1
|
Yu Z, Li H, Zhong L, Cui W, Chen ZL, Huang L, Qiu Z, Su R, Xu J. Online Monitoring of the Processing of Traditional Chinese Medicine by Neutral Desorption Atmospheric Pressure Chemical Ionization Mass Spectrometry. Anal Chem 2024. [PMID: 39689960 DOI: 10.1021/acs.analchem.4c04632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2024]
Abstract
The pharmacological effects of traditional Chinese medicine (TCM) are closely associated with the processing procedures, which involve a multitude of intricate chemical reactions. Real-time monitoring of the dynamic changes in chemical constituents during TCM processing plays a pivotal role in ensuring quality control of TCM products. Herein, a neutral desorption atmospheric pressure chemical ionization mass spectrometry (ND-APCI-MS) method was developed for online monitoring of the TCM processing. The aerosol generated during the TCM processing was sampled in situ by neutral desorption using N2, followed by online analysis using APCI-MS. Subsequently, orthogonal partial least squares discriminant analysis (OPLS-DA) was employed to analyze the MS data to find the biomarkers associated with the processing. Compared to traditional tissue-based analytical methods, the present method employing aerosols as samples takes advantage of online analysis, nondestructive sampling, and enhanced accuracy. As a conceptual application, the processing of Rehmannia glutinosa was investigated, and several biomarkers associated with the processing were identified. These findings suggest the potential application of ND-APCI-MS for online and in situ monitoring of the processing of TCM.
Collapse
Affiliation(s)
- Zhendong Yu
- Jiangxi Key Laboratory for Mass Spectrometry and Instrumentation, East China University of Technology, Nanchang 330013, P. R. China
| | - Hui Li
- Jiangxi Key Laboratory for Mass Spectrometry and Instrumentation, East China University of Technology, Nanchang 330013, P. R. China
| | - Luyao Zhong
- Jiangxi Key Laboratory for Mass Spectrometry and Instrumentation, East China University of Technology, Nanchang 330013, P. R. China
| | - Wenshan Cui
- Jiangxi Key Laboratory for Mass Spectrometry and Instrumentation, East China University of Technology, Nanchang 330013, P. R. China
| | - Zhi-Liang Chen
- School of Pharmacy, Shaoyang University, Shaoyang 422000, P. R. China
| | - Luqi Huang
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, P. R. China
| | - Zidong Qiu
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, P. R. China
| | - Rui Su
- Academician Workstation, Jiangxi University of Chinese Medicine, Nanchang 330004, P. R. China
| | - Jiaquan Xu
- Jiangxi Key Laboratory for Mass Spectrometry and Instrumentation, East China University of Technology, Nanchang 330013, P. R. China
| |
Collapse
|
2
|
Li YK, Chen Z, Zhang C. Historical evolution and processing mechanism of 'nine steaming and nine drying' of traditional Chinese medicine preparation. PHARMACEUTICAL BIOLOGY 2024; 62:436-446. [PMID: 38755954 PMCID: PMC11104706 DOI: 10.1080/13880209.2024.2354345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 05/04/2024] [Indexed: 05/18/2024]
Abstract
CONTEXT Nine steaming and nine drying is a traditional Chinese medicine (TCM) processing method and it is widely used for processing tonifying herbs. Modern research reveals that the repeated steaming and drying process varies the composition and clinical efficacy of TCM. OBJECTIVE This paper analyzes and explores the historical evolution, research progress, development strategies, and problems encountered in the nine steaming and nine drying process so as to provide a reasonable explanation for this method. METHODS English and Chinese literature from 1986 to 2023 was collected from databases including Web of Science, PubMed, Elsevier, Chinese Pharmacopoeia 2020 (CP), and CNKI (Chinese). Nine steaming and nine drying, processing, TCM and pharmacological activity were used as the key words. RESULTS Nine steaming and nine drying has undergone thousands of years of clinical practice. Under specific processing conditions of nine steaming and nine drying, the ingredients of the TCM have significant changes, which in turn altered clinical applications. CONCLUSIONS This review provides sufficient evidence to prove the rationality and scientific value of nine steaming and nine drying and puts forward a development direction for future research.
Collapse
Affiliation(s)
- Yong-kang Li
- College of Pharmacy, Shandong University of TCM, Jinan, China
| | - Zhi Chen
- College of Pharmacy, Shandong University of TCM, Jinan, China
| | - Chao Zhang
- College of Pharmacy, Shandong University of TCM, Jinan, China
| |
Collapse
|
3
|
Li LF, Shi X, Qi SM, Zhang XT, Fung HY, Li QR, Han QB. Strategies, techniques and applications for food authentication based on carbohydrates: A review. Carbohydr Polym 2024; 344:122533. [PMID: 39218564 DOI: 10.1016/j.carbpol.2024.122533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 07/09/2024] [Accepted: 07/21/2024] [Indexed: 09/04/2024]
Abstract
The increasing complexity and ubiquity of food processing and the emergence of fraudulent practices have made effective and reliable methods to authenticate food products of utmost importance. Carbohydrates, with various nutritional functions, are abundant in foods and can serve as potential markers for food authentication. However, the complex and diverse structures and properties of carbohydrates, especially polysaccharides, pose challenges. Nonetheless, significant progress has been made in this area. This paper provides an overview of the utilization of carbohydrates in food authentication since 2000, focusing on strategies involving carbohydrate-based markers, carbohydrate profiles, and carbohydrate-protein interaction-based assays. The analytical techniques, applications, challenges and limitations of these strategies are reviewed and discussed. The findings demonstrate that these strategies offer origin verification, quality assessment, adulteration detection, process control, and food species identification. Notably, oligosaccharide analysis has proven effective in food authentication and remains a promising marker, especially for analyzing intricate matrices. The advances in chromatography separation and mass spectrometry identification of isomers and trace amounts of these compounds have facilitated the discovery of such markers. In conclusion, carbohydrate analysis can play a crucial role in food authentication. Future research and development will make the authentication of carbohydrate-rich foods ever more accurate and efficient.
Collapse
Affiliation(s)
- Li-Feng Li
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China
| | - Xi Shi
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China
| | - Si-Min Qi
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China
| | - Xue-Ting Zhang
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China
| | - Hau-Yee Fung
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China
| | - Qian-Ran Li
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China
| | - Quan-Bin Han
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China.
| |
Collapse
|
4
|
Jin X, Zhang J, Shen X, Yao S, Xu M, Wang C, Li J, Yao C, Guo DA. High-Performance Thin-Layer Chromatography Coupled with Single Quadrupole: Application the Identification and Differentiation of Rehmanniae Radix and Its Different Processing Products from Raw Materials to Commercial Products. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:10106-10116. [PMID: 38629120 DOI: 10.1021/acs.jafc.4c01262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2024]
Abstract
The authentication of ingredients in formulas is crucial yet challenging, particularly for constituents with comparable compositions but vastly divergent efficacy. Rehmanniae Radix and its derivatives are extensively utilized in food supplements, which contain analogous compositions but very distinct effects. Rehmanniae Radix, also a difficult-to-detect herbal ingredient, was chosen as a case to explore a novel HPTLC-QDa MS technique for the identification of herbal ingredients in commercial products. Through systematic condition optimization, including thin layer and mass spectrometry, a stable and reproducible HPTLC-QDa MS method was established, which can simultaneously detect oligosaccharides and iridoids. Rehmannia Radix and its processed products were then analyzed to screen five markers that could distinguish between raw and prepared Rehmannia Radix. An HPTLC-QDa-SIM method was further established for formula detection by using the five markers and validated using homemade prescriptions and negative controls. Finally, this method was applied to detect raw and prepared Rehmannia Radix in 12 commercial functional products and supplements.
Collapse
Affiliation(s)
- Xu Jin
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Haike Road 501, Shanghai 201203, China
| | - Jianqing Zhang
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Haike Road 501, Shanghai 201203, China
| | - Xuanjing Shen
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Haike Road 501, Shanghai 201203, China
| | - Shuai Yao
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Haike Road 501, Shanghai 201203, China
| | - Meng Xu
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Haike Road 501, Shanghai 201203, China
| | - Cuicui Wang
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Haike Road 501, Shanghai 201203, China
| | - Jiayuan Li
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Haike Road 501, Shanghai 201203, China
| | - Changliang Yao
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Haike Road 501, Shanghai 201203, China
| | - De-An Guo
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Haike Road 501, Shanghai 201203, China
| |
Collapse
|
5
|
Chan KC, Zhang WH, Chan YM, Li HL, Fang J, Luo HY, Xu J. Tryptophan sulfonate: A new chemical marker for accurate and efficient inspection of sulfur-treated food products. Food Chem 2024; 434:137360. [PMID: 37696151 DOI: 10.1016/j.foodchem.2023.137360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 08/29/2023] [Accepted: 08/30/2023] [Indexed: 09/13/2023]
Abstract
Sulfur treatment for the pesticidal and antibacterial processing of food products has been criticized since it impairs the quality of treated products. The inspection of sulfur-treated products is thus required to achieve the regulation of sulfur treatment. Sulfite assay is currently available for the inspection, but it bears the disadvantages of inaccurate results and complex experimental procedures. Here we report a new chemical marker, namely tryptophan sulfonate, that can be used for the accurate and efficient inspection of sulfur-treated foods. First, the marker was discovered in sulfur-fumigated ginger, yam, and ginseng by untargeted metabolomics. The marker identity was then elucidated using chromatographic separation, nuclear magnetic resonance analysis and chemical synthesis. Finally, to demonstrate its applicability in the inspection, a tryptophan sulfonate assay was developed to test 50 commercial food samples, and the results indicated that it performed better than the sulfite assay in terms of both accuracy and efficiency.
Collapse
Affiliation(s)
- Kam-Chun Chan
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China.
| | - Wei-Hao Zhang
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China.
| | - Yui-Man Chan
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China.
| | - Hiu-Lam Li
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China.
| | - Jing Fang
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China.
| | - Han-Yan Luo
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China.
| | - Jun Xu
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China.
| |
Collapse
|
6
|
Zhang XY, Xu JD, Wang Y, Wu CY, Zhou J, Shen H, Zou YT, Zhu JH, Zhou SS, Li SL, Xu J, Long F. Comparing steamed and wine-stewed Rehmanniae Radix in terms of Yin-nourishing effects via metabolomics and microbiome analysis. JOURNAL OF ETHNOPHARMACOLOGY 2023; 311:116424. [PMID: 37003400 DOI: 10.1016/j.jep.2023.116424] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 03/02/2023] [Accepted: 03/21/2023] [Indexed: 06/19/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Rehmanniae Radix Praeparata (RRP), the processed root of Rehmannia glutinosa, has been widely used to treat Yin deficiency syndrome in traditional Chinese medicine. RRP is available in two forms: processed by steaming with water (SRR) or processed by stewing with yellow rice wine (WRR). Previous work has documented chemical differences in the secondary metabolomes and glycomes of SRR and WRR. AIM OF THE STUDY This study aimed to compare SRR and WRR in terms of Yin-nourishing effects via metabolomics and microbiome analysis. MATERIALS AND METHODS ICR mice were orally administered with thyroxine for 14 d to induce Yin deficiency. Changes in biochemical indices and histopathology were detected. Serum metabolomics analysis and microbial 16S rRNA sequencing were performed to compare the therapeutic effects and mechanisms between SRR and WRR in treating thyroxine-induced Yin deficiency. RESULTS Both SRR and WRR decreased serum T3, T4 and MDA levels, and increased SOD activity. SRR more effectively decreased serum Cr, and ameliorated kidney injury, while WRR showed better regulation on ratio of cAMP/cGMP and serum TSH, and relieved thyroid injury. Both SRR and WRR regulated tyrosine, glycerophospholipid, and linoleic acid metabolism and the citric acid cycle. Additionally, SRR regulated fatty acid metabolism, while WRR influenced alanine, aspartate and glutamate metabolism, and bile acid biosynthesis. SRR significantly enriched the genera Staphylococcus and Bifidobacterium in the gut microbiome, while WRR significantly enriched the genera Akkermansia, Bacteroides and Parabacteroides, and decreased the abundance of Lactobacillus. CONCLUSIONS SRR displayed better protective effects on kidney, while WRR showed stronger effects on thyroid in thyroxine-induced Yin deficient mice. These differences might be due to different regulating effects of SRR and WRR on the metabolome and gut microbiota.
Collapse
Affiliation(s)
- Xiao-Ya Zhang
- Department of Pharmaceutical Analysis, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210028, China
| | - Jin-Di Xu
- Department of Pharmaceutical Analysis, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210028, China; Department of Metabolomics, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing, 210028, China
| | - Yao Wang
- Department of Pharmaceutical Analysis, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210028, China
| | - Cheng-Ying Wu
- Department of Metabolomics, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing, 210028, China
| | - Jing Zhou
- Department of Metabolomics, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing, 210028, China
| | - Hong Shen
- Department of Metabolomics, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing, 210028, China
| | - Ye-Ting Zou
- Department of Pharmaceutical Analysis, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210028, China
| | - Jin-Hao Zhu
- Department of Pharmaceutical Analysis, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210028, China
| | - Shan-Shan Zhou
- Department of Metabolomics, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing, 210028, China
| | - Song-Lin Li
- Department of Pharmaceutical Analysis, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210028, China; Department of Metabolomics, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing, 210028, China.
| | - Jun Xu
- Department of Pharmaceutical Analysis, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210028, China; School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, 999077, Hong Kong, China.
| | - Fang Long
- Department of Pharmaceutical Analysis, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210028, China; Department of Respiratory Medicine, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210028, China.
| |
Collapse
|
7
|
Zhang Y, Wang J, Tan H, Lu X, Wang D, Wei Q. Evaluation of Steaming and Drying of Black Sesame Seeds for Nine Cycles Using Grey-Correlation Analysis Based on Variation-Coefficient Weight. Molecules 2023; 28:5266. [PMID: 37446935 DOI: 10.3390/molecules28135266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 06/29/2023] [Accepted: 07/05/2023] [Indexed: 07/15/2023] Open
Abstract
This study aimed to improve the steaming process of black sesame seeds. A comprehensive evaluation was conducted using the grey-correlation method based on the variation-coefficient weight to observe the treatments of normal-pressure (NPS) and high-pressure (HPS) steaming (with/without soaking in water) for nine cycles. Their effects on the contents of water, protein, fat, ash, melanin, sesamin, and sesamolin of black sesame seeds, as well as the sensory score of the black sesame pill, were determined. We found that with varied steaming methods and increased steaming cycles, the contents of the nutritional and functional components of black sesame seeds and the sensory score of the black sesame pill differed. The results of the variation-coefficient method showed that water, protein, fat, ash, melanin, sesamin, sesamolin, and sensory score had different effects on the quality of black sesame seeds with weighting factors of 34.4%, 5.3%, 12.5%, 11.3%, 13.9%, 11.3%, 7.8%, and 3.5%, respectively. The results of two-factor analysis of variance without repeated observations indicated that the grey-correlation degree of HPS was the largest among the different steaming treatments, and the following sequence was HPS after soaking in water (SNPS), NPS, and SNPS. There was no significant difference between NPS and SNPS (p < 0.05). Moreover, with increased cycles, the value of the grey-correlation degree increased. The comprehensive score of the procedure repeated nine times was significantly higher than other cycles (p < 0.05). The results of the grey-correlation degree and grade analysis showed that the best steaming process of black sesame seeds was HPS for nine cycles, followed by HPS for eight cycles and NPS after soaking in water (SNPS) for nine cycles. These findings could provide a scientific basis for replacing SNPS with HPS to simplify steaming and realize the parametric steaming of black sesame seeds, and thus, ensure the quality of black-sesame products.
Collapse
Affiliation(s)
- Yongqing Zhang
- Key Laboratory of Biomarker-Based Rapid Detection Technology for Food Safety of Henan Province, Xuchang University, Xuchang 461000, China
| | - Jiaojiao Wang
- Key Laboratory of Biomarker-Based Rapid Detection Technology for Food Safety of Henan Province, Xuchang University, Xuchang 461000, China
| | - Huihui Tan
- Key Laboratory of Biomarker-Based Rapid Detection Technology for Food Safety of Henan Province, Xuchang University, Xuchang 461000, China
| | - Xinyue Lu
- Key Laboratory of Biomarker-Based Rapid Detection Technology for Food Safety of Henan Province, Xuchang University, Xuchang 461000, China
| | - Deguo Wang
- Key Laboratory of Biomarker-Based Rapid Detection Technology for Food Safety of Henan Province, Xuchang University, Xuchang 461000, China
| | - Quanzeng Wei
- Key Laboratory of Biomarker-Based Rapid Detection Technology for Food Safety of Henan Province, Xuchang University, Xuchang 461000, China
| |
Collapse
|
8
|
Sun W, Xu JD, Zhang W, Guo MF, Kong M, Zhu H, Zhou SS, Wu CY, Li SL, Mao Q. Holistic quality evaluation of Callicarpae Formosanae Folium by multi-chromatography-based qualitative and quantitative analysis of polysaccharides and small molecules. J Pharm Biomed Anal 2023; 227:115282. [PMID: 36791651 DOI: 10.1016/j.jpba.2023.115282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Revised: 02/06/2023] [Accepted: 02/06/2023] [Indexed: 02/11/2023]
Abstract
Callicarpae Formosanae Folium (CFF), derived from the leaves of Callicarpa formosana Rolfe, is a common Chinese medicinal herb used for the treatment of hematemesis. Phytochemical studies found that phenylpropanoids, flavonoids, terpenoids and polysaccharides were the main ingredients of CFF. However, there is limited scientific information concerning holistic quality method and quality consistency evaluation of CFF. In this study, a strategy integrating HPGPC-ELSD, HPLC-PDA, UV-VIS and UPLC-QTOF-MS/MS was firstly developed to simultaneously qualify and quantify polysaccharides, as well as representative small molecules in CFF. HPGPC-ELSD was applied to characterize the molecular weight distribution of polysaccharides, HPLC-PDA was developed to qualitatively and quantitatively determine monosaccharides. UV-VIS was used to determine the total polysaccharides content, and UPLC-QTOF-MS/MS was established to characterize the small molecules. The quality consistency of commercial CFF (CM-CFF) was also evaluated. It was shown that the relative molecular weights, the compositional monosaccharides and small molecules composition in CM-CFF and self-collected CFF (SC-CFF) samples were similar. A total of 32 small molecules including 6 phenylpropanoids, 7 flavonoids and 19 terpenoids were characterized in CFF. However, the variation was observed in the content of polysaccharides, luteolin, ursolic acid, as well as total contents of terponoids in CM-CFF samples, which implied that the holistic quality of CM-CFF was inconsistent. The results suggested that the proposed evaluation strategy could be applied as a potential approach for the quality control of CFF. And the quality of CM-CFF should be improved by Good Agriculture Practice (GAP) base and standard processing method.
Collapse
Affiliation(s)
- Wen Sun
- Department of Pharmaceutical Analysis, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210028, PR China; Department of Metabolomics, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing 210028, PR China
| | - Jin-Di Xu
- Department of Pharmaceutical Analysis, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210028, PR China
| | - Wei Zhang
- Department of Pharmaceutical Analysis, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210028, PR China; Department of Metabolomics, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing 210028, PR China
| | - Meng-Fei Guo
- Department of Pharmaceutical Analysis, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210028, PR China; Department of Metabolomics, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing 210028, PR China
| | - Ming Kong
- Department of Pharmaceutical Analysis, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210028, PR China; Department of Metabolomics, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing 210028, PR China
| | - He Zhu
- Department of Metabolomics, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing 210028, PR China
| | - Shan-Shan Zhou
- Department of Metabolomics, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing 210028, PR China
| | - Cheng-Yin Wu
- Department of Pharmaceutical Analysis, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210028, PR China; Department of Metabolomics, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing 210028, PR China
| | - Song-Lin Li
- Department of Pharmaceutical Analysis, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210028, PR China; Department of Metabolomics, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing 210028, PR China.
| | - Qian Mao
- Department of Pharmaceutical Analysis, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210028, PR China; Department of Metabolomics, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing 210028, PR China.
| |
Collapse
|
9
|
Qu Z, Bing Y, Zhang T, Zheng Y, Wu S, Ji C, Li W, Zou X. Screening of Q-markers for the wine-steamed Schisandra chinensis decoction pieces in improving allergic asthma. Chin Med 2023; 18:10. [PMID: 36717898 PMCID: PMC9887854 DOI: 10.1186/s13020-023-00712-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 01/14/2023] [Indexed: 01/31/2023] Open
Abstract
BACKGROUND Traditional Chinese medicine (TCM) posits that Chinese medicinal materials can only be clinically used after being processed and prepared into decoction pieces. Schisandra Chinensis Fructus (derived from the dried and mature fruits of Schisandra chinensis (Turcz.) Baill.) has been used as a traditional antiasthmatic, kidney strengthening, and hepatoprotective agent for 2000 years. The results of previous research show that decoction pieces of wine-steamed Schisandra chinensis (WSC) are more effective than raw decoction pieces of Schisandra chinensis (RSC) for treating cough and asthma. Steaming with wine was demonstrated to promote the dissolution of ingredients. However, the relationship between the changes in the components of the decoction pieces of WSC and the therapeutic effect remains unclear. METHODS The efficacies of decoctions of RSC and WSC were compared using allergic asthma rats. The potential bioactive components in the serum of the WSC treatment group and the changes in the chemical composition of the RSC decoction pieces before and after wine steaming were determined by ultra-performance liquid chromatography quadrupole time-of-flight mass spectrometry (UPLC-Q-TOF-MS/MS) and ultra-high-performance liquid chromatography tandem mass spectrometry (UPLC H-CLASS XEVO TQD) to speculate quality markers (Q-markers) related to the efficacy of WSC, which were subsequently verified based on a zebrafish inflammation model. RESULTS Steaming RSC decoction pieces with wine was found to promote improvement of allergic asthma. Reverse tracing of 22 components detected in the serum of the high dose group of WSC (WSC-H) resulted in 12 ingredients being finally designated as potential effective components. Among these ingredients, 5 components, Schisandrin, Schisandrol B, Schisandrin A, Schisandrin B, and Gomisin D, had higher dissolution rates than RSC after steaming with wine. Validation by an inflammatory zebrafish model showed that these 5 ingredients had a dose-dependent effect and were therefore Q-markers for WSC in the treatment of allergic asthma. CONCLUSION In this study, changes in the components of decoction pieces of RSC and WSC and Q-markers related to WSC efficacy were identified, providing valuable information for expanding the application of WSC and establishing a specific quality standard for WSC.
Collapse
Affiliation(s)
- Zhongyuan Qu
- grid.411992.60000 0000 9124 0480School of Pharmacy, Harbin University of Commerce, Harbin, 150076 China
| | - Yifan Bing
- grid.411992.60000 0000 9124 0480School of Pharmacy, Harbin University of Commerce, Harbin, 150076 China
| | - Tianlei Zhang
- grid.411992.60000 0000 9124 0480School of Pharmacy, Harbin University of Commerce, Harbin, 150076 China
| | - Yan Zheng
- grid.411992.60000 0000 9124 0480School of Pharmacy, Harbin University of Commerce, Harbin, 150076 China
| | - Shuang Wu
- grid.411992.60000 0000 9124 0480School of Pharmacy, Harbin University of Commerce, Harbin, 150076 China
| | - Chenfeng Ji
- grid.411992.60000 0000 9124 0480School of Pharmacy, Harbin University of Commerce, Harbin, 150076 China
| | - Wenlan Li
- grid.411992.60000 0000 9124 0480School of Pharmacy, Harbin University of Commerce, Harbin, 150076 China ,grid.411992.60000 0000 9124 0480Engineering Research Center on Natural Antineoplastic Drugs, Ministry of Education, Harbin University of Commerce, Harbin, 150076 China
| | - Xiang Zou
- grid.411992.60000 0000 9124 0480Engineering Research Center on Natural Antineoplastic Drugs, Ministry of Education, Harbin University of Commerce, Harbin, 150076 China ,grid.12082.390000 0004 1936 7590School of Life Sciences, University of Sussex, Brighton, BN19RH UK
| |
Collapse
|
10
|
Ai Z, Xie Y, Li X, Lei D, Ambrose K, Liu Y. Revealing color change and drying mechanisms of pulsed vacuum steamed Cistanche deserticola through bioactive components, microstructural and starch gelatinization properties. Food Res Int 2022; 162:112079. [PMID: 36461329 DOI: 10.1016/j.foodres.2022.112079] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 10/16/2022] [Accepted: 10/22/2022] [Indexed: 11/17/2022]
Abstract
Cistanche deserticola is a famous herbal medicine and has been used worldwide for its kidney-tonifying and anti-aging values. This study investigated the effects of pulsed vacuum steaming (PVS) on bioactive phenylethanoid glycosides (PhGs), total soluble sugars, polysaccharides, color, drying characteristics, microstructure, and starch gelatinization properties of Cistanche deserticola. PVS pretreatment significantly increased PhGs and soluble sugar content while reduced the polysaccharides content. And increasing the material core temperature to 75 °C at the largest diameter was proposed as the optimal steaming condition and the PhGs content was increased by 1.11 times compared with that by atmospheric steaming. The color of steamed samples changed to oily black due to Maillard reaction. PhGs content was significantly (P < 0.05) positively correlated with total color difference (ΔE). Steaming until the ΔE value of 15.95 could achieve the maximum accumulation of PhGs, corresponding to the highest increasing ratio of echinacoside and acteoside. Starch was completely gelatinized and formed a barrier layer adhering to the cell surface when the material core temperature reached 75 °C at the largest diameter, explaining why after steaming the Cistanche deserticola drying time was prolonged by 85.71 %. The study can provide an innovative steaming technology and optimal process parameters for obtaining high-quality Cistanche deserticola decoction pieces, as well as propose a non-destructive testing method to quickly predict PhGs content based on color parameters during the steaming process.
Collapse
Affiliation(s)
- Ziping Ai
- College of Engineering, China Agricultural University, P.O. Box 194, 17 Qinghua Donglu, Beijing 100083, China.
| | - Yongkang Xie
- College of Engineering, China Agricultural University, P.O. Box 194, 17 Qinghua Donglu, Beijing 100083, China; Agricultural Products Processing Center, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China.
| | - Xingyi Li
- College of Engineering, China Agricultural University, P.O. Box 194, 17 Qinghua Donglu, Beijing 100083, China; Agricultural Products Processing Center, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China.
| | - Dengwen Lei
- College of Engineering, China Agricultural University, P.O. Box 194, 17 Qinghua Donglu, Beijing 100083, China.
| | - Kingsly Ambrose
- Department of Agricultural and Biological Engineering, Purdue University, West Lafayette, IN 47907-2093, USA.
| | - Yanhong Liu
- College of Engineering, China Agricultural University, P.O. Box 194, 17 Qinghua Donglu, Beijing 100083, China.
| |
Collapse
|
11
|
Lim SY, Lim FLS, Criado-Navarro I, Yeo XH, Dayal H, Vemulapalli SD, Seah SJ, Laserna AKC, Yang X, Tan SH, Chan MY, Li SFY. Multi-Omics Investigation into Acute Myocardial Infarction: An Integrative Method Revealing Interconnections amongst the Metabolome, Lipidome, Glycome, and Metallome. Metabolites 2022; 12:1080. [PMID: 36355163 PMCID: PMC9693522 DOI: 10.3390/metabo12111080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 11/01/2022] [Accepted: 11/04/2022] [Indexed: 11/09/2022] Open
Abstract
Acute myocardial infarction (AMI) is a leading cause of mortality and morbidity worldwide. This work aims to investigate the translational potential of a multi-omics study (comprising metabolomics, lipidomics, glycomics, and metallomics) in revealing biomechanistic insights into AMI. Following the N-glycomics and metallomics studies performed by our group previously, untargeted metabolomic and lipidomic profiles were generated and analysed in this work via the use of a simultaneous metabolite/lipid extraction and liquid chromatography-tandem mass spectrometry (LC-MS/MS) analysis workflow. The workflow was applied to blood plasma samples from AMI cases (n = 101) and age-matched healthy controls (n = 66). The annotated metabolomic (number of features, n = 27) and lipidomic (n = 48) profiles, along with the glycomic (n = 37) and metallomic (n = 30) profiles of the same set of AMI and healthy samples were integrated and analysed. The integration method used here works by identifying a linear combination of maximally correlated features across the four omics datasets, via utilising both block-partial least squares-discriminant analysis (block-PLS-DA) based on sparse generalised canonical correlation analysis. Based on the multi-omics mapping of biomolecular interconnections, several postulations were derived. These include the potential roles of glycerophospholipids in N-glycan-modulated immunoregulatory effects, as well as the augmentation of the importance of Ca-ATPases in cardiovascular conditions, while also suggesting contributions of phosphatidylethanolamine in their functions. Moreover, it was shown that combining the four omics datasets synergistically enhanced the classifier performance in discriminating between AMI and healthy subjects. Fresh and intriguing insights into AMI, otherwise undetected via single-omics analysis, were revealed in this multi-omics study. Taken together, we provide evidence that a multi-omics strategy may synergistically reinforce and enhance our understanding of diseases.
Collapse
Affiliation(s)
- Si Ying Lim
- NUS Graduate School’s Integrative Sciences & Engineering Programme (ISEP), National University of Singapore, Singapore 119077, Singapore
- Department of Chemistry, National University of Singapore, Singapore 117543, Singapore
| | - Felicia Li Shea Lim
- Department of Chemistry, National University of Singapore, Singapore 117543, Singapore
| | | | - Xin Hao Yeo
- Department of Chemistry, National University of Singapore, Singapore 117543, Singapore
| | - Hiranya Dayal
- Department of Chemistry, National University of Singapore, Singapore 117543, Singapore
| | | | - Song Jie Seah
- Department of Chemistry, National University of Singapore, Singapore 117543, Singapore
| | - Anna Karen Carrasco Laserna
- Department of Chemistry, National University of Singapore, Singapore 117543, Singapore
- Central Instrumentation Facility (Laguna Campus), Office of the Vice President for Research and Innovation, De La Salle University, Manila 1004, Philippines
| | - Xiaoxun Yang
- Cardiovascular Research Institute, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117599, Singapore
| | - Sock Hwee Tan
- Cardiovascular Research Institute, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117599, Singapore
| | - Mark Y. Chan
- Cardiovascular Research Institute, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117599, Singapore
| | - Sam Fong Yau Li
- NUS Graduate School’s Integrative Sciences & Engineering Programme (ISEP), National University of Singapore, Singapore 119077, Singapore
- Department of Chemistry, National University of Singapore, Singapore 117543, Singapore
| |
Collapse
|
12
|
Research on Processing-Induced Chemical Variations in Polygonatum Cyrtonema Rhizome by Integrating Metabolomics and Glycomics. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27185869. [PMID: 36144615 PMCID: PMC9506285 DOI: 10.3390/molecules27185869] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Revised: 09/01/2022] [Accepted: 09/06/2022] [Indexed: 11/16/2022]
Abstract
Polygonatum cyrtonema rhizome (PCR), the dried sweet rhizome of Polygonatum cyrtonema Hua, is commonly used as a tonic remedy and a functional food in Asia, Europe, and North America. Multiple components, including secondary metabolites, monosaccharides, oligosaccharides, and polysaccharides, collectively contribute to the therapeutic effects of PCR. Processing time exerts a significant influence on the quality of PCR, but the various processing stages have not been comprehensively chemically profiled. It is urgent to study processing-induced chemical variations in PCR to control the processing degree. In this study, multiple chromatographic and mass spectrometric techniques were used in combination with multivariate statistical analysis to perform qualitative and quantitative research on secondary metabolites and carbohydrates in PCR during processing. The results demonstrated that PCR processing can be divided into three stages, namely the raw stage (0 h), the middle stage (1–6 h), and the late stage (8–18 h). Twenty differential compounds were screened from secondary metabolites and oligosaccharides to distinguish PCR in different processing stages. Furthermore, the chemical variations of Polygonatum cyrtonema polysaccharides (PCP) also entered a new stage after processing for 6 h. Multiple chemical mechanisms, including hydrolysis, oxidative decomposition, dehydration, Maillard reaction, and polymerization were involved in the processing. This work provides a scientific basis to reveal the relationship between processing stage and chemical variations.
