1
|
Huang Q, Wen T, Fang T, Lao H, Zhou X, Wei T, Luo Y, Xie C, Huang Z, Li K. A comparative evaluation of the composition and antioxidant activity of free and bound polyphenols in sugarcane tips. Food Chem 2025; 463:141510. [PMID: 39369597 DOI: 10.1016/j.foodchem.2024.141510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 09/26/2024] [Accepted: 09/30/2024] [Indexed: 10/08/2024]
Abstract
The sugarcane tip is abundant in phenolic compounds. Previous studies have concentrated on the effects of free polyphenols, while bound polyphenols were overlooked. In this study, the content of bound polyphenols (SPB) (31.9 ± 0.9 mg GAE/g DW) was significantly higher than free polyphenols (SPF) (3.4 ± 0.1 mg GAE/g DW). A total of 44 free and 31 bound phenolics were identified by the UPLC-EIS-QTOF-MS/MS. Moreover, the antioxidant activity of SPB was more pronounced, as evidenced by its higher ABTS+ and DPPH scavenging rates than SPF, which was attributed to the higher tannin content. Furthermore, at all tested concentrations (100 and 200 μg/mL), SPB significantly enhanced the survival and antioxidant enzyme activity of Caenorhabditis elegans (C. elegans), while concurrently reducing ROS levels. High concentrations of SPB even exhibited antioxidant activity comparable to Vitamin C (Vc). The collective findings strongly indicate that SPB holds great potential as an effective antioxidant.
Collapse
Affiliation(s)
- Qiqi Huang
- College of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China
| | - Tongquan Wen
- College of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China
| | - Taowen Fang
- College of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China
| | - Houyuan Lao
- College of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China
| | - Xiaohan Zhou
- College of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China
| | - Tengqing Wei
- College of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China
| | - Yiwen Luo
- College of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China
| | - Caifeng Xie
- College of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China; Engineering Research Center for Sugar Industry and Comprehensive Utilization, Ministry of Education, Nanning 530004, China; Provincial and Ministerial Collaborative Innovation Center for Sugar Industry, Nanning 530004, China.
| | - Zhi Huang
- College of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China
| | - Kai Li
- College of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China; Engineering Research Center for Sugar Industry and Comprehensive Utilization, Ministry of Education, Nanning 530004, China; Provincial and Ministerial Collaborative Innovation Center for Sugar Industry, Nanning 530004, China.
| |
Collapse
|
2
|
Li X, Zeng H, Zhang L, Zhang J, Guo Y, Leng J. An integrated LC-MS/MS platform for noninvasive urinary nucleus acid adductomics: A pilot study for tobacco exposure. JOURNAL OF HAZARDOUS MATERIALS 2024; 474:134780. [PMID: 38861899 DOI: 10.1016/j.jhazmat.2024.134780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 05/22/2024] [Accepted: 05/29/2024] [Indexed: 06/13/2024]
Abstract
Tobacco smoke exposure significantly increases the level of global nucleoside damage. To evaluate all aspects of nucleic acid (NA) modifications, NA adductomics analyzes DNA, RNA and nucleobase adducts and provides comprehensive data. Liquid chromatography-tandem triple quadrupole mass spectrometry (LC-QQQ-MS/MS) and LC-Zeno-TOF-MS/MS were employed to screen for DNA, RNA and nucleobase adducts, as part of the analytical platform that was designed to combine high sensitivity and high resolution detection. We identified and distinguished urine nucleoside adducts via precursor ion and neutral loss scanning. A total of 245 potential adducts were detected, of which 28 were known adducts. The smoking group had significantly higher concentrations of nucleoside adducts in rat urine than the control group, based on MRM scanning, which was then used to perform relative quantitative analysis of these adducts. Urine nucleoside adducts were further confirmed using LC-Zeno-TOF-MS/MS. This highlights the potential of untargeted detection methods to provide comprehensive data on both known and unknown adducts. These approaches can be used to investigate the interactions among oxidative and alkylation stresses, and epigenetic modifications caused by exposure to tobacco smoke.
Collapse
Affiliation(s)
- Xiaoqing Li
- Comprehensive Exposure Research Center, School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian 116600, China
| | - Hui Zeng
- Comprehensive Exposure Research Center, School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian 116600, China
| | - Li Zhang
- National Center for Organic Mass Spectrometry in Shanghai, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, PR China
| | - Jing Zhang
- National Center for Organic Mass Spectrometry in Shanghai, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, PR China
| | - Yinlong Guo
- National Center for Organic Mass Spectrometry in Shanghai, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, PR China.
| | - Jiapeng Leng
- Comprehensive Exposure Research Center, School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian 116600, China.
| |
Collapse
|
3
|
Li W, Chen X, Yao M, Sun B, Zhu K, Wang W, Zhang A. LC-MS based untargeted metabolomics studies of the metabolic response of Ginkgo biloba extract on arsenism patients. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 274:116183. [PMID: 38471343 DOI: 10.1016/j.ecoenv.2024.116183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 02/14/2024] [Accepted: 03/05/2024] [Indexed: 03/14/2024]
Abstract
Arsenic is an environmentally ubiquitous toxic metalloid. Chronic exposure to arsenic may lead to arsenicosis, while no specific therapeutic strategies are available for the arsenism patients. And Ginkgo biloba extract (GBE) exhibited protective effect in our previous study. However, the mechanisms by which GBE protects the arsenism patients remain poorly understood. A liquid chromatography-mass spectrometry (LC-MS) based untargeted metabolomics analysis was used to study metabolic response in arsenism patients upon GBE intervention. In total, 39 coal-burning type of arsenism patients and 50 healthy residents were enrolled from Guizhou province of China. The intervention group (n = 39) were arsenism patients orally administered with GBE (three times per day) for continuous 90 days. Plasma samples from 50 healthy controls (HC) and 39 arsenism patients before and after GBE intervention were collected and analyzed by established LC-MS method. Statistical analysis was performed by MetaboAnalyst 5.0 to identify differential metabolites. Multivariate analysis revealed a separation in arsenism patients between before (BG) and after GBE intervention (AG) group. It was observed that 35 differential metabolites were identified between BG and AG group, and 30 of them were completely or partially reversed by GBE intervention, with 14 differential metabolites significantly up-regulated and 16 differential metabolites considerably down-regulated. These metabolites were involved in promoting immune response and anti-inflammatory functions, and alleviating oxidative stress. Taken together, these findings indicate that the GBE intervention could probably exert its protective effects by reversing disordered metabolites modulating these functions in arsenism patients, and provide insights into further exploration of mechanistic studies.
Collapse
Affiliation(s)
- Weiwei Li
- Key Laboratory of Environmental Pollution, Monitoring and Disease Control, Ministry of Education, Department of Toxicology, School of Public Health, Guizhou Medical University, Guiyang 550025, PR China
| | - Xiong Chen
- Key Laboratory of Environmental Pollution, Monitoring and Disease Control, Ministry of Education, Department of Toxicology, School of Public Health, Guizhou Medical University, Guiyang 550025, PR China
| | - Maolin Yao
- Key Laboratory of Environmental Pollution, Monitoring and Disease Control, Ministry of Education, Department of Toxicology, School of Public Health, Guizhou Medical University, Guiyang 550025, PR China
| | - Baofei Sun
- Key Laboratory of Environmental Pollution, Monitoring and Disease Control, Ministry of Education, Department of Toxicology, School of Public Health, Guizhou Medical University, Guiyang 550025, PR China
| | - Kai Zhu
- Key Laboratory of Environmental Pollution, Monitoring and Disease Control, Ministry of Education, Department of Toxicology, School of Public Health, Guizhou Medical University, Guiyang 550025, PR China
| | - Wenjuan Wang
- Key Laboratory of Environmental Pollution, Monitoring and Disease Control, Ministry of Education, Department of Toxicology, School of Public Health, Guizhou Medical University, Guiyang 550025, PR China
| | - Aihua Zhang
- Key Laboratory of Environmental Pollution, Monitoring and Disease Control, Ministry of Education, Department of Toxicology, School of Public Health, Guizhou Medical University, Guiyang 550025, PR China.
| |
Collapse
|
4
|
Sijko-Szpańska M, Kozłowska L. Analysis of Relationships between Metabolic Changes and Selected Nutrient Intake in Women Environmentally Exposed to Arsenic. Metabolites 2024; 14:75. [PMID: 38276310 PMCID: PMC10820439 DOI: 10.3390/metabo14010075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 01/17/2024] [Accepted: 01/20/2024] [Indexed: 01/27/2024] Open
Abstract
Nutrients involved in the metabolism of inorganic arsenic (iAs) may play a crucial role in mitigating the adverse health effects associated with such exposure. Consequently, the objective of this study was to analyze the association between the intake levels of nutrients involved in iAs metabolism and alterations in the metabolic profile during arsenic exposure. The study cohort comprised environmentally exposed women: WL (lower total urinary arsenic (As), n = 73) and WH (higher As, n = 73). The analysis included urinary untargeted metabolomics (conducted via liquid chromatography-mass spectrometry) and the assessment of nutrient intake involved in iAs metabolism, specifically methionine, vitamins B2, B6, and B12, folate, and zinc (based on 3-day dietary records of food and beverages). In the WL group, the intake of all analyzed nutrients exhibited a negative correlation with 5 metabolites (argininosuccinic acid, 5-hydroxy-L-tryptophan, 11-trans-LTE4, mevalonic acid, aminoadipic acid), while in the WH group, it correlated with 10 metabolites (5-hydroxy-L-tryptophan, dihyroxy-1H-indole glucuronide I, 11-trans-LTE4, isovalerylglucuronide, 18-oxocortisol, 3-hydroxydecanedioic acid, S-3-oxodecanoyl cysteamine, L-arginine, p-cresol glucuronide, thromboxane B2). Furthermore, nutrient intake demonstrated a positive association with 3 metabolites in the WL group (inosine, deoxyuridine, glutamine) and the WH group (inosine, N-acetyl-L-aspartic acid, tetrahydrodeoxycorticosterone). Altering the intake of nutrients involved in iAs metabolism could be a pivotal factor in reducing the negative impact of arsenic exposure on the human body. This study underscores the significance of maintaining adequate nutrient intake, particularly in populations exposed to arsenic.
