1
|
Rahimi M, Bahar S. Preparation of a New Solid-Phase Microextraction Fiber Based on Molecularly Imprinted Polymers for Monitoring of Phenobarbital in Urine Samples. J Chromatogr Sci 2022; 61:87-95. [PMID: 35088078 DOI: 10.1093/chromsci/bmac001] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Accepted: 12/31/2021] [Indexed: 01/11/2023]
Abstract
A simple solid-phase microextraction technique using molecularly imprinted polymers (MIP-SPME) was prepared to monitor phenobarbital in urine samples. In this technique, the fiber was prepared via insertion of the modified stainless-steel wire in the reaction solution including 3-aminopropyltriethoxysilane and tetraethyl orthosilicate in the presence of an acidic catalyst (acetic acid). The fabricated MIP-SPME fiber was utilized to selectively extract phenobarbital from urine samples and prepare it for detection through high-performance liquid chromatography with ultraviolet detection. The synthesized MIPs were characterized by several techniques such as Fourier-transform infrared spectroscopy, field emission scanning electron microscopy, and thermal gravimetric analysis. The effects of various influencing factors on the extraction yield of phenobarbital were considered and optimized. The conditions that yielded the maximum extraction efficiency were as follows: pH of 5, 25 min extraction time, 500 rpm stirring rate, 15 min desorption time and using methanol as elution solvent. Within the range of concentrations of 0.02 to 100 μg mL-1, the method had linear characteristics, with a suitable coefficient of determination (0.9983). We determined limits of detection and limits of quantification to be 9.88 and 32.9 ng mL-1, respectively. The repeatability and reproducibility of the prepared fibers were 4.6 and 6.5%, respectively.
Collapse
Affiliation(s)
- Marzieh Rahimi
- Department of Chemistry, Faculty of Science, University of Kurdistan, Sanandaj, Iran
| | - Soleiman Bahar
- Department of Chemistry, Faculty of Science, University of Kurdistan, Sanandaj, Iran
| |
Collapse
|
2
|
Farajzadeh MA, Pasandi S, Mohebbi A, Mogaddam MRA. Magnetic dispersive solid phase extraction of some polycyclic aromatic hydrocarbons from honey samples using iron (III) oxinate nanocomposite as an efficient sorbent. J Sep Sci 2022; 45:2642-2651. [PMID: 35510591 DOI: 10.1002/jssc.202200212] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 04/27/2022] [Accepted: 04/29/2022] [Indexed: 11/11/2022]
Abstract
In this work, iron (III) oxinate magnetic nanocomposite was synthesized and employed as an efficient sorbent for the magnetic dispersive solid phase extraction of some polycyclic aromatic hydrocarbons from honey samples. In the following, dispersive liquid-liquid microextraction procedure was used to further preconcentration of the analytes. The prepared sorbent was characterized using Fourier transform infrared spectrophotometer, X-ray diffractometer, vibrating sample magnetometer, energy dispersive X-ray spectroscope, and scanning electron microscope. The results verified the successful formation of the magnetic sorbent. In the extraction process, the sorbent was added into an aqueous solution and the mixture was vortexed. After completing the adsorption process, the supernatant phase was separated in the presence of a magnet and the analytes adsorbed onto sorbent were eluted by acetonitrile. Then, μL-level of 1,1,1-trichloroethane was mixed with the obtained acetonitrile and injected into NaCl solution. Finally, one microliter of the sedimented phase was injected into gas chromatography-flame ionization detector after centrifugation. Under the optimum conditions, a great repeatability (relative standard deviation equal or less than 5 and 6% for intra- and inter day precisions, respectively), acceptable extraction recoveries (59-84%), high enrichment factors (118-168), and low limits of detection and quantification (0.16-0.36 and 0.56-1.22 ng g-1 , respectively) were acquired. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Mir Ali Farajzadeh
- Department of Analytical Chemistry, Faculty of Chemistry, University of Tabriz, Tabriz, Iran.,Engineering Faculty, Near East University, 99138 Nicosia, North Cyprus, Mersin 10, Turkey
| | - Somayeh Pasandi
- Department of Analytical Chemistry, Faculty of Chemistry, University of Tabriz, Tabriz, Iran
| | - Ali Mohebbi
- Food and Drug Safety Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Pharmaceutical Analysis Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Reza Afshar Mogaddam
- Food and Drug Safety Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Pharmaceutical Analysis Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
3
|
Chang N, Kang J, Wang F, Liu H, Wang X, Du X. Hydrothermal in situ growth and application of a novel flower-like phosphorous-doped titanium oxide nanoflakes on titanium alloy substrate for enhanced solid-phase microextraction of polycyclic aromatic hydrocarbons in water samples. Anal Chim Acta 2022; 1208:339808. [DOI: 10.1016/j.aca.2022.339808] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Revised: 03/31/2022] [Accepted: 04/02/2022] [Indexed: 11/27/2022]
|
4
|
Zhang YP, Luan CC, Lu ZY, Chen N, Zhang YJ, Cui CX. Brass wires with different surface wettability used for in-tube solid-phase microextraction. J Chromatogr A 2022; 1670:462948. [DOI: 10.1016/j.chroma.2022.462948] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 03/06/2022] [Accepted: 03/07/2022] [Indexed: 11/29/2022]
|
5
|
Kang J, Chang N, Wang F, Liu H, Wang X, Du X. Selective solid‐phase microextraction of polycyclic aromatic hydrocarbons in water based on oriented phosphorus‐containing titanium oxide nanofibers grown on titanium support prior to HPLC‐UV. J Sep Sci 2022; 45:1273-1281. [DOI: 10.1002/jssc.202100954] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 01/16/2022] [Accepted: 01/16/2022] [Indexed: 11/10/2022]
Affiliation(s)
- Jingyi Kang
- College of Chemistry and Chemical Engineering Northwest Normal University Lanzhou 730070 China
| | - Na Chang
- College of Chemistry and Chemical Engineering Northwest Normal University Lanzhou 730070 China
| | - Feifei Wang
- College of Chemistry and Chemical Engineering Northwest Normal University Lanzhou 730070 China
| | - Haixia Liu
- College of Chemistry and Chemical Engineering Northwest Normal University Lanzhou 730070 China
| | - Xuemei Wang
- College of Chemistry and Chemical Engineering Northwest Normal University Lanzhou 730070 China
- Key Lab of Bioelectrochemistry & Environmental Analysis of Gansu Lanzhou 730070 China
| | - Xinzhen Du
- College of Chemistry and Chemical Engineering Northwest Normal University Lanzhou 730070 China
| |
Collapse
|
6
|
Sun M, Li C, Feng J, Sun H, Sun M, Feng Y, Ji X, Han S, Feng J. Development of aerogels in solid-phase extraction and microextraction. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2021.116497] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
7
|
Jullakan S, Bunkoed O. A nanocomposite adsorbent of metallic copper, polypyrrole, halloysite nanotubes and magnetite nanoparticles for the extraction and enrichment of sulfonamides in milk. J Chromatogr B Analyt Technol Biomed Life Sci 2021; 1180:122900. [PMID: 34418797 DOI: 10.1016/j.jchromb.2021.122900] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 08/10/2021] [Accepted: 08/12/2021] [Indexed: 11/17/2022]
Abstract
A composite adsorbent composed of metallic copper (Cu), polypyrrole (PPy), halloysite nanotubes (HNTs) and magnetite nanoparticles (Fe3O4) was developed to extract and enrich sulfonamides by dispersive magnetic solid phase extraction. The composite could adsorb sulfonamides via hydrogen bonding and hydrophobic, π-π and π-electron-metal interactions. The extraction conditions were optimized and the developed composite adsorbent was characterized and provided a large surface area that enhanced extraction efficiency for sulfonamides. Coupled with high performance liquid chromatography, the adsorbent was used to quantitatively determine sulfonamides found in milk samples. The response of the developed method exhibited linearity from 5.0 to 150.0 μg kg-1 for sulfathiazole, and from 2.5 to 100.0 μg kg-1 for sulfamerazine, sulfamonomethoxine and sulfadimethoxine. Limits of detection were between 2.5 and 5.0 μg kg-1. Recoveries of sulfonamides in milk samples ranged from 83.0 to 99.2% with RSDs lower than 6%. The developed composite adsorbent showed good reproducibility and reusability.