Collapse
|
13
|
Fan W, Yang Y, Li L, Fan L, Wang Z, Yang L. Mass spectrometry-based profiling and imaging strategy, a fit-for-purpose tool for unveiling the transformations of ginsenosides in Panax notoginseng during processing. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 103:154223. [PMID: 35700628 DOI: 10.1016/j.phymed.2022.154223] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Revised: 05/19/2022] [Accepted: 05/28/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Panax notoginseng, a valuable medicinal plant, is traditionally used to treat trauma, body pain, and cardiovascular diseases in two clinical forms including raw (crude) and processed form. Processing-triggered compound transformation is responsible for the distinct bioactivity between raw and processed Panax notoginseng. Nevertheless, investigating the chemical diversity and dynamic transformation pattern of processed Panax notoginseng is challenging. METHODS A new approach, which integrates multi-components characterization, processing trajectory depiction, discovery of differential markers, transformation mechanism of metabolites, in situ spatial distribution and transformation of metabolites, was established to elucidate the role of processing on the holistic chemical transformations of Panax notoginseng (PN). RESULTS In this study, 136 ginsenosides (mainly rare ginsenosides) were identified or tentatively characterized and the temperature-dependent chemical variation trajectory was depicted via principal component analysis (PCA). Nineteen processing-associated markers were confirmed by orthogonal partial least squares-discriminant analysis (OPLS-DA). For the first time, the transformation pathway of ginsenosides during processing were elucidated by integrating the precursor ion scan (PIS) and mimic processing strategy that involves with deglycosylation, dehydration, hydration, acetylation, and isomerization. Results of mass spectrometry imaging (MSI) revealed the major ginsenosides M-Rb1, R1, Rg1, Rb1, Rd, and Re exhibited distinct spatial distribution pattern that are highly abundant in the xylem and showed a downward trend during processing. We firstly depicted the spatial distribution of processing-triggered rare ginsenosides (Rg3, Rk1, Rg5, etc.), and in situ transformation of ginsenosides was discovered in the process of steaming. Additionally, this variation trend was consistent with untargeted metabolomics results. CONCLUSION This study comprehensively revealed chemical diversity and dynamic transformation pattern and depicted the spatial distribution of ginsenosides of PN during processing. It could provide a clue for the distinct bioactivities between raw and processed PN and elucidate the role of processing on the holistic chemical transformations of natural products, more importantly, the proposed strategy is valuable for the quality evaluation and control of the processing of natural product.
Collapse
Affiliation(s)
- Wenxiang Fan
- The MOE Key Laboratory of Standardization of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicines, and SATCM Key Laboratory of New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Yuangui Yang
- Shaanxi Collaborative Innovation Center of Chinese Medicine Resources Industrialization/State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation) /Shaanxi Innovative Drug Research Center, Shaanxi University of Chinese Medicine, Xianyang 712083, China
| | - Linnan Li
- The MOE Key Laboratory of Standardization of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicines, and SATCM Key Laboratory of New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Linhong Fan
- The MOE Key Laboratory of Standardization of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicines, and SATCM Key Laboratory of New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Zhengtao Wang
- The MOE Key Laboratory of Standardization of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicines, and SATCM Key Laboratory of New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| | - Li Yang
- The MOE Key Laboratory of Standardization of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicines, and SATCM Key Laboratory of New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| |
Collapse
|
14
|
Liu H, Wang SY, Zhu JH, Xu JD, Zhou SS, Kong M, Mao Q, Li SL, Zhu H. Effects of sulfur-fumigated ginseng on the global quality of Si-Jun-Zi decoction, a traditional ginseng-containing multi-herb prescription, evaluated by metabolomics and glycomics strategies. J Pharm Biomed Anal 2022; 219:114927. [PMID: 35816772 DOI: 10.1016/j.jpba.2022.114927] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Revised: 07/01/2022] [Accepted: 07/02/2022] [Indexed: 01/26/2023]
Abstract
Si-Jun-Zi decoction (SJZD) with ginseng as the principal medicinal herb is a traditional Chinese Medicine multi-herb prescription that commonly employed to treat colorectal cancer etc. Previous studies showed that nearly half of the commercial ginseng was sulfur-fumigated, one of the postharvest processing methods that commonly causes sulfur-dioxide (SO2) residue and chemical composition transformation in medical herbs. In this study, the effect of sulfur-fumigated ginseng on global quality of SJZD was evaluated by UPLC-QTOF-MS/MS based metabolomics and multiple chromatographic techniques based glycomics strategies. For non-saccharides components, sulfur-fumigated ginseng led to the emergence of sulfur-containing derivatives and alteration of saponins and flavonoids in SJZD. For saccharide components, sulfur-fumigated ginseng decreased the total contents and molecular weights of polysaccharides, changed the monosaccharide composition of polysaccharides, and increased the contents of oligosaccharides and free monosaccharides of SJZD. The alterations of SJZD were aggravated with the sulfur-fumigated content of ginseng. Those phenomena might be attributed to 1) sulfur-fumigation caused the generation of sulfur-containing derivatives in ginseng, which further transferred to SJZD, and 2) sulfur-fumigation caused the residue of SO2 in ginseng, which reduced the pH value and further changed the dissolution of saponins and flavonoids and accelerated the degradation of the polysaccharides to oligosaccharides and/or monosaccharides in SJZD. Furthermore, although storage reduced the SO2 residue in sulfur-fumigated ginseng, it couldn't recover the alterations of chemical profiles in SJZD. In conclusion, sulfur-fumigated ginseng altered the global quality of SJZD, which promoted that extra attention must be paid during the application of herbal formulas that containing sulfur-fumigated herbs.
Collapse
Affiliation(s)
- Hui Liu
- Department of Pharmaceutical Analysis, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210028, China
| | - Si-Yu Wang
- Department of Pharmaceutical Analysis, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210028, China
| | - Jin-Hao Zhu
- Department of Pharmaceutical Analysis, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210028, China
| | - Jin-Di Xu
- Department of Metabolomics, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing 210028, China
| | - Shan-Shan Zhou
- Department of Metabolomics, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing 210028, China
| | - Ming Kong
- Department of Metabolomics, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing 210028, China
| | - Qian Mao
- Department of Metabolomics, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing 210028, China
| | - Song-Lin Li
- Department of Pharmaceutical Analysis, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210028, China; Department of Metabolomics, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing 210028, China.
| | - He Zhu
- Department of Pharmaceutical Analysis, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210028, China; Department of Metabolomics, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing 210028, China.
| |
Collapse
|
15
|
Zou YT, Zhou J, Zhu JH, Wu CY, Shen H, Zhang W, Zhou SS, Xu JD, Mao Q, Zhang YQ, Long F, Li SL. Gut Microbiota Mediates the Protective Effects of Traditional Chinese Medicine Formula Qiong-Yu-Gao against Cisplatin-Induced Acute Kidney Injury. Microbiol Spectr 2022; 10:e0075922. [PMID: 35481834 PMCID: PMC9241845 DOI: 10.1128/spectrum.00759-22] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 04/12/2022] [Indexed: 01/11/2023] Open
Abstract
Our previous study found that Qiong-Yu-Gao (QYG), a traditional Chinese medicine formula derived from Rehmanniae Radix, Poria, and Ginseng Radix, has protective effects against cisplatin-induced acute kidney injury (AKI), but the underlying mechanisms remain unknown. In the present study, the potential role of gut microbiota in the nephroprotective effects of QYG was investigated. We found that QYG treatment significantly attenuated cisplatin-induced AKI and gut dysbiosis, altered the levels of bacterial metabolites, with short-chain fatty acids (SCFAs) such as acetic acid and butyric acid increasing and uremic toxins such as indoxyl sulfate and p-cresyl sulfate reducing, and suppressed histone deacetylase expression and activity. Spearman's correlation analysis found that QYG-enriched fecal bacterial genera Akkermansia, Faecalibaculum, Bifidobacterium, and Lachnospiraceae_NK4A136_group were correlated with the altered metabolites, and these metabolites were also correlated with the biomarkers of AKI, as well as the indicators of fibrosis and inflammation. The essential role of gut microbiota was further verified by both the diminished protective effects with antibiotics-induced gut microbiota depletion and the transferable renal protection with fecal microbiota transplantation. All these results suggested that gut microbiota mediates the nephroprotective effects of QYG against cisplatin-induced AKI, potentially via increasing the production of SCFAs, thus suppressing histone deacetylase expression and activity, and reducing the accumulation of uremic toxins, thereby alleviating fibrosis, inflammation, and apoptosis in renal tissue. IMPORTANCE Cisplatin-induced acute kidney injury is the main limiting factor restricting cisplatin's clinical application. Accumulating evidence indicated the important role of gut microbiota in pathogenesis of acute kidney injury. In the present study, we have demonstrated that gut microbiota mediates the protective effects of traditional Chinese medicine formula Qiong-Yu-Gao against cisplatin-induced acute kidney injury. The outputs of this study would provide scientific basis for future clinical applications of QYG as prebiotics to treat cisplatin-induced acute kidney injury, and gut microbiota may be a promising therapeutic target for chemotherapy-induced nephrotoxicity.
Collapse
Affiliation(s)
- Ye-Ting Zou
- Department of Pharmaceutical Analysis, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
- Department of Metabolomics, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing, China
| | - Jing Zhou
- Department of Pharmaceutical Analysis, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Jin-Hao Zhu
- Department of Pharmaceutical Analysis, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
- Department of Metabolomics, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing, China
| | - Cheng-Ying Wu
- Department of Pharmaceutical Analysis, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Hong Shen
- Department of Metabolomics, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing, China
| | - Wei Zhang
- Department of Pharmaceutical Analysis, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Shan-Shan Zhou
- Department of Metabolomics, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing, China
| | - Jin-Di Xu
- Department of Pharmaceutical Analysis, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Qian Mao
- Department of Metabolomics, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing, China
| | - Ye-Qing Zhang
- Department of Respiratory Medicine, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Fang Long
- Department of Pharmaceutical Analysis, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
- Department of Respiratory Medicine, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Song-Lin Li
- Department of Pharmaceutical Analysis, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
- Department of Metabolomics, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing, China
| |
Collapse
|
16
|
Kang N, Luan Y, Jiang Y, Cheng W, Liu Y, Su Z, Liu Y, Tan P. Neuroprotective Effects of Oligosaccharides in Rehmanniae Radix on Transgenic Caenorhabditis elegans Models for Alzheimer’s Disease. Front Pharmacol 2022; 13:878631. [PMID: 35784741 PMCID: PMC9247152 DOI: 10.3389/fphar.2022.878631] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 05/02/2022] [Indexed: 12/02/2022] Open
Abstract
Rehmanniae Radix (RR, the dried tuberous roots of Rehmannia glutinosa (Gaertn.) DC.) is an important traditional Chinese medicine distributed in Henan, Hebei, Inner Mongolia, and Northeast in China. RR is frequently used to treat diabetes mellitus, cardiovascular disease, osteoporosis and aging-related diseases in a class of prescriptions. The oligosaccharides and catalpol in RR have been confirmed to have neuroprotective effects. However, there are few studies on the anti-Alzheimer’s disease (AD) effect of oligosaccharides in Rehmanniae Radix (ORR). The chemical components and pharmacological effects of dried Rehmannia Radix (DRR) and prepared Rehmannia Radix (PRR) are different because of the different processing methods. ORR has neuroprotective potential, such as improving learning and memory in rats. Therefore, this study aimed to prove the importance of oligosaccharides in DRR (ODRR) and PRR (OPRR) for AD based on the Caenorhabditis elegans (C. elegans) model and the different roles of ODRR and OPRR in the treatment of AD. In this study, we used paralysis assays, lifespan and stress resistance assays, bacterial growth curve, developmental and behavioral parameters, and ability of learning and memory to explore the effects of ODRR and OPRR on anti-AD and anti-aging. Furthermore, the accumulation of reactive oxygen species (ROS); deposition of Aβ; and expression of amy-1, sir-2.1, daf-16, sod-3, skn-1, and hsp-16.2 were analyzed to confirm the efficacy of ODRR and OPRR. OPRR was more effective than ODRR in delaying the paralysis, improving learning ability, and prolonging the lifespan of C. elegans. Further mechanism studies showed that the accumulation of ROS, aggregation, and toxicity of Aβ were reduced, suggesting that ORR alleviated Aβ-induced toxicity, in part, through antioxidant activity and Aβ aggregation inhibiting. The expression of amy-1 was downregulated, and sir-2.1, daf-16, sod-3, and hsp-16.2 were upregulated. Thus, ORR could have a possible therapeutic effect on AD by modulating the expression of amy-1, sir-2.1, daf-16, sod-3, and hsp-16.2. Furthermore, ORR promoted the nuclear localization of daf-16 and further increased the expression of sod-3 and hsp-16.2, which significantly contributed to inhibiting the Aβ toxicity and enhancing oxidative stress resistance. In summary, the study provided a new idea for the development of ORR.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Peng Tan
- *Correspondence: Yonggang Liu, ; Peng Tan,
| |
Collapse
|
17
|
Liao X, Wang S, Li Y, Michael Olajide T, Zhai X, Qian J, Miao S, Huang J. Effects of "nine steaming nine sun-drying" on proximate composition, protein structure and volatile compounds of black soybeans. Food Res Int 2022; 155:111070. [PMID: 35400448 DOI: 10.1016/j.foodres.2022.111070] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 02/22/2022] [Accepted: 02/24/2022] [Indexed: 11/04/2022]
Abstract
Nine steaming nine sun-drying is a traditional processing technology for food or medicinal materials. The dynamic changes of the proximate composition, protein structure and volatile compounds during nine-time steaming and sun-drying of black soybeans (BS) were studied. The proximate composition results showed that the content of protein, carbohydrate and fat of BS decreased after processing, whereas the relative content of amino acids remained basically unchanged. Protein structure was evaluated using Fourier transform infrared spectroscopy (FT-IR), Ultraviolet absorption spectroscopy (UV) and Fluorescence spectroscopy. FT-IR result revealed that the relative contents of β-sheet and β-turn of the secondary structure of black soybean protein isolate (BSPI) decreased but the relative contents of α-helix and random coil increased after steaming and sun-drying. The results of UV and fluorescence spectroscopy confirmed changes in the protein conformation. In addition, SPME-GCMS analysis demonstrated that hydrocarbons, alcohols and aldehydes were the main volatile compounds. The relative contents of 1-octen-3-ol and hexanal, which are the main sources of beany flavor decreased significantly compared with raw BS. Principal component analysis (PCA) results showed that the volatile compounds of nine steamed and nine sun-dried BS could be well distinguished during the process. These findings may therefore provide a scientific basis for the application of nine-time steamed and sun-dried BS in food industry and contribute to the understanding of process-induced chemical transformations in this ancient processing technique.