Collapse
Affiliation(s)
- Monika Sijko-Szpańska
- Laboratory of Human Metabolism Research, Department of Dietetics, Institute of Human Nutrition Sciences, Warsaw University of Life Sciences, 02776 Warsaw, Poland
| | - Lucyna Kozłowska
- Laboratory of Human Metabolism Research, Department of Dietetics, Institute of Human Nutrition Sciences, Warsaw University of Life Sciences, 02776 Warsaw, Poland
| |
Collapse
|
5
|
Hu C, Wang J, Qi F, Liu Y, Zhao F, Wang J, Sun B. Untargeted metabolite profiling of serum in rats exposed to pyrraline. Food Sci Biotechnol 2023; 32:1541-1549. [PMID: 37637845 PMCID: PMC10449741 DOI: 10.1007/s10068-023-01256-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 12/27/2022] [Accepted: 01/10/2023] [Indexed: 01/27/2023] Open
Abstract
Pyrraline, one of advanced glycation end-products, is formed in advanced Maillard reactions. It was reported that the presence of pyrraline was tested to be associated with nephropathy and diabetes. Pyrraline might result in potential health risks because many modern diets are heat processed. In the study, an integrated metabolomics by ultra-high-performance liquid chromatography with mass spectrometry was used to evaluate the effects of pyrraline on metabolism in rats. Thirty-two metabolites were identified as differential metabolites. Linolenic acid metabolism, phenylalanine, tyrosine and tryptophan biosynthesis, arachidonic acid metabolism, tyrosine metabolism and glycerophospholipid metabolism were the main perturbed networks in this pathological process. Differential metabolites and metabolic pathways we found give new insights into studying the toxic molecular mechanisms of pyrraline. Supplementary Information The online version contains supplementary material available at 10.1007/s10068-023-01256-7.
Collapse
Affiliation(s)
- Chuanqin Hu
- China-Canada Joint Lab of Food Nutrition and Health (Beijing), Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, Beijing Laboratory for Food Quality and Safety, Key Laboratory of Cleaner Production and Integrated Resource Utilization of China National Light Industry, Beijing Technology and Business University (BTBU), 11 Fucheng Road, Beijing, 100048 China
| | - Jiahui Wang
- China-Canada Joint Lab of Food Nutrition and Health (Beijing), Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, Beijing Laboratory for Food Quality and Safety, Key Laboratory of Cleaner Production and Integrated Resource Utilization of China National Light Industry, Beijing Technology and Business University (BTBU), 11 Fucheng Road, Beijing, 100048 China
| | - Fangyuan Qi
- China-Canada Joint Lab of Food Nutrition and Health (Beijing), Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, Beijing Laboratory for Food Quality and Safety, Key Laboratory of Cleaner Production and Integrated Resource Utilization of China National Light Industry, Beijing Technology and Business University (BTBU), 11 Fucheng Road, Beijing, 100048 China
| | - Yingli Liu
- China-Canada Joint Lab of Food Nutrition and Health (Beijing), Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, Beijing Laboratory for Food Quality and Safety, Key Laboratory of Cleaner Production and Integrated Resource Utilization of China National Light Industry, Beijing Technology and Business University (BTBU), 11 Fucheng Road, Beijing, 100048 China
| | - Fen Zhao
- China-Canada Joint Lab of Food Nutrition and Health (Beijing), Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, Beijing Laboratory for Food Quality and Safety, Key Laboratory of Cleaner Production and Integrated Resource Utilization of China National Light Industry, Beijing Technology and Business University (BTBU), 11 Fucheng Road, Beijing, 100048 China
| | - Jing Wang
- China-Canada Joint Lab of Food Nutrition and Health (Beijing), Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, Beijing Laboratory for Food Quality and Safety, Key Laboratory of Cleaner Production and Integrated Resource Utilization of China National Light Industry, Beijing Technology and Business University (BTBU), 11 Fucheng Road, Beijing, 100048 China
| | - Baoguo Sun
- China-Canada Joint Lab of Food Nutrition and Health (Beijing), Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, Beijing Laboratory for Food Quality and Safety, Key Laboratory of Cleaner Production and Integrated Resource Utilization of China National Light Industry, Beijing Technology and Business University (BTBU), 11 Fucheng Road, Beijing, 100048 China
| |
Collapse
|
6
|
Yang Y, Chi L, Liu CW, Hsiao YC, Lu K. Chronic Arsenic Exposure Perturbs Gut Microbiota and Bile Acid Homeostasis in Mice. Chem Res Toxicol 2023; 36:1037-1043. [PMID: 37295807 PMCID: PMC10773974 DOI: 10.1021/acs.chemrestox.2c00410] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Arsenic exposure can perturb gut microbiota and their metabolic functions. We exposed C57BL/6 mice to 1 ppm arsenic in drinking water and investigated whether arsenic exposure affects the homeostasis of bile acids, a group of key microbiome-regulated signaling molecules of microbiome-host interactions. We found that arsenic exposure differentially changed major unconjugated primary bile acids and consistently decreased secondary bile acids in the serum and liver. The relative abundance of Bacteroidetes and Firmicutes was associated with the bile acid level in serum. This study demonstrates that arsenic-induced gut microbiota dysbiosis may play a role in arsenic-perturbed bile acid homeostasis.
Collapse
Affiliation(s)
- Yifei Yang
- Department of Environmental Sciences and Engineering, University of North Carolina at Chapel Hill, NC 27599, United States
| | - Liang Chi
- Department of Environmental Sciences and Engineering, University of North Carolina at Chapel Hill, NC 27599, United States
| | - Chih-wei Liu
- Department of Environmental Sciences and Engineering, University of North Carolina at Chapel Hill, NC 27599, United States
| | - Yun-Chung Hsiao
- Department of Environmental Sciences and Engineering, University of North Carolina at Chapel Hill, NC 27599, United States
| | - Kun Lu
- Department of Environmental Sciences and Engineering, University of North Carolina at Chapel Hill, NC 27599, United States
| |
Collapse
|
7
|
Wu H, Kalia V, Niedzwiecki MM, Kioumourtzoglou MA, Pierce B, Ilievski V, Goldsmith J, Jones DP, Navas-Acien A, Walker DI, Gamble MV. Metabolomic changes associated with chronic arsenic exposure in a Bangladeshi population. CHEMOSPHERE 2023; 320:137998. [PMID: 36746250 PMCID: PMC9993428 DOI: 10.1016/j.chemosphere.2023.137998] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 01/10/2023] [Accepted: 01/27/2023] [Indexed: 06/18/2023]
Abstract
Chronic exposure to arsenic (As) remains a global public health concern and our understanding of the biological mechanisms underlying the adverse effects of As exposure remains incomplete. Here, we used a high-resolution metabolomics approach to examine how As affects metabolic pathways in humans. We selected 60 non-smoking adults from the Folic Acid and Creatine Trial (FACT). Inorganic (AsIII, AsV) and organic (monomethylarsonous acid [MMAs], dimethylarsinous Acid [DMAs]) As species were measured in blood and urine collected at baseline and at 12 weeks. Plasma metabolome profiles were measured using untargeted high-resolution mass spectrometry. Associations of blood and urinary As with 170 confirmed metabolites and >26,000 untargeted spectral features were modeled using a metabolome-wide association study (MWAS) approach. Models were adjusted for age, sex, visit, and BMI and corrected for false discovery rate (FDR). In the MWAS screening of confirmed metabolites, 17 were associated with ≥1 blood As species (FDR<0.05), including fatty acids, neurotransmitter metabolites, and amino acids. These results were consistent across blood As species and between blood and urine As. Untargeted MWAS identified 423 spectral features associated with ≥1 blood As species. Unlike the confirmed metabolites, untargeted model results were not consistent across As species, with AsV and DMAs showing distinct association patterns. Mummichog pathway analysis revealed 12 enriched metabolic pathways that overlapped with the 17 identified metabolites, including one carbon metabolism, tricarboxylic acid cycle, fatty acid metabolism, and purine metabolism. Exposure to As may affect numerous essential pathways that underlie the well-characterized associations of As with multiple chronic diseases.