Collapse
Affiliation(s)
- Sirintorn Jullakan
- Center of Excellence for Innovation in Chemistry, Division of Physical Science, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand
| | - Opas Bunkoed
- Center of Excellence for Innovation in Chemistry, Division of Physical Science, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand.
| |
Collapse
|
8
|
Souza ID, Oliveira IGC, Queiroz MEC. Innovative extraction materials for fiber-in-tube solid phase microextraction: A review. Anal Chim Acta 2021; 1165:238110. [PMID: 33975700 DOI: 10.1016/j.aca.2020.11.042] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 11/21/2020] [Accepted: 11/26/2020] [Indexed: 11/18/2022]
Abstract
Fiber-in-tube solid-phase microextraction (fiber-in-tube SPME) with short capillary longitudinally packed with fine fibers as extraction device allows direct coupling to high performance liquid chromatography (HPLC) systems to determine weakly volatile or thermally labile compounds. This technique associates the advantages of miniaturized and analytical on-line systems. Major achievements include the use of different capillaries (fused-silica, copper, stainless steel, polyetheretherketone (PEEK), or poly(tetrafluoroethylene) (PTFE)) that are packed with neat fibers (Zylon®, silk, or Kevlar 29®) or fibers (stainless steel, basalt, or carbon) functionalized with selective coatings (aerogels, ionic liquids (ILs), polymeric ionic liquids (PILs), molecularly imprinted polymers (MIPs), layered double hydroxides (LDHs), or conducting polymer). This review outlines the fundamental theory and the innovative extraction materials for fiber-in-tube SPME-HPLC systems and highlights their main applications in environmental and bioanalyses.
Collapse
Affiliation(s)
- Israel D Souza
- Departamento de Química, Faculdade de Filosofia Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brazil
| | - Igor G C Oliveira
- Departamento de Química, Faculdade de Filosofia Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brazil
| | - Maria Eugênia C Queiroz
- Departamento de Química, Faculdade de Filosofia Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brazil.
| |
Collapse
|
9
|
Kataoka H. In-tube solid-phase microextraction: Current trends and future perspectives. J Chromatogr A 2020; 1636:461787. [PMID: 33359971 DOI: 10.1016/j.chroma.2020.461787] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 12/02/2020] [Accepted: 12/04/2020] [Indexed: 01/01/2023]
Abstract
In-tube solid-phase microextraction (IT-SPME) was developed about 24 years ago as an effective sample preparation technique using an open tubular capillary column as an extraction device. IT-SPME is useful for micro-concentration, automated sample cleanup, and rapid online analysis, and can be used to determine the analytes in complex matrices simple sample processing methods such as direct sample injection or filtration. IT-SPME is usually performed in combination with high-performance liquid chromatography using an online column switching technology, in which the entire process from sample preparation to separation to data analysis is automated using the autosampler. Furthermore, IT-SPME minimizes the use of harmful organic solvents and is simple and labor-saving, making it a sustainable and environmentally friendly green analytical technique. Various operating systems and new sorbent materials have been developed to improve its extraction efficiency by, for example, enhancing its sorption capacity and selectivity. In addition, IT-SPME methods have been widely applied in environmental analysis, food analysis and bioanalysis. This review describes the present state of IT-SPME technology and summarizes its current trends and future perspectives, including method development and strategies to improve extraction efficiency.
Collapse
Affiliation(s)
- Hiroyuki Kataoka
- School of Pharmacy, Shujitsu University, Nishigawara, Okayama 703-8516, Japan.
| |
Collapse
|
10
|
Liu P, Zhou H, Zhang L, Wang F, Wang X, Du X. Highly efficient solid-phase microextraction of polycyclic aromatic hydrocarbons in water based on worm-like nickel-titanium oxide nanocomposites coating grown on a nickel-titanium alloy wire by low-voltage anodization. J Sep Sci 2020; 44:628-635. [PMID: 33200880 DOI: 10.1002/jssc.202000871] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 11/12/2020] [Accepted: 11/13/2020] [Indexed: 12/20/2022]
Abstract
A novel worm-like nickel-titanium oxide nanocomposite coating was directly grown on a nickel-titanium alloy wire by low-voltage electrochemical anodization in alkaline ethylene glycol and water solution. The in situ growth of nickel-titanium oxide nanocomposites greatly depended on the volume ratio of ethylene glycol to water and temperature. Coupled to high-performance liquid chromatography with UV detection by static desorption in the mobile phase, the adsorption performance of the as-prepared fiber was evaluated for solid-phase microextraction of representative environmental analytes in water. The results indicate that the as-prepared fiber exhibits higher extraction capability for polycyclic aromatic hydrocarbons than commercial polydimethylsiloxane and polyacrylate fibers. After optimizing the extraction parameters, the calibration graphs of the developed method was linear in the range of 0.05-200 μg/L with correlation coefficients above 0.998. Limit of detection ranged from 0.013 to 0.145 μg/L for seven target analytes. Relative standard deviations of intraday and interday analyses varied from 4.0 to 5.3% and from 4.7 to 6.3% with the single fiber, respectively. The relative recoveries of 84.4-109% were achieved for highly efficient enrichment and determination of target analytes in spiked river and snow water. Moreover, the as-prepared fiber can be used more than 200 times.
Collapse
Affiliation(s)
- Pei Liu
- College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, P. R. China
| | - Hua Zhou
- College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, P. R. China
| | - Lei Zhang
- College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, P. R. China
| | - Feifei Wang
- College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, P. R. China
| | - Xuemei Wang
- College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, P. R. China.,Key Lab of Bioelectrochemistry & Environmental Analysis of Gansu, Lanzhou, P. R. China
| | - Xinzhen Du
- College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, P. R. China.,Key Lab of Bioelectrochemistry & Environmental Analysis of Gansu, Lanzhou, P. R. China
| |
Collapse
|
11
|
Zhou H, Liu P, Du J, Wang F, Wang X, Du X. Selective and efficient solid-phase microextraction of polycyclic aromatic hydrocarbons in water by robust two-dimensional zinc oxide nanosheets grown on a superelastic nickel-titanium alloy fiber prior to determination by HPLC-UV. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2020; 12:5086-5096. [PMID: 33043955 DOI: 10.1039/d0ay01469a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Oriented zinc oxide nanosheets (ZnONSs) were directly grown on pretreated nickel-titanium alloy (NiTi) fiber substrates without a traditional seeding layer of ZnO by electrochemical deposition for the first time. The fiber coatings were characterized by scanning electron microscopy and energy dispersive X-ray spectrometry. Direct growth of ZnONSs on the NiTi fiber substrate was dependent on the type of zinc salt. The adsorption performance of the ZnONSs coatings was evaluated using representative aromatic compounds as model analytes together with high performance liquid chromatography with ultraviolet detection. The as-prepared fiber shows higher extraction capability for the selected polycyclic aromatic hydrocarbons (PAHs) than for ultraviolet filters in water samples, and better extraction selectivity for PAHs. For this purpose, the important experimental parameters were optimized for the extraction of PAHs. Under the optimized conditions, the calibration curves are linear in the range of 0.03-200 μg L-1 with correlation coefficients greater than 0.999. Limits of detection ranged from 0.011 μg L-1 to 0.082 μg L-1. Intra-day and inter-day relative standard deviations (RSDs) of the developed method with a single fiber ranged from 2.69% to 4.18% and from 4.44% to 5.40%, respectively. RSDs for the fiber-to-fiber reproducibility varied between 5.57% and 7.66%. The developed method was successfully applied for selective preconcentration and determination of trace PAHs in five real water samples. Relative recoveries varied from 84.5% to 104% with RSDs between 1.65% and 8.30%. Furthermore, the as-prepared fiber is highly stable.
Collapse
Affiliation(s)
- Hua Zhou
- College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, China.
| | - Pei Liu
- College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, China.
| | - Junliang Du
- College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, China.
| | - Feifei Wang
- College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, China.
| | - Xuemei Wang
- College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, China. and Key Lab of Bioelectrochemistry & Environmental Analysis of Gansu, Lanzhou 730070, China
| | - Xinzhen Du
- College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, China. and Key Lab of Bioelectrochemistry & Environmental Analysis of Gansu, Lanzhou 730070, China
| |
Collapse
|
12
|
Pan F, Zhu R, Han H, Pan D. Flow-Injection Analysis (FIA) Electrochemical Speciation of Copper in Coastal Waters by Anodic Stripping Voltammetry (ASV). ANAL LETT 2020. [DOI: 10.1080/00032719.2020.1827262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
- Fei Pan
- Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research (YIC), Chinese Academy of Sciences (CAS), Shandong Provincial Key Laboratory of Coastal Environmental Processes, YICCAS, Yantai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Rilong Zhu
- College of Chemistry and Chemical Engineering, Hunan University, Changsha, China
| | - Haitao Han
- Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research (YIC), Chinese Academy of Sciences (CAS), Shandong Provincial Key Laboratory of Coastal Environmental Processes, YICCAS, Yantai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Dawei Pan
- Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research (YIC), Chinese Academy of Sciences (CAS), Shandong Provincial Key Laboratory of Coastal Environmental Processes, YICCAS, Yantai, China
- University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
13
|
Jalili V, Barkhordari A, Ghiasvand A. Solid-phase microextraction technique for sampling and preconcentration of polycyclic aromatic hydrocarbons: A review. Microchem J 2020. [DOI: 10.1016/j.microc.2020.104967] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
14
|
Jouyban A, Farajzadeh MA, Nemati M, Alizadeh Nabil AA, Afshar Mogaddam MR. Preparation of ferrofluid from toner powder and deep eutectic solvent used in air-assisted liquid-liquid microextraction: Application in analysis of sixteen polycyclic aromatic hydrocarbons in urine and saliva samples of tobacco smokers. Microchem J 2020. [DOI: 10.1016/j.microc.2020.104631] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
15
|
Fazaieli F, Afshar Mogaddam MR, Farajzadeh MA, Feriduni B, Mohebbi A. Development of organic solvents‐free mode of solidification of floating organic droplet–based dispersive liquid–liquid microextraction for the extraction of polycyclic aromatic hydrocarbons from honey samples before their determination by gas chromatography–mass spectrometry. J Sep Sci 2020; 43:2393-2400. [DOI: 10.1002/jssc.202000136] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 03/02/2020] [Accepted: 03/04/2020] [Indexed: 01/17/2023]
Affiliation(s)
- Farzin Fazaieli
- Department of Nano Chemistry, Faculty of ChemistryUniversity of Tabriz Tabriz Iran
| | - Mohammad Reza Afshar Mogaddam
- Food and Drug Safety Research CenterTabriz University of Medical Sciences Tabriz Iran
- Pharmaceutical Analysis Research CenterTabriz University of Medical Sciences Tabriz Iran
| | - Mir Ali Farajzadeh
- Department of Analytical Chemistry, Faculty of ChemistryUniversity of Tabriz Tabriz Iran
- Engineering FacultyNear East University Nicosia North Cyprus Turkey
| | - Behruz Feriduni
- Pharmaceutical Analysis Research CenterTabriz University of Medical Sciences Tabriz Iran
| | - Ali Mohebbi
- Department of Analytical Chemistry, Faculty of ChemistryUniversity of Tabriz Tabriz Iran
| |
Collapse
|
16
|
Jinadasa BKKK, Monteau F, Morais S. Critical review of micro-extraction techniques used in the determination of polycyclic aromatic hydrocarbons in biological, environmental and food samples. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2020; 37:1004-1026. [PMID: 32186468 DOI: 10.1080/19440049.2020.1733103] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Polycyclic Aromatic Hydrocarbons (PAHs) are ubiquitous environmental contaminants and their accurate determination is very important to human health and environment safety. In this review, sorptive-based micro-extraction techniques [such as Solid-Phase Micro-extraction (SPME), Stir Bar Sorptive Extraction (SBSE), Micro-extraction in Packed Sorbent (MEPS)] and solvent-based micro-extraction [Membrane-Mediated Liquid-Phase Micro-extraction (MM-LPME), Dispersive Liquid-Liquid Micro-extraction (DLLME), and Single Drop Micro-extraction (SDME)] developed for quantification of PAHs in environmental, biological and food samples are reviewed. Moreover, recent micro-extraction techniques that have been coupled with other sample extraction strategies are also briefly discussed. The main objectives of these micro-extraction techniques are to perform extraction, pre-concentration and clean up together as one step, and the reduction of the analysis time, cost and solvent following the green chemistry guidelines.