Collapse
Affiliation(s)
- Xianyan Liao
- Food Nutrition and Chronic Disease Intervention Laboratory, School of Life Sciences, Shanghai University, Shanghai 200444, China
| | - Shanshan Wang
- Food Nutrition and Chronic Disease Intervention Laboratory, School of Life Sciences, Shanghai University, Shanghai 200444, China
| | - Yingqiu Li
- Food Nutrition and Chronic Disease Intervention Laboratory, School of Life Sciences, Shanghai University, Shanghai 200444, China
| | | | - Xiaolin Zhai
- Food Nutrition and Chronic Disease Intervention Laboratory, School of Life Sciences, Shanghai University, Shanghai 200444, China
| | - Jiana Qian
- Food Nutrition and Chronic Disease Intervention Laboratory, School of Life Sciences, Shanghai University, Shanghai 200444, China
| | - Song Miao
- Teagasc Food Research Centre Moorepark, Co. Cork, Ireland.
| | - Junyi Huang
- Food Nutrition and Chronic Disease Intervention Laboratory, School of Life Sciences, Shanghai University, Shanghai 200444, China.
| |
Collapse
|
18
|
Wang Y, Zhang J, Wang Z, Cui F, Zhang Q, Song P, Li B, Tang Z, Hu F, Shi X. Characterization of chemical composition variations in raw and processed Codonopsis Radix by integrating metabolomics and glycomics based on multiple chromatography‐mass spectrometry technology. J Sep Sci 2022; 45:2375-2393. [DOI: 10.1002/jssc.202200062] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 03/28/2022] [Accepted: 04/06/2022] [Indexed: 11/06/2022]
Affiliation(s)
- Yan Wang
- School of Pharmacy, State Key Laboratory of Applied Organic Chemistry and Collaborative Innovation Center for Northwestern Chinese Medicine Lanzhou University 199 Dong‐gang Road West Lanzhou 730000 China
| | - Jing‐jing Zhang
- School of Pharmacy, State Key Laboratory of Applied Organic Chemistry and Collaborative Innovation Center for Northwestern Chinese Medicine Lanzhou University 199 Dong‐gang Road West Lanzhou 730000 China
| | - Zi‐xia Wang
- School of Pharmacy, State Key Laboratory of Applied Organic Chemistry and Collaborative Innovation Center for Northwestern Chinese Medicine Lanzhou University 199 Dong‐gang Road West Lanzhou 730000 China
| | - Fang Cui
- School of Pharmacy, State Key Laboratory of Applied Organic Chemistry and Collaborative Innovation Center for Northwestern Chinese Medicine Lanzhou University 199 Dong‐gang Road West Lanzhou 730000 China
| | - Qian‐nian Zhang
- School of Pharmacy, State Key Laboratory of Applied Organic Chemistry and Collaborative Innovation Center for Northwestern Chinese Medicine Lanzhou University 199 Dong‐gang Road West Lanzhou 730000 China
| | - Ping‐ping Song
- School of Pharmacy, State Key Laboratory of Applied Organic Chemistry and Collaborative Innovation Center for Northwestern Chinese Medicine Lanzhou University 199 Dong‐gang Road West Lanzhou 730000 China
| | - Bing Li
- School of Pharmacy, State Key Laboratory of Applied Organic Chemistry and Collaborative Innovation Center for Northwestern Chinese Medicine Lanzhou University 199 Dong‐gang Road West Lanzhou 730000 China
| | - Zhuo‐shi Tang
- School of Pharmacy, State Key Laboratory of Applied Organic Chemistry and Collaborative Innovation Center for Northwestern Chinese Medicine Lanzhou University 199 Dong‐gang Road West Lanzhou 730000 China
| | - Fang‐di Hu
- School of Pharmacy, State Key Laboratory of Applied Organic Chemistry and Collaborative Innovation Center for Northwestern Chinese Medicine Lanzhou University 199 Dong‐gang Road West Lanzhou 730000 China
| | - Xiao‐feng Shi
- Gansu Provincial Academy of Medical Science 2 Xiaoxihu East Street Lanzhou 730050 China
| |
Collapse
|
19
|
Wang YY, Zhou N, Shan ZF, Ke YY, Liu Z, Liu ZH, Feng WS, Zheng XK. Metabolomic strategies and biochemical analysis of the effect of processed Rehmanniae radix extract on a blood-deficient rat model. BMC Complement Med Ther 2022; 22:89. [PMID: 35337319 PMCID: PMC8957163 DOI: 10.1186/s12906-022-03560-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 03/08/2022] [Indexed: 11/11/2022] Open
Abstract
Background Rehmanniae Radix (RR), an herb with numerous pharmacological effects, is widely used in traditional Chinese medicine for the treatment of blood deficiency syndrome, either alone or in combination with other herbs. However, the mechanism by which processed Rehmanniae Radix (PRR) improves blood enrichment efficacy has not been clearly defined. Methods Ultra-performance liquid chromatography coupled to quadrupole time-of-flight mass (UPLC-Q-TOF/MS) and biochemical methods were combined to explore the hematopoietic functional mechanisms of PRR on blood deficiency in a rat model, as well as the potential active ingredient for blood enrichment efficacy. The pharmacological effects of PRR were evaluated on a rat blood deficiency model induced by cyclophosphamide in combination with 1-acetyl-2-phenylhydrazine. The blood routine index, including white blood cell (WBC), red blood cell (RBC), and platelet (PLT) counts, as well as hemoglobin (HGB) level, and the changing metabolite profile based on urine and serum were assessed. Nontargeted metabolomic studies, combined with biochemical analyses, were employed to clarify pharmacological mechanisms. Results PRR significantly increased the blood routine index levels and reversed the levels of SOD, GSH, and ATP. The PRR group was similar to the control group, as determined from the metabolic profile. All of the 60 biomarkers, representing the typical metabolic characteristics of the blood-deficient rat model, mainly involved energy metabolism dysfunction, the peripheral circulation system, and oxidative damage in the body. This improvement may be attributed to changes in polysaccharide and sixteen non-polysaccharide compounds in PRR, which were caused by processing RR with rice wine. Conclusions The strategies of integrated metabolomic and biochemical analyses were combined, revealing the biological function and effective mechanism of PRR. Supplementary Information The online version contains supplementary material available at 10.1186/s12906-022-03560-x.
Collapse
Affiliation(s)
- Yang-Yang Wang
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, 450046, China.,The Engineering and Technology Center for Chinese Medicine Development of Henan Province, 156 Jinshui East Road, Zhengzhou, 450046, China.,Key Laboratory of Basic and Application Research of Beiyao, Ministry of Education, Heilongjiang University of Chinese Medicine, Harbin, 150040, China
| | - Ning Zhou
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, 450046, China
| | - Zeng-Fu Shan
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, 450046, China
| | - Ying-Ying Ke
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, 450046, China
| | - Zhen Liu
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, 450046, China
| | - Zhen-Hui Liu
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, 450046, China
| | - Wei-Sheng Feng
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, 450046, China. .,The Engineering and Technology Center for Chinese Medicine Development of Henan Province, 156 Jinshui East Road, Zhengzhou, 450046, China.
| | - Xiao-Ke Zheng
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, 450046, China. .,The Engineering and Technology Center for Chinese Medicine Development of Henan Province, 156 Jinshui East Road, Zhengzhou, 450046, China.
| |
Collapse
|
20
|
Changes in the Chemical Components of Processed Rehmanniae Radix Distillate during Different Steaming Times. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:3382333. [PMID: 35222668 PMCID: PMC8872652 DOI: 10.1155/2022/3382333] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Revised: 01/07/2022] [Accepted: 01/22/2022] [Indexed: 11/17/2022]
Abstract
Distillate was obtained in different processing cycles of processed Rehmanniae Radix (PRR). In this study, we investigated the chemical compositions of distillates 1 (Dis1) to 9 (Dis9) via GC-MS and LC-MS. Differences between Dis1–Dis9 were noticeable. A total of 13 and 21 compounds were detected via GC-MS and LC-MS, respectively, including organic acids, furans, alcohols, iridoid glycosides, phenylpropanoid glycosides, and saccharides. The relative contents of compound 2,5-hydroxymethylfurfural and furans all gradually increased with steaming time. Other compounds, however, exhibited a negative trend or fluctuated. Of these compounds, iridoid glycosides and phenylpropanoid glycosides were unstable and easily degraded, which led to a gradually decreasing concentration with increased steaming times. In addition, the degradation products were mainly derived from catalpol and acteoside, among which catalpol mainly existed as aglycone and its rearranged products. However, acteoside was converted into verbasoside through the removal of caffeoyl. Some volatile alcohols, such as phenylethyl alcohol, hydroxyphenyl ethanol, and 3-hydroxy-4-methoxybenzoic acid, were also likely from the degradation of acteoside and its homologs. These results provide an important reference basis for the processing methods, quality evaluation, and rational clinical application of PRR and its distillate.
Collapse
|
21
|
Lim SY, Ng BH, Vermulapalli D, Lau H, Carrasco Laserna AK, Yang X, Tan SH, Chan MY, Li SFY. Simultaneous Polar Metabolite and N-Glycan Extraction Workflow for Joint-Omics Analysis: A Synergistic Approach for Novel Insights into Diseases. J Proteome Res 2022; 21:643-653. [DOI: 10.1021/acs.jproteome.1c00676] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Si Ying Lim
- NUS Graduate School for Integrative Sciences & Engineering (NGS), National University of Singapore, University Hall, Tan Chin Tuan Wing, Singapore 119077
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543
| | - Bao Hui Ng
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543
| | - Dhruti Vermulapalli
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543
| | - Hazel Lau
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543
- Institute of Materials Research and Engineering, Agency for Science, Technology and Research (A*STAR), Fusionopolis Way, Innovis, #08-03, Singapore 138634
| | - Anna Karen Carrasco Laserna
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543
- Central Instrumentation Facility (Laguna Campus), Office of the Vice Chancellor for Research and Innovation, De La Salle University, 2041 Taft Avenue, Manila 1004, Philippines
| | - Xiaoxun Yang
- Cardiovascular Research Institute, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117599
| | - Sock Hwee Tan
- Cardiovascular Research Institute, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117599
| | - Mark Y. Chan
- Cardiovascular Research Institute, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117599
| | - Sam Fong Yau Li
- NUS Graduate School for Integrative Sciences & Engineering (NGS), National University of Singapore, University Hall, Tan Chin Tuan Wing, Singapore 119077
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543
| |
Collapse
|
22
|
Cheng X, Ji H, Cheng X, Wang D, Li T, Ren K, Qu S, Pan Y, Liu X. Characterization, Classification, and Authentication of Polygonatum sibiricum Samples by Volatile Profiles and Flavor Properties. Molecules 2021; 27:25. [PMID: 35011257 PMCID: PMC8746527 DOI: 10.3390/molecules27010025] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Revised: 12/11/2021] [Accepted: 12/18/2021] [Indexed: 11/17/2022] Open
Abstract
The importance of monitoring key aroma compounds as food characteristics to solve sample classification and authentication is increasing. The rhizome of Polygonatum sibiricum (PR, Huangjing in Chinese) has great potential to serve as an ingredient of functional foods owing to its tonic effect and flavor properties. In this study, we aimed to characterize and classify PR samples obtained from different processing levels through their volatile profiles and flavor properties by using electronic nose, electronic tongue, and headspace gas chromatography-mass spectrometry. Nine flavor indicators (four odor indicators and five taste indicators) had a strong influence on the classification ability, and a total of 54 volatile compounds were identified in all samples. The traditional Chinese processing method significantly decreased the contents of aldehydes and alkanes, while more ketones, nitrogen heterocycles, alcohols, terpenoids, sulfides, and furans/pyrans were generated in the processing cycle. The results confirmed the potential applicability of volatile profiles and flavor properties for classification of PR samples, and this study provided new insights for determining the processing level in food and pharmaceutical industries based on samples with specific flavor characteristics.
Collapse
Affiliation(s)
- Xile Cheng
- School of Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, China; (X.C.); (H.J.); (K.R.); (S.Q.); (Y.P.)
| | - Hongyuan Ji
- School of Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, China; (X.C.); (H.J.); (K.R.); (S.Q.); (Y.P.)
| | - Xiang Cheng
- School of Pharmacy, Bozhou Vocational and Technical College, Bozhou 236000, China;
| | - Dongmei Wang
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Tianshi Li
- Bozhou Yonggang Pieces Factory Co., Ltd., Bozhou 236000, China;
| | - Kun Ren
- School of Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, China; (X.C.); (H.J.); (K.R.); (S.Q.); (Y.P.)
| | - Shouhe Qu
- School of Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, China; (X.C.); (H.J.); (K.R.); (S.Q.); (Y.P.)
| | - Yingni Pan
- School of Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, China; (X.C.); (H.J.); (K.R.); (S.Q.); (Y.P.)
| | - Xiaoqiu Liu
- School of Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, China; (X.C.); (H.J.); (K.R.); (S.Q.); (Y.P.)
| |
Collapse
|
23
|
Online pressurized liquid extraction enables directly chemical analysis of herbal medicines: A mini review. J Pharm Biomed Anal 2021; 205:114332. [PMID: 34455204 DOI: 10.1016/j.jpba.2021.114332] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 08/12/2021] [Accepted: 08/17/2021] [Indexed: 12/14/2022]
Abstract
Extraction is responsible for transferring components from solid materials into solvent. Tedious extraction procedures are usually involved in liquid chromatography-based chemical analysis of herbal medicines (HMs), resulting in extensive consumptions of organic solvents, time, energy, and materials, as well as the significant chemical degradation risks for those labile compounds. Fortunately, an emerging online pressurized liquid extraction (OLE, also known as online liquid extraction) technique has been developed for the achievement of directly chemical analysis for solid matrices in recent years, and in a short period, this versatile technique has been widely applied for the chemical analysis of HMs. In the present mini-review, we aim to briefly summarize the principles, the instrumentation, along with the application progress of this robust and flexible extraction technique in the latest six years, and the emerging challenges and future prospects are discussed as well. Special attention is paid onto the hyphenation of the versatile OLE module with LC-MS instrument. The described information is expected to introduce a promising OLE approach and to provide the guidance for the achievement of directly chemical analysis of, but not limited to, HMs.
Collapse
|
24
|
Chen Y, Li L, Xu R, Li F, Gu L, Liu H, Wang Z, Yang L. Characterization of natural herbal medicines by thin-layer chromatography combined with laser ablation-assisted direct analysis in real-time mass spectrometry. J Chromatogr A 2021; 1654:462461. [PMID: 34438305 DOI: 10.1016/j.chroma.2021.462461] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Revised: 08/05/2021] [Accepted: 08/05/2021] [Indexed: 01/16/2023]
Abstract
The characterization and quality control of natural herbal medicines, such as traditional Chinese medicines (TCMs), is of great significance to ensure their potential efficacy and avoid severe side effects. Thin-layer chromatography (TLC) is a simple and classic approach for examining quality marker of natural products. Nevertheless, it is more difficult to further characterize the compounds adsorbed on the TLC plate. Herein, we reported a simple setup of laser ablation-assisted direct analysis in real-time mass spectrometry (LA-DART-MS), in which the coupling of mass spectrometry information to provide a predominant dimension in the identification of unknown chemical compositions separated on standard TLC plates, and it was applied for rapid characterization of various kinds of natural herbal medicines. The results showed that the introduction of low-cost small laser pointer had significantly improved the desorption process. The system was successfully applied in the analysis of alkaloids, flavonoids, anthraquinones, volatile oils, glycosides, organic acids, and eight different TCMs including Sophorae Flavescentis Radix, Angelicae Sinensis Radix, Acori Tatarinowii Rhizoma, Phellodendri Chinensis Cortex, Picrasmae Ramulus et Folium, Gynura Japonica, Rhei Radix et Rhizoma and Dendrobii Caulis. The obtained limits of detection (LODs) of this method for various types of reference substances were in the range of 4.6-162.2 ng/band on TLC plates. Furthermore, the quality control and identification of different species of Dendrobii Caulis herb was achieved. This study combines the advantages of TLC and ambient mass spectrometry to provide a good choice for the screening and identification of active ingredients and the quality evaluation of botanical samples.
Collapse
Affiliation(s)
- Yilin Chen
- The MOE Key Laboratory of Standardization of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicines, and SATCM Key Laboratory of New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Linnan Li
- The MOE Key Laboratory of Standardization of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicines, and SATCM Key Laboratory of New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| | - Rui Xu
- The MOE Key Laboratory of Standardization of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicines, and SATCM Key Laboratory of New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Fan Li
- The MOE Key Laboratory of Standardization of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicines, and SATCM Key Laboratory of New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Lihua Gu
- The MOE Key Laboratory of Standardization of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicines, and SATCM Key Laboratory of New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Huwei Liu
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Institute of Analytical Chemistry, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Zhengtao Wang
- The MOE Key Laboratory of Standardization of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicines, and SATCM Key Laboratory of New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Li Yang
- The MOE Key Laboratory of Standardization of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicines, and SATCM Key Laboratory of New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| |
Collapse
|
25
|
Gong PY, Guo YJ, Tian YS, Gu LF, Qi J, Yu BY. Reverse tracing anti-thrombotic active ingredients from dried Rehmannia Radix based on multidimensional spectrum-effect relationship analysis of steaming and drying for nine cycles. JOURNAL OF ETHNOPHARMACOLOGY 2021; 276:114177. [PMID: 33945856 DOI: 10.1016/j.jep.2021.114177] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 04/07/2021] [Accepted: 04/27/2021] [Indexed: 06/12/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE In traditional Chinese medicine (TCM) and modern pharmacodynamics, dried Rehmannia Radix (DRR) possesses prominent anti-thrombotic activity that decreases after processing by nine steaming and drying cycles to develop processed Rehmannia Radix (PRR). Due to the complexity of the DRR components, the chemical mechanism leading to efficacy changes of DRR caused by processing is still unclear. AIM OF STUDY This study aimed to trace the anti-thrombotic active compounds of DRR and different degrees of processed RR (PRR) and to evaluate the synergistic effects among different active components. MATERIALS AND METHODS The anti-thrombotic active chemical fraction of DRR extracts was evaluated. Targeted fractions of the processed products of RR were prepared at different processing stages. The changes in monosaccharides, oligosaccharides and secondary metabolites during processing were characterized by multidimensional high-performance liquid chromatography (HPLC). The anti-thrombotic effects of targeted fractions of different RR samples were evaluated by analyzing the length of tail thrombus (LT) and serum biochemical indicators in carrageenan-induced tail-thrombus mice. The spectrum-effect relationships were investigated by partial least squares regression (PLSR) analysis and gray correlation analysis (GRA). Finally, the active compounds were screened by spectrum-effect relationship analysis and validated in vivo, and their synergistic effects were determined by Webb's fraction multiplication method. RESULTS Six ingredients highly associated with anti-thrombotic activities were screened out by the spectrum-effect relationship analysis, of which oligosaccharides (stachyose, sucrose and raffinose) and iridoid glycosides (catalpol, leonuride and melitoside) possessed a synergistic effect on tumor necrosis factors (TNF-α), interleukin 1β (IL-1β) and plasminogen activator inhibitor 1 (PAI-1)/tissue-type plasminogen activator (t-PA) ratio in vivo with synergistic coefficient (SC) > 1. CONCLUSION The main material basis of the anti-thrombotic activities of DRR is oligosaccharide components of stachyose, raffinose and sucrose, iridoid glycosides components of catalpol, leonuride and melittoside. The two kinds of components exert synergistic anti-thrombotic effects by inhibiting the expression of inflammatory factors and regulating the balance of the fibrinolysis system.
Collapse
Affiliation(s)
- Pu-Yang Gong
- Research Center for Traceability and Standardization of TCMs, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, China; College of Pharmacy, Southwest Minzu University, Chengdu, 610041, China.
| | - Yu-Jie Guo
- Research Center for Traceability and Standardization of TCMs, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, China.
| | - Yu-Shan Tian
- Research Center for Traceability and Standardization of TCMs, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, China.
| | - Li-Fei Gu
- Research Center for Traceability and Standardization of TCMs, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, China.
| | - Jin Qi
- Research Center for Traceability and Standardization of TCMs, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, China; State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 210009, China.
| | - Bo-Yang Yu
- Research Center for Traceability and Standardization of TCMs, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, China; State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 210009, China.
| |
Collapse
|
26
|
Fu J, Zhang LL, Li W, Zhang Y, Zhang Y, Liu F, Zou L. Application of metabolomics for revealing the interventional effects of functional foods on metabolic diseases. Food Chem 2021; 367:130697. [PMID: 34365248 DOI: 10.1016/j.foodchem.2021.130697] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Revised: 07/23/2021] [Accepted: 07/24/2021] [Indexed: 12/12/2022]
Abstract
Metabolomics is an important branch of systems biology, which can detect changes in the body's metabolism before and after the intervention of functional foods, identify effective metabolites, and predict the interventional effects and the mechanism. This review summarizes the latest research outcomes regarding interventional effects of functional foods on metabolic diseases via metabolomics analysis. Since metabolomics approaches are powerful strategies for revealing the changes in bioactive compounds of functional foods during processing and storage, we also discussed the effects of these parameters on functional food metabolites using metabolomics approaches. To date, a number of endogenous metabolites related to the metabolic diseases after functional foods intervention have been discovered. Unfortunately, the mechanisms of metabolic disease-related molecules are still unclear and require further studies. The combination of metabolomics with other omics technologies could further promote its ability to fully understand the precise biological processes of functional food intervention on metabolic diseases.
Collapse
Affiliation(s)
- Jia Fu
- School of Basic Medical Sciences, Chengdu University, Chengdu 610106, China
| | - Le-Le Zhang
- School of Basic Medical Sciences, Chengdu University, Chengdu 610106, China
| | - Wei Li
- School of Basic Medical Sciences, Chengdu University, Chengdu 610106, China
| | - Yan Zhang
- School of Basic Medical Sciences, Chengdu University, Chengdu 610106, China
| | - Yamei Zhang
- Clinical Genetics Laboratory, Affiliated Hospital & Clinical Medical College of Chengdu University, Chengdu 610081, China
| | - Fang Liu
- Shanghai Research Center for Modernization of Traditional Chinese Medicine, Shanghai Institute of Materia Medica, Chinese Academy of Science, Shanghai 201203, China.
| | - Liang Zou
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industrialization, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China.
| |
Collapse
|
27
|
Wang X, Wu W, Zhang J, Gao L, Zhang L, Long H, Hou J, Wu W, Guo D. An integrated strategy for holistic quality identification of Chinese patent medicine: Liuwei Dihuang Pills as a case study. PHYTOCHEMICAL ANALYSIS : PCA 2021; 32:183-197. [PMID: 32130754 DOI: 10.1002/pca.2927] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 01/03/2020] [Accepted: 01/31/2020] [Indexed: 06/10/2023]
Abstract
INTRODUCTION Liuwei Dihuang Pills (concentrated pills, simplified as LWDHP), one of the most famous classic Chinese Patent Medicine (CPM), is produced by hundreds of pharmaceutical manufacturers with billions of Chinese yuan (CNY) in annual sales. However, current quality identification of LWDHP mainly relies on a thin-layer chromatography (TLC) method that is complicated and deficient. OBJECTIVE The goal of this study is to simplify the identification process and provide a more comprehensive quality assessment method of LWDHP by developing an integrated strategy based on liquid chromatography coupled with mass spectrometry (LC-MS) and multivariate statistical analysis. METHOD Ultra-high-performance liquid chromatography coupled with quadrupole-time of flight mass spectrometry (UHPLC/QTOF-MS) was employed to perform qualitative analyses of a home-made LWDHP and to establish a stably characteristic compound library by analysis of batches of its component herbs. Then selective ion monitoring (SIM) of single MS was utilised to develop a rapid identification method based on the UHPLC/QTOF-MS analysis result. Multivariate statistical analysis was subsequently used for the quality assessment of different commercial samples. RESULTS Seventy-eight characteristic compounds were characterised, and 68 of them were recorded to establish a stably characteristic compound library. Thirty-one compounds were selected from the library for the establishment of SIM identification method. Good specificity, capability, and feasibility had been respectively verified by the analysis of blank sample, negative control (NC) preparation samples, home-made LWDHP sample, and commercial sample. Multivariate statistical analysis of 20 batches of commercial LWDHP samples revealed the quality consistency of the same vendor's product and quality difference between diverse vendors' products. CONCLUSION The SIM identification method by a single analysis could significantly simplify the identification process of LWDHP, and it was performed in a holistic mode for no less than two compounds of each component herb monitored. Moreover, it could also be combined with multivariate statistical analysis to conduct quality assessments of batches of samples. The integrated strategy used in the study of LWDHP could be applied for the identification of other CPM as well.
Collapse
Affiliation(s)
- Xia Wang
- Shanghai Research Center for Modernization of Traditional Chinese Medicine, National Engineering Laboratory for TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Shanghai, 201203, China
- University of Chinese Academy of Sciences, No.19A Yuquan Road, Beijing, 100049, China
| | - Wenyong Wu
- Shanghai Research Center for Modernization of Traditional Chinese Medicine, National Engineering Laboratory for TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Shanghai, 201203, China
- University of Chinese Academy of Sciences, No.19A Yuquan Road, Beijing, 100049, China
| | - Jianqing Zhang
- Shanghai Research Center for Modernization of Traditional Chinese Medicine, National Engineering Laboratory for TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Shanghai, 201203, China
| | - Lei Gao
- Shanghai Research Center for Modernization of Traditional Chinese Medicine, National Engineering Laboratory for TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Shanghai, 201203, China
- University of Chinese Academy of Sciences, No.19A Yuquan Road, Beijing, 100049, China
| | - Linlin Zhang
- Shanghai Research Center for Modernization of Traditional Chinese Medicine, National Engineering Laboratory for TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Shanghai, 201203, China
| | - Huali Long
- Shanghai Research Center for Modernization of Traditional Chinese Medicine, National Engineering Laboratory for TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Shanghai, 201203, China
| | - Jinjun Hou
- Shanghai Research Center for Modernization of Traditional Chinese Medicine, National Engineering Laboratory for TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Shanghai, 201203, China
| | - Wanying Wu
- Shanghai Research Center for Modernization of Traditional Chinese Medicine, National Engineering Laboratory for TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Shanghai, 201203, China
- University of Chinese Academy of Sciences, No.19A Yuquan Road, Beijing, 100049, China
| | - Dean Guo
- Shanghai Research Center for Modernization of Traditional Chinese Medicine, National Engineering Laboratory for TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Shanghai, 201203, China
- University of Chinese Academy of Sciences, No.19A Yuquan Road, Beijing, 100049, China
| |
Collapse
|
28
|
Tao Y, Chen L, Jiang E. Layer-by-layer assembly strategy for fabrication of polydopamine-polyethyleneimine hybrid modified fibers and their application to solid-phase microextraction of bioactive molecules from medicinal plant samples followed by surface plasmon resonance biosensor validation. Anal Chim Acta 2021; 1146:155-165. [PMID: 33461711 DOI: 10.1016/j.aca.2020.11.016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 11/10/2020] [Accepted: 11/13/2020] [Indexed: 11/19/2022]
Abstract
A solid-phase microextraction method is introduced to overcome limitations of classical phytochemical pattern of identifying bioactive compounds, including tedious and time-consuming separation and purification step and consumption of large amounts of organic solvents, which was non-environmentally- friendly. In this proposed method for solid-phase microextraction, polyvinylidene fluoride fibers@polydopamine@polyethyleneimine@receptor as a solid part of the extractors were pushed into sample solution of medicinal plants, and the procedure was followed by stirring and easily dissociation of receptor binding ligands in organic solvent through pulling out of the functionalized fibers. Xanthine oxidase was chosen as the model receptor, while isoacteoside was selected as the model inhibitor. Several effecting parameters were optimized by experimental design, including temperature, ion strength and pH. Nine bioactive components were obtained from extract of Plantago depressa by using the established solid-phase micro-extraction method. The limit of detection and limit of quantification of the nine components ranged from 0.0008 to 0.03 mg mL-1 and from 0.001 to 0.016 mg mL-1, respectively. The RSD values of intra-day and inter-day precisions ranged from 0.24% to 2.19% and 0.62%-2.84%, respectively. The average recoveries of the nine components were from 95.06 to 104.03% with relative standard deviation (RSD) values from 1.02 to 2.90% for Plantago depressa. The RSD values of stability of the nine components ranged from 1.36% to 2.74%, which satisfied the requirements of an analytical method. In addition, surface plasmon resonance biosensor was utilized to corroborate the binding affinity between these compounds and receptor. The avidity values of these ligands corresponded well with their IC50 values. The results confirmed that polydopamine and polyethyleneimine hybrid modified polyvinylidene fluoride fibers based solid-phase microextraction method was successfully utilized for locating bioactive compounds of medicinal plants.
Collapse
Affiliation(s)
- Yi Tao
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, 310032, China.
| | - Lin Chen
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, 310032, China
| | - Enci Jiang
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, 310032, China
| |
Collapse
|
29
|
Xu F, Kong M, Xu JD, Xu J, Jiang Y, Li SL. Effects of sulfur fumigation and heating desulfurization on quality of medicinal herbs evaluated by metabolomics and glycomics: Codonopsis Radix, a pilot study. J Pharm Biomed Anal 2020; 191:113581. [PMID: 32892083 DOI: 10.1016/j.jpba.2020.113581] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Revised: 08/11/2020] [Accepted: 08/12/2020] [Indexed: 11/28/2022]
Abstract
Sulfur fumigation and heating desulfurization are used together in the post-harvest processing of many medicinal herbs. However, little is known about the effects of sulfur fumigation on saccharide components, nor about the effects of heating desulfurization on all herbal constituents. In this study, metabolomics and glycomics were integrated to investigate the effects of these two processes on the chemistry of Codonopsis Radix (CR) as a pilot study. The results showed that both sulfur fumigation and heating desulfurization significantly changed the non-saccharide small-molecule metabolome and the glycome of CR in different ways. Chemical mechanisms, such as esterification, glycosidic hydrolysis, esterolysis, amide bond hydrolysis, oxidation and dehydration, are proposed to be involved. These facts strongly inspire that, in addition to investigations of how sulfur fumigation impacts non-saccharide small-molecule metabolites, researches on heating desulfurization and saccharides should be conducted so as to enable accurate, comprehensive evaluation of the quality of sulfur-fumigated herbs.
Collapse
Affiliation(s)
- Fei Xu
- Department of Pharmaceutical Analysis, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210028, People's Republic of China; College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, People's Republic of China
| | - Ming Kong
- Department of Pharmaceutical Analysis, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210028, People's Republic of China
| | - Jin-Di Xu
- Department of Metabolomics, Jiangsu Province Academy of Traditional Chinese Medicine and Jiangsu Branch of China Academy of Chinese Medical Sciences, Nanjing 210028, People's Republic of China
| | - Jun Xu
- Department of Pharmaceutical Analysis, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210028, People's Republic of China; Department of Metabolomics, Jiangsu Province Academy of Traditional Chinese Medicine and Jiangsu Branch of China Academy of Chinese Medical Sciences, Nanjing 210028, People's Republic of China; School of Chinese Medicine, Hong Kong Baptist University, Hong Kong.
| | - Yan Jiang
- College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, People's Republic of China.
| | - Song-Lin Li
- Department of Pharmaceutical Analysis, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210028, People's Republic of China; Department of Metabolomics, Jiangsu Province Academy of Traditional Chinese Medicine and Jiangsu Branch of China Academy of Chinese Medical Sciences, Nanjing 210028, People's Republic of China.
| |
Collapse
|
30
|
Cheng R, Liao X, Addou AM, Qian J, Wang S, Cheng Z, Wang L, Huang J. Effects of "nine steaming nine sun-drying" on proximate composition, oil properties and volatile compounds of black sesame seeds. Food Chem 2020; 344:128577. [PMID: 33223293 DOI: 10.1016/j.foodchem.2020.128577] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 10/10/2020] [Accepted: 11/03/2020] [Indexed: 12/18/2022]
Abstract
Black sesame seeds (BSS) were processed by nine cycles of steaming and sun-drying, and the chemistry of their resulting products studied. That is, the shell color and structure, proximate composition, oil properties and volatile compounds of raw BSS were determined and compared with processed BSS. Various levels of shell color change and structure damage were observed. The proximate composition also differed, whereas the relative proportion of fatty acids and oil properties were unchanged. SPME-GCMS analysis revealed that aldehydes, hydrocarbons and alcohols were the main volatile compounds. And compared with raw BSS, four volatile substances were newly detected in the processed BSS. Principal component analysis (PCA) displayed the overall difference between samples and showed that repeated steaming and sun-drying process had a significant impact on the chemical composition of BSS.
Collapse
Affiliation(s)
- Runqing Cheng
- School of Life Sciences, Shanghai University, No. 381 Nanchen Road, Shanghai 200444, China
| | - Xianyan Liao
- School of Life Sciences, Shanghai University, No. 381 Nanchen Road, Shanghai 200444, China
| | - Amira Mama Addou
- School of Life Sciences, Shanghai University, No. 381 Nanchen Road, Shanghai 200444, China; School of Environmental and Chemical Engineering, Shanghai University, No. 381 Nanchen Road, Shanghai 200444, China
| | - Jiana Qian
- School of Life Sciences, Shanghai University, No. 381 Nanchen Road, Shanghai 200444, China
| | - Shanshan Wang
- School of Life Sciences, Shanghai University, No. 381 Nanchen Road, Shanghai 200444, China
| | - Zhuo Cheng
- School of Life Sciences, Shanghai University, No. 381 Nanchen Road, Shanghai 200444, China
| | - Lufeng Wang
- College of Food Science and Technology, Huazhong Agricultural University, No. 1 Shizishan Street, Wuhan 430070, China.
| | - Junyi Huang
- School of Life Sciences, Shanghai University, No. 381 Nanchen Road, Shanghai 200444, China.
| |
Collapse
|
31
|
Xia F, Liu C, Wan JB. Characterization of the cold and hot natures of raw and processed Rehmanniae Radix by integrated metabolomics and network pharmacology. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2020; 74:153071. [PMID: 31537418 DOI: 10.1016/j.phymed.2019.153071] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Revised: 07/30/2019] [Accepted: 08/20/2019] [Indexed: 05/09/2023]
Abstract
BACKGROUND The processing of Chinese materia medica (CMM) is one of the characteristics and advantages of traditional Chinese medicine (TCM). Occasionally, the processing of CMM might reverse the cold/hot nature of CMM. For example, the nature of raw Rehmanniae Radix (RR) is cool, while the processed Rehmanniae Radix (PR) by steaming is hot. Because the cold/hot nature of CMM is defined by the body's response to CMMs, a metabolomics approach, allowing the monitoring of the fluctuation of endogenous metabolites related to an exogenous stimulus, might be an ideal tool to uncover the cold/hot nature of different forms of Rehmanniae Radix. PURPOSE An integrated strategy combining metabolomics and network pharmacology was applied to illuminate the different natures of raw and processed Rehmanniae Radix. STUDY DESIGN Mice were orally administered RR and PR once daily for ten days. The entire metabolic changes in the plasma of mice were profiled by ultra-high performance liquid chromatography/quadrupole time-of-flight mass spectrometry (UHPLC/Q-TOF MS). Furthermore, network pharmacology analysis was performed to identify the underlying targets related to iridoids that significantly changed during the processing. RESULTS The metabolomics analysis results demonstrated a clear separation of the metabolic phenotypes among the control, RR and two PR groups in both the positive and negative modes. Nine lysophosphatidylcholines (LysoPCs), LysoPC (16:0), LysoPC (18:2), LysoPC (18:1), LysoPC (22:6), LysoPC (20:2), LysoPC (18:0), LysoPC (16:1), LysoPC (20:4) and LysoPC (20:5), that decreased in the RR-treated group, but increased in the PR-treated group, were identified to be potential biomarkers related to the natures of RR and PR. The network pharmacology results indicated that four iridoids in Rehmanniae Radix, 8-epiloganic acid, 6-O-p-coumaroyl ajugol, 6-O-p-hydroxybenzoyl ajugol and ajugol, might play important roles in the different natures of raw and processed Rehmanniae Radix. CONCLUSIONS There might be a strong connection between the cold/hot nature of different forms of Rehmanniae Radix and LysoPC metabolism. This study offers new insight into the cold/hot nature of Rehmanniae Radix.
Collapse
Affiliation(s)
- Fangbo Xia
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macao, China
| | - Conghui Liu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macao, China
| | - Jian-Bo Wan
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macao, China; College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China.
| |
Collapse
|
32
|
Qualitative and quantitative characterization of carbohydrate profiles in three different parts of Poria cocos. J Pharm Biomed Anal 2020; 179:113009. [DOI: 10.1016/j.jpba.2019.113009] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Revised: 11/22/2019] [Accepted: 11/23/2019] [Indexed: 12/14/2022]
|
33
|
Xu JD, Xu MZ, Zhou SS, Kong M, Shen H, Mao Q, Zhu H, Chan G, Liu LF, Zhang QW, Li SL. Effects of chromatographic conditions and mass spectrometric parameters on the ionization and fragmentation of triterpene saponins of Ilex asprella in liquid chromatography-mass spectrometry analysis. J Chromatogr A 2019; 1608:460418. [PMID: 31420179 DOI: 10.1016/j.chroma.2019.460418] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 07/24/2019] [Accepted: 08/02/2019] [Indexed: 02/06/2023]
Abstract
High performance liquid chromatography coupled with quadrupole-time-of-flight mass spectrometry (HPLC-QTOF-MS) is widely used to qualitatively characterize the chemical profiles of herbal medicines, in which the generated adducts and fragments are crucial for confirming molecular ion (deprotonated/protonated ion) and deducing structure of detected components. However, how chromatographic and mass spectrometric (LC-MS) conditions/parameters affect the quantity and intensity of adducts and fragments of detected components is scarcely concerned. In present study, three types of triterpene saponins from the root of Ilex asprella (RIA) were selected as a case study to systematically investigate the effects of LC/MS conditions/parameters on their ionization and fragmentation, so as to obtain higher intensity (higher detection sensitivity) and quantity (rich information) of adducts and fragments for the characterization of components in RIA. It was found that for LC conditions, methanol as organic phase was more benefit for generating more adducts with higher intensity; formic acid as a modifier suppressed the formation of [M-2H]2-, thus promoted the generation of other types of adducts at lower concentration but inhibited the generation when the concentration exceeded 0.1%. MS parameters affect scarcely the quantity but mainly intensity of adducts, cone voltage, source temperature and desolvation gas flow have relatively higher impacts when compared with other parameters. Collision energy affected both quantity and intensity of fragments. MS parameters at the medium value largely increased the quantity and intensity of adducts and fragments. Three-types of triterpene saponins presented structurally specific ionization and fragmentation due to their amounts of acidic substitutes. A total of 55 components were detected and definitely or tentatively identified in RIA under the optimized LC-MS conditions, among which 35 triterpene saponins were firstly discovered. This is the first report that proposes and validates a systematic approach for assessing the effects of LC/MS conditions/parameters on the ionization and fragmentation of analytes, which could be helpful for the optimization of LC-MS conditions for effective chemical profiling analysis of herbal medicines.
Collapse
Affiliation(s)
- Jin-Di Xu
- Department of Pharmaceutical Analysis, Hospital of Integrated Traditional Chinese and Western Medicine Affiliated to Nanjing University of Chinese Medicine, Nanjing, Jiangsu, People's Republic of China
| | - Ming-Zhe Xu
- Department of Metabolomics, Jiangsu Province Academy of Traditional Chinese Medicine and Jiangsu Branch of China Academy of Chinese Medical Sciences, Nanjing, Jiangsu, People's Republic of China; State Key Laboratory of Natural Medicines, Department of Chinese Medicines Analysis, China Pharmaceutical University, Nanjing 210009, PR China
| | - Shan-Shan Zhou
- Department of Pharmaceutical Analysis, Hospital of Integrated Traditional Chinese and Western Medicine Affiliated to Nanjing University of Chinese Medicine, Nanjing, Jiangsu, People's Republic of China
| | - Ming Kong
- Department of Metabolomics, Jiangsu Province Academy of Traditional Chinese Medicine and Jiangsu Branch of China Academy of Chinese Medical Sciences, Nanjing, Jiangsu, People's Republic of China
| | - Hong Shen
- Department of Metabolomics, Jiangsu Province Academy of Traditional Chinese Medicine and Jiangsu Branch of China Academy of Chinese Medical Sciences, Nanjing, Jiangsu, People's Republic of China
| | - Qian Mao
- Department of Pharmaceutical Analysis, Hospital of Integrated Traditional Chinese and Western Medicine Affiliated to Nanjing University of Chinese Medicine, Nanjing, Jiangsu, People's Republic of China
| | - He Zhu
- Department of Metabolomics, Jiangsu Province Academy of Traditional Chinese Medicine and Jiangsu Branch of China Academy of Chinese Medical Sciences, Nanjing, Jiangsu, People's Republic of China
| | - Ging Chan
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao
| | - Li-Fang Liu
- State Key Laboratory of Natural Medicines, Department of Chinese Medicines Analysis, China Pharmaceutical University, Nanjing 210009, PR China.
| | - Qing-Wen Zhang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao.
| | - Song-Lin Li
- Department of Pharmaceutical Analysis, Hospital of Integrated Traditional Chinese and Western Medicine Affiliated to Nanjing University of Chinese Medicine, Nanjing, Jiangsu, People's Republic of China; Department of Metabolomics, Jiangsu Province Academy of Traditional Chinese Medicine and Jiangsu Branch of China Academy of Chinese Medical Sciences, Nanjing, Jiangsu, People's Republic of China.
| |
Collapse
|
34
|
Serial hyphenation of dried spot, reversed phase liquid chromatography, hydrophilic interaction liquid chromatography, and tandem mass spectrometry towards direct chemical profiling of herbal medicine-derived liquid matrices, an application in Cistanche sinensis. J Pharm Biomed Anal 2019; 174:34-42. [DOI: 10.1016/j.jpba.2019.05.048] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Revised: 04/25/2019] [Accepted: 05/21/2019] [Indexed: 02/06/2023]
|
35
|
Establishment of a rapid and sensitive UPLC-MS/MS method for pharmacokinetic determination of nine alkaloids of crude and processed Corydalis turtschaninovii Besser aqueous extracts in rat plasma. J Chromatogr B Analyt Technol Biomed Life Sci 2019; 1124:218-225. [DOI: 10.1016/j.jchromb.2019.06.018] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2019] [Revised: 05/24/2019] [Accepted: 06/15/2019] [Indexed: 01/19/2023]
|
36
|
Yip KM, Xu J, Zhou SS, Lau YM, Chen QL, Tang YC, Yang ZJ, Yao ZP, Ding P, Chen HB, Zhao ZZ. Characterization of Chemical Component Variations in Different Growth Years and Tissues of Morindae Officinalis Radix by Integrating Metabolomics and Glycomics. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:7304-7314. [PMID: 31180668 DOI: 10.1021/acs.jafc.9b01910] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Morindae Officinalis Radix (MOR), the dried root of Morinda officinalis F.C. How (Rubiaceae), is a popular food supplement in southeastern China for bone protection, andrological, and gynecological healthcare. In clinical use, 3-4 year old MOR is commonly used and the xylem is sometimes removed. However, there is no scientific rationale for these practices so far. In this study, metabolomics and glycomics were integrated using multiple chromatographic and mass spectrometric techniques coupled with multivariate statistical analysis to investigate the qualitative and quantitative variations of secondary metabolome and glycome in different growth years (1-7 years) and tissues (xylem and cortex) of MOR. The results showed that various types of bioactive components reached a maximum between 3 and 4 years of growth and that the xylem contained more potentially toxic constituents but less bioactive components than the cortex. This study provides the chemical basis for the common practice of using 3-4 year old MOR with the xylem removed.
Collapse
Affiliation(s)
- Ka-Man Yip
- School of Chinese Medicine , Hong Kong Baptist University , Kowloon Tong, Hong Kong 999077 , China
| | - Jun Xu
- School of Chinese Medicine , Hong Kong Baptist University , Kowloon Tong, Hong Kong 999077 , China
| | - Shan-Shan Zhou
- School of Chinese Medicine , Hong Kong Baptist University , Kowloon Tong, Hong Kong 999077 , China
| | - Yuk-Man Lau
- School of Chinese Medicine , Hong Kong Baptist University , Kowloon Tong, Hong Kong 999077 , China
| | - Qi-Lei Chen
- School of Chinese Medicine , Hong Kong Baptist University , Kowloon Tong, Hong Kong 999077 , China
| | - Yan-Cheng Tang
- School of Chinese Medicine , Hong Kong Baptist University , Kowloon Tong, Hong Kong 999077 , China
| | - Zhi-Jun Yang
- School of Chinese Medicine , Hong Kong Baptist University , Kowloon Tong, Hong Kong 999077 , China
| | - Zhong-Ping Yao
- Department of Applied Biology & Chemical Technology , The Hong Kong Polytechnic University , Hong Kong 999077 , China
| | - Ping Ding
- School of Pharmaceutical Science , Guangzhou University of Chinese Medicine , Guangdong 510006 , China
| | - Hu-Biao Chen
- School of Chinese Medicine , Hong Kong Baptist University , Kowloon Tong, Hong Kong 999077 , China
| | - Zhong-Zhen Zhao
- School of Chinese Medicine , Hong Kong Baptist University , Kowloon Tong, Hong Kong 999077 , China
| |
Collapse
|
37
|
Gong PY, Tian YS, Guo YJ, Gu LF, Li JY, Qi J, Yu BY. Comparisons of antithrombosis, hematopoietic effects and chemical profiles of dried and rice wine-processed Rehmanniae Radix extracts. JOURNAL OF ETHNOPHARMACOLOGY 2019; 231:394-402. [PMID: 30359761 DOI: 10.1016/j.jep.2018.10.025] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Revised: 10/03/2018] [Accepted: 10/18/2018] [Indexed: 06/08/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE In traditional Chinese medicine (TCM), Rehmanniae Radix (RR, derived from the root of Rehmannia glutinosa (Gaertn.) DC.) is commonly used as natural medicine for thousands of years, two types including the dried and rice-wine processed RR were used for different clinical purposes respectively, which were the typical case that pharmaceutical effect changed by processing in TCM. AIM OF STUDY The goal of this study was to investigate the differences in the antithrombosis and hematopoietic effects of extracts of dried and processed RR (DRR and PRR) in vivo, and to explore the chemical basis underlying changes of medicinal properties caused by processing. MATERIALS AND METHODS The aqueous extracts of DRR and PRR were prepared. Protective effect of varying doses of different extracts were investigated in type-I carrageenan induced mice tail thrombosis and cyclophosphamide induced myelosuppression model. The chemical composition of DRR and PRR extracts were determined by High Performance Liquid Chromatography coupled with tandem quadrupole time-of-flight Mass Spectrometry (HPLC/Q-TOF-MS). RESULTS In antithrombosis activity tests, PRR possessed less ameliorated effects than DRR in the model mouse on body temperature, tail thrombus length and blood flow. Both DRR and PRR had no significant influence on prothrombin time (PT) and activated partial thromboplastin time (APTT), only high dose DRR could decrease the content of fibrinogen (FIB) in plasma. Histological examination of lung tissue suggested that thrombosis was significantly improved in DRR-H group. For myelosuppression model, only PRR could improve peripheral hemogram, both DRR and PRR had hematopoietic effects as demonstrated by their abilities to ameliorate the bone marrow nucleated cells (BMNC) and pathology of bone marrow tissue. The hematopoietic effects of PRR were significantly more potent than that of DRR at the concentration of 9 g/kg. By comparing the chemical composition, we found that iridoid glycosides were decreased and furfural derivatives increased in DRR after processing which may be the chemical mechanism contribute to the differences in efficacy. CONCLUSIONS According to the results of this research, processing with rice wine for nine cycles significantly reduced antithrombotic effects and enhanced the hematopoietic effects of DRR as demonstrated in model mice. It can scientifically explain the different effect among two types of RR in clinical through the diverse method of processing and usage. Meanwhile, the predicted activity compounds from two types of RR can be potential candidates for the treatment of thrombosis and anemia.
Collapse
Affiliation(s)
- Pu-Yang Gong
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China.
| | - Yu-Shan Tian
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China.
| | - Yu-Jie Guo
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China.
| | - Li-Fei Gu
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China.
| | - Jun-Yi Li
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China.
| | - Jin Qi
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China; State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, China.
| | - Bo-Yang Yu
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China; State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, China.
| |
Collapse
|
38
|
Zhou L, Xu JD, Zhou SS, Zhu H, Kong M, Shen H, Zou YT, Cong LJ, Xu J, Li SL. Independent or integrative processing approach of metabolite datasets from different biospecimens potentially affects metabolic pathway recognition in metabolomics. J Chromatogr A 2018; 1587:146-154. [PMID: 30580960 DOI: 10.1016/j.chroma.2018.12.024] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Revised: 10/26/2018] [Accepted: 12/11/2018] [Indexed: 01/29/2023]
Abstract
In metabolomics studies, metabolic pathway recognition (MPR) is performed by software tools to screen out the significant pathways disturbed by diseases or reinstated by drugs. To achieve MPR, the significantly changed metabolites determined in different biospecimens (e.g. plasma and urine) are analyzed either independently (metabolites from each biospecimen as a dataset) or integratively (metabolites from all biospecimens as a dataset). However, whether the choice of these two processing approaches affects the results of MPR remains unknown. In this study, this issue was addressed by selecting evaluation of the effects of the herbal medicine Rehmanniae Radix (RR) on anemia and adrenal fatigue by UPLC-QTOF-MS/MS-based metabolomics as an example. The significant pathways disturbed by the modeling of anemia and adrenal fatigue and those reinstated by treatments with raw and processed RR were recognized using MetPA software tool (MetaboAnalyst 3.0), and compared by independent and integrative processing of the significantly changed metabolites determined in plasma and urine. The results showed that the two processing approaches could yield different impact values of pathways and thereby recognize different significant pathways. The differences appear to happen more easily when metabolites from different biospecimens shared the same metabolic pathway. Such pathway could be recognized as a significant pathway by integrative processing but could be excluded by independent processing due to the converged and dispersed importance contributions of the involved metabolites to MPR in the two processing approaches. This issue should concern researchers because MPR is crucial not only to understanding metabolomics data but also to guiding subsequent mechanistic research.
Collapse
Affiliation(s)
- Li Zhou
- Department of Pharmaceutical Analysis, Hospital of Integrated Traditional Chinese and Western Medicine Affiliated to Nanjing University of Chinese Medicine, Nanjing, Jiangsu, People's Republic of China
| | - Jin-Di Xu
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong; Department of Metabolomics, Jiangsu Province Academy of Traditional Chinese Medicine and Jiangsu Branch of China Academy of Chinese Medical Sciences, Nanjing, Jiangsu, People's Republic of China
| | - Shan-Shan Zhou
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong
| | - He Zhu
- Department of Pharmaceutical Analysis, Hospital of Integrated Traditional Chinese and Western Medicine Affiliated to Nanjing University of Chinese Medicine, Nanjing, Jiangsu, People's Republic of China
| | - Ming Kong
- Department of Pharmaceutical Analysis, Hospital of Integrated Traditional Chinese and Western Medicine Affiliated to Nanjing University of Chinese Medicine, Nanjing, Jiangsu, People's Republic of China
| | - Hong Shen
- Department of Metabolomics, Jiangsu Province Academy of Traditional Chinese Medicine and Jiangsu Branch of China Academy of Chinese Medical Sciences, Nanjing, Jiangsu, People's Republic of China
| | - Ye-Ting Zou
- Department of Pharmaceutical Analysis, Hospital of Integrated Traditional Chinese and Western Medicine Affiliated to Nanjing University of Chinese Medicine, Nanjing, Jiangsu, People's Republic of China
| | - Long-Jie Cong
- Department of Pharmaceutical Analysis, Hospital of Integrated Traditional Chinese and Western Medicine Affiliated to Nanjing University of Chinese Medicine, Nanjing, Jiangsu, People's Republic of China
| | - Jun Xu
- Department of Pharmaceutical Analysis, Hospital of Integrated Traditional Chinese and Western Medicine Affiliated to Nanjing University of Chinese Medicine, Nanjing, Jiangsu, People's Republic of China; School of Chinese Medicine, Hong Kong Baptist University, Hong Kong.
| | - Song-Lin Li
- Department of Pharmaceutical Analysis, Hospital of Integrated Traditional Chinese and Western Medicine Affiliated to Nanjing University of Chinese Medicine, Nanjing, Jiangsu, People's Republic of China; Department of Metabolomics, Jiangsu Province Academy of Traditional Chinese Medicine and Jiangsu Branch of China Academy of Chinese Medical Sciences, Nanjing, Jiangsu, People's Republic of China.
| |
Collapse
|
39
|
Systematic characterization and quantification of Rubiaceae-type cyclopeptides in 20 Rubia species by ultra performance liquid chromatography tandem mass spectrometry combined with chemometrics. J Chromatogr A 2018; 1581-1582:43-54. [DOI: 10.1016/j.chroma.2018.10.049] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Revised: 09/30/2018] [Accepted: 10/27/2018] [Indexed: 12/15/2022]
|
40
|
Time segment scanning-based quasi-multiple reaction monitoring mode by ultra-performance liquid chromatography coupled with quadrupole/time-of-flight mass spectrometry for quantitative determination of herbal medicines: Moutan Cortex, a case study. J Chromatogr A 2018; 1581-1582:33-42. [DOI: 10.1016/j.chroma.2018.10.047] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Revised: 08/13/2018] [Accepted: 10/24/2018] [Indexed: 11/19/2022]
|
41
|
Yan Y, Du C, Li Z, Zhang M, Li J, Jia J, Li A, Qin X, Song Q. Comparing the antidiabetic effects and chemical profiles of raw and fermented Chinese Ge-Gen-Qin-Lian decoction by integrating untargeted metabolomics and targeted analysis. Chin Med 2018; 13:54. [PMID: 30386417 PMCID: PMC6204051 DOI: 10.1186/s13020-018-0208-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Accepted: 09/24/2018] [Indexed: 12/23/2022] Open
Abstract
Background Microbial fermentation has been widely applied in traditional Chinese medicine (TCM) for thousands of years in China. Various beneficial effects of fermentation for applications in TCM or herbals have been reported, such as enhanced anti-ovarian cancer, antioxidative activity, and neuroprotective effects. Ge-Gen-Qin-Lian decoction (GQD), a classic TCM formula, has been used to treat type 2 diabetes mellitus in China. In this study, GQD was fermented with Saccharomyces cerevisiae, and the antidiabetic activities and overall chemical profiles of raw and fermented GQD (FGQD) were systematically compared. Methods First, the antidiabetic effects of GQD and FGQD on high-fat diet and streptozotocin (STZ)-induced diabetic rats were compared. Then, high-performance liquid chromatography Q Exactive MS was applied for rapid characterization of the chemical components of GQD. Additionally, we proposed an integrated chromatographic technique based untargeted metabolomics identifying differential chemical markers between GQD and FGQD and targeted analysis determining the fermenting-induced quantitative variation tendencies of chemical marker strategy for overall chemical profiling of raw and fermented GQD. Results Both GQD and FGQD displayed effects against HFD and STZ-induced diabetes, and FGQD showed a better recovery trend associated with profound changes in the serum lipoprotein profile and body weight gain. In addition, 133 compounds were characterized from GQD. It was demonstrated that the integrated strategy holistically illuminated 30 chemical markers contributed to the separation of GQD and FGQD, and further elucidated the fermenting-induced chemical transformation mechanisms and inherent chemical connections of secondary metabolites. Although there were no new secondary metabolites in FGQD compared with GQD, the amounts of secondary metabolites, which were mostly deglycosylated, were redistributed in FGQD. Conclusion The anti-diabetic activities of GQD could be improved by applying fermentation technology. Moreover, the proposed strategy could serve as a powerful tool for systematically exploring the chemical profiles of raw and fermented formulas. Electronic supplementary material The online version of this article (10.1186/s13020-018-0208-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Yan Yan
- 1Modern Research Center for Traditional Chinese Medicine of Shanxi University, No. 92, Wucheng Road, Taiyuan, 030006 Shanxi China
| | - Chenhui Du
- 2School of Traditional Chinese Materia Medica, Shanxi University of Chinese Medicine, No. 121, Daxue Street, Taiyuan, 030619 Shanxi China
| | - Zhenyu Li
- 1Modern Research Center for Traditional Chinese Medicine of Shanxi University, No. 92, Wucheng Road, Taiyuan, 030006 Shanxi China
| | - Min Zhang
- 1Modern Research Center for Traditional Chinese Medicine of Shanxi University, No. 92, Wucheng Road, Taiyuan, 030006 Shanxi China.,3College of Chemistry and Chemical Engineering of Shanxi University, No. 92, Wucheng Road, Taiyuan, 030006 Shanxi China
| | - Jin Li
- 2School of Traditional Chinese Materia Medica, Shanxi University of Chinese Medicine, No. 121, Daxue Street, Taiyuan, 030619 Shanxi China
| | - Jinping Jia
- 1Modern Research Center for Traditional Chinese Medicine of Shanxi University, No. 92, Wucheng Road, Taiyuan, 030006 Shanxi China
| | - Aiping Li
- 1Modern Research Center for Traditional Chinese Medicine of Shanxi University, No. 92, Wucheng Road, Taiyuan, 030006 Shanxi China
| | - Xuemei Qin
- 1Modern Research Center for Traditional Chinese Medicine of Shanxi University, No. 92, Wucheng Road, Taiyuan, 030006 Shanxi China
| | - Qiang Song
- 2School of Traditional Chinese Materia Medica, Shanxi University of Chinese Medicine, No. 121, Daxue Street, Taiyuan, 030619 Shanxi China
| |
Collapse
|
42
|
Zhou Y, Yang K, Zhang D, Duan H, Liu Y, Guo M. Metabolite accumulation and metabolic network in developing roots of Rehmannia glutinosa reveals its root developmental mechanism and quality. Sci Rep 2018; 8:14127. [PMID: 30237415 PMCID: PMC6148277 DOI: 10.1038/s41598-018-32447-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Accepted: 09/09/2018] [Indexed: 01/02/2023] Open
Abstract
Rehmannia glutinosa root contains many compounds with important medicinal properties and nutritional benefits, but only more than 140 compounds have been reported so far. Many other compounds and their accumulation and metabolic networks during its development remain unclear. In order to clarify them, its metabolic profiles at three different developmental stages were analyzed using untargeted LC-MS analysis. Multivariate analysis revealed that 434 metabolites differently accumulated in its different stages, suggesting different change trends. The metabolites having the same trend share common metabolic pathways, the metabolites showing increasing contents during its development have medical and nutritional values, and some mature root-specific metabolites may be better candidates for its quality control; 434 metabolites were mapped onto 111 KEGG pathways including 62 enzymes, whose increasing and decreasing patterns were shown during its development. Some metabolites complicatedly interacted with some enzymes and the top-10 pathways enriched from 111 KEGG pathways in network analysis. These findings extended the dataset of its identified compounds, and revealed that its development and quality were associated with the accumulation of different metabolites. Our work will lay the foundation for the better understanding of its chemical constituents, quality and developmental mechanism.
Collapse
Affiliation(s)
- Yanqing Zhou
- College of Life Sciences, Henan Normal University, Xinxiang, 453007, HN, P. R. China.
| | - Ke Yang
- College of Life Sciences, Henan Normal University, Xinxiang, 453007, HN, P. R. China
| | - Dandan Zhang
- College of Life Sciences, Henan Normal University, Xinxiang, 453007, HN, P. R. China
| | - Hongying Duan
- College of Life Sciences, Henan Normal University, Xinxiang, 453007, HN, P. R. China.
| | - Yongkang Liu
- Wen County Institute of Agricultural Sciences, Wenxian, 454881, HN, P. R. China
| | - Mengmeng Guo
- College of Life Sciences, Henan Normal University, Xinxiang, 453007, HN, P. R. China
| |
Collapse
|
43
|
Liu CW, Kuo BC, Liu MH, Huang YR, Chen CL. Computer simulation for the study of the liquid chromatographic separation of explosive molecules. J Mol Graph Model 2018; 85:331-339. [PMID: 30292170 DOI: 10.1016/j.jmgm.2018.09.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2018] [Revised: 08/17/2018] [Accepted: 09/18/2018] [Indexed: 10/28/2022]
Abstract
The application of high performance liquid chromatography (HPLC) to separate explosive chemicals was investigated by molecular dynamics (MD) simulations. The explosive ingredients including NG, RDX, HMX and TNT were assigned as solutes, while methanol (CH3OH) and acetonitrile (CH3CN) were assigned as solvents in the solution system. The polymeric-molecular siloxanes (SiC8) and poly-1,2-methylenedioxy-4-propenyl benzene (PISAF) compounds were treated as stationary phase in the simulation. The simulation results showed that the different species of explosive ingredients were separated successfully in the solutions by each of the constructed stationary phase of SiC8 and PISAF after a total simulation time of 12.0 ps approximately, which were consistent with the experimental analysis of HPLC spectra. The origin for the separation was found due to the electrostatic interactions between polymer and explosives.
Collapse
Affiliation(s)
- Chuan-Wen Liu
- Department of Chemical and Materials Engineering, Chung-Cheng Institute of Technology, National Defense University, Taoyuan, 335, Taiwan, ROC
| | - Bing-Cheng Kuo
- Department of Chemistry, National Sun Yat-sen University, Kaohsiung, 804, Taiwan, ROC
| | - Min-Hsien Liu
- Department of Chemical and Materials Engineering, Chung-Cheng Institute of Technology, National Defense University, Taoyuan, 335, Taiwan, ROC
| | - Yu-Ren Huang
- Department of Applied Science, Naval Academy, Zuoying District, Kaohsiung City, 813, Taiwan, ROC
| | - Cheng-Lung Chen
- Department of Chemistry, National Sun Yat-sen University, Kaohsiung, 804, Taiwan, ROC.
| |
Collapse
|
44
|
Xu YY, Long F, Zhang YQ, Xu JD, Kong M, Li SL. Chemical markers for quality control of bran-fried sulfur-fumigated Paeoniae Radix Alba. J Pharm Biomed Anal 2018; 159:305-310. [DOI: 10.1016/j.jpba.2018.07.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Revised: 07/04/2018] [Accepted: 07/04/2018] [Indexed: 11/27/2022]
|
45
|
Liu W, Song Q, Yan Y, Liu Y, Li P, Wang Y, Tu P, Song Y, Li J. Integrated approach for confidence-enhanced quantitative analysis of herbal medicines, Cistanche salsa as a case. J Chromatogr A 2018; 1561:56-66. [PMID: 29807707 DOI: 10.1016/j.chroma.2018.05.045] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Revised: 04/26/2018] [Accepted: 05/22/2018] [Indexed: 12/12/2022]
Abstract
Although far away from perfect, it is practical to assess the quality of a given herbal medicine (HM) through simultaneous determination of a panel of components. However, the confidences of the quantitative outcomes from LC-MS/MS platform risk several technical barriers, such as chemical degradation, polarity range, concentration span, and identity misrecognition. Herein, we made an attempt to circumvent these obstacles by integrating several fit-for-purpose techniques, including online extraction (OLE), serially coupled reversed phase LC-hydrophilic interaction liquid chromatography (RPLC-HILIC), tailored multiple reaction monitoring (MRM), and relative response vs. collision energy curve (RRCEC) matching. Confidence-enhanced quantitative analysis of Cistanche salsa (Csa), a well-known psammophytic species and tonic herbal medicine, was conducted as a proof-of-concept. OLE module was deployed to prohibit chemical degradation, in particular E/Z-configuration transformation for phenylethanoid glycosides. Satisfactory retention took place for each analyte regardless of polarity because of successive passing through RPLC and HILIC columns. Optimum parameters for the minor components, at the meanwhile of inferior ones for the abundant ingredients, ensured the locations of all contents in the linear ranges. The unequivocal assignment of the captured signals was achieved by matching retention times, ion transitions, and more importantly, RRCECs between authentic compounds and suspect peaks. Diverse validation assays demonstrated the newly developed method to be reliable. Particularly, the distribution of mannitol rather than galactitol was disclosed although these isomers showed identical retention time and ion transitions. The contents of 21 compounds-of-interest were definitively determined in Csa as well as two analogous species, and the quantitative patterns exerted great variations among not only different species but different Csa samples. Together, the fortification of OLE-RPLC-HILIC-tailored MRM with RRCEC matching could fully address the demands from confidence-enhanced quantitative analysis of HMs.
Collapse
Affiliation(s)
- Wenjing Liu
- Modern Research Center for Traditional Chinese Medicine, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Qingqing Song
- Modern Research Center for Traditional Chinese Medicine, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Yu Yan
- Modern Research Center for Traditional Chinese Medicine, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, China; Institute of Chinese Minority Traditional Medicine, Minzu University of China, Beijing 100081, China
| | - Yao Liu
- Modern Research Center for Traditional Chinese Medicine, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Peng Li
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa 999078, Macao
| | - Yitao Wang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa 999078, Macao
| | - Pengfei Tu
- Modern Research Center for Traditional Chinese Medicine, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Yuelin Song
- Modern Research Center for Traditional Chinese Medicine, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, China.
| | - Jun Li
- Modern Research Center for Traditional Chinese Medicine, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, China.
| |
Collapse
|
46
|
Simultaneous Analysis of Saccharides between Fresh and Processed Radix Rehmanniae by HPLC and UHPLC-LTQ-Orbitrap-MS with Multivariate Statistical Analysis. Molecules 2018; 23:molecules23030541. [PMID: 29495582 PMCID: PMC6017318 DOI: 10.3390/molecules23030541] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Revised: 02/23/2018] [Accepted: 02/26/2018] [Indexed: 01/17/2023] Open
Abstract
Radix Rehmanniae (RR) is a kind of herb which is widely used in the clinical and food processing industry. There are four forms of RR used in traditional Chinese medicine practice, which include fresh RR (FRR), raw RR (RRR), processed RR (PRR), and another processed RR (APRR), in which the APRR was processed by nine cycles of repeated steaming and drying. There are a large number of saccharides in RR. However, the differences in content were shown by different processing methods. In this study, an effective method using high-performance liquid chromatography (HPLC) and high-performance liquid chromatography-mass spectrometry (LC-MS) coupled with multivariate statistical analysis to rapidly distinguish different RR samples and validate the proposed chemical conversion mechanism. The datasets of the content of saccharides were subjected to principal component analysis (PCA) and one-way analysis of variance. The results showed that there different changes occurred in the contents of saccharides corresponding to the different processing methods, in which the contents of monosaccharides—namely arabinose, glucose, mannose, and galactose—had an increasing trend or remained relatively stable. However, the contents of fructose and oligosaccharides, including manninotriose, melibiose, sucrose, and raffinose, first increased and then reduced, or gradually decreased, yet the content of stachyose gradually decreased. The MSn data indicated that manninotriose, melibiose, and some monosaccharides were produced by the hydrolysis of oligosaccharides. In addition, the fragmentation pathways of 1-phenyl-3-methyl-5-pyrazolone (PMP) derivatization of monosaccharides were also found that its glycosidic bond was first broken and subsequently its inside ring broke, and the characteristic fragment ions were produced at m/z 511.22, 493.20, 373.16, and 175.08 in the PMP derivatization of monosaccharides. In conclusion, this study illustrates the change and chemical conversion mechanism of saccharides by processing in RR samples which might play a key role in further application of RR.
Collapse
|
47
|
Zhou SS, Xu J, Tsang CK, Yip KM, Yeung WP, Zhao ZZ, Zhu S, Fushimi H, Chang HY, Chen HB. Comprehensive quality evaluation and comparison of Angelica sinensis radix and Angelica acutiloba radix by integrated metabolomics and glycomics. J Food Drug Anal 2018; 26:1122-1137. [PMID: 29976405 PMCID: PMC9303037 DOI: 10.1016/j.jfda.2018.01.015] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Revised: 01/11/2018] [Accepted: 01/22/2018] [Indexed: 12/21/2022] Open
Abstract
Angelica radix (Danggui in Chinese) used in China and Japan is derived from two species of Angelica, namely Angelica sinensis and Angelica acutiloba, respectively. The differences in quality between A. sinensis radix (ASR) and A. acutiloba radix (AAR) should be therefore investigated to guide the medicinal and dietary applications of these two species. Secondary metabolites and carbohydrates have been demonstrated to be the two major kinds of bioactive components of Danggui. However, previously, quality comparison between ASR and AAR intensively concerned secondary metabolites but largely overlooked carbohydrates, thus failing to include or take into consideration an important aspect of the holistic quality of Danggui. In this study, untargeted/targeted metabolomics and glycomics were integrated by multiple chromatography-based analytical techniques for qualitative and quantitative characterization of secondary metabolites and carbohydrates in Danggui so as to comprehensively evaluate and compare the quality of ASR and AAR. The results revealed that not only secondary metabolites but also carbohydrates in ASR and AAR were different in type and amount, which should collectively contribute to their quality difference. By providing more comprehensive chemical information, the research results highlighted the need to assess characteristics of both carbohydrates and secondary metabolites for overall quality evaluation and comparison of ASR and AAR.
Collapse
Affiliation(s)
- Shan-Shan Zhou
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong
| | - Jun Xu
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong
| | - Chuen-Kam Tsang
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong
| | - Ka-Man Yip
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong
| | - Wing-Ping Yeung
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong
| | - Zhong-Zhen Zhao
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong
| | - Shu Zhu
- Department of Medicinal Resources, Institute of Natural Medicine, University of Toyama, Toyama, Japan
| | - Hirotoshi Fushimi
- Museum of Materia Medica, Institute of Natural Medicine, University of Toyama, Toyama, Japan
| | - Heng-Yuan Chang
- School of Post-Baccalaureate Chinese Medicine, Tzu Chi University, Hualien, Taiwan.
| | - Hu-Biao Chen
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong.
| |
Collapse
|
48
|
Seeing the unseen of Chinese herbal medicine processing ( Paozhi): advances in new perspectives. Chin Med 2018; 13:4. [PMID: 29375653 PMCID: PMC5773022 DOI: 10.1186/s13020-018-0163-3] [Citation(s) in RCA: 91] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Accepted: 01/08/2018] [Indexed: 01/13/2023] Open
Abstract
Processing (Paozhi) represents a unique Chinese pharmaceutic technique to facilitate the use of Chinese herbal medicines (CHMs) for a specific clinical need in the guidance of Traditional Chinese Medicine (TCM) theory. Traditionally, most CHMs require a proper processing to meet the needs of specific clinical syndromes before being prescribed by TCM practitioners. During processing, significant changes in chemical profiles occur, which inevitably influence the associated pharmacological properties of a CHM. However, although processing is formed in a long-term practice, the underlying mechanisms remain unclear for most CHMs. The deepening understanding of the mechanism of processing would provide scientific basis for standardization of processing. This review introduced the role of processing in TCM and several typical methods of processing. We also summarized the up-to-date efforts on the mechanistic study of CHM processing. The processing mechanisms mainly include the following aspects: (i) directly reducing contents of toxic constituents; (ii) structural transformation of constituents; (iii) improving solubility of constituents; (iv) physically changing the existing form of constituents; (v) and influence by excipients. These progress may give new insights into future researches.
Collapse
|
49
|
Zhou L, Xu JD, Zhou SS, Shen H, Mao Q, Kong M, Zou YT, Xu YY, Xu J, Li SL. Chemomics-based marker compounds mining and mimetic processing for exploring chemical mechanisms in traditional processing of herbal medicines, a continuous study on Rehmanniae Radix. J Chromatogr A 2017; 1530:232-240. [PMID: 29162232 DOI: 10.1016/j.chroma.2017.11.036] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Revised: 10/24/2017] [Accepted: 11/15/2017] [Indexed: 10/18/2022]
Abstract
Exploring processing chemistry, in particular the chemical transformation mechanisms involved, is a key step to elucidate the scientific basis in traditional processing of herbal medicines. Previously, taking Rehmanniae Radix (RR) as a case study, the holistic chemome (secondary metabolome and glycome) difference between raw and processed RR was revealed by integrating hyphenated chromatographic techniques-based targeted glycomics and untargeted metabolomics. Nevertheless, the complex chemical transformation mechanisms underpinning the holistic chemome variation in RR processing remain to be extensively clarified. As a continuous study, here a novel strategy by combining chemomics-based marker compounds mining and mimetic processing is proposed for further exploring the chemical mechanisms involved in herbal processing. First, the differential marker compounds between raw and processed herbs were rapidly discovered by untargeted chemomics-based mining approach through multivariate statistical analysis of the chemome data obtained by integrated metabolomics and glycomics analysis. Second, the marker compounds were mimetically processed under the simulated physicochemical conditions as in the herb processing, and the final reaction products were chemically characterized by targeted chemomics-based mining approach. Third, the main chemical transformation mechanisms involved were clarified by linking up the original marker compounds and their mimetic processing products. Using this strategy, a set of differential marker compounds including saccharides, glycosides and furfurals in raw and processed RR was rapidly found, and the major chemical mechanisms involved in RR processing were elucidated as stepwise transformations of saccharides (polysaccharides, oligosaccharides and monosaccharides) and glycosides (iridoid glycosides and phenethylalcohol glycosides) into furfurals (glycosylated/non-glycosylated hydroxymethylfurfurals) by deglycosylation and/or dehydration. The research deliverables indicated that the proposed strategy could advance the understanding of RR processing chemistry, and therefore may be considered a promising approach for delving into the scientific basis in traditional processing of herbal medicines.
Collapse
Affiliation(s)
- Li Zhou
- Department of Pharmaceutical Analysis, Hospital of Integrated Traditional Chinese and Western Medicine Affiliated to Nanjing University of Chinese Medicine, Nanjing, Jiangsu, People's Republic of China; Department of Metabolomics, Jiangsu Province Academy of Traditional Chinese Medicine and Jiangsu Branch of China Academy of Chinese Medical Sciences, Nanjing, Jiangsu, People's Republic of China
| | - Jin-Di Xu
- Department of Pharmaceutical Analysis, Hospital of Integrated Traditional Chinese and Western Medicine Affiliated to Nanjing University of Chinese Medicine, Nanjing, Jiangsu, People's Republic of China
| | - Shan-Shan Zhou
- Department of Metabolomics, Jiangsu Province Academy of Traditional Chinese Medicine and Jiangsu Branch of China Academy of Chinese Medical Sciences, Nanjing, Jiangsu, People's Republic of China
| | - Hong Shen
- Department of Metabolomics, Jiangsu Province Academy of Traditional Chinese Medicine and Jiangsu Branch of China Academy of Chinese Medical Sciences, Nanjing, Jiangsu, People's Republic of China
| | - Qian Mao
- Department of Pharmaceutical Analysis, Hospital of Integrated Traditional Chinese and Western Medicine Affiliated to Nanjing University of Chinese Medicine, Nanjing, Jiangsu, People's Republic of China
| | - Ming Kong
- Department of Pharmaceutical Analysis, Hospital of Integrated Traditional Chinese and Western Medicine Affiliated to Nanjing University of Chinese Medicine, Nanjing, Jiangsu, People's Republic of China
| | - Ye-Ting Zou
- Department of Pharmaceutical Analysis, Hospital of Integrated Traditional Chinese and Western Medicine Affiliated to Nanjing University of Chinese Medicine, Nanjing, Jiangsu, People's Republic of China; Department of Metabolomics, Jiangsu Province Academy of Traditional Chinese Medicine and Jiangsu Branch of China Academy of Chinese Medical Sciences, Nanjing, Jiangsu, People's Republic of China
| | - Ya-Yun Xu
- Department of Pharmaceutical Analysis, Hospital of Integrated Traditional Chinese and Western Medicine Affiliated to Nanjing University of Chinese Medicine, Nanjing, Jiangsu, People's Republic of China; Department of Metabolomics, Jiangsu Province Academy of Traditional Chinese Medicine and Jiangsu Branch of China Academy of Chinese Medical Sciences, Nanjing, Jiangsu, People's Republic of China
| | - Jun Xu
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong.
| | - Song-Lin Li
- Department of Pharmaceutical Analysis, Hospital of Integrated Traditional Chinese and Western Medicine Affiliated to Nanjing University of Chinese Medicine, Nanjing, Jiangsu, People's Republic of China; Department of Metabolomics, Jiangsu Province Academy of Traditional Chinese Medicine and Jiangsu Branch of China Academy of Chinese Medical Sciences, Nanjing, Jiangsu, People's Republic of China.
| |
Collapse
|
50
|
UPLC-QTOF-MS/MS-guided isolation and purification of sulfur-containing derivatives from sulfur-fumigated edible herbs, a case study on ginseng. Food Chem 2017; 246:202-210. [PMID: 29291840 DOI: 10.1016/j.foodchem.2017.10.151] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Revised: 10/31/2017] [Accepted: 10/31/2017] [Indexed: 11/23/2022]
Abstract
In this study, a novel ultra-performance liquid chromatography coupled with quadrupole/time-of-flight mass spectrometry (UPLC-QTOF-MS/MS)-guidance strategy was proposed for preparation of sulfur-containing derivatives in sulfur-fumigated edible herbs. Being versatile in both chromatographic separation and mass spectrometric detection, UPLC-QTOF-MS/MS was inducted into each experimental step for multifaceted purposes including finding, tracking, purity determination and structural elucidation of targeted compounds as well as UPLC-HPLC chromatographic conditions transplantation, whereby the isolation and purification procedures were greatly facilitated. Using this strategy, a new sulfur-containing ginsenoside Rg1 derivative (named compound I) was obtained from sulfur-fumigated ginseng. The chemical structure of compound I was elucidated to be (3β, 6α, 12β)-3, 12-dihydroxydammar-25-ene-6, 20-diylbis-β-d-glucopyranoside, 24-sulfonic acid by QTOF-MS/MS, 1H-NMR and 13C-NMR analysis, and its generation mechanisms by sulfur-fumigation were accordingly discussed. The research deliverable suggests that the UPLC-QTOF-MS/MS-guidance strategy is promising for targeted preparation of sulfur-containing derivatives from sulfur-fumigated edible herbs.
Collapse
|