Australia.,Pharmaceutical Chemistry Department, Faculty of Pharmacy, Al-Azhar University, Assiut, Egypt
| | - Diana Ibrahim
- Chirality Program, School of Science, Faculty of Science and Technology, University of Canberra, ACT, Australia
| | - Frady G Adly
- Chirality Program, School of Science, Faculty of Science and Technology, University of Canberra, ACT, Australia
| | - Ashraf Ghanem
- Chirality Program, School of Science, Faculty of Science and Technology, University of Canberra, ACT, Australia
| |
Collapse
|
17
|
Fouad A, Shaykoon MSA, Ibrahim SM, El-Adl SM, Ghanem A. Colistin Sulfate Chiral Stationary Phase for the Enantioselective Separation of Pharmaceuticals Using Organic Polymer Monolithic Capillary Chromatography. Molecules 2019; 24:molecules24050833. [PMID: 30813595 PMCID: PMC6429358 DOI: 10.3390/molecules24050833] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Revised: 02/17/2019] [Accepted: 02/21/2019] [Indexed: 11/25/2022] Open
Abstract
A new functionalized polymer monolithic capillary with a macrocyclic antibiotic, namely colistin sulfate, as chiral selector was prepared via the copolymerization of binary monomer mixtures consisting of glycidyl methacrylate (GMA) and ethylene glycol dimethacrylate (EGDMA) in porogenic solvents namely 1-propanol and 1,4-butanediol, in the presence of azobisiso-butyronitrile (AIBN) as initiator and colistin sulfate. The prepared capillaries were investigated for the enantioselective nano-LC separation of a group of racemic pharmaceuticals, namely, α- and β-blockers, anti-inflammatory drugs, antifungal drugs, norepinephrine-dopamine reuptake inhibitors, catecholamines, sedative hypnotics, antihistaminics, anticancer drugs, and antiarrhythmic drugs. Acceptable separation was achieved for many drugs using reversed phase chromatographic conditions with no separation achieved under normal phase conditions. Colistin sulfate appears to be useful addition to the available macrocyclic antibiotic chiral phases used in liquid chromatography.
Collapse
Affiliation(s)
- Ali Fouad
- Chirality Program, Faculty of Science and Technology, University of Canberra, Canberra, ACT 2601, Australia.
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Al-Azhar University, Assiut 71524, Egypt.
| | - Montaser Sh A Shaykoon
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Al-Azhar University, Assiut 71524, Egypt.
| | - Samy M Ibrahim
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Zagazig University, Zagazig 44519, Egypt.
| | - Sobhy M El-Adl
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Zagazig University, Zagazig 44519, Egypt.
| | - Ashraf Ghanem
- Chirality Program, Faculty of Science and Technology, University of Canberra, Canberra, ACT 2601, Australia.
| |
Collapse
|
18
|
A Systematic Study of Cu Nanospheres Embedded in Non-ionic Surfactant-Based Vesicle: Photocatalytic Efficiency and In Vivo Imaging Study. J CLUST SCI 2019. [DOI: 10.1007/s10876-019-01507-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
19
|
A novel one-pot strategy to prepare β-cyclodextrin functionalized capillary monoliths for enantioseparation of basic drugs. Talanta 2018; 189:458-466. [DOI: 10.1016/j.talanta.2018.07.041] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Revised: 06/30/2018] [Accepted: 07/11/2018] [Indexed: 11/23/2022]
|
20
|
Aydoğan C. Chiral separation and determination of amino acid enantiomers in fruit juice by open-tubular nano liquid chromatography. Chirality 2018; 30:1144-1149. [DOI: 10.1002/chir.23006] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Revised: 06/10/2018] [Accepted: 07/09/2018] [Indexed: 01/18/2023]
Affiliation(s)
- Cemil Aydoğan
- Department of Food Engineering; Bingöl University; Bingöl Turkey
| |
Collapse
|
21
|
Lin Y, Guo J, Lin H, Wang J, Somsen GW, Crommen J, Jiang Z. Effect of fabrication strategy on the enantioseparation performance of β-cyclodextrin-functionalized polymethacrylate monoliths: A comparative evaluation. J Sep Sci 2017; 40:3754-3762. [DOI: 10.1002/jssc.201700424] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2017] [Revised: 06/12/2017] [Accepted: 07/13/2017] [Indexed: 12/31/2022]