Collapse
Affiliation(s)
- B K K K Jinadasa
- Laboratoire D'étude Des Résidus Et Contaminants Dans Les Aliments (LABERCA), Nantes-Atlantic National College of Veterinary Medicine, Food Science, and Engineering (ONIRIS) , Nantes, France
| | - Fabrice Monteau
- Laboratoire D'étude Des Résidus Et Contaminants Dans Les Aliments (LABERCA), Nantes-Atlantic National College of Veterinary Medicine, Food Science, and Engineering (ONIRIS) , Nantes, France
| | - Simone Morais
- REQUIMTE-LAQV, Instituto Superior De Engenharia Do Porto, Instituto Politécnico Do Porto , Porto, Portugal
| |
Collapse
|
17
|
Rahimi M, Bahar S, Heydari R, Amininasab SM. Determination of quercetin using a molecularly imprinted polymer as solid-phase microextraction sorbent and high-performance liquid chromatography. Microchem J 2019. [DOI: 10.1016/j.microc.2019.05.032] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
18
|
Feng J, Sun M, Han S, Ji X, Li C, Wang X, Tian Y. Polydopamine‐coated cotton fibers as the adsorbent for in‐tube solid‐phase microextraction. J Sep Sci 2019; 42:2163-2170. [DOI: 10.1002/jssc.201801333] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2018] [Revised: 03/30/2019] [Accepted: 04/15/2019] [Indexed: 11/11/2022]
Affiliation(s)
- Juanjuan Feng
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of ShandongSchool of Chemistry and Chemical EngineeringUniversity of Jinan Jinan P. R. China
| | - Min Sun
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of ShandongSchool of Chemistry and Chemical EngineeringUniversity of Jinan Jinan P. R. China
| | - Sen Han
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of ShandongSchool of Chemistry and Chemical EngineeringUniversity of Jinan Jinan P. R. China
| | - Xiangping Ji
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of ShandongSchool of Chemistry and Chemical EngineeringUniversity of Jinan Jinan P. R. China
| | - Chunying Li
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of ShandongSchool of Chemistry and Chemical EngineeringUniversity of Jinan Jinan P. R. China
| | - Xiuqin Wang
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of ShandongSchool of Chemistry and Chemical EngineeringUniversity of Jinan Jinan P. R. China
| | - Yu Tian
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of ShandongSchool of Chemistry and Chemical EngineeringUniversity of Jinan Jinan P. R. China
| |
Collapse
|
19
|
Gan H, Xu H. A novel aptamer-based online magnetic solid phase extraction method for simultaneous determination of urinary 8-hydroxy-2'-deoxyguanosine and monohydroxylated polycyclic aromatic hydrocarbons. Talanta 2019; 201:271-279. [PMID: 31122423 DOI: 10.1016/j.talanta.2019.04.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Revised: 03/05/2019] [Accepted: 04/02/2019] [Indexed: 02/08/2023]
Abstract
In this work, an innovative aptamer-based magnetic adsorbent (Fe3O4@PDA-aptamer MNPs) was prepared by hydrothermal synthesis method followed by the surface functionalization of nanoparticles. After fixing in a steel stainless tube as sorbent of magnetic solid phase extraction (MSPE), an online magnetic solid phase extraction-high performance liquid chromatography-mass spectrometry (online-MSPE-HPLC-MS) method was developed and applied for the determination of 8-hydroxy-2'-deoxyguanosine (8-OHdG) and monohydroxylated polycyclic aromatic hydrocarbons (OH-PAHs) simultaneously in urine. The synthesized sorbent presented outstanding features, including large specific surface area, high enrichment capacity and excellent stability. High throughput analysis can be achieved by affinity-specific adsorption of 8-OHdG and non-specific adsorption of OH-PAHs at the same time. In addition, online MSPE can greatly simplify the analysis process, reduce human errors and enhance the sensitivity. When compared with offline MSPE, a sensitivity enhancement of 30-400 times was obtained for the online method. Some experimental parameters such as the amount of the sorbent, sampling flow rate and sample volume, were optimized systematically. Under the optimal conditions, the limits of detection (LOD) were in the range of 0.028-0.114 ng mL-1, and the correlation coefficients (R2) were higher than 0.9962. The relative standard deviations (RSDs) were less than 16.1% (n = 5) and the recoveries ranged from 71% to 116%. The above results show that the rapid, sensitive and automated online-MSPE-HPLC-MS method has potential application in the simultaneous determination of 8-OHdG and PAHs in complex sample matrix to assess the environmental exposure level.
Collapse
Affiliation(s)
- Haijiao Gan
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan, China
| | - Hui Xu
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan, China.
| |
Collapse
|
20
|
Ansari Dogaheh M, Behzadi M. Preparation of polypyrrole/nanosilica composite for solid-phase microextraction of bisphenol and phthalates migrated from containers to eye drops and injection solutions. J Pharm Anal 2019; 9:185-192. [PMID: 31297296 PMCID: PMC6598220 DOI: 10.1016/j.jpha.2019.03.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2018] [Revised: 03/12/2019] [Accepted: 03/12/2019] [Indexed: 01/29/2023] Open
Abstract
This paper describes the electrodeposition of polyphosphate-doped polypyrrole/nanosilica nanocomposite coating on steel wire for direct solid-phase microextraction of bisphenol A and five phthalates. We optimized influencing parameters on the extraction efficiency and morphology of the nanocomposite such as deposition potential, concentration of pyrrole and polyphosphate, deposition time and the nanosilica amount. Under the optimized conditions, characterization of the nanocomposite was investigated by scanning electron microscopy and Fourier transform infra-red spectroscopy. Also, the factors related to the solid-phase microextraction method including desorption temperature and time, extraction temperature and time, ionic strength and pH were studied in detail. Subsequently, the proposed method was validated by gas chromatography-mass spectrometry by thermal desorption and acceptable figures of merit were obtained. The linearity of the calibration curves was between 0.01 and 50 ng/mL with acceptable correlation coefficients (0.9956-0.9987) and limits of detection were in the range 0.002-0.01 ng/mL. Relative standard deviations in terms of intra-day and inter-day by five replicate analyses from aqueous solutions containing 0.1 ng/mL of target analytes were in the range 3.3%-5.4% and 5%-7.1%, respectively. Fiber-to-fiber reproducibilities were measured for three different fibers prepared in the same conditions and the results were between 7.3% and 9.8%. Also, extraction recoveries at two different concentrations were ≥96%. Finally, the suitability of the proposed method was demonstrated through its application to the analysis of some eye drops and injection solutions.
Collapse
Affiliation(s)
- Mehdi Ansari Dogaheh
- Department of Pharmaceutics, Faculty of Pharmacy, Kerman Medical Science University, Kerman, Iran
| | - Mansoureh Behzadi
- Department of Chemistry, Faculty of Science, Shahid Bahonar University of Kerman, Kerman, Iran
| |
Collapse
|
21
|
Yang X, Yin Y, Zong Y, Wan T, Liao X. Magnetic nanocomposite as sorbent for magnetic solid phase extraction coupled with high performance liquid chromatography for determination of polycyclic aromatic hydrocarbons. Microchem J 2019. [DOI: 10.1016/j.microc.2018.10.013] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
22
|
Magnetic Stirring Assisted Demulsification Dispersive Liquid⁻Liquid Microextraction for Preconcentration of Polycyclic Aromatic Hydrocarbons in Grilled Pork Samples. TOXICS 2019; 7:toxics7010008. [PMID: 30781846 PMCID: PMC6468843 DOI: 10.3390/toxics7010008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Revised: 02/07/2019] [Accepted: 02/11/2019] [Indexed: 11/17/2022]
Abstract
A simple microextraction method, magnetic stirring assisted demulsification dispersive liquid–liquid microextraction, for preconcentration of five polycyclic aromatic hydrocarbons (fluorene, phenanthrene, anthracene, fluoranthrene, and pyrene) was investigated prior to analysis by high performance liquid chromatography. In this method, a mixture of extraction solvent and disperser solvent was rapidly injected into sample solution. The magnetic stirrer agitator aided the dispersion of the extraction solvent into the sample solution. After the formation of an emulsion, the demulsifier was added, resulting in the rapid separation of the mixture into two phases. No centrifugation step was required. Several parameters affecting the extraction efficiency of the proposed method were studied, including addition of salt, kind and volume of extraction solvent, volume of demulsifier solvent, and extraction times. Under the optimum conditions, high enrichment factor, low limit of detections (LODs) and good precision were gained. The proposed method was successfully applied to analysis of polycyclic aromatic hydrocarbon residues in grilled pork samples.
Collapse
|
23
|
Trends of research on polycyclic aromatic hydrocarbons in food: A 20-year perspective from 1997 to 2017. Trends Food Sci Technol 2019. [DOI: 10.1016/j.tifs.2018.11.015] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
24
|
Zhang M, Huang G, Huang J, Chen W. Three-dimensional multi-walled carbon nanotubes@g-C 3 N 4 @Fe 3 O 4 nanocomposites-based magnetic solid phase extraction for the determination of polycyclic aromatic hydrocarbons in water samples. Microchem J 2018. [DOI: 10.1016/j.microc.2018.04.016] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
25
|
Feng J, Wang X, Tian Y, Luo C, Sun M. Melamine–formaldehyde aerogel coating for in-tube solid-phase microextraction. J Chromatogr A 2018; 1577:8-14. [DOI: 10.1016/j.chroma.2018.09.047] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2018] [Revised: 09/22/2018] [Accepted: 09/23/2018] [Indexed: 11/30/2022]
|
26
|
Maciel EVS, de Toffoli AL, Lanças FM. Current status and future trends on automated multidimensional separation techniques employing sorbent-based extraction columns. J Sep Sci 2018; 42:258-272. [PMID: 30289207 DOI: 10.1002/jssc.201800824] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Revised: 09/14/2018] [Accepted: 09/14/2018] [Indexed: 01/19/2023]
Abstract
Determination of target analytes present in complex matrices requires a suitable sample preparation approach to efficiently remove the analytes of interest from a medium containing several interferers while at the same time preconcentrating them aiming to improve the output signal detection. Online multidimensional solid-phase separation techniques have been widely used for the analysis of different contaminants in complex matrices such as food, environmental, and biological samples, among others. These online techniques usually consist of two steps performed in two different columns (extraction and analytical column), the first being employed to extract the analytes of interest from the original medium and the latter to separate them from the interferers. The extraction column in multidimensional techniques presents a relevant role since their variations as building material (usually a tube), sorbent material, modes of application, and so on can significantly influence the extraction success. The main features of such columns are subject of constant research aiming improvements directly related to the performance of the separation techniques that utilize multidimensional analysis. The present review highlights the main features of extraction columns online coupled to chromatographic techniques, inclusive for in-tube solid-phase microextraction, online solid phase and turbulent flow, aiming the determination of analytes present at very low concentrations in complex matrices. It will critically describe and discuss some of the most common instrumental set up as well as comments on recent applications of these multidimensional techniques. Besides that, the authors have described some properties and enhancements of the extraction columns that are used as first dimension on these systems, such as type of column material (poly (ether ether ketone), fused silica, stainless steel, and other materials) and the way that the extractive phase is accommodated inside the tubing (filled and open tubular). Practical applications of this approach in fields such as environment, food, and bioanalysis are also presented and discussed.
Collapse
Affiliation(s)
| | - Ana Lúcia de Toffoli
- University of São Paulo, São Carlos, Institute of Chemistry of São Carlos, SP, Brazil
| | - Fernando Mauro Lanças
- University of São Paulo, São Carlos, Institute of Chemistry of São Carlos, SP, Brazil
| |
Collapse
|
27
|
Yang Y, Qin P, Zhang J, Li W, Zhu J, Lu M, Cai Z. Fabrication of nanoscale graphitic carbon nitride/copper oxide hybrid composites coated solid-phase microextraction fibers coupled with gas chromatography for determination of polycyclic aromatic hydrocarbons. J Chromatogr A 2018; 1570:47-55. [DOI: 10.1016/j.chroma.2018.07.080] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2018] [Revised: 07/24/2018] [Accepted: 07/28/2018] [Indexed: 11/27/2022]
|
28
|
Shamsayei M, Yamini Y, Asiabi H. Electrochemically controlled fiber-in-tube solid-phase microextraction method for the determination of trace amounts of antipsychotic drugs in biological samples. J Sep Sci 2018; 41:3598-3606. [DOI: 10.1002/jssc.201800417] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Revised: 06/22/2018] [Accepted: 07/10/2018] [Indexed: 12/29/2022]
Affiliation(s)
- Maryam Shamsayei
- Department of Chemistry; Tarbiat Modares University; Tehran Iran
| | - Yadollah Yamini
- Department of Chemistry; Tarbiat Modares University; Tehran Iran
| | - Hamid Asiabi
- Department of Chemistry; Tarbiat Modares University; Tehran Iran
| |
Collapse
|
29
|
Darvishnejad M, Ebrahimzadeh H. Magnetic halloysite nanotube/polyaniline/copper composite coupled with gas chromatography-mass spectrometry: A rapid approach for determination of nitro-phenanthrenes in water and soil samples. J Chromatogr A 2018; 1563:1-9. [PMID: 29880215 DOI: 10.1016/j.chroma.2018.05.051] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Revised: 05/23/2018] [Accepted: 05/26/2018] [Indexed: 01/12/2023]
Abstract
A fast, sensitive and reliable ultrasound-assisted magnetic dispersive solid-phase microextraction (UAMDSPME) setup was developed and evaluated for the enrichment of nitro- phenanthrenes compound in environmental samples prior to GC-MS determination. A new type of nanocomposite sorbent was made based on halloysite nanotubes (HNTs). HNTs is a type of natural material, have attracted great interest because of their large surface area and high chemical and thermal stability. The hybrid nanocomposite (magnetic HNT@PANI@Cu) was obtained by coating the magnetic HNTs by polyaniline (PANI) and afterwards decorating with metalic copper. Its morphology and surface properties were characterized using Fourier transform infrared spectroscopy, field-emission scanning electron microscopy, energy dispersive spectroscopy and vibrating sample magnetometry. In this work several factors that may affect the extraction efficiencies such as desorption solvent type and its volume, sonication times for extraction and desorption, sorbent amount, organic modifier content, salt concentration and matrix effect were investigated in detail. Under the optimal conditions, the limit of detection (S/N = 3) was 0.25 ng L-1 and the linearity was in the range of 0.01-100 μg L-1. The method precision expressed as relative standard deviations (RSDs%) were 4.6-6.1% (intra-day), and 7.2-9.6% (inter-day). Finally, the presented method was successfully applied to the rapid determination of trace levels of nitro-phenanthrenes in spiked water and soil samples.
Collapse
|
30
|
De Toffoli AL, Fumes BH, Lanças FM. Packed in-tube solid phase microextraction with graphene oxide supported on aminopropyl silica: Determination of target triazines in water samples. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART. B, PESTICIDES, FOOD CONTAMINANTS, AND AGRICULTURAL WASTES 2018; 53:434-440. [PMID: 29469607 DOI: 10.1080/03601234.2018.1438831] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
On-line in-tube solid phase microextraction (in-tube SPME) coupled to high performance liquid chromatography and tandem mass spectrometry (HPLC-MS/MS) was successfully applied to the determination of selected triazines in water samples. The method based on the employment of a packed column containing graphene oxide (GO) supported on aminopropyl silica (Si) showed that the extraction phase has a high potential for triazines extraction aiming to its physical-chemical properties including ultrahigh specific surface area, good mechanical and thermal stability and high fracture strength. Injection volume and loading time were both investigated and optimized. The method validation using Si-GO to extract and concentrate the analytes showed satisfactory results, good sensitivity, good linearity (0.2-4.0 µg L-1) and low detection limits (1.1-2.9 ng L-1). The high extraction efficiency was determined with enrichment factors ranging from 1.2-2.9 for the lowest level, 1.3-4.9 intermediate level and 1.2-3.0 highest level (n = 3). Although the analytes were not detected in the real samples evaluated, the method has demonstrated to be efficient through its application in the analysis of spiked triazines in ground and mineral water samples.
Collapse
Affiliation(s)
- Ana L De Toffoli
- a University of Sao Paulo, Institute of Chemistry at Sao Carlos , Department of Chemistry , São Carlos , SP , Brazil
| | - Bruno H Fumes
- a University of Sao Paulo, Institute of Chemistry at Sao Carlos , Department of Chemistry , São Carlos , SP , Brazil
| | - Fernando M Lanças
- a University of Sao Paulo, Institute of Chemistry at Sao Carlos , Department of Chemistry , São Carlos , SP , Brazil
| |
Collapse
|
31
|
Feng J, Mao H, Wang X, Tian Y, Luo C, Sun M. Ionic liquid chemically bonded basalt fibers for in-tube solid-phase microextraction. J Sep Sci 2018; 41:1839-1846. [DOI: 10.1002/jssc.201701314] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2017] [Revised: 12/24/2017] [Accepted: 12/25/2017] [Indexed: 12/30/2022]
Affiliation(s)
- Juanjuan Feng
- Key Laboratory of Interfacial Reaction and Sensing Analysis in Universities of Shandong; School of Chemistry and Chemical Engineering; University of Jinan; Jinan P. R. China
| | - Huijun Mao
- Key Laboratory of Interfacial Reaction and Sensing Analysis in Universities of Shandong; School of Chemistry and Chemical Engineering; University of Jinan; Jinan P. R. China
| | - Xiuqin Wang
- Key Laboratory of Interfacial Reaction and Sensing Analysis in Universities of Shandong; School of Chemistry and Chemical Engineering; University of Jinan; Jinan P. R. China
| | - Yu Tian
- Key Laboratory of Interfacial Reaction and Sensing Analysis in Universities of Shandong; School of Chemistry and Chemical Engineering; University of Jinan; Jinan P. R. China
| | - Chuannan Luo
- Key Laboratory of Interfacial Reaction and Sensing Analysis in Universities of Shandong; School of Chemistry and Chemical Engineering; University of Jinan; Jinan P. R. China
| | - Min Sun
- Key Laboratory of Interfacial Reaction and Sensing Analysis in Universities of Shandong; School of Chemistry and Chemical Engineering; University of Jinan; Jinan P. R. China
| |
Collapse
|
32
|
Yang R, Dong G, Sun X, Yang Y, Yu Y, Liu H, Zhang W. Feasibility of the simultaneous determination of polycyclic aromatic hydrocarbons based on two-dimensional fluorescence correlation spectroscopy. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2018; 190:342-346. [PMID: 28946078 DOI: 10.1016/j.saa.2017.09.061] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2017] [Revised: 09/16/2017] [Accepted: 09/20/2017] [Indexed: 06/07/2023]
Abstract
A new approach for quantitative determination of polycyclic aromatic hydrocarbons (PAHs) in environment was proposed based on two-dimensional (2D) fluorescence correlation spectroscopy in conjunction with multivariate method. 40 mixture solutions of anthracene and pyrene were prepared in the laboratory. Excitation-emission matrix (EEM) fluorescence spectra of all samples were collected. And 2D fluorescence correlation spectra were calculated under the excitation perturbation. The N-way partial least squares (N-PLS) models were developed based on 2D fluorescence correlation spectra, showing a root mean square error of calibration (RMSEC) of 3.50μgL-1 and root mean square error of prediction (RMSEP) of 4.42μgL-1 for anthracene and of 3.61μgL-1 and 4.29μgL-1 for pyrene, respectively. Also, the N-PLS models were developed for quantitative analysis of anthracene and pyrene using EEM fluorescence spectra. The RMSEC and RMSEP were 3.97μgL-1 and 4.63μgL-1 for anthracene, 4.46μgL-1 and 4.52μgL-1 for pyrene, respectively. It was found that the N-PLS model using 2D fluorescence correlation spectra could provide better results comparing with EEM fluorescence spectra because of its low RMSEC and RMSEP. The methodology proposed has the potential to be an alternative method for detection of PAHs in environment.
Collapse
Affiliation(s)
- Renjie Yang
- College of Engineering and Technology, Tianjin Agricultural University, 22 Jinjing Road, Tianjin 300384, China
| | - Guimei Dong
- College of Engineering and Technology, Tianjin Agricultural University, 22 Jinjing Road, Tianjin 300384, China
| | - Xueshan Sun
- College of Engineering and Technology, Tianjin Agricultural University, 22 Jinjing Road, Tianjin 300384, China
| | - Yanrong Yang
- College of Engineering and Technology, Tianjin Agricultural University, 22 Jinjing Road, Tianjin 300384, China
| | - Yaping Yu
- College of Engineering and Technology, Tianjin Agricultural University, 22 Jinjing Road, Tianjin 300384, China
| | - Haixue Liu
- Laboratory of Agricultural Analysis, Tianjin Agricultural University, 22 Jinjing Road, Tianjin 300384, China.
| | - Weiyu Zhang
- College of Engineering and Technology, Tianjin Agricultural University, 22 Jinjing Road, Tianjin 300384, China.
| |
Collapse
|
33
|
Zhang H, Xu H. Electrospun nanofibers-based online micro-solid phase extraction for the determination of monohydroxy polycyclic aromatic hydrocarbons in human urine. J Chromatogr A 2017; 1521:27-35. [DOI: 10.1016/j.chroma.2017.09.035] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2017] [Revised: 08/04/2017] [Accepted: 09/15/2017] [Indexed: 11/16/2022]
|
34
|
Electrophoretic deposition of graphene oxide onto carbon fibers for in-tube solid-phase microextraction. J Chromatogr A 2017; 1517:209-214. [DOI: 10.1016/j.chroma.2017.07.086] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Revised: 07/22/2017] [Accepted: 07/28/2017] [Indexed: 11/19/2022]
|
35
|
In situ hydrothermal growth of polyaniline coating for in-tube solid-phase microextraction towards ultraviolet filters in environmental water samples. J Chromatogr A 2017; 1483:48-55. [DOI: 10.1016/j.chroma.2016.12.077] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Revised: 12/21/2016] [Accepted: 12/27/2016] [Indexed: 11/18/2022]
|
36
|
Serra-Mora P, Moliner-Martínez Y, Molins-Legua C, Herráez-Hernández R, Verdú-Andrés J, Campíns-Falcó P. Trends in Online Intube Solid Phase Microextraction. COMPREHENSIVE ANALYTICAL CHEMISTRY 2017. [DOI: 10.1016/bs.coac.2017.01.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
37
|
Płotka-Wasylka J, Szczepańska N, Owczarek K, Namieśnik J. Miniaturized Solid Phase Extraction. COMPREHENSIVE ANALYTICAL CHEMISTRY 2017. [DOI: 10.1016/bs.coac.2017.03.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
38
|
Wang S, Xu H. Inorganic-organic hybrid coating material for the online in-tube solid-phase microextraction of monohydroxy polycyclic aromatic hydrocarbons in urine. J Sep Sci 2016; 39:4610-4620. [DOI: 10.1002/jssc.201600712] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2016] [Revised: 09/28/2016] [Accepted: 10/04/2016] [Indexed: 12/20/2022]
Affiliation(s)
- ShuLing Wang
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry; Central China Normal University; Wuhan China
| | - Hui Xu
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry; Central China Normal University; Wuhan China
| |
Collapse
|
39
|
Pla-Tolós J, Serra-Mora P, Hakobyan L, Molins-Legua C, Moliner-Martinez Y, Campins-Falcó P. A sustainable on-line CapLC method for quantifying antifouling agents like irgarol-1051 and diuron in water samples: Estimation of the carbon footprint. THE SCIENCE OF THE TOTAL ENVIRONMENT 2016; 569-570:611-618. [PMID: 27376916 DOI: 10.1016/j.scitotenv.2016.06.181] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2016] [Revised: 06/21/2016] [Accepted: 06/22/2016] [Indexed: 06/06/2023]
Abstract
In this work, in-tube solid phase microextraction (in-tube SPME) coupled to capillary LC (CapLC) with diode array detection has been reported, for on-line extraction and enrichment of booster biocides (irgarol-1051 and diuron) included in Water Frame Directive 2013/39/UE (WFD). The analytical performance has been successfully demonstrated. Furthermore, in the present work, the environmental friendliness of the procedure has been quantified by means of the implementation of the carbon footprint calculation of the analytical procedure and the comparison with other methodologies previously reported. Under the optimum conditions, the method presents good linearity over the range assayed, 0.05-10μg/L for irgarol-1051 and 0.7-10μg/L for diuron. The LODs were 0.015μg/L and 0.2μg/L for irgarol-1051 and diuron, respectively. Precision was also satisfactory (relative standard deviation, RSD<3.5%). The proposed methodology was applied to monitor water samples, taking into account the EQS standards for these compounds. The carbon footprint values for the proposed procedure consolidate the operational efficiency (analytical and environmental performance) of in-tube SPME-CapLC-DAD, in general, and in particular for determining irgarol-1051 and diuron in water samples.
Collapse
Affiliation(s)
- J Pla-Tolós
- Departament de Química Analítica, Facultad de Química, Universitat de Valencia, C/ Doctor Moliner 50, E46100 Burjassot, Valencia, Spain
| | - P Serra-Mora
- Departament de Química Analítica, Facultad de Química, Universitat de Valencia, C/ Doctor Moliner 50, E46100 Burjassot, Valencia, Spain
| | - L Hakobyan
- Departament de Química Analítica, Facultad de Química, Universitat de Valencia, C/ Doctor Moliner 50, E46100 Burjassot, Valencia, Spain
| | - C Molins-Legua
- Departament de Química Analítica, Facultad de Química, Universitat de Valencia, C/ Doctor Moliner 50, E46100 Burjassot, Valencia, Spain
| | - Y Moliner-Martinez
- Departament de Química Analítica, Facultad de Química, Universitat de Valencia, C/ Doctor Moliner 50, E46100 Burjassot, Valencia, Spain.
| | - P Campins-Falcó
- Departament de Química Analítica, Facultad de Química, Universitat de Valencia, C/ Doctor Moliner 50, E46100 Burjassot, Valencia, Spain.
| |
Collapse
|
40
|
Polydopamine/dialdehyde starch/chitosan composite coating for in-tube solid-phase microextraction and in-situ derivation to analysis of two liver cancer biomarkers in human blood. Anal Chim Acta 2016; 935:113-20. [DOI: 10.1016/j.aca.2016.06.031] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Revised: 06/11/2016] [Accepted: 06/18/2016] [Indexed: 11/24/2022]
|
41
|
Sun M, Feng J, Bu Y, Luo C. Ionic liquid coated copper wires and tubes for fiber-in-tube solid-phase microextraction. J Chromatogr A 2016; 1458:1-8. [DOI: 10.1016/j.chroma.2016.06.023] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Revised: 06/05/2016] [Accepted: 06/06/2016] [Indexed: 10/21/2022]
|
42
|
Facile and efficient poly(ethylene terephthalate) fibers-in-tube for online solid-phase microextraction towards polycyclic aromatic hydrocarbons. Anal Bioanal Chem 2016; 408:4871-82. [DOI: 10.1007/s00216-016-9567-z] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Revised: 04/08/2016] [Accepted: 04/15/2016] [Indexed: 10/21/2022]
|
43
|
Feng J, Sun M, Bu Y, Luo C. Development of a cheap and accessible carbon fibers-in-poly(ether ether ketone) tube with high stability for online in-tube solid-phase microextraction. Talanta 2016; 148:313-20. [DOI: 10.1016/j.talanta.2015.11.001] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Revised: 10/27/2015] [Accepted: 11/01/2015] [Indexed: 10/22/2022]
|
44
|
Gao J, Huang C, Lin Y, Tong P, Zhang L. In situ solvothermal synthesis of metal-organic framework coated fiber for highly sensitive solid-phase microextraction of polycyclic aromatic hydrocarbons. J Chromatogr A 2016; 1436:1-8. [PMID: 26868446 DOI: 10.1016/j.chroma.2016.01.051] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Revised: 01/20/2016] [Accepted: 01/21/2016] [Indexed: 10/22/2022]
Abstract
The present work reported a facile and simple in situ solvothermal growth method for immobilization of metal-organic framework UiO-66 via covalent bonding on amino functional silica fiber for highly sensitive solid-phase microextraction (SPME) of ten polycyclic aromatic hydrocarbons (PAHs) by coupling with gas chromatography-mass spectrometry (GC-MS) analysis. The developed SPME coated fiber has been characterized through SEM, TGA and XRD, confirmed the coating thickness of ∼25μm with high thermal and chemical stability. Under optimized conditions, the obtained method exhibited satisfactory linearity in range of 1.0-5000.0ngL(-1) for all the PAHs. The low detection limits were from 0.28ngL(-1) to 0.60ngL(-1) (S/N=3). The UiO-66 coated fibers showed good repeatability (RSDs less than 8.2%, n=5) and satisfying reproducibility between fiber to fiber (RSDs less than 8.9%, n=5). This method was successfully used for simultaneous determination of ten PAHs from Minjiang water and soil samples with satisfactory recoveries of 87.0-113.6% and 83.8-116.7%, respectively. Experimental results shows that the chemical bonding approach has dramatically improve the stability and lifetime of pure MOFs coating for SPME in sample pretreatment.
Collapse
Affiliation(s)
- Jia Gao
- Ministry of Education Key Laboratory of Analysis and Detection for Food Safety, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujia 350116, China
| | - Chuanhui Huang
- Ministry of Education Key Laboratory of Analysis and Detection for Food Safety, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujia 350116, China
| | - Yifen Lin
- Ministry of Education Key Laboratory of Analysis and Detection for Food Safety, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujia 350116, China
| | - Ping Tong
- Ministry of Education Key Laboratory of Analysis and Detection for Food Safety, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujia 350116, China; Testing Center, The Sport Science Research Center, Fuzhou University, Fuzhou, Fujian 350002, China.
| | - Lan Zhang
- Ministry of Education Key Laboratory of Analysis and Detection for Food Safety, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujia 350116, China; Testing Center, The Sport Science Research Center, Fuzhou University, Fuzhou, Fujian 350002, China.
| |
Collapse
|
45
|
Bu Y, Feng J, Sun M, Zhou C, Luo C. Gold-functionalized stainless-steel wire and tube for fiber-in-tube solid-phase microextraction coupled to high-performance liquid chromatography for the determination of polycyclic aromatic hydrocarbons. J Sep Sci 2016; 39:932-8. [DOI: 10.1002/jssc.201501103] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Revised: 11/14/2015] [Accepted: 12/08/2015] [Indexed: 11/08/2022]
Affiliation(s)
- Yanan Bu
- Key Laboratory of Chemical Sensing & Analysis in Universities of Shandong (University of Jinan), School of Chemistry and Chemical Engineering; University of Jinan; Jinan China
| | - Juanjuan Feng
- Key Laboratory of Chemical Sensing & Analysis in Universities of Shandong (University of Jinan), School of Chemistry and Chemical Engineering; University of Jinan; Jinan China
| | - Min Sun
- Key Laboratory of Chemical Sensing & Analysis in Universities of Shandong (University of Jinan), School of Chemistry and Chemical Engineering; University of Jinan; Jinan China
| | - Changli Zhou
- Key Laboratory of Chemical Sensing & Analysis in Universities of Shandong (University of Jinan), School of Chemistry and Chemical Engineering; University of Jinan; Jinan China
| | - Chuannan Luo
- Key Laboratory of Chemical Sensing & Analysis in Universities of Shandong (University of Jinan), School of Chemistry and Chemical Engineering; University of Jinan; Jinan China
| |
Collapse
|
46
|
Farajzadeh MA, Afshar Mogaddam MR, Feriduni B. Simultaneous synthesis of a deep eutectic solvent and its application in liquid–liquid microextraction of polycyclic aromatic hydrocarbons from aqueous samples. RSC Adv 2016. [DOI: 10.1039/c6ra04103e] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
New generation of solvents, named deep eutectic solvents, were simultaneously synthesized and used as an extraction solvent in a liquid–liquid microextraction method for the extraction and preconcentration of some polycyclic aromatic hydrocarbons.
Collapse
Affiliation(s)
- Mir Ali Farajzadeh
- Department of Analytical Chemistry
- Faculty of Chemistry
- University of Tabriz
- Tabriz
- Iran
| | | | - Behruz Feriduni
- Department of Analytical Chemistry
- Faculty of Chemistry
- University of Tabriz
- Tabriz
- Iran
| |
Collapse
|