1
|
Simon A, Ong TH, Wrobel A, Mendum T, Kunz R. Review: Headspace Components of Explosives for Canine Non-Detonable Training Aid Development. Forensic Chem 2023. [DOI: 10.1016/j.forc.2023.100491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/30/2023]
|
2
|
A comparison between mobile and stationary gas chromatography-mass spectrometry devices for analysis of complex volatile profiles. Anal Bioanal Chem 2023; 415:137-155. [PMID: 36396731 PMCID: PMC9672629 DOI: 10.1007/s00216-022-04391-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 08/25/2022] [Accepted: 10/18/2022] [Indexed: 11/18/2022]
Abstract
On-site analysis of volatile organic compounds (VOCs) with miniaturized gas chromatography-mass spectrometry (GC-MS) systems is a very rapidly developing field of application. While, on the one hand, major technological advances are improving the availability of these systems on the market, on the other hand, systematic studies to assess the performance of such instruments are still lacking. To fill this gap, we compared three portable GC-MS devices to a state-of-the-art benchtop (stationary) system for analysis of a standard mixture of 18 VOCs. We systematically compared analytical parameters such as the sensitivity and similarity of the signal response pattern and the quality of the obtained mass spectra. We found that the investigated mobile instruments (i) showed different response profiles with a generally lower number of identified analytes. Also, (ii) mass spectral reproducibility (% relative standard deviation (RSD) of the relative abundance of selective fragments) was generally worse in the mobile devices (mean RSD for all targeted fragments ~9.7% vs. ~3.5% in the stationary system). Furthermore, mobile devices (iii) showed a poorer mass spectral similarity to commercial reference library spectra (>20% deviation of fragment ion relative intensity vs. ~10% in the stationary GC-MS), suggesting a less reliable identification of analytes by library search. Indeed, (iv) the performance was better with higher-mass and/or more abundant fragments, which should be considered to improve the results of library searches for substance identification. Finally, (v) the estimation of the signal-to-noise ratio (S/N) in mobile instruments as a measure of sensitivity revealed a significantly lower performance compared to the benchtop lab equipment (with a ratio among medians of ~8 times lower). Overall, our study reveals not only a poor signal-to-noise ratio and poor reproducibility of the data obtained from mobile instruments, but also unfavorable results with respect to a reliable identification of substances when they are applied for complex mixtures of volatiles.
Collapse
|
3
|
Smith ME, Westbrook E, Stastny AL, Streicher RP, Elliott MG. Method development for on-site monitoring of volatile organic compounds via portable TD-GC-MS: evaluation of the analytical performances of HAPSITE ® ER instrumentation and thermal desorption sampling media. INTERNATIONAL JOURNAL OF ENVIRONMENTAL ANALYTICAL CHEMISTRY 2022; 102:1-18. [PMID: 39421269 PMCID: PMC11485277 DOI: 10.1080/03067319.2022.2121163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 08/19/2022] [Indexed: 10/19/2024]
Abstract
Determining worker exposure to hazardous volatile organic compounds (VOCs) in air at levels exceeding the Permissible Exposure Limits and Recommended Exposure Limits established by the U.S. federal agencies of Occupational Safety and Health Administration (OSHA) and the National Institute for Occupational Safety and Health (NIOSH), respectively, will continue to be an important part of environmental and occupational health risk assessments. The purpose of this work was to develop a reliable analytical method for rapid and on-site assessments of occupational VOC exposures using field-capable thermal desorption-gas chromatography-mass spectrometry (TD-GC-MS) instrumentation (i.e. the HAPSITE® ER). The experiments involved in this study included determining TD-GC-MS parameters suitable for efficient analyte separation and quantitation on the HