1
|
Berlato DG, Bezerra Pacheco AL, Ugalde GA, Reginato FZ, Saldanha GDA, Oliveira TFD, Eller S, Bairros AVD. Dispersive liquid-liquid microextraction (DLLME) for determination of tricyclic antidepressants in whole blood and plasma samples and analysis by liquid chromatography with diode array detector (LC-DAD). Toxicol Mech Methods 2024; 34:189-202. [PMID: 37830174 DOI: 10.1080/15376516.2023.2269236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 10/05/2023] [Indexed: 10/14/2023]
Abstract
Microextractions have been developed for the tricyclic antidepressants (TCAs) analysis in biological matrices, including dispersive liquid-liquid microextraction (DLLME). The proposed DLLME employed 490 µL of biological sample (whole blood or plasma), which were added 15 mg of NaCl, 10 µL of medazepam as internal standard (10 µg/mL) and 100 µL of 2 M NaOH. This mixture was homogenized by vortex (2800 rpm/10 s) and 400 µL of hexane (extractor solvent) with 600 µL of methanol (dispersing solvent) were added to the sample. After the vortex step (2800 rpm/5 s), an ultrasonic bath for 300 s was employed. Then, this content was centrifuged (10 min/10000 rpm), organic phase was collected and dried under air flow. After, 30 µL of the mobile phase was used for resuspension and 20 µL is injected into LC-DAD. This method was optimized and fully validated according to UNODC and SWGTOX guidelines, reaching limits of detection equivalent to analytical methodologies that employ mass spectrometry (MS). Also, it was applied in real cases involving suspected exposure to TCAs. So, the developed DLLME for the determination of TCAs in whole blood and plasma samples proved to be a simple, reliable, robust and reproducible method that can be used in toxicology and clinical laboratories.
Collapse
Affiliation(s)
- Dener Gomes Berlato
- Nucleous Applied to Toxicology (NAT), Department of Clinical and Toxicological Analysis, Federal University of Santa Maria, Santa Maria, Brazil
| | - André Lucas Bezerra Pacheco
- Nucleous Applied to Toxicology (NAT), Department of Clinical and Toxicological Analysis, Federal University of Santa Maria, Santa Maria, Brazil
| | - Gustavo Andrade Ugalde
- Nucleous Applied to Toxicology (NAT), Department of Clinical and Toxicological Analysis, Federal University of Santa Maria, Santa Maria, Brazil
| | - Fernanda Ziegler Reginato
- Nucleous Applied to Toxicology (NAT), Department of Clinical and Toxicological Analysis, Federal University of Santa Maria, Santa Maria, Brazil
| | - Geovane de Almeida Saldanha
- Nucleous Applied to Toxicology (NAT), Department of Clinical and Toxicological Analysis, Federal University of Santa Maria, Santa Maria, Brazil
| | - Tiago Franco de Oliveira
- Graduate Program in Health Sciences, Federal University of Health Sciences of Porto Alegre, RS, Brazil
| | - Sarah Eller
- Graduate Program in Health Sciences, Federal University of Health Sciences of Porto Alegre, RS, Brazil
| | - André Valle de Bairros
- Nucleous Applied to Toxicology (NAT), Department of Clinical and Toxicological Analysis, Federal University of Santa Maria, Santa Maria, Brazil
| |
Collapse
|
2
|
Zhang P, Wang W, Yin J, Wang M, Han Y, Yan H. Determination of alectinib and its active metabolite in plasma by pipette-tip solid-phase extraction using porous polydopamine graphene oxide adsorbent coupled with high-performance liquid chromatography-ultraviolet detection. J Chromatogr A 2024; 1714:464578. [PMID: 38104506 DOI: 10.1016/j.chroma.2023.464578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 12/02/2023] [Accepted: 12/12/2023] [Indexed: 12/19/2023]
Abstract
Alectinib is known as an effective targeted drug, which has excellent therapeutic effect on non-small cell lung cancer and can significantly prolong the survival of patients. Therapeutic drug monitoring is necessary due to the photo-instability of alectinib and the individual differences in patients. In this work, a porous polydopamine graphene oxide composite (PDAG) was prepared by a simple surface modification method. A PDAG-based pipette-tip solid-phase extraction (PT-SPE) coupled with HPLC-UV detection was proposed for the separation and detection of alectinib and its active metabolite M4 in plasma. The method was methodologically validated and showed good linearity in the range of 50-5000 ng mL-1 (R2 > 0.9995). The limit of detection (LOD) was 4.8 ng mL-1 and 3.9 ng mL-1 for alectinib and M4, respectively, and the limit of quantitation (LOQ) was 16.1 ng mL-1 and 13.1 ng mL-1, respectively. The intra-day and inter-day precision expressed by coefficient of variation was less than 4.8 %. The recovery of this method ranged from 84.9 % to 103.5 % with a standard deviation of less than 4.3 %. In conclusion, the established method is accurate, stable and inexpensive, and can be used to monitor the levels of alectinib and M4 in plasma, which provide technical and data support for exploring optimal individualized remedial dosing regimens.
Collapse
Affiliation(s)
- Pengfei Zhang
- Hebei Key Laboratory of Public Health Safety, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, College of Pharmaceutical Science, College of Chemistry and Materials Science, Hebei University, Baoding 071002, China
| | - Wenyan Wang
- Hebei Key Laboratory of Public Health Safety, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, College of Pharmaceutical Science, College of Chemistry and Materials Science, Hebei University, Baoding 071002, China
| | - Junfa Yin
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Mingyu Wang
- Department of Pharmacy, Affiliated Hospital of Hebei University, Baoding 071002, China.
| | - Yehong Han
- Hebei Key Laboratory of Public Health Safety, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, College of Pharmaceutical Science, College of Chemistry and Materials Science, Hebei University, Baoding 071002, China
| | - Hongyuan Yan
- Hebei Key Laboratory of Public Health Safety, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, College of Pharmaceutical Science, College of Chemistry and Materials Science, Hebei University, Baoding 071002, China.
| |
Collapse
|
3
|
Arghavani-Beydokhti S, Rajabi M, Asghari A, Hosseini-Bandegharaei A. Highly efficient preconcentration of anti-depressant drugs in biological matrices by conducting supramolecular solvent-based microextraction after dispersive micro solid phase extraction technique. Microchem J 2023. [DOI: 10.1016/j.microc.2023.108703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2023]
|
4
|
Ndilimeke AM, Dimpe KM, Nomngongo PN. Vortex-assisted supramolecular solvent dispersive liquid–liquid microextraction of ketoprofen and naproxen from environmental water before chromatographic analysis: response surface methodology optimisation. J Anal Sci Technol 2022. [DOI: 10.1186/s40543-022-00361-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
AbstractA microextraction procedure that is rapid and simple to extract and preconcentrate ketoprofen and naproxen is proposed. An environmentally friendly supramolecular solvent was applied as an extraction solvent and proved to be efficient in the extraction of ketoprofen and naproxen from environmental water. The design of experiment approach was used to screen, optimize significant parameters, and determine optimum experimental conditions. Under optimized experimental conditions, the vortex-assisted supramolecular solvent dispersive liquid–liquid microextraction provided a good linearity (0.57–700 µg L−1), low limits of detection (0.17–0.24 µg L−1) and extraction reproducibility below 9%. The high percentage relative recoveries (93.6–101.4%) indicated that the method is not affected by matrix. The practical applicability of the method was assessed by analysing ketoprofen and naproxen in river water and effluent wastewater samples. Both analytes were found in effluent wastewater.
Collapse
|
5
|
Teixeira Tarley CR, Gorla FA, Midori de Oliveira F, Nascentes CC, Ferreira MDP, Ferreira da Costa M, Segatelli MG. Investigation of the performance of cross-linked poly(acrylic acid) and poly(methacrylic acid) as efficient adsorbents in SPE columns for simultaneous preconcentration of tricyclic antidepressants in water samples. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2022; 14:5100-5109. [PMID: 36472141 DOI: 10.1039/d2ay01520j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
A solid phase extraction-based (SPE) procedure for simultaneous preconcentration of five tricyclic antidepressants (TCAs), amitriptyline hydrochloride (AMT), nortriptyline hydrochloride (NOR), doxepin hydrochloride (DOX), imipramine hydrochloride (IMI), and clomipramine hydrochloride (CLO) from water samples with determination by HPLC-DAD is proposed. Polymers were characterized by FT-IR, SEM, and thermogravimetric analysis. SPE-based methods were carried out by the preconcentration of 320.0 mL of TCAs at pH 7.0 (buffered with 0.01 mol L-1 phosphate buffer) through 70.0 mg of adsorbent packed into a SPE cartridge, followed by elution with 1.0 mL of ACN : MeOH : acetic acid solution (45 : 45 : 10% v/v). Higher preconcentration factors were obtained ranging from 117.9 to 372.2 and 207.1 to 396.1 by using poly(MAA-co-EGDMA) and poly(AA-co-EGDMA), respectively, yielding lower limits of detection (0.03 to 0.12 μg L-1) and (0.03 to 0.15 μg L-1). These outcomes show satisfactory detectability of SPE-based methods, with slightly better performance using poly(MAA-co-EGDMA). On the other hand, poly(AA-co-EGDMA) was able to preconcentrate TCAs in the presence of humic acid (7.0 mg L-1) without interference. The precision of methods assessed as RSD (%) was very similar, ranging from 1.7% to 16.3% for poly(MAA-co-EGDMA) and 1.7% to 13.4% for poly(AA-co-EGDMA). SPE cartridges packed with the polymers showed high reusability (52 cycles of preconcentration and elution) without losing adsorption efficiency. The methods were applied to determine TCAs in tap, lake, and stream water samples and the accuracy was attested by addition and recovery tests (86.7-116.0%), with determined nortriptyline ranging from 0.48 to 0.52 μg L-1 in lake water samples.
Collapse
Affiliation(s)
- César Ricardo Teixeira Tarley
- Department of Chemistry, State University of Londrina (UEL), Rodovia Celso Garcia Cid, PR 445, Km 380, CEP 86.057-970, Londrina, Parana, Brazil.
- National Institute of Science and Technology in Bioanalytics (INCTBio), Institute of Chemistry, State University of Campinas (UNICAMP), Cidade Universitária Vaz s/n, CEP 13.083-970, Campinas, São Paulo, Brazil
| | - Felipe Augusto Gorla
- Department of Chemistry, State University of Londrina (UEL), Rodovia Celso Garcia Cid, PR 445, Km 380, CEP 86.057-970, Londrina, Parana, Brazil.
- Federal Institute of Paraná (IFPR), Avenida Cívica 475, Centro Cívico, CEP 85.935-000, Assis Chateaubriand, Parana, Brazil
| | - Fernanda Midori de Oliveira
- Department of Chemistry, State University of Londrina (UEL), Rodovia Celso Garcia Cid, PR 445, Km 380, CEP 86.057-970, Londrina, Parana, Brazil.
| | - Clésia Cristina Nascentes
- Department of Chemistry, Federal University of Minas Gerais, Avenida Presidente Antônio Carlos, 6627, Pampulha, CEP 31270-901, Belo Horizonte, Minas Gerais, Brazil
| | - Milena do Prado Ferreira
- Department of Chemistry, State University of Londrina (UEL), Rodovia Celso Garcia Cid, PR 445, Km 380, CEP 86.057-970, Londrina, Parana, Brazil.
| | - Marcello Ferreira da Costa
- Department of Physics, State University of Londrina (UEL), Rodovia Celso Garcia Cid, PR 445 Km 380, CEP 86.057-970, Londrina, Parana, Brazil
| | - Mariana Gava Segatelli
- Department of Chemistry, State University of Londrina (UEL), Rodovia Celso Garcia Cid, PR 445, Km 380, CEP 86.057-970, Londrina, Parana, Brazil.
| |
Collapse
|
6
|
Hasanpour M, Pardakhty A, Tajik S. The development of disposable electrochemical sensor based on MoSe 2-rGO nanocomposite modified screen printed carbon electrode for amitriptyline determination in the presence of carbamazepine, application in biological and water samples. CHEMOSPHERE 2022; 308:136336. [PMID: 36088965 DOI: 10.1016/j.chemosphere.2022.136336] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Revised: 08/24/2022] [Accepted: 09/01/2022] [Indexed: 06/15/2023]
Abstract
The present attempt developed a simple sensing system based on the modification of screen-printed carbon electrode (SPCE) with MoSe2/reduced graphene oxide (rGO) nanocomposite (MoSe2-rGO/SPCE) to voltammetrically co-detect amitriptyline and carbamazepine. Different techniques such as field emission scanning electron microscopy (FE-SEM), energy dispersive X-ray (EDX), X-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FT-IR) were employed to characterize MoSe2-rGO nanocomposite morphology and structure. Moreover, chronoamperometry, differential pulse voltammetry (DPV) and linear sweep voltammetry (LSV) were utilized to explore the electrochemical oxidation of amitriptyline. Data revealed a great current sensitivity for the MoSe2-rGO/SPCE towards amitriptyline. The peak currents of amitriptyline oxidation on the MoSe2-rGO/SPCE had linear dynamic range (0.02-380.0 μM) and a narrow limit of detection (0.007 μM). The MoSe2-rGO/SPCE was successful in sensing carbamazepine and amitriptyline in real specimens, with appreciable recovery rates.
Collapse
Affiliation(s)
- Matineh Hasanpour
- Student Research Committee, Faculty of Pharmacy, Kerman University of Medical Sciences, Kerman, Iran
| | - Abbas Pardakhty
- Pharmaceutics Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, P.O. Box: 76175-493, 76169-11319, Kerman, Iran.
| | - Somayeh Tajik
- Research Center of Tropical and Infectious Diseases, Kerman University of Medical Sciences, Kerman, Iran.
| |
Collapse
|
7
|
Sajid M. Dispersive liquid-liquid microextraction: Evolution in design, application areas, and green aspects. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2022.116636] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
8
|
Bozyiğit GD, Zaman BT, Özdemir OK, Kılınç Y, Chormey DS, Engin GO, Bakırdere S. Polystyrene‐Coated Magnetite Nanoparticles Based Dispersive Micro‐Solid Phase Extraction of Active Pharmaceutical Ingredients of Antidepressant Drugs and Determination by GC‐MS. ChemistrySelect 2022. [DOI: 10.1002/slct.202104435] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Gamze D. Bozyiğit
- Yıldız Technical University Faculty of Civil Engineering Department of Environmental Engineering 34220 İstanbul Turkey
| | - Buse T. Zaman
- Yıldız Technical University Faculty of Art and Science Department of Chemistry 34220 İstanbul Turkey
| | - Oğuz K. Özdemir
- Yıldız Technical University Department of Metallurgical and Materials Engineering 34220 İstanbul TURKEY
| | - Yağmur Kılınç
- Bülent Ecevit University Institute of Science Department of Environmental Engineer 67100 Zonguldak Turkey
| | - Dotse S. Chormey
- Yıldız Technical University Faculty of Art and Science Department of Chemistry 34220 İstanbul Turkey
- Innova Gold Group Merkez Mah. Ladin Sok. No:4/B001 Yenibosna Istanbul Turkey
| | - Güleda O. Engin
- Yıldız Technical University Faculty of Civil Engineering Department of Environmental Engineering 34220 İstanbul Turkey
| | - Sezgin Bakırdere
- Yıldız Technical University Faculty of Art and Science Department of Chemistry 34220 İstanbul Turkey
- Turkish Academy of Sciences (TÜBA) Vedat Dalokay Street, No: 112 06670 Çankaya Ankara Turkey
| |
Collapse
|
9
|
Madej M, Fendrych K, Porada R, Flacha M, Kochana J, Baś B. Application of Fe(III)-exchanged clinoptilolite/graphite nanocomposite for electrochemical sensing of amitriptyline. Microchem J 2021. [DOI: 10.1016/j.microc.2020.105648] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
10
|
Corona discharge ion mobility spectrometry combined by homogenizer assisted dispersive liquid-phase microextraction; A rapid and sensitive method for quantification of nortriptyline. Microchem J 2020. [DOI: 10.1016/j.microc.2020.105540] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
11
|
Karami M, Yamini Y. On-disc electromembrane extraction-dispersive liquid-liquid microextraction: A fast and effective method for extraction and determination of ionic target analytes from complex biofluids by GC/MS. Anal Chim Acta 2020; 1105:95-104. [DOI: 10.1016/j.aca.2020.01.024] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2019] [Revised: 01/10/2020] [Accepted: 01/12/2020] [Indexed: 01/05/2023]
|
12
|
Oliveira FMD, Scheel GL, Augusti R, Tarley CRT, Nascentes CC. Supramolecular microextraction combined with paper spray ionization mass spectrometry for sensitive determination of tricyclic antidepressants in urine. Anal Chim Acta 2020; 1106:52-60. [DOI: 10.1016/j.aca.2020.01.061] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2019] [Revised: 01/25/2020] [Accepted: 01/28/2020] [Indexed: 11/16/2022]
|
13
|
Mohebi A, Farajzadeh MA, Jouyban A, Nemati M, Afshar Mogaddam MR. Development of Sodium Sulfate Induced Water Based Dispersive Liquid–Liquid Microextraction for the Extraction of Four Tricyclic Antidepressants in Urine Samples Prior to Their Determination by Gas Chromatography–Mass Spectrometry. PHARMACEUTICAL SCIENCES 2020. [DOI: 10.34172/ps.2020.24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Background: Because of the narrow therapeutic range of tricyclic antidepressant drugs, their determination in biological samples is of great importance. In this work, a fast and environment friendly sample pretreatment method based on a dispersive liquid–liquid microextraction was developed for the extraction and preconcentration of four tricyclic antidepressants including nortriptyline, amitriptyline, desipramine, and clomipramine in urine prior to their determinations by gas chromatography–mass spectrometry. Methods: In the suggested method, an appropriate mixture of Na2SO4 solution (as phase separation agent and disperser) containing isopropanol (extraction solvent) is rapidly injected into an alkaline aqueous sample solution containing Na2SO4 and the analytes. As a result, a cloudy mixture is formed and the tiny droplets of the extractant containing the extracted analytes are collected on the surface of the aqueous phase after centrifuging. Finally, an aliquot of the collected organic phase is removed and injected into the separation system for the quantitative analysis. Results: Under the optimum conditions, the enrichment factors and extraction recoveries were in the ranges of 380–440 and 76–88%, respectively. The limits of detection and quantification were obtained in the ranges of 11–24, and 41–75 ng/L, respectively. The relative standard deviations of the proposed method were ≤ 6.1% for intra– (n=6) and inter–day (n=4) precisions at a concentration of 100 ng/L of each analyte. Conclusion: The introduced method was satisfactorily utilized for the simultaneous determination of the selected tricyclic antidepressant drugs in the patient’s urine samples.
Collapse
Affiliation(s)
- Ali Mohebi
- Department of Analytical Chemistry, Faculty of Chemistry, University of Tabriz, Tabriz, Iran
| | - Mir Ali Farajzadeh
- Department of Analytical Chemistry, Faculty of Chemistry, University of Tabriz, Tabriz, Iran
- Engineering Faculty, Near East University, 99138, Nicosia, North Cyprus, Mersin 10, Turkey
| | - Abolghasem Jouyban
- Pharmaceutical Analysis Research Center and Pharmacy Faculty, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mahboob Nemati
- Food and Drug Safety Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Halal Research Center, Ministry of Health and Medical Education, Tehran, Iran
| | - Mohammad Reza Afshar Mogaddam
- Food and Drug Safety Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
14
|
|
15
|
Talaee M, Lorestani B, Ramezani M, Cheraghi M, Jamehbozorgi S. Microfunnel-filter-based emulsification microextraction followed by gas chromatography for simple determination of organophosphorus pesticides in environmental water samples. J Sep Sci 2019; 42:2418-2425. [PMID: 31074562 DOI: 10.1002/jssc.201900132] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 04/19/2019] [Accepted: 05/03/2019] [Indexed: 11/09/2022]
Abstract
A simple and fast method named microfunnel-filter-based emulsification microextraction is introduced for an efficient determination of some organophosphorus pesticides including diazinon, malathion, and chlorpyrifos in the environmental samples including the river, sea, and well water. This method is based upon the dispersion of a low-toxicity organic solvent (dihexyl ether), as the extractant, in a high volume of an aqueous sample solution (45 mL). It is implemented without a centrifugation step, and using a syringe filter and a micro-funnel, the phase separation and transfer of the enriched analytes to the gas chromatograph are simply achieved. By filtration of the extractant phase, a suitable sample clean-up is obtained, and the total extraction time is just a few minutes. The factors influencing the extraction efficiency are optimized, and under the optimal conditions, the proposed method provides a good linearity (in the range of 15-1500 ng/mL (R2 > 0.996). A high enrichment factor is obtained (in the range of 306-342), and the method provides low limits of detection and quantification (in the ranges of 4-8 and 15-25 ng/mL, respectively).
Collapse
Affiliation(s)
- Mitra Talaee
- Department of Environmental Science, College of Basic Sciences, Hamedan Branch, Islamic Azad University, Hamedan, Iran
| | - Bahareh Lorestani
- Department of Environmental Science, College of Basic Sciences, Hamedan Branch, Islamic Azad University, Hamedan, Iran
| | - Majid Ramezani
- Department of Chemistry, College of Basic Sciences, Arak Branch, Islamic Azad University, Arak, Iran
| | - Mehrdad Cheraghi
- Department of Environmental Science, College of Basic Sciences, Hamedan Branch, Islamic Azad University, Hamedan, Iran
| | - Saeed Jamehbozorgi
- Department of Chemistry, College of Basic Sciences, Hamedan Branch, Islamic Azad University, Hamedan, Iran
| |
Collapse
|
16
|
Moradi P, Asghari A. Highly selective determination of some anti‐depressant drugs in complicated matrices by dual emulsification liquid‐phase microextraction based on filtration followed by high‐performance liquid chromatography. SEPARATION SCIENCE PLUS 2019. [DOI: 10.1002/sscp.201800147] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Peyman Moradi
- Department of ChemistrySemnan University Semnan Iran
| | | |
Collapse
|
17
|
Moradi P, Asghari A. Determination of acidic drugs in biological and environmental matrices by membrane-based dual emulsification liquid-phase microextraction followed by high-performance liquid chromatography. J Sep Sci 2019; 42:897-905. [DOI: 10.1002/jssc.201800958] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Revised: 11/15/2018] [Accepted: 12/11/2018] [Indexed: 11/05/2022]
Affiliation(s)
- Peyman Moradi
- Department of Chemistry; Semnan University; Semnan Iran
| | | |
Collapse
|
18
|
Abstract
Saliva, as the first body fluid encountering with the exogenous materials, has good correlation with blood and plays an important role in bioanalysis. However, saliva has not been studied as much as the other biological fluids mainly due to restricted access to its large volumes. In recent years, there is a growing interest for saliva analysis owing to the emergence of miniaturized sample preparation methods. The purpose of this paper is to review all microextraction methods and their principles of operation. In the following, we examine the methods used to analyze saliva up to now and discuss the potential of the other microextraction methods for saliva analysis to encourage research groups for more focus on this important subject area.
Collapse
|
19
|
In-Tube Ultrasound Assisted Dispersive Solid–Liquid Microextraction Based on Self-Assembly and Solidification of an Alkanol-Based Floating Organic Droplet for Determination of Pyrethroid Insecticides in Chrysanthemum. Chromatographia 2018. [DOI: 10.1007/s10337-018-3678-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
20
|
Applications and opportunities of experimental design for the dispersive liquid–liquid microextraction method – A review. Talanta 2018; 190:335-356. [DOI: 10.1016/j.talanta.2018.08.002] [Citation(s) in RCA: 89] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2018] [Revised: 07/31/2018] [Accepted: 08/01/2018] [Indexed: 12/22/2022]
|
21
|
Dispersive liquid-liquid microextraction based binary extraction techniques prior to chromatographic analysis: A review. Trends Analyt Chem 2018. [DOI: 10.1016/j.trac.2018.08.016] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
22
|
Seidi S, Rezazadeh M, Yamini Y. Pharmaceutical applications of liquid-phase microextraction. Trends Analyt Chem 2018. [DOI: 10.1016/j.trac.2018.09.014] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
23
|
Mofazzeli F, Asaadi Shirvan H, Mohammadi F. Extraction and determination of tricyclic antidepressants in real samples using air‐dispersed liquid–liquid microextraction prior to gas chromatography and flame ionization detection. J Sep Sci 2018; 41:4340-4347. [DOI: 10.1002/jssc.201800359] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Revised: 09/14/2018] [Accepted: 09/15/2018] [Indexed: 12/16/2022]
Affiliation(s)
- Farideh Mofazzeli
- Department of ChemistryQuchan BranchIslamic Azad University Quchan Iran
| | | | - Fatemeh Mohammadi
- Department of ChemistryQuchan BranchIslamic Azad University Quchan Iran
| |
Collapse
|
24
|
Mahmoudi Alami F, Mousavi HZ, Khaligh A. Simple determination of amphetamine and methamphetamine in complicated matrices by filter-based emulsification microextraction followed by high-performance liquid chromatography. SEPARATION SCIENCE PLUS 2018. [DOI: 10.1002/sscp.201800092] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Affiliation(s)
| | | | - Aisan Khaligh
- Department of Chemistry; Semnan University; Semnan Iran
| |
Collapse
|
25
|
Bazregar M, Rajabi M, Yamini Y, Asghari A. Filter-based emulsification microextraction as an efficient method for the determination of chlorophenols by gas chromatography. J Sep Sci 2018; 41:3097-3104. [DOI: 10.1002/jssc.201800233] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Revised: 05/21/2018] [Accepted: 05/22/2018] [Indexed: 12/31/2022]
Affiliation(s)
| | - Maryam Rajabi
- Department of Chemistry; Semnan University; Semnan Iran
| | - Yadollah Yamini
- Department of Chemistry; Tarbiat Modares University; Tehran Iran
| | | |
Collapse
|
26
|
Lima DLD, Silva CP, Otero M. Dispersive liquid-liquid microextraction for the quantification of venlafaxine in environmental waters. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2018; 217:71-77. [PMID: 29597109 DOI: 10.1016/j.jenvman.2018.03.060] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Revised: 03/12/2018] [Accepted: 03/14/2018] [Indexed: 06/08/2023]
Abstract
The present work describes a new methodology for the detection of the antidepressant venlafaxine (VEN) in aquatic environments using dispersive liquid-liquid microextraction followed by high performance liquid chromatography with fluorescence detection (DLLME-HPLC-FLD). The method developed is fast, low cost, easy to apply, uses a small volume of organic solvents and allows the simultaneous extraction of various samples. The DLLME-HPLC-FLD method presented a linearity range from 25 to 1500 ng L-1, a detection limit of 24.2 ± 0.2 ng L-1, and an enrichment factor of 75 ± 4. Recovery tests using solutions of NaCl and humic acids showed that ionic strength and organic matter do not influence the efficiency of the extraction, with extraction recoveries above 77%. Finally, the optimized method was applied to the analysis of water samples from different origins and VEN was only detected in one water sample obtained from a waste water treatment plant (WWTP), which had a concentration of 175 ± 5 ng L-1. Recovery tests performed in environmental aquatic samples demonstrated that the developed extraction procedure is not influenced by the complex water matrices, with results ranging from 76 to 93%.
Collapse
Affiliation(s)
- Diana L D Lima
- CESAM & Department of Chemistry, University of Aveiro, Campus de Santiago, 3810-193 Aveiro, Portugal; Instituto Politécnico de Coimbra, ESTESC-Coimbra Health School, Complementary Sciences, Rua 5 de Outubro, S. Martinho do Bispo, 3046-854 Coimbra, Portugal.
| | - Carla Patrícia Silva
- CESAM & Department of Chemistry, University of Aveiro, Campus de Santiago, 3810-193 Aveiro, Portugal
| | - Marta Otero
- CESAM & Department of Environment and Planning, University of Aveiro, Campus de Santiago, 3810-193 Aveiro, Portugal
| |
Collapse
|
27
|
Sajid M, Płotka-Wasylka J. Combined extraction and microextraction techniques: Recent trends and future perspectives. Trends Analyt Chem 2018. [DOI: 10.1016/j.trac.2018.03.013] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
28
|
Asfaram A, Ghaedi M, Abidi H, Javadian H, Zoladl M, Sadeghfar F. Synthesis of Fe 3O 4@CuS@Ni 2P-CNTs magnetic nanocomposite for sonochemical-assisted sorption and pre-concentration of trace Allura Red from aqueous samples prior to HPLC-UV detection: CCD-RSM design. ULTRASONICS SONOCHEMISTRY 2018; 44:240-250. [PMID: 29680609 DOI: 10.1016/j.ultsonch.2018.02.011] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2017] [Revised: 01/08/2018] [Accepted: 02/06/2018] [Indexed: 05/09/2023]
Abstract
A simple procedure based on ultrasound-assisted (UA) dispersive micro solid phase extraction (D-μ-SPE) was applied for sorption of trace amount Allura Red (AR) in fruit juice and water samples. After loading process by UA-D-μ-SPE, the concentrated AR was eluted and monitored using high-performance liquid chromatography-ultraviolet -visible detector (HPLC-UV). The best operational conditions were obtained as follows: pH = 3.0, 8 mg of the sorbent, sonication time of 4.5 min and 0.16 mL of THF as elution solvent. Under the optimum operational conditions, the present method was acceptable for AR quantification in the range of 1.0-5000 ng mL-1. The repeatability based on RSD with the amount of 1.67-3.18%, low LOD (0.198 ng mL-1) and LOQ (0.659 ng mL-1) were obtained. The UA-D-μ-SPE-HPLC-UV method was successfully applied for trace quantification of AR from water and commercial fruit juice samples supplied from local supermarkets, and acceptable relative recoveries over the range of 97.7-105.4% with RSDs ≤5.50% were obtained.
Collapse
Affiliation(s)
- Arash Asfaram
- Medicinal Plants Research Center, Yasuj University of Medical Sciences, Yasuj, Iran
| | - Mehrorang Ghaedi
- Chemistry Department, Yasouj University, Yasouj 75918-74831, Iran.
| | - Hassan Abidi
- Cellular and Molecular Research Center, Yasuj University of Medical Sciences, Yasuj, Iran
| | - Hamedreza Javadian
- Universitat Politècnica de Catalunya, Department of Chemical Engineering, ETSEIB, Diagonal 647, 08028 Barcelona, Spain
| | - Mohammad Zoladl
- Social Determinants of Health Research Centre, Yasuj University of Medical Sciences, Yasuj, Iran
| | - Fardin Sadeghfar
- Chemistry Department, Yasouj University, Yasouj 75918-74831, Iran
| |
Collapse
|
29
|
Mirparizi E, Rajabi M, Asghari A. Simple determination of some antidementia drugs in wastewater and human plasma samples by tandem dispersive liquid-liquid microextraction followed by high-performance liquid chromatography. J Sep Sci 2018; 41:2214-2220. [DOI: 10.1002/jssc.201701135] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2017] [Revised: 01/23/2018] [Accepted: 01/24/2018] [Indexed: 11/06/2022]
Affiliation(s)
| | - Maryam Rajabi
- Department of Chemistry; Semnan University; Semnan Iran
| | | |
Collapse
|
30
|
Mahmoudi Alami F, Zavvar Mousavi H, Khaligh A. Filter-Based Low-Toxic Emulsification Microextraction Followed by High-Performance Liquid Chromatography for Determination of Sudan Dyes in Foodstuff Samples. FOOD ANAL METHOD 2018. [DOI: 10.1007/s12161-018-1196-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
31
|
Gao X, Guo H, Wang J, Zhao Q. Sensitive and rapid determination of pyrethroids in human blood by gas chromatography-tandem mass spectrometry with ultrasound-assisted dispersive liquid-liquid microextraction. Drug Test Anal 2018; 10:1131-1138. [PMID: 29350497 DOI: 10.1002/dta.2358] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Revised: 01/02/2018] [Accepted: 01/03/2018] [Indexed: 12/29/2022]
Abstract
In this study, a sensitive and fast procedure of ultrasonic-assisted dispersive liquid-liquid microextraction (UADLLME) coupled with gas chromatography-tandem mass spectrometry (GC-MS/MS) for the determination of major pyrethroid pesticides (permethrin, tetramethrin, bifenthrin, fenvalerate, flucythrinate, fluvalinate, fenpropathrin, deltamethrin, and cyhalothrin) in blood samples was developed. Response surface methodology (RSM) combined with Box-Behnken design (BBD) and ANOVA function was used to optimize key factors affecting the extraction efficiency of UADLLME procedure. Target compounds were analyzed by GC-MS/MS. Under the optimal conditions, good linearity (R2 >0.99) was achieved for all the analytes in the concentration range of 0.5 to 100 μg L-1 . The recoveries for spiked samples at 3 concentration levels were between 70.2 and 91.8%, with relative standard deviations (RSD) lower than 10%. Very low limits of detection (LODs) and limits of quantification (LOQs) ranging from 0.01 to 0.1 μg L-1 and from 0.03 to 0.3 μg L-1 were achieved. This method was successfully applied to the determination of low concentration of pyrethroids in blood samples from real forensic cases. High sensitivity, fast determination, simplicity in operation, small sample volume, and low usage of organic solvents are the advantages of this method. This methodology is of important value for sensitive and quick determination of residue pesticides and metabolites, study of residue pesticides behavior in human body, as well as application in real forensic cases.
Collapse
Affiliation(s)
- Xue Gao
- Chongqing Key Lab of Catalysis & Functional Organic Molecules, Chongqing Technology and Business University, China
| | | | - Junwei Wang
- Chongqing Institute of Forensic Science, Chongqing, China
| | - Qingbiao Zhao
- Key Laboratory of Polar Materials and Devices, Ministry of Education, College of Information Science & Technology, East China Normal University, Shanghai, China
| |
Collapse
|
32
|
Moghadam AG, Rajabi M, Asghari A. Efficient and relatively safe emulsification microextraction using a deep eutectic solvent for influential enrichment of trace main anti-depressant drugs from complicated samples. J Chromatogr B Analyt Technol Biomed Life Sci 2018; 1072:50-59. [DOI: 10.1016/j.jchromb.2017.09.042] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2017] [Revised: 09/23/2017] [Accepted: 09/26/2017] [Indexed: 12/19/2022]
|
33
|
Mansour FR, Khairy MA. Pharmaceutical and biomedical applications of dispersive liquid–liquid microextraction. J Chromatogr B Analyt Technol Biomed Life Sci 2017; 1061-1062:382-391. [DOI: 10.1016/j.jchromb.2017.07.055] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2017] [Revised: 07/09/2017] [Accepted: 07/29/2017] [Indexed: 01/18/2023]
|
34
|
Bazregar M, Rajabi M, Yamini Y, Asghari A. Improved in-tube electro-membrane extraction followed by high-performance liquid chromatography for simple and selective determination of ionic compounds: Optimization by central composite design. J Sep Sci 2017; 40:2967-2974. [DOI: 10.1002/jssc.201700364] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Revised: 05/08/2017] [Accepted: 05/13/2017] [Indexed: 11/05/2022]
Affiliation(s)
| | - Maryam Rajabi
- Department of Chemistry; Semnan University; Semnan Iran
| | - Yadollah Yamini
- Department of Chemistry; Tarbiat Modares University; Tehran Iran
| | | |
Collapse
|
35
|
Mirparizi E, Rajabi M, Bazregar M, Asghari A. Centrifugeless ultrasound-assisted emulsification microextraction based on salting-out phenomenon followed by high-performance liquid chromatography for the simple determination of phthalate esters in aqueous samples. J Sep Sci 2017; 40:2022-2029. [DOI: 10.1002/jssc.201601282] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Revised: 02/05/2017] [Accepted: 03/07/2017] [Indexed: 01/24/2023]
Affiliation(s)
| | - Maryam Rajabi
- Department of Chemistry; Semnan University; Semnan Iran
| | | | | |
Collapse
|
36
|
Rapid determination of some psychotropic drugs in complex matrices by tandem dispersive liquid-liquid microextraction followed by high performance liquid chromatography. J Chromatogr B Analyt Technol Biomed Life Sci 2017; 1052:51-59. [PMID: 28355580 DOI: 10.1016/j.jchromb.2017.03.012] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2016] [Revised: 02/22/2017] [Accepted: 03/12/2017] [Indexed: 11/22/2022]
Abstract
Simple and rapid determinations of some psychotropic drugs in some pharmaceutical wastewater and human plasma samples were successfully accomplished via the tandem dispersive liquid-liquid microextraction combined with high performance liquid chromatography-ultraviolet detection (TDLLME-HPLC-UV). TDLLME of the three psychotropic drugs clozapine, chlorpromazine, and thioridazine was easily performed through two consecutive dispersive liquid-liquid microextractions. By performing this convenient method, proper sample preconcentrations and clean-ups were achieved in just about 7min. In order to achieve the best extraction efficiency, the effective parameters involved were optimized. The optimal experimental conditions consisted of 100μL of CCl4 (as the extraction organic solvent), and the pH values of 13 and 2 for the donor and acceptor phases, respectively. Under these optimum experimental conditions, the proposed TDLLME-HPLC-UV technique provided a good linearity in the range of 5-3000ngmL-1 for the three psychotropic drugs with the correlation of determinations (R2s) higher than 0.996. The limits of quantification (LOQs) and limits of detection (LODs) obtained were 5.0ngmL-1 and 1.0-1.5ngmL-1, respectively. Also the proper enrichment factors (EFs) of 96, 99, and 88 for clozapine, chlorpromazine, and thioridazine, respectively, and good extraction repeatabilities (relative standard deviations below 9.3%, n=5) were obtained.
Collapse
|
37
|
Mirparizi E, Rajabi M, Bazregar M, Asghari A. Centrifugeless dispersive liquid-liquid microextraction based on salting-out phenomenon as an efficient method for determination of phenolic compounds in environmental samples. Anal Bioanal Chem 2017; 409:3007-3016. [DOI: 10.1007/s00216-017-0246-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Revised: 01/28/2017] [Accepted: 02/06/2017] [Indexed: 02/04/2023]
|
38
|
Wang C, Qu L, Liu X, Zhao C, Zhao F, Huang F, Zhu Z, Han C. Determination of a metabolite of nifursol in foodstuffs of animal origin by liquid-liquid extraction and liquid chromatography with tandem mass spectrometry. J Sep Sci 2017; 40:671-676. [DOI: 10.1002/jssc.201600996] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2016] [Revised: 11/11/2016] [Accepted: 11/17/2016] [Indexed: 12/11/2022]
Affiliation(s)
- Chuanxian Wang
- Shanghai Entry−Exit Inspection and Quarantine Bureau of P.R.C; Shanghai China
| | - Li Qu
- Shanghai Entry−Exit Inspection and Quarantine Bureau of P.R.C; Shanghai China
| | - Xia Liu
- Shanghai Entry−Exit Inspection and Quarantine Bureau of P.R.C; Shanghai China
| | - Chaomin Zhao
- Shanghai Entry−Exit Inspection and Quarantine Bureau of P.R.C; Shanghai China
| | - Fengjuan Zhao
- Food Inspection Center of Shenzhen Entry-Exit Inspection and Quarantine; Shenzhen China
| | - Fuzhen Huang
- Wenzhou Entry−Exit Inspection and Quarantine Bureau of P.R.C; Wenzhou China
| | - Zhenou Zhu
- Wenzhou Entry−Exit Inspection and Quarantine Bureau of P.R.C; Wenzhou China
| | - Chao Han
- Wenzhou Entry−Exit Inspection and Quarantine Bureau of P.R.C; Wenzhou China
| |
Collapse
|
39
|
Low-toxic air-agitated liquid-liquid microextraction using a solidifiable organic solvent followed by gas chromatography for analysis of amitriptyline and imipramine in human plasma and wastewater samples. Microchem J 2017. [DOI: 10.1016/j.microc.2016.08.014] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
40
|
Fahimirad B, Asghari A, Bazregar M, Rajabi M, Fahimi E. Application of tandem dispersive liquid-liquid microextraction for the determination of doxepin, citalopram, and fluvoxamine in complicated samples. J Sep Sci 2016; 39:4828-4834. [DOI: 10.1002/jssc.201600673] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2016] [Revised: 10/21/2016] [Accepted: 10/23/2016] [Indexed: 12/22/2022]
Affiliation(s)
| | | | | | - Maryam Rajabi
- Department of Chemistry; Semnan University; Semnan Iran
| | | |
Collapse
|
41
|
Rapid determination of some beta-blockers in complicated matrices by tandem dispersive liquid-liquid microextraction followed by high performance liquid chromatography. Anal Bioanal Chem 2016; 408:8163-8176. [DOI: 10.1007/s00216-016-9922-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Revised: 08/05/2016] [Accepted: 09/01/2016] [Indexed: 01/01/2023]
|
42
|
Haeri SA. Bio-sorption based dispersive liquid–liquid microextraction for the highly efficient enrichment of trace-level bisphenol A from water samples prior to its determination by HPLC. J Chromatogr B Analyt Technol Biomed Life Sci 2016; 1028:186-191. [DOI: 10.1016/j.jchromb.2016.06.025] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Revised: 06/11/2016] [Accepted: 06/15/2016] [Indexed: 11/24/2022]
|
43
|
Optimization of ultrasound assisted dispersive liquid-liquid microextraction of six antidepressants in human plasma using experimental design. J Pharm Biomed Anal 2016; 124:189-197. [DOI: 10.1016/j.jpba.2016.02.041] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Revised: 02/24/2016] [Accepted: 02/25/2016] [Indexed: 11/23/2022]
|
44
|
Ghambarian M, Tajabadi F, Yamini Y, Esrafili A. Dispersive liquid–liquid microextraction with back extraction using an immiscible organic solvent for determination of benzodiazepines in water, urine, and plasma samples. RSC Adv 2016. [DOI: 10.1039/c6ra23770c] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
A novel DLLME method with a back extraction step using two immiscible organic solvents for obtaining higher clean-up than the conventional DLLME method.
Collapse
Affiliation(s)
- Mahnaz Ghambarian
- Iranian Research and Development Center for Chemical Industries
- ACECR
- Tehran
- Iran
| | - Fateme Tajabadi
- Iranian Research and Development Center for Chemical Industries
- ACECR
- Tehran
- Iran
| | - Yadollah Yamini
- Department of Chemistry
- Faculty of Sciences
- Tarbiat Modares University
- Tehran
- Iran
| | - Ali Esrafili
- Department of Environmental Health Engineering
- School of Public Health
- Iran University of Medical Sciences
- Tehran
- Iran
| |
Collapse
|
45
|
Arghavani-Beydokhti S, Asghari A, Bazregar M, Rajabi M. Application of a tandem air-agitated liquid–liquid microextraction technique based on solidification of floating organic droplets as an efficient extraction method for determination of cholesterol-lowering drugs in complicated matrices. RSC Adv 2016. [DOI: 10.1039/c6ra19414a] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
To enhance sample clean-up in dispersive liquid–liquid microextraction in complicated matrices, a low-toxicity and sensitive extraction method, tandem air-agitated liquid–liquid microextraction, based on solidification of floating organic droplets is introduced.
Collapse
Affiliation(s)
| | - Alireza Asghari
- Department of Chemistry
- Semnan University
- Semnan 2333383-193
- Iran
| | | | - Maryam Rajabi
- Department of Chemistry
- Semnan University
- Semnan 2333383-193
- Iran
| |
Collapse
|