Affiliation(s)
- Yuanjing Lin
- Institute of Pharmaceutical Analysis; College of Pharmacy, Jinan University; Guangzhou China
| | - Jialiang Guo
- School of Stomatology and Medicine; Foshan University; Foshan China
| | - Hang Lin
- Institute of Pharmaceutical Analysis; College of Pharmacy, Jinan University; Guangzhou China
| | - Jincai Wang
- Institute of Pharmaceutical Analysis; College of Pharmacy, Jinan University; Guangzhou China
| | - Govert W. Somsen
- Institute of Pharmaceutical Analysis; College of Pharmacy, Jinan University; Guangzhou China
- Division of Bioanalytical Chemistry; AIMMS Research Group Biomolecular Analysis, Vrije Universiteit Amsterdam; Amsterdam The Netherlands
| | - Jacques Crommen
- Institute of Pharmaceutical Analysis; College of Pharmacy, Jinan University; Guangzhou China
- Laboratory of Analytical Pharmaceutical Chemistry; Department of Pharmaceutical Sciences; CIRM, University of Liege; Liege Belgium
| | - Zhengjin Jiang
- Institute of Pharmaceutical Analysis; College of Pharmacy, Jinan University; Guangzhou China
| |
Collapse
|
22
|
Fouad A, Ghanem A. Immobilized Chiral Selectors on Monolithic High-Performance Liquid Chromatography Columns. ADVANCES IN CHROMATOGRAPHY 2017. [DOI: 10.1201/9781315116372-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
23
|
Fanali S. Nano-liquid chromatography applied to enantiomers separation. J Chromatogr A 2017; 1486:20-34. [DOI: 10.1016/j.chroma.2016.10.028] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2016] [Revised: 10/01/2016] [Accepted: 10/11/2016] [Indexed: 10/20/2022]
|
24
|
Guo J, Xiao Y, Lin Y, Crommen J, Jiang Z. Effect of the crosslinker type on the enantioseparation performance of β -cyclodextrin functionalized monoliths prepared by the one-pot approach. J Chromatogr A 2016; 1467:288-296. [DOI: 10.1016/j.chroma.2016.05.078] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2016] [Revised: 05/18/2016] [Accepted: 05/24/2016] [Indexed: 01/03/2023]
|
25
|
Recent developments in cyclodextrin functionalized monolithic columns for the enantioseparation of chiral drugs. J Pharm Biomed Anal 2016; 130:110-125. [DOI: 10.1016/j.jpba.2016.05.023] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Revised: 05/06/2016] [Accepted: 05/15/2016] [Indexed: 01/09/2023]
|
26
|
Sierra I, Marina ML, Pérez-Quintanilla D, Morante-Zarcero S, Silva M. Approaches for enantioselective resolution of pharmaceuticals by miniaturised separation techniques with new chiral phases based on nanoparticles and monolithis. Electrophoresis 2016; 37:2538-2553. [PMID: 27434636 DOI: 10.1002/elps.201600131] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Revised: 07/05/2016] [Accepted: 07/06/2016] [Indexed: 01/10/2023]
Abstract
This article discusses new developments in the preparation of nanoparticles and monoliths with emphasis upon their application as the stationary and pseudo-stationary phases for miniaturised liquid phase separation techniques, which have occurred in the last 10 years (from 2006 to the actuality). References included in this review represent current trends and state of the art in the application of these materials to the analysis, by EKC, CEC and miniaturised chromatography, of chiral compounds with environmental interest such as pharmaceuticals. Due to their extraordinary properties, columns prepared with these new chiral stationary or pseudo-stationary phases, based on materials such as gold nanoparticles, metal-organic frameworks, ordered mesoporous silicas, carbonaceous materials, polymeric-based and silica-based monoliths or molecularly imprinted materials, can usually show some improvements in the separation selectivity, column efficiency and chemical stability in comparison with conventional chiral columns available commercially.
Collapse
Affiliation(s)
- Isabel Sierra
- Departamento de Tecnología Química y Energética, Tecnología Química y Ambiental, Tecnología Mecánica y Química Analítica, ESCET, Universidad Rey Juan Carlos, C/ Tulipán s/n, Móstoles, Madrid, Spain.
| | - Maria Luisa Marina
- Departamento de Química Analítica, Química Física e Ingeniería Química, Universidad de Alcalá, Alcalá de Henares, Madrid, Spain
| | - Damián Pérez-Quintanilla
- Departamento de Tecnología Química y Energética, Tecnología Química y Ambiental, Tecnología Mecánica y Química Analítica, ESCET, Universidad Rey Juan Carlos, C/ Tulipán s/n, Móstoles, Madrid, Spain
| | - Sonia Morante-Zarcero
- Departamento de Tecnología Química y Energética, Tecnología Química y Ambiental, Tecnología Mecánica y Química Analítica, ESCET, Universidad Rey Juan Carlos, C/ Tulipán s/n, Móstoles, Madrid, Spain
| | - Mariana Silva
- Departamento de Tecnología Química y Energética, Tecnología Química y Ambiental, Tecnología Mecánica y Química Analítica, ESCET, Universidad Rey Juan Carlos, C/ Tulipán s/n, Móstoles, Madrid, Spain
| |
Collapse
|
27
|
Hong T, Yang X, Xu Y, Ji Y. Recent advances in the preparation and application of monolithic capillary columns in separation science. Anal Chim Acta 2016; 931:1-24. [DOI: 10.1016/j.aca.2016.05.013] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2015] [Revised: 05/07/2016] [Accepted: 05/09/2016] [Indexed: 12/12/2022]
|
28
|
Ghanem A, Adly FG, Sokerik Y, Antwi NY, Shenashen MA, El-Safty SA. Trimethyl-β-cyclodextrin-encapsulated monolithic capillary columns: Preparation, characterization and chiral nano-LC application. Talanta 2016; 169:239-248. [PMID: 28411817 DOI: 10.1016/j.talanta.2016.06.027] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Revised: 06/13/2016] [Accepted: 06/14/2016] [Indexed: 01/19/2023]
Abstract
Trimethylated-β-cyclodextrin (TM-β-CD) was encapsulated within several polymer monolithic capillary columns for reversed-phase chiral nano-liquid chromatography (nano-LC). The monolithic phases were prepared using the one-pot in situ copolymerization of ethylene glycol dimethacrylate (EDMA), glycidyl methacrylate (GMA) monomers and 1-propanol, 1,4-butanediol as progenic solvents in presence of TM-β-CD solution within fused silica capillaries (150µm I.D.). The obtained chiral monolithic stationery phases were characterized by scanning electron microscopy (SEM), N2 adsorption/desorption isotherms, wide angle x-ray diffraction (WAXRD), thermogravimetric analysis (TGA) and differential thermal analysis (DTA). The materials characterization demonstrated that monolithic phases with higher concentration of TM-β-CD have relatively larger surface area, smaller pore size and larger total pore volume compared to those with lower concentration TM-β-CD. The prepared columns were tested for their enantioseparation efficiency of a range of racemic pharmaceuticals. The screening results demonstrated the potential of functionalizing polymer monolithic stationary phases with TM-β-CD using the in situ encapsulation approach.
Collapse
Affiliation(s)
- Ashraf Ghanem
- Chirality Program, University of Canberra, ACT 2601, Australia. http://www.chiralitygroup.com
| | - Frady G Adly
- Chirality Program, University of Canberra, ACT 2601, Australia
| | - Yasser Sokerik
- Chirality Program, University of Canberra, ACT 2601, Australia
| | - Nana Yaa Antwi
- Chirality Program, University of Canberra, ACT 2601, Australia
| | - Mohamed A Shenashen
- National Institute for Materials Science (NIMS), 1-2-1 Sengen, Tsukuba-shi, Ibaraki-ken 305-0047, Japan
| | - Sherif A El-Safty
- National Institute for Materials Science (NIMS), 1-2-1 Sengen, Tsukuba-shi, Ibaraki-ken 305-0047, Japan
| |
Collapse
|
29
|
Dong Y, Li Q, Wang J, Lu L, Wang Y, Bao L, Wang Z, Zhang Y. Chiral separation and quantitative analysis of citalopram by modified capillary electrophoresis. MENDELEEV COMMUNICATIONS 2016. [DOI: 10.1016/j.mencom.2016.03.029] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
30
|
Adly FG, Ghanem A. Polymer monolith-supported dirhodium(II)-catalyzed continuous flow cyclopropanation in capillary format †. Tetrahedron Lett 2016. [DOI: 10.1016/j.tetlet.2016.01.010] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
31
|
Zhang P, Wang J, Yang H, Su L, Xiong Y, Ye F. Facile one-pot preparation of chiral monoliths with a well-defined framework based on the thiol–ene click reaction for capillary liquid chromatography. RSC Adv 2016; 6:24835-24842. [DOI: 10.1039/c6ra01370h] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2023] Open
Abstract
A novel chiral cyclodextrin (CD) monolith was easily prepared via a one-pot process based on the thiol–ene click reaction of allyl-β-CD with pentaerythritol tetra-(3-mercaptopropionate) in a fused-silica capillary.
Collapse
Affiliation(s)
- Peng Zhang
- Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China)
- College of Chemistry and Pharmaceutical Science of Guangxi Normal University
- Guilin 541004
- P. R. China
| | - Jiannan Wang
- Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China)
- College of Chemistry and Pharmaceutical Science of Guangxi Normal University
- Guilin 541004
- P. R. China
| | - Haiguan Yang
- Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China)
- College of Chemistry and Pharmaceutical Science of Guangxi Normal University
- Guilin 541004
- P. R. China
| | - Linjing Su
- Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China)
- College of Chemistry and Pharmaceutical Science of Guangxi Normal University
- Guilin 541004
- P. R. China
| | - Yuhao Xiong
- Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China)
- College of Chemistry and Pharmaceutical Science of Guangxi Normal University
- Guilin 541004
- P. R. China
| | - Fanggui Ye
- Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China)
- College of Chemistry and Pharmaceutical Science of Guangxi Normal University
- Guilin 541004
- P. R. China
| |
Collapse
|
32
|
Adly FG, Antwi NY, Ghanem A. Cyclodextrin-Functionalized Monolithic Capillary Columns: Preparation and Chiral Applications. Chirality 2015; 28:97-109. [DOI: 10.1002/chir.22550] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2015] [Revised: 09/15/2015] [Accepted: 09/23/2015] [Indexed: 12/20/2022]
Affiliation(s)
- Frady G. Adly
- Chirality Program; University of Canberra; ACT Australia
| | - Nana Yaa Antwi
- Chirality Program; University of Canberra; ACT Australia
| | - Ashraf Ghanem
- Chirality Program; University of Canberra; ACT Australia
| |
Collapse
|
33
|
Rocchi S, Fanali C, Fanali S. Use of a Novel Sub-2 µm Silica Hydride Vancomycin Stationary Phase in Nano-Liquid Chromatography. II. Separation of Derivatized Amino Acid Enantiomers. Chirality 2015; 27:767-72. [DOI: 10.1002/chir.22495] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2015] [Revised: 07/03/2015] [Accepted: 07/19/2015] [Indexed: 01/04/2023]
Affiliation(s)
- Silvia Rocchi
- Institute of Chemical Methodologies; Italian National Research Council (C.N.R.); Rome Italy
- Department of Physical and Chemical Sciences; University of L'Aquila; L'Aquila Italy
| | - Chiara Fanali
- Centro Integrato di Ricerca; Campus Bio-Medico University; Monterotondo Italy
| | - Salvatore Fanali
- Institute of Chemical Methodologies; Italian National Research Council (C.N.R.); Rome Italy
| |
Collapse
|
34
|
Spherical β-cyclodextrin-silica hybrid materials for multifunctional chiral stationary phases. J Chromatogr A 2015; 1383:70-8. [DOI: 10.1016/j.chroma.2015.01.023] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2014] [Revised: 01/09/2015] [Accepted: 01/12/2015] [Indexed: 01/07/2023]
|
35
|
Ghanem A, Ahmed M, Ishii H, Ikegami T. Immobilized β-cyclodextrin-based silica vs polymer monoliths for chiral nano liquid chromatographic separation of racemates. Talanta 2015; 132:301-14. [DOI: 10.1016/j.talanta.2014.09.006] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2014] [Revised: 09/02/2014] [Accepted: 09/03/2014] [Indexed: 11/25/2022]
|
36
|
Li W, Wang B, Yang W, Deng J. Chiral Monolithic Absorbent Constructed by Optically Active Helical-Substituted Polyacetylene and Graphene Oxide: Preparation and Chiral Absorption Capacity. Macromol Rapid Commun 2014; 36:319-26. [DOI: 10.1002/marc.201400546] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2014] [Revised: 11/02/2014] [Indexed: 12/13/2022]
Affiliation(s)
- Weifei Li
- State Key Laboratory of Chemical Resource Engineering; Beijing University of Chemical Technology; Beijing 100029 China
- College of Materials Science and Engineering; Beijing University of Chemical Technology; Beijing 100029 China
| | - Bo Wang
- State Key Laboratory of Chemical Resource Engineering; Beijing University of Chemical Technology; Beijing 100029 China
- College of Materials Science and Engineering; Beijing University of Chemical Technology; Beijing 100029 China
| | - Wantai Yang
- State Key Laboratory of Chemical Resource Engineering; Beijing University of Chemical Technology; Beijing 100029 China
- College of Materials Science and Engineering; Beijing University of Chemical Technology; Beijing 100029 China
| | - Jianping Deng
- State Key Laboratory of Chemical Resource Engineering; Beijing University of Chemical Technology; Beijing 100029 China
- College of Materials Science and Engineering; Beijing University of Chemical Technology; Beijing 100029 China
| |
Collapse
|