Collapse
Affiliation(s)
- Haotian Wu
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, NY, USA
| | - Vrinda Kalia
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, NY, USA
| | - Megan M Niedzwiecki
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | | | - Brandon Pierce
- Department of Public Health Sciences, University of Chicago, Chicago, IL, USA; Department of Human Genetics, University of Chicago, Chicago, IL, USA; Comprehensive Cancer Center, University of Chicago, Chicago, IL, USA
| | - Vesna Ilievski
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, NY, USA
| | - Jeff Goldsmith
- Department of Biostatistics, Mailman School of Public Health, Columbia University, New York, NY, USA
| | - Dean P Jones
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Department of Medicine, Emory University School of Medicine, Atlanta, USA; Department of Biochemistry, Emory University School of Medicine, Atlanta, USA
| | - Ana Navas-Acien
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, NY, USA
| | - Douglas I Walker
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA, USA.
| | - Mary V Gamble
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, NY, USA.
| |
Collapse
|
8
|
Wang C, Xu Z, Qiu X, Wei Y, Peralta AA, Yazdi MD, Jin T, Li W, Just A, Heiss J, Hou L, Zheng Y, Coull BA, Kosheleva A, Sparrow D, Amarasiriwardena C, Wright RO, Baccarelli AA, Schwartz JD. Epigenome-wide DNA methylation in leukocytes and toenail metals: The normative aging study. ENVIRONMENTAL RESEARCH 2023; 217:114797. [PMID: 36379232 PMCID: PMC9825663 DOI: 10.1016/j.envres.2022.114797] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 10/27/2022] [Accepted: 11/10/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND Environmental metal exposures have been associated with multiple deleterious health endpoints. DNA methylation (DNAm) may provide insight into the mechanisms underlying these relationships. Toenail metals are non-invasive biomarkers, reflecting a medium-term time exposure window. OBJECTIVES This study examined variation in leukocyte DNAm and toenail arsenic (As), cadmium (Cd), lead (Pb), manganese (Mn), and mercury (Hg) among elderly men in the Normative Aging Study, a longitudinal cohort. METHODS We repeatedly collected samples of blood and toenail clippings. We measured DNAm in leukocytes with the Illumina HumanMethylation450 K BeadChip. We first performed median regression to evaluate the effects of each individual toenail metal on DNAm at three levels: individual cytosine-phosphate-guanine (CpG) sites, regions, and pathways. Then, we applied a Bayesian kernel machine regression (BKMR) to assess the joint and individual effects of metal mixtures on DNAm. Significant CpGs were identified using a multiple testing correction based on the independent degrees of freedom approach for correlated outcomes. The approach considers the effective degrees of freedom in the DNAm data using the principal components that explain >95% variation of the data. RESULTS We included 564 subjects (754 visits) between 1999 and 2013. The numbers of significantly differentially methylated CpG sites, regions, and pathways varied by metals. For example, we found six significant pathways for As, three for Cd, and one for Mn. The As-associated pathways were associated with cancer (e.g., skin cancer) and cardiovascular disease, whereas the Cd-associated pathways were related to lung cancer. Metal mixtures were also associated with 47 significant CpG sites, as well as pathways, mainly related to cancer and cardiovascular disease. CONCLUSIONS This study provides an approach to understanding the potential epigenetic mechanisms underlying observed relations between toenail metals and adverse health endpoints.
Collapse
Affiliation(s)
- Cuicui Wang
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA.
| | - Zongli Xu
- Epidemiology Branch, National Institute of Environmental Health Sciences, NIH, Research Triangle Park, NC, USA
| | - Xinye Qiu
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
| | - Yaguang Wei
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
| | - Adjani A Peralta
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
| | - Mahdieh Danesh Yazdi
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA; Program in Public Health, Department of Family, Population, and Preventive Medicine, Renaissance School of Medicine at Stony Brook University, Stony Brook, NY, USA
| | - Tingfan Jin
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
| | - Wenyuan Li
- School of Public Health and Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Allan Just
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Jonathan Heiss
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Lifang Hou
- Department of Preventive Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Yinan Zheng
- Department of Preventive Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Brent A Coull
- Department of Biostatistics, Harvard T. H. Chan School of Public Health, Boston, MA 02115, USA
| | - Anna Kosheleva
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
| | - David Sparrow
- VA Normative Aging Study, VA Boston Healthcare System, Boston, MA 02130, USA; Department of Medicine, Boston University School of Medicine, Boston, MA 02118, USA
| | - Chitra Amarasiriwardena
- Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Robert O Wright
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Andrea A Baccarelli
- Department of Environmental Health Sciences, Columbia Mailman School of Public Health, New York, NY 10032, USA
| | - Joel D Schwartz
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA; Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
| |
Collapse
|
9
|
Lin Y, Yuan Y, Ouyang Y, Wang H, Xiao Y, Zhao X, Yang H, Li X, Guo H, He M, Zhang X, Xu G, Qiu G, Wu T. Metabolome-Wide Association Study of Multiple Plasma Metals with Serum Metabolomic Profile among Middle-to-Older-Aged Chinese Adults. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:16001-16011. [PMID: 36269707 PMCID: PMC9671050 DOI: 10.1021/acs.est.2c05547] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 10/04/2022] [Accepted: 10/10/2022] [Indexed: 06/16/2023]
Abstract
Metal exposure has been associated with risk of various cardio-metabolic disorders, and investigation on the association between exposure to multiple metals and metabolic responses may reveal novel clues to the underlying mechanisms. Based on a metabolome-wide association study of 17 plasma metals with untargeted metabolomic profiling of 189 serum metabolites among 1992 participants within the Dongfeng-Tongji cohort, we replicated two metal-associated pathways, linoleic acid metabolism and aminoacyl-tRNA biosynthesis, with novel metal associations (false discovery rate, FDR < 0.05), and we also identified two novel pathways, including biosynthesis of unsaturated fatty acids and alpha-linolenic acid metabolism, as associated with metal exposure (FDR < 0.05). Moreover, two-way orthogonal partial least-squares analysis showed that five metabolites, including aspartylphenylalanine, free fatty acid 14:1, uridine, carnitine C14:2, and LPC 18:2, contributed most to the joint covariation between the two data matrices (12.3%, 8.3%, 8.0%, 7.4%, and 7.3%, respectively). Further BKMR analysis showed significant positive joint associations of plasma Al, As, Ba, and Zn with aspartylphenylalanine and of plasma Ba, Co, Mn, and Pb with carnitine C14:2, when all the metals were at the 55th percentiles or above, compared with the median. We also found significant interactions between As and Ba in the association with aspartylphenylalanine (P for interaction = 0.048) and between Ba and Pb in the association with carnitine C14:2 (P for interaction < 0.001). Together, these findings may provide new insights into the mechanisms underlying the adverse health effects induced by metal exposure.
Collapse
Affiliation(s)
- Yuhui Lin
- Ministry
of Education and State Key Laboratory of Environmental Health (Incubating),
School of Public Health, Tongji Medical
College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Yu Yuan
- Ministry
of Education and State Key Laboratory of Environmental Health (Incubating),
School of Public Health, Tongji Medical
College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Yang Ouyang
- CAS
Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy
of Sciences, Dalian 116023, China
- University
of Chinese Academy of Sciences, Beijing 100049, China
| | - Hao Wang
- Ministry
of Education and State Key Laboratory of Environmental Health (Incubating),
School of Public Health, Tongji Medical
College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Yang Xiao
- Ministry
of Education and State Key Laboratory of Environmental Health (Incubating),
School of Public Health, Tongji Medical
College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Xinjie Zhao
- CAS
Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy
of Sciences, Dalian 116023, China
- University
of Chinese Academy of Sciences, Beijing 100049, China
| | - Handong Yang
- Department
of Cardiovascular Disease, Dongfeng Central
Hospital, Hubei University of Medicine, Shiyan 442000, China
| | - Xiulou Li
- Department
of Cardiovascular Disease, Dongfeng Central
Hospital, Hubei University of Medicine, Shiyan 442000, China
| | - Huan Guo
- Ministry
of Education and State Key Laboratory of Environmental Health (Incubating),
School of Public Health, Tongji Medical
College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Meian He
- Ministry
of Education and State Key Laboratory of Environmental Health (Incubating),
School of Public Health, Tongji Medical
College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Xiaomin Zhang
- Ministry
of Education and State Key Laboratory of Environmental Health (Incubating),
School of Public Health, Tongji Medical
College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Guowang Xu
- CAS
Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy
of Sciences, Dalian 116023, China
- University
of Chinese Academy of Sciences, Beijing 100049, China
| | - Gaokun Qiu
- Ministry
of Education and State Key Laboratory of Environmental Health (Incubating),
School of Public Health, Tongji Medical
College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Tangchun Wu
- Ministry
of Education and State Key Laboratory of Environmental Health (Incubating),
School of Public Health, Tongji Medical
College, Huazhong University of Science and Technology, Wuhan 430030, China
| |
Collapse
|
10
|
Calatayud M, Xiong C, Selma-Royo M, van de Wiele T. Arsenolipids reduce butyrate levels and influence human gut microbiota in a donor-dependent way. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 246:114175. [PMID: 36252516 DOI: 10.1016/j.ecoenv.2022.114175] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 10/07/2022] [Accepted: 10/08/2022] [Indexed: 06/16/2023]
Abstract
Arsenolipids are organic arsenic species with variable toxicity. Accurate assessment of the risks derived from arsenic-contaminated seafood intake requires studying the interplay between arsenolipids and the human gut microbiota. This research used the in vitro mucosal simulator of the human intestinal microbial ecosystem (M-SHIME) to assess the effect of defined chemical standards of arsenolipids (AsFA 362 and AsHC 332) on a simulated healthy human gut microbiota (n = 4). Microbial-derived metabolites were quantified by gas chromatography and microbiota structure was characterized by 16S rRNA gene sequencing. A specific reduction in butyrate production (control=5.28 ± 0.3 mM; AsFAs=4.56 ± 0.4 mM; AsHC 332=4.4 ± 0.6 mM, n = 4 donors), concomitant with a reduction in the abundance of Lachnospiraceae UCG-004 group and the Faecalibacterium genus was observed, albeit in a donor-dependent manner. Furthermore, an increase in Escherichia/Shigella, Proteobacteria and Fusobacterium abundance was observed after arsenolipid treatments, depending on individual microbiota background. These alterations in microbial functionality and microbial community structure suggest a detrimental effect of arsenolipids intake towards the commensal gut microbiome, and consequently, on human health.
Collapse
Affiliation(s)
- Marta Calatayud
- Center for Microbial Ecology and Technology, Faculty of Bioscience Engineering, Coupure Links 653, Ghent University, 9000 Ghent, Belgium.
| | - Chan Xiong
- Institute of Chemistry, NAWI Graz, University of Graz, 8010 Graz, Austria.
| | - Marta Selma-Royo
- Department of Biotechnology, Institute of Agrochemistry and Food Technology, National Research Council (IATA-CSIC), Paterna,Valencia, Spain; CIBIO - Centre for Integrative Biolo, Università degli Studi di Trento, Italy
| | - Tom van de Wiele
- Center for Microbial Ecology and Technology, Faculty of Bioscience Engineering, Coupure Links 653, Ghent University, 9000 Ghent, Belgium
| |
Collapse
|
11
|
Meng X, Bai H, Ma Q, Zhang P, Ma H, Deng Y. Screening of small molecular biomarker candidates using untargeted metabolomics strategy in peripheral blood from rats with neuroinflammatory injury induced by whole-brain irradiation. Biomed Chromatogr 2022; 36:e5464. [PMID: 35899750 DOI: 10.1002/bmc.5464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 05/17/2022] [Accepted: 06/06/2022] [Indexed: 11/06/2022]
Abstract
Neuroinflammatory injury is one of the typical brain injuries after the body is exposed to radiation. It is mainly characterized by the release of inflammatory factors by activated microglia and peripherally invading lymphocytes. To provide early warning for nerve injury and early diagnosis of neurodegenerative diseases, it is of great significance to explore the biomarker candidates of neuroinflammatory injury. This study focused on the screening of small molecular biomarker candidates in peripheral blood from rats with neuroinflammatory injury induced by whole-brain irradiation. Rats were exposed to 0, 10, 10×3 and 30 Gy of cobalt-60 γ rays. Serum was collected on the 30th day after exposure and analyzed using RPLC and HILIC coupled with high resolution mass spectrometry based upon untargeted metabolomics. Biomarker candidates were investigated by comparing the 0 Gy group and three irradiation groups using univariate statistical analysis, PCA and OPLS-DA. Eleven biomarker candidates were putatively identified and four major altered metabolic pathways were found. The screened small molecular biomarker candidates could be used as a useful supplement to traditional biomacromolecule markers, and may be valuable for radiation protection, target therapy of inflammatory injury, and discovery of new target drugs for the prevention and cure of related neurodegenerative diseases.
Collapse
Affiliation(s)
- Xianshuang Meng
- School of Life Science, Beijing Institute of Technology, Beijing, China.,Chinese Academy of Inspection and Quarantine, Beijing, China
| | - Hua Bai
- Chinese Academy of Inspection and Quarantine, Beijing, China
| | - Qiang Ma
- Chinese Academy of Inspection and Quarantine, Beijing, China
| | - Peng Zhang
- School of Life Science, Beijing Institute of Technology, Beijing, China
| | - Hong Ma
- School of Life Science, Beijing Institute of Technology, Beijing, China
| | - Yulin Deng
- School of Life Science, Beijing Institute of Technology, Beijing, China
| |
Collapse
|
12
|
Kim S, Hollinger H, Radke EG. 'Omics in environmental epidemiological studies of chemical exposures: A systematic evidence map. ENVIRONMENT INTERNATIONAL 2022; 164:107243. [PMID: 35551006 PMCID: PMC11515950 DOI: 10.1016/j.envint.2022.107243] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 03/25/2022] [Accepted: 04/10/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Systematic evidence maps are increasingly used to develop chemical risk assessments. These maps can provide an overview of available studies and relevant study information to be used for various research objectives and applications. Environmental epidemiological studies that examine the impact of chemical exposures on various 'omic profiles in human populations provide relevant mechanistic information and can be used for benchmark dose modeling to derive potential human health reference values. OBJECTIVES To create a systematic evidence map of environmental epidemiological studies examining environmental contaminant exposures with 'omics in order to characterize the extent of available studies for future research needs. METHODS Systematic review methods were used to search and screen the literature and included the use of machine learning methods to facilitate screening studies. The Populations, Exposures, Comparators and Outcomes (PECO) criteria were developed to identify and screen relevant studies. Studies that met the PECO criteria after full-text review were summarized with information such as study population, study design, sample size, exposure measurement, and 'omics analysis. RESULTS Over 10,000 studies were identified from scientific databases. Screening processes were used to identify 84 studies considered PECO-relevant after full-text review. Various contaminants (e.g. phthalate, benzene, arsenic, etc.) were investigated in epidemiological studies that used one or more of the four 'omics of interest: epigenomics, transcriptomics, proteomics, and metabolomics . The epidemiological study designs that were used to explore single or integrated 'omic research questions with contaminant exposures were cohort studies, controlled trials, cross-sectional, and case-control studies. An interactive web-based systematic evidence map was created to display more study-related information. CONCLUSIONS This systematic evidence map is a novel tool to visually characterize the available environmental epidemiological studies investigating contaminants and biological effects using 'omics technology and serves as a resource for investigators and allows for a range of applications in chemical research and risk assessment needs.
Collapse
Affiliation(s)
- Stephanie Kim
- Superfund and Emergency Management Division, Region 2, U.S. Environmental Protection Agency, NY, USA.
| | - Hillary Hollinger
- Office of Pollution Prevention and Toxics, U.S. Environmental Protection Agency, NC, USA.
| | - Elizabeth G Radke
- Center for Public Health and Environmental Assessment, U.S. Environmental Protection Agency, D.C, USA.
| |
Collapse
|
13
|
Guo H, Li X, Zhang Y, Li J, Yang J, Jiang H, Sun G, Huo T. Metabolic characteristics related to the hazardous effects of environmental arsenic on humans: A metabolomic review. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 236:113459. [PMID: 35367889 DOI: 10.1016/j.ecoenv.2022.113459] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 02/18/2022] [Accepted: 03/24/2022] [Indexed: 06/14/2023]
Abstract
Arsenic (As) is a toxic metalloid exist ubiquitously in environment. Epidemiological studies and laboratory animal studies have verified that As damages multiple organs or tissues in the body and is associated with a variety of diseases. Changes in metabolites usually indicate disturbances in metabolic pathways and specific metabolites are considered as biomarkers of diseases or drugs/toxins or environmental effects. Metabolomics is the quantitative measurement of the dynamic multi-parameter metabolic responses of biological systems due to pathophysiological or genetic changes. Current years, some metabolomic studies on the hazardous effect of environmental As on humans have been reported. In this paper, we first overviewed the metabolomics studies of environmental As exposure in humans since 2011, emphasizing on the data mining process of metabolic characteristics related to the hazardous effects of environmental As on humans. Then, the relationship between metabolic characteristics and the toxic mechanism of environmental As exposure in humans were discussed, and finally, the prospects of metabolomics studies on populations exposed to environmental As were put forward. Our paper may shed light on the study of mechanisms, prevention and individualized treatment of As poisoning.
Collapse
Affiliation(s)
- Haoqi Guo
- Department of Health Laboratory Technology, School of Public Health, China Medical University, Shenyang 110122, PR China
| | - Xiaohong Li
- The First Affiliated Hospital of China Medical University, Shenyang 110001, PR China
| | - Yuwei Zhang
- Department of Health Laboratory Technology, School of Public Health, China Medical University, Shenyang 110122, PR China
| | - Jian Li
- Department of Health Laboratory Technology, School of Public Health, China Medical University, Shenyang 110122, PR China
| | - Jing Yang
- Department of Health Laboratory Technology, School of Public Health, China Medical University, Shenyang 110122, PR China
| | - Hong Jiang
- Department of Health Laboratory Technology, School of Public Health, China Medical University, Shenyang 110122, PR China; Key Laboratory of Arsenic-related Biological Effects and Prevention and Treatment in Liaoning Province, School of Public Health, China Medical University, Shenyang 110122, PR China
| | - Guifan Sun
- Key Laboratory of Arsenic-related Biological Effects and Prevention and Treatment in Liaoning Province, School of Public Health, China Medical University, Shenyang 110122, PR China
| | - Taoguang Huo
- Department of Health Laboratory Technology, School of Public Health, China Medical University, Shenyang 110122, PR China; Key Laboratory of Arsenic-related Biological Effects and Prevention and Treatment in Liaoning Province, School of Public Health, China Medical University, Shenyang 110122, PR China.
| |
Collapse
|
14
|
Doherty BT, McRitchie SL, Pathmasiri WW, Stewart DA, Kirchner D, Anderson KA, Gui J, Madan JC, Hoen AG, Sumner SJ, Karagas MR, Romano ME. Chemical exposures assessed via silicone wristbands and endogenous plasma metabolomics during pregnancy. JOURNAL OF EXPOSURE SCIENCE & ENVIRONMENTAL EPIDEMIOLOGY 2022; 32:259-267. [PMID: 34702988 PMCID: PMC8930423 DOI: 10.1038/s41370-021-00394-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 09/28/2021] [Accepted: 09/29/2021] [Indexed: 05/15/2023]
Abstract
BACKGROUND Metabolomics is a promising method to investigate physiological effects of chemical exposures during pregnancy, with the potential to clarify toxicological mechanisms, suggest sensitive endpoints, and identify novel biomarkers of exposures. OBJECTIVE Investigate the influence of chemical exposures on the maternal plasma metabolome during pregnancy. METHODS Data were obtained from participants (n = 177) in the New Hampshire Birth Cohort Study, a prospective pregnancy cohort. Chemical exposures were assessed via silicone wristbands worn for one week at ~13 gestational weeks. Metabolomic features were assessed in plasma samples obtained at ~24-28 gestational weeks via the Biocrates AbsoluteIDQ® p180 kit and nuclear magnetic resonance (NMR) spectroscopy. Associations between chemical exposures and plasma metabolomics were investigated using multivariate modeling. RESULTS Chemical exposures predicted 11 (of 226) and 23 (of 125) metabolomic features in Biocrates and NMR, respectively. The joint chemical exposures did not significantly predict pathway enrichment, though some individual chemicals were associated with certain amino acids and related metabolic pathways. For example, N,N-diethyl-m-toluamide was associated with the amino acids glycine, L-glutamic acid, L-asparagine, and L-aspartic acid and enrichment of the ammonia recycling pathway. SIGNIFICANCE This study contributes evidence to the potential effects of chemical exposures during pregnancy upon the endogenous maternal plasma metabolome.
Collapse
Affiliation(s)
- Brett T Doherty
- Department of Epidemiology, The Geisel School of Medicine at Dartmouth, Lebanon, NH, USA
| | - Susan L McRitchie
- Nutrition Research Institute, Department of Nutrition, School of Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Wimal W Pathmasiri
- Nutrition Research Institute, Department of Nutrition, School of Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Delisha A Stewart
- Nutrition Research Institute, Department of Nutrition, School of Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - David Kirchner
- Nutrition Research Institute, Department of Nutrition, School of Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Kim A Anderson
- Department of Environmental and Molecular Toxicology, Oregon Status University, Corvallis, OR, USA
| | - Jiang Gui
- Department of Biomedical Data Science, Geisel School of Medicine, Lebanon, NH, USA
| | - Juliette C Madan
- Department of Epidemiology, The Geisel School of Medicine at Dartmouth, Lebanon, NH, USA
- Department of Pediatrics and Psychiatry, Dartmouth Hitchcock Medical Center, Lebanon, NH, USA
| | - Anne G Hoen
- Department of Epidemiology, The Geisel School of Medicine at Dartmouth, Lebanon, NH, USA
- Department of Biomedical Data Science, Geisel School of Medicine, Lebanon, NH, USA
| | - Susan J Sumner
- Nutrition Research Institute, Department of Nutrition, School of Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Margaret R Karagas
- Department of Epidemiology, The Geisel School of Medicine at Dartmouth, Lebanon, NH, USA
| | - Megan E Romano
- Department of Epidemiology, The Geisel School of Medicine at Dartmouth, Lebanon, NH, USA.
| |
Collapse
|
15
|
Sun J, Fang R, Wang H, Xu DX, Yang J, Huang X, Cozzolino D, Fang M, Huang Y. A review of environmental metabolism disrupting chemicals and effect biomarkers associating disease risks: Where exposomics meets metabolomics. ENVIRONMENT INTERNATIONAL 2022; 158:106941. [PMID: 34689039 DOI: 10.1016/j.envint.2021.106941] [Citation(s) in RCA: 78] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 09/03/2021] [Accepted: 10/12/2021] [Indexed: 05/27/2023]
Abstract
Humans are exposed to an ever-increasing number of environmental toxicants, some of which have gradually been elucidated to be important risk factors for metabolic diseases, such as diabetes and obesity. These metabolism-sensitive diseases typically occur when key metabolic and signaling pathways were disrupted, which can be influenced by the exposure to contaminants such as endocrine disrupting chemicals (EDCs), along with genetic and lifestyle factors. This promotes the concept and research on environmental metabolism disrupting chemicals (MDCs). In addition, identifying endogenous biochemical markers of effect linked to disease states is becoming an important tool to screen the biological targets following environmental contaminant exposure, as well as to provide an overview of toxicity risk assessment. As such, the current review aims to contribute to the further understanding of exposome and human health and disease by characterizing environmental exposure and effect metabolic biomarkers. We summarized MDC-associated metabolic biomarkers in laboratory animal and human cohort studies using high throughput targeted and nontargeted metabolomics techniques. Contaminants including heavy metals and organohalogen compounds, especially EDCs, have been repetitively associated with metabolic disorders, whereas emerging contaminants such as perfluoroalkyl substances and microplastics have also been found to disrupt metabolism. In addition, we found major limitations in the effective identification of metabolic biomarkers especially in human studies, toxicological research on the mixed effect of environmental exposure has also been insufficient compared to the research on single chemicals. Thus, it is timely to call for research efforts dedicated to the study of combined effect and metabolic alterations for the better assessment of exposomic toxicology and health risks. Moreover, advanced computational and prediction tools, further validation of metabolic biomarkers, as well as systematic and integrative investigations are also needed in order to reliably identify novel biomarkers and elucidate toxicity mechanisms, and to further utilize exposome and metabolome profiling in public health and safety management.
Collapse
Affiliation(s)
- Jiachen Sun
- College of Marine Life Science, Ocean University of China, Qingdao, China
| | - Runcheng Fang
- Department of Toxicology, School of Public Health, Anhui Medical University, Hefei, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Hefei, China
| | - Hua Wang
- Department of Toxicology, School of Public Health, Anhui Medical University, Hefei, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Hefei, China
| | - De-Xiang Xu
- Department of Toxicology, School of Public Health, Anhui Medical University, Hefei, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Hefei, China
| | - Jing Yang
- State Environmental Protection Key Laboratory of Quality Control in Environmental, Monitoring, China National Environmental Monitoring Center, Beijing, China
| | - Xiaochen Huang
- School of Agriculture, Sun Yat-sen University, Guangzhou, China
| | - Daniel Cozzolino
- ARC Industrial Transformation Training Centre for Uniquely Australian Foods, Centre for Nutrition and Food Sciences, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Coopers Plans, Australia
| | - Mingliang Fang
- School of Civil and Environmental Engineering, Nanyang Technological University, Singapore
| | - Yichao Huang
- Department of Toxicology, School of Public Health, Anhui Medical University, Hefei, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Hefei, China.
| |
Collapse
|
16
|
Dai Y, Huo X, Cheng Z, Faas MM, Xu X. Early-life exposure to widespread environmental toxicants and maternal-fetal health risk: A focus on metabolomic biomarkers. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 739:139626. [PMID: 32535459 DOI: 10.1016/j.scitotenv.2020.139626] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 05/20/2020] [Accepted: 05/20/2020] [Indexed: 02/05/2023]
Abstract
Prenatal exposure to widespread environmental toxicants is detrimental to maternal health and fetal development. The effects of environmental toxicants on maternal and fetal metabolic profile changes have not yet been summarized. This systematic review aims to summarize the current studies exploring the association between prenatal exposure to environmental toxicants and metabolic profile alterations in mother and fetus. We searched the MEDLINE (PubMed) electronic database for relevant literature conducted up to September 18, 2019 with some key terms. From the initial 155 articles, 15 articles met the inclusion and exclusion criteria, and consist of highly heterogeneous research methods. Seven studies assessed the effects of multiple environmental pollutants (metals, organic pollutants, nicotine, air pollutants) on the maternal urine and blood metabolomic profile; five studies evaluated the effects of arsenic, polychlorinated biphenyls (PCBs), nicotine, and ambient fine particulate matter (PM2.5) on the cord blood metabolomic profile; and one study assessed the effects of smoking exposure on the amniotic fluid metabolomic profile. The alteration of metabolic pathways in these studies mainly involve energy metabolism, hormone metabolism, oxidative stress and inflammation. No population study investigated the association between environmental toxicants and placental metabolomics. This systematic review provides evidence that prenatal exposure to a variety of environmental pollutants can affect maternal and fetal metabolomic characteristics. Integration of environmental toxicant exposure and metabolomics data in maternal-fetal samples is helpful to understand the interaction between toxicants and metabolites, so as to reveal the pathogenesis of fetal disease or diseases of fetal origin.
Collapse
Affiliation(s)
- Yifeng Dai
- Laboratory of Environmental Medicine and Developmental Toxicology, Shantou University Medical College, Shantou, Guangdong, China; Immunoendocrinology, Division of Medical Biology, Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, Groningen, the Netherlands
| | - Xia Huo
- Laboratory of Environmental Medicine and Developmental Toxicology, Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou, Guangdong, China
| | - Zhiheng Cheng
- Laboratory of Environmental Medicine and Developmental Toxicology, Shantou University Medical College, Shantou, Guangdong, China; Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, Groningen, the Netherlands
| | - Marijke M Faas
- Immunoendocrinology, Division of Medical Biology, Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, Groningen, the Netherlands; Department of Obstetrics and Gynecology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, Groningen, the Netherlands
| | - Xijin Xu
- Laboratory of Environmental Medicine and Developmental Toxicology, Shantou University Medical College, Shantou, Guangdong, China; Department of Cell Biology and Genetics, Shantou University Medical College, Shantou, Guangdong, China.
| |
Collapse
|
17
|
Koelmel JP, Napolitano MP, Ulmer CZ, Vasiliou V, Garrett TJ, Yost RA, Prasad MNV, Godri Pollitt KJ, Bowden JA. Environmental lipidomics: understanding the response of organisms and ecosystems to a changing world. Metabolomics 2020; 16:56. [PMID: 32307636 DOI: 10.1007/s11306-020-01665-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Accepted: 03/13/2020] [Indexed: 12/19/2022]
Abstract
BACKGROUND Understanding the interaction between organisms and the environment is important for predicting and mitigating the effects of global phenomena such as climate change, and the fate, transport, and health effects of anthropogenic pollutants. By understanding organism and ecosystem responses to environmental stressors at the molecular level, mechanisms of toxicity and adaptation can be determined. This information has important implications in human and environmental health, engineering biotechnologies, and understanding the interaction between anthropogenic induced changes and the biosphere. One class of molecules with unique promise for environmental science are lipids; lipids are highly abundant and ubiquitous across nearly all organisms, and lipid profiles often change drastically in response to external stimuli. These changes allow organisms to maintain essential biological functions, for example, membrane fluidity, as they adapt to a changing climate and chemical environment. Lipidomics can help scientists understand the historical and present biofeedback processes in climate change and the biogeochemical processes affecting nutrient cycles. Lipids can also be used to understand how ecosystems respond to historical environmental changes with lipid signatures dating back to hundreds of millions of years, which can help predict similar changes in the future. In addition, lipids are direct targets of environmental stressors, for example, lipids are easily prone to oxidative damage, which occurs during exposure to most toxins. AIM OF REVIEW This is the first review to summarize the current efforts to comprehensively measure lipids to better understand the interaction between organisms and their environment. This review focuses on lipidomic applications in the arenas of environmental toxicology and exposure assessment, xenobiotic exposures and health (e.g., obesity), global climate change, and nutrient cycles. Moreover, this review summarizes the use of and the potential for lipidomics in engineering biotechnologies for the remediation of persistent compounds and biofuel production. KEY SCIENTIFIC CONCEPT With the preservation of certain lipids across millions of years and our ever-increasing understanding of their diverse biological roles, lipidomic-based approaches provide a unique utility to increase our understanding of the contemporary and historical interactions between organisms, ecosystems, and anthropogenically-induced environmental changes.
Collapse
Affiliation(s)
- Jeremy P Koelmel
- Department of Chemistry, University of Florida, 125 Buckman Drive, Gainesville, FL, 32611, USA
- Department of Environmental Health Sciences, School of Public Health, Yale University, New Haven, CT, 06510, USA
| | - Michael P Napolitano
- CSS, Inc., under contract to National Oceanic and Atmospheric Administration, National Centers for Coastal Ocean Science, Hollings Marine Laboratory, 331 Fort Johnson Road, Charleston, SC, 29412, USA
| | - Candice Z Ulmer
- National Institute of Standards and Technology, Hollings Marine Laboratory, 331 Ft. Johnson Road, Charleston, SC, 29412, USA
| | - Vasilis Vasiliou
- Department of Environmental Health Sciences, School of Public Health, Yale University, New Haven, CT, 06510, USA
| | - Timothy J Garrett
- Department of Chemistry, University of Florida, 125 Buckman Drive, Gainesville, FL, 32611, USA
- Department of Pathology, Immunology and Laboratory Medicine, University of Florida, Gainesville, FL, 32610, USA
| | - Richard A Yost
- Department of Chemistry, University of Florida, 125 Buckman Drive, Gainesville, FL, 32611, USA
- Department of Pathology, Immunology and Laboratory Medicine, University of Florida, Gainesville, FL, 32610, USA
| | - M N V Prasad
- Department of Plant Sciences, University of Hyderabad, Hyderabad, Telangana, 500046, India
| | - Krystal J Godri Pollitt
- Department of Environmental Health Sciences, School of Public Health, Yale University, New Haven, CT, 06510, USA
| | - John A Bowden
- Department of Physiological Sciences, College of Veterinary Medicine, University of Florida, 1333 Center Drive, Gainesville, FL, 32610, USA.
| |
Collapse
|
18
|
Zhao Y, Wang HL, Li TT, Yang F, Tzeng CM. Baicalin Ameliorates Dexamethasone-Induced Osteoporosis by Regulation of the RANK/RANKL/OPG Signaling Pathway. DRUG DESIGN DEVELOPMENT AND THERAPY 2020; 14:195-206. [PMID: 32021104 PMCID: PMC6970258 DOI: 10.2147/dddt.s225516] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Accepted: 12/02/2019] [Indexed: 12/12/2022]
Abstract
Background Osteoporosis is a chronic bone metabolism disorder affecting millions of the world population. The RANKL/RANK/OPG signaling pathway has been confirmed to be the main regulator of osteoporosis. It is of great interest to identify appropriate therapeutic agents that can regulate the RANKL/RANK/OPG pathway. Baicalin (BA) is a well-known traditional Chinese medicine formula against various inflammatory diseases with a proven role of the RANKL/RANK/OPG pathway regulation. However, the potential effect of BA on osteoporosis and the mechanisms underlying this remain unclear. In the present study, we aimed to evaluate the efficacy of BA in the prevention of dexamethasone (DEX)-induced osteoporosis in zebrafish. Methods In this study, growth and development changes of zebrafish and calcein staining were assessed with a micrograph. The expression levels of RANKL and OPG and transcription factors in response to DEX induction and BA administration were evaluated by Western blotting and qRT-PCR. In addition, the intermolecular interactions of BA and RANKL were investigated by molecular docking. Results Results show that BA enhances the growth and development of dexamethasone (DEX)-induced osteoporosis in zebrafish larvae. Calcein staining and calcium and phosphorus determination revealed that BA ameliorates mineralization of DEX-induced osteoporosis zebrafish larvae. BA also regulates the expression of RANKL and OPG and hampers the changes in gene expression related to bone formation and resorption under the induction of DEX in zebrafish. It can be inferred by molecular docking that BA may interact directly with the extracellular domain of RANKL. Conclusion The findings, herein, reveal that BA ameliorates DEX-induced osteoporosis by regulation of the RANK/RANKL/OPG signaling pathway.
Collapse
Affiliation(s)
- Ye Zhao
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing 211800, People's Republic of China.,Jiangsu Synergetic Innovation Center for Advanced Bio-Manufacture, Nanjing Tech University, Nanjing 211800, People's Republic of China
| | - Hui-Ling Wang
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing 211800, People's Republic of China
| | - Tong-Tong Li
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing 211800, People's Republic of China
| | - Fei Yang
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing 211800, People's Republic of China
| | - Chi-Meng Tzeng
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing 211800, People's Republic of China
| |
Collapse
|
19
|
Novel high-coverage targeted metabolomics method (SWATHtoMRM) for exploring follicular fluid metabolome alterations in women with recurrent spontaneous abortion undergoing in vitro fertilization. Sci Rep 2019; 9:10873. [PMID: 31350457 PMCID: PMC6659694 DOI: 10.1038/s41598-019-47370-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Accepted: 07/16/2019] [Indexed: 12/31/2022] Open
Abstract
The complexity of follicular fluid metabolome presents a significant challenge for qualitative and quantitative metabolite profiling, and for discovering the comprehensive biomarkers. In order to address this challenge, a novel SWATHtoMRM metabolomics method was used for providing broad coverage and excellent quantitative capability to discover the human follicular fluid metabolites related to recurrent spontaneous abortion (RSA) after in vitro fertilization and embryo transfer, and to evaluate their relationship with pregnancy outcome. The follicular fluid samples from the spontaneous abortion group (n = 22) and the control group (n = 22) were analyzed using ultra-performance liquid chromatography high-resolution mass spectrometry. A novel, high-coverage, targeted metabolomics method (SWATH to MRM) and a targeted metabolomics method were used to find and validate the differential metabolites between the two groups. A total of 18 follicular fluid metabolites, including amino acids, cholesterol, vitamins, fatty acids, cholic acid, lysophosphatidylcholine and other metabolites, were identified. In the RSA group, 8 metabolites, namely dehydroepiandrosterone, lysoPC(16:0), lysoPC(18:2), lysoPC(18:1), lysoPC(18:0), lysoPC(20:5), lysoPC(20:4), and lysoPC(20:3), were up-regulated, and 10 metabolites, namely phenylalanine, linoleate, oleic acid, docosahexaenoic acid, lithocholic acid, 25-hydroxyvitamin D3, hydroxycholesterol, 13-hydroxy-alpha-tocopherol, leucine, and tryptophan, were down-regulated. These differential metabolites related to RSA may provide a possible diagnostic basis and therapeutic target for RSA, as well as a scientific basis for elucidating the mechanism of RSA.
Collapse
|
20
|
Kozłowska L, Janasik B, Nowicka K, Wąsowicz W. A urinary metabolomics study of a Polish subpopulation environmentally exposed to arsenic. J Trace Elem Med Biol 2019; 54:44-54. [PMID: 31109620 DOI: 10.1016/j.jtemb.2019.03.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2019] [Revised: 03/12/2019] [Accepted: 03/31/2019] [Indexed: 11/23/2022]
Abstract
BACKGROUND Almost every organ in the human body can be affected by arsenic (As) exposure associated with various industrial processes, as well as with contaminated food, drinking water and polluted air. Much is known about high exposure to inorganic As but there is little data on the metabolic changes connected to a low exposure e.g. in people living in smelter areas. OBJECTIVES The objectives of the study were: (1) characterise urinary concentration of total arsenic (AsT) in Polish inhabitants of the vicinity of a copper smelter area, (2) speciation analysis of various forms of arsenic in girls (GL), boys (BL), women (WL) and men (ML) with a slightly elevated AsT concentration and age/sex matched groups with a substantially higher AsT concentration, (GH, BH, WH and MH - respectively), (3) comparison of metabolomics profiles of urine between the age/sex matched people with low and high AsT concentrations. METHODS Urine samples were analysed for total arsenic and its chemical forms (AsIII; AsV, methylarsonic acid, dimethylarsinic acid, arsenobetaine) using HPLC-ICP-MS. Untargeted metabolomics analysis of the urine samples was performed using UPLC system connected to Q-TOF-MS equipped with an electrospray source. The XCMS Online program was applied for feature detection, retention time correction, alignment, statistics, annotation and identification. Potentially identified compounds were fragmented and resulting spectra were compared to the spectra in the Human Metabolome Database. RESULTS Urine concentration of AsT was, as follows: GL 16.40 ± 0.83; GH 115.23 ± 50.52; BL 16.48 ± 0.83; BH 95.00 ± 50.03; WL 16.93 ± 1.21; WH 170.13 ± 96.47; ML 16.91 ± 1.20; MH 151.71 ± 84.31 μg/l and percentage of arsenobetaine in AsT was, as follows: GL 65.5 ± 13.8%, GH 87.2 ± 4.7%, BL 59.8 ± 12.5%, BH 90.5 ± 2.4%, WL 50.8 ± 14.1%, WH 90.4 ± 3.5%, ML 53.3 ± 10.0%, MH 74.6 ± 20.2%. In the people with low and high AsT concentrations there were significant differences in the intensity of signal (is.) from numerous compounds being metabolites of neurotransmitters, nicotine and hormones transformation (serotonin in the girls and women; catecholamines in the girls, boys and women; mineralocorticoids and glucocorticoids in the boys, androgens in the women and men and nicotine in the boys, women and men). These changes might have been associated with higher is. from metabolites of leucine, tryptophan, purine degradation (in the GH, WH), urea cycle (in the WH and MH), glycolysis (in the WH) and with lower is. from metabolites of tricarboxylic acid cycle (in the BH) in comparison with low AsT matched groups. In the MH vs. ML higher is. from metabolite of lipid peroxidation (4-hydroxy-2-nonenal) was observed. Additionally, the presence of significant differences was reported in is. from food components metabolites, which might have modulated the negative effects of As (vitamin C in the girls, boys and men, vitamin B6 in the girls, boys and women as well as phenolic compounds in the boys and girls). We hypothesize that the observed higher is. from metabolites of sulphate (in MH) and glucoronate degradation (in BH, WH and MH) than in the matched low AsT groups may be related to the impaired glucuronidation and sulfonation and higher is. from catecholamines, nicotine and hormones. CONCLUSION Our results indicated that even a low exposure to As is associated with metabolic changes and that urine metabolomics studies could be a good tool to reflect their wide spectrum connected to specific environmental exposure to As, e.g. in smelter areas.
Collapse
Affiliation(s)
- Lucyna Kozłowska
- Department of Dietetics, Faculty of Human Nutrition and Consumer Sciences, Warsaw University of Life Sciences, Nowoursynowska 159c, 02-776, Warsaw, Poland.
| | - Beata Janasik
- Departament of Biological and Environmental Monitoring, Nofer Institute of Occupational Medicine, Św. Teresy od Dzieciątka Jezus 8, 91-348, Łódź, Poland.
| | - Katarzyna Nowicka
- Department of Dietetics, Faculty of Human Nutrition and Consumer Sciences, Warsaw University of Life Sciences, Nowoursynowska 159c, 02-776, Warsaw, Poland.
| | - Wojciech Wąsowicz
- Departament of Biological and Environmental Monitoring, Nofer Institute of Occupational Medicine, Św. Teresy od Dzieciątka Jezus 8, 91-348, Łódź, Poland.
| |
Collapse
|
21
|
Chi L, Tu P, Liu CW, Lai Y, Xue J, Ru H, Lu K. Chronic Arsenic Exposure Induces Oxidative Stress and Perturbs Serum Lysolipids and Fecal Unsaturated Fatty Acid Metabolism. Chem Res Toxicol 2019; 32:1204-1211. [PMID: 31038932 DOI: 10.1021/acs.chemrestox.9b00039] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Chronic arsenic exposure from drinking water is a global public health issue, which is associated with numerous human diseases and influences millions of people worldwide. The effects of arsenic exposure to the metabolic networks remain elusive. Here, we exposed female C57BL/6J mice to 1 ppm inorganic arsenic in drinking water for 3 months to investigate how arsenic exposure perturbs serum and fecal metabolic profiles. We found decreased levels of serum compounds with antioxidative activities in arsenic-treated mice, in accordance with elevated oxidative stress indicated by higher urinary 8-oxo-2'-deoxyguanosine (8-oxo-dG) levels. Moreover, the levels of multiple lysophosphatidylcholines (lysoPCs) were significantly increased in the sera of arsenic-exposed mice, including lysoPC (O-18:0), lysoPC (20:3), lysoPC (18:1), and lysoPC (22:6). Arsenic exposure perturbed the levels of several key polyunsaturated fatty acids (PUFAs) in the fecal samples in concert with alterations in related microbial pathways. Additionally, changes in the abundances of many functional metabolites, together with decreased levels of amino acids, were found in the fecal samples of arsenic-treated mice. By delineating the impact of arsenic exposure on the metabolic profiles, the findings may provide new biomarkers and mechanistic insights into arsenic-associated diseases.
Collapse
Affiliation(s)
- Liang Chi
- Department of Environmental Sciences and Engineering , University of North Carolina at Chapel Hill , Chapel Hill , North Carolina 27599 , United States
| | - Pengcheng Tu
- Department of Environmental Sciences and Engineering , University of North Carolina at Chapel Hill , Chapel Hill , North Carolina 27599 , United States
| | - Chih-Wei Liu
- Department of Environmental Sciences and Engineering , University of North Carolina at Chapel Hill , Chapel Hill , North Carolina 27599 , United States
| | - Yunjia Lai
- Department of Environmental Sciences and Engineering , University of North Carolina at Chapel Hill , Chapel Hill , North Carolina 27599 , United States
| | - Jingchuan Xue
- Department of Environmental Sciences and Engineering , University of North Carolina at Chapel Hill , Chapel Hill , North Carolina 27599 , United States
| | - Hongyu Ru
- Department of Population Health and Pathobiology , North Carolina State University , Raleigh , North Carolina 27607 , United States
| | - Kun Lu
- Department of Environmental Sciences and Engineering , University of North Carolina at Chapel Hill , Chapel Hill , North Carolina 27599 , United States
| |
Collapse
|
22
|
Chandravanshi LP, Gupta R, Shukla RK. Developmental Neurotoxicity of Arsenic: Involvement of Oxidative Stress and Mitochondrial Functions. Biol Trace Elem Res 2018; 186:185-198. [PMID: 29502250 DOI: 10.1007/s12011-018-1286-1] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Accepted: 02/23/2018] [Indexed: 12/31/2022]
Abstract
Over the last decade, there has been an increased concern about the health risks from exposure to arsenic at low doses, because of their neurotoxic effects on the developing brain. The exact mechanism underlying arsenic-induced neurotoxicity during sensitive periods of brain development remains unclear, although enhanced oxidative stresses, leading to mitochondrial dysfunctions might be involved. Here, we highlight the generation of reactive oxygen species (ROS) and oxidative stress which leads to mitochondrial dysfunctions and apoptosis in arsenic-induced developmental neurotoxicity. Here, the administration of sodium arsenite at doses of 2 or 4 mg/kg body weight in female rats from gestational to lactational (GD6-PD21) resulted to increased ROS, led to oxidative stress, and increased the apoptosis in the frontal cortex, hippocampus, and corpus striatum of developing rats on PD22, compared to controls. Enhanced levels of ROS were associated with decreased mitochondrial membrane potential and the activity of mitochondrial complexes, and hampered antioxidant levels. Further, neuronal apoptosis, as measured by changes in the expression of pro-apoptotic (Bax, Caspase-3), anti-apoptotic (Bcl2), and stress marker proteins (p-p38, pJNK) in arsenic-exposed rats, was discussed. The severities of changes were found to more persist in the corpus striatum than in other brain regions of arsenic-exposed rats even after the withdrawal of exposure on PD45 as compared to controls. Therefore, our results indicate that perinatal arsenic exposure leads to abrupt changes in ROS, oxidative stress, and mitochondrial functions and that apoptotic factor in different brain regions of rats might contribute to this arsenic-induced developmental neurotoxicity.
Collapse
Affiliation(s)
- Lalit P Chandravanshi
- Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, 221005, India.
- Developmental Toxicology Division, CSIR-Indian Institute of Toxicology Research, Post Box No. 80, MG Marg, Lucknow, 226 001, India.
| | - Richa Gupta
- Developmental Toxicology Division, CSIR-Indian Institute of Toxicology Research, Post Box No. 80, MG Marg, Lucknow, 226 001, India
| | - Rajendra K Shukla
- Department of Biochemistry, All India Institute of Medical Sciences, Bhopal, India
| |
Collapse
|
23
|
Bonvallot N, David A, Chalmel F, Chevrier C, Cordier S, Cravedi JP, Zalko D. Metabolomics as a powerful tool to decipher the biological effects of environmental contaminants in humans. CURRENT OPINION IN TOXICOLOGY 2018. [DOI: 10.1016/j.cotox.2017.12.007] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
24
|
Gil AM, Duarte D, Pinto J, Barros AS. Assessing Exposome Effects on Pregnancy through Urine Metabolomics of a Portuguese (Estarreja) Cohort. J Proteome Res 2018; 17:1278-1289. [DOI: 10.1021/acs.jproteome.7b00878] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Ana M. Gil
- CICECO
- Aveiro Institute of Materials (CICECO/UA), Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Daniela Duarte
- CICECO
- Aveiro Institute of Materials (CICECO/UA), Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Joana Pinto
- CICECO
- Aveiro Institute of Materials (CICECO/UA), Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
- UCIBIO@REQUIMTE/Laboratório
de Toxicologia, Departamento de Ciências Biológicas,
Faculdade de Farmácia, Universidade do Porto, 4050-313 Porto, Portugal
| | - António S. Barros
- CICECO
- Aveiro Institute of Materials (CICECO/UA), Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
- Department
of Cardiothoracic Surgery and Physiology, Faculty of Medicine, Porto 4200-319, Portugal
| |
Collapse
|
25
|
García-Barrera T, Rodríguez-Moro G, Callejón-Leblic B, Arias-Borrego A, Gómez-Ariza J. Mass spectrometry based analytical approaches and pitfalls for toxicometabolomics of arsenic in mammals: A tutorial review. Anal Chim Acta 2018; 1000:41-66. [DOI: 10.1016/j.aca.2017.10.019] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Revised: 10/18/2017] [Accepted: 10/21/2017] [Indexed: 02/06/2023]
|
26
|
Wu F, Chi L, Ru H, Parvez F, Slavkovich V, Eunus M, Ahmed A, Islam T, Rakibuz-Zaman M, Hasan R, Sarwar G, Graziano JH, Ahsan H, Lu K, Chen Y. Arsenic Exposure from Drinking Water and Urinary Metabolomics: Associations and Long-Term Reproducibility in Bangladesh Adults. ENVIRONMENTAL HEALTH PERSPECTIVES 2018; 126:017005. [PMID: 29329102 PMCID: PMC6014710 DOI: 10.1289/ehp1992] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Revised: 11/24/2017] [Accepted: 11/27/2017] [Indexed: 05/05/2023]
Abstract
BACKGROUND Chronic exposure to inorganic arsenic from drinking water has been associated with a host of cancer and noncancer diseases. The application of metabolomics in epidemiologic studies may allow researchers to identify biomarkers associated with arsenic exposure and its health effects. OBJECTIVE Our goal was to evaluate the long-term reproducibility of urinary metabolites and associations between reproducible metabolites and arsenic exposure. METHODS We studied samples and data from 112 nonsmoking participants (58 men and 54 women) who were free of any major chronic diseases and who were enrolled in the Health Effects of Arsenic Longitudinal Study (HEALS), a large prospective cohort study in Bangladesh. Using a global gas chromatography-mass spectrometry platform, we measured metabolites in their urine samples, which were collected at baseline and again 2 y apart, and estimated intraclass correlation coefficients (ICCs). Linear regression was used to assess the association between arsenic exposure at baseline and metabolite levels in baseline urine samples. RESULTS We identified 2,519 molecular features that were present in all 224 urine samples from the 112 participants, of which 301 had an ICC of ≥0.60. Of the 301 molecular features, water arsenic was significantly related to 31 molecular features and urinary arsenic was significantly related to 74 molecular features after adjusting for multiple comparisons. Six metabolites with a confirmed identity were identified from the 82 molecular features that were significantly associated with either water arsenic or urinary arsenic after adjustment for multiple comparisons. CONCLUSIONS Our study identified urinary metabolites with long-term reproducibility that were associated with arsenic exposure. The data established the feasibility of using metabolomics in future larger studies. https://doi.org/10.1289/EHP1992.
Collapse
Affiliation(s)
- Fen Wu
- Department of Population Health, New York University School of Medicine , New York, New York, USA
- Department of Environmental Medicine, New York University School of Medicine , New York, New York, USA
| | - Liang Chi
- Department of Environmental Sciences and Engineering, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Hongyu Ru
- Department of Environmental Sciences and Engineering, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Faruque Parvez
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, New York, USA
| | - Vesna Slavkovich
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, New York, USA
| | - Mahbub Eunus
- U-Chicago Research Bangladesh, Ltd., Dhaka, Bangladesh
| | | | - Tariqul Islam
- U-Chicago Research Bangladesh, Ltd., Dhaka, Bangladesh
| | | | - Rabiul Hasan
- U-Chicago Research Bangladesh, Ltd., Dhaka, Bangladesh
| | - Golam Sarwar
- U-Chicago Research Bangladesh, Ltd., Dhaka, Bangladesh
| | - Joseph H Graziano
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, New York, USA
| | - Habibul Ahsan
- Department of Health Studies, Center for Cancer Epidemiology and Prevention, University of Chicago, Chicago, Illinois, USA
| | - Kun Lu
- Department of Environmental Sciences and Engineering, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Yu Chen
- Department of Population Health, New York University School of Medicine , New York, New York, USA
- Department of Environmental Medicine, New York University School of Medicine , New York, New York, USA
| |
Collapse
|
27
|
Metabolomics in gestational diabetes. Clin Chim Acta 2017; 475:116-127. [DOI: 10.1016/j.cca.2017.10.019] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Revised: 10/19/2017] [Accepted: 10/20/2017] [Indexed: 12/21/2022]
|
28
|
Wu H, Zhong Q, Wang J, Wang M, Fang F, Xia Z, Zhong R, Huang H, Ke Z, Wei Y, Feng L, Shi Z, Sun E, Song J, Jia X. Beneficial Effects and Toxicity Studies of Xian-ling-gu-bao on Bone Metabolism in Ovariectomized Rats. Front Pharmacol 2017; 8:273. [PMID: 28588485 PMCID: PMC5438972 DOI: 10.3389/fphar.2017.00273] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2016] [Accepted: 05/01/2017] [Indexed: 12/11/2022] Open
Abstract
Xian-ling-gu-bao (XLGB) is a well-known patented traditional Chinese prescription widely used to treat osteoporosis, osteoarthritis, aseptic bone necrosis, or climacteric syndrome. However, recent reports have suggested that XLGB may cause liver injury in humans. In the present study, we aimed to evaluate the efficacy of XLGB in the prevention of osteoporosis in the zebrafish and ovariectomized (OVX) rats, both of which have been used as osteoporosis models. The safety of XLGB after long-term administration to OVX rats was also assessed. OVX rats were administered by oral gavage 270 mg/kg (recommended daily dose), 1350 mg/kg, and 1800 mg/kg of XLGB for 26 weeks. Bone mineral density, relative bone surface to bone volume, relative bone volume to total volume, trabecular number, mean trabecular thickness, and mean trabecular spacing in OVX rats were examined at the end of the 26-week dosing period. Additionally, OPG and RANKL expression in the femur were determined by western blot and immunohistochemical staining. To evaluate the safety of XLGB, body weight, hematology, serum biochemistry markers related to toxicology, and organ histopathology were determined in each group of OVX rats. Conversely, the zebrafish was treated with prednisolone to induce osteoporosis in the embryo. Disodium etidronate was used as a treatment control. XLGB was shown to be effective in preventing osteoporosis in both the OVX rats and the prednisolone-treated zebrafish. Similarly, XLGB increased OPG protein and decreased RANKL protein in OVX rats. Interestingly, no obvious toxicity was observed in the heart, liver, kidney, small intestine, or stomach at dosages of up to 1800 mg/kg after treating the OVX rats for 26 weeks. XLGB was shown to be very effective in treating osteoporosis in OVX rats. No obvious toxicity or adverse effects developed in OVX rats at dosages up to 1800 mg/kg, which is equivalent to six times the daily-recommended dose. Therefore, XLGB should be considered a good option for the treatment of post-menopausal osteoporosis.
Collapse
Affiliation(s)
- Hao Wu
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese MedicineNanjing, China.,Key Laboratory of New Drug Delivery System of Chinese Materia Medica, Jiangsu Province Academy of Chinese MedicineNanjing, China.,College of Pharmacy, Anhui University of Chinese MedicineHefei, China
| | - Qingxiang Zhong
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese MedicineNanjing, China.,Key Laboratory of New Drug Delivery System of Chinese Materia Medica, Jiangsu Province Academy of Chinese MedicineNanjing, China
| | - Jing Wang
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese MedicineNanjing, China.,Key Laboratory of New Drug Delivery System of Chinese Materia Medica, Jiangsu Province Academy of Chinese MedicineNanjing, China
| | - Man Wang
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese MedicineNanjing, China.,College of Pharmacy, Anhui University of Chinese MedicineHefei, China
| | - Fang Fang
- College of Nursing, Huanghai UniversityQingdao, China
| | - Zhi Xia
- Laboratory Animal Center, Jiangsu Province Academy of Chinese MedicineNanjing, China
| | - Rongling Zhong
- Laboratory Animal Center, Jiangsu Province Academy of Chinese MedicineNanjing, China
| | - Houcai Huang
- Laboratory Animal Center, Jiangsu Province Academy of Chinese MedicineNanjing, China
| | - Zhongcheng Ke
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese MedicineNanjing, China.,Key Laboratory of New Drug Delivery System of Chinese Materia Medica, Jiangsu Province Academy of Chinese MedicineNanjing, China
| | - Yingjie Wei
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese MedicineNanjing, China.,Key Laboratory of New Drug Delivery System of Chinese Materia Medica, Jiangsu Province Academy of Chinese MedicineNanjing, China
| | - Liang Feng
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese MedicineNanjing, China.,Key Laboratory of New Drug Delivery System of Chinese Materia Medica, Jiangsu Province Academy of Chinese MedicineNanjing, China
| | - Ziqi Shi
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese MedicineNanjing, China.,Key Laboratory of New Drug Delivery System of Chinese Materia Medica, Jiangsu Province Academy of Chinese MedicineNanjing, China
| | - E Sun
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese MedicineNanjing, China.,Key Laboratory of New Drug Delivery System of Chinese Materia Medica, Jiangsu Province Academy of Chinese MedicineNanjing, China
| | - Jie Song
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese MedicineNanjing, China.,Key Laboratory of New Drug Delivery System of Chinese Materia Medica, Jiangsu Province Academy of Chinese MedicineNanjing, China
| | - Xiaobin Jia
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese MedicineNanjing, China.,Key Laboratory of New Drug Delivery System of Chinese Materia Medica, Jiangsu Province Academy of Chinese MedicineNanjing, China.,College of Pharmacy, Anhui University of Chinese MedicineHefei, China
| |
Collapse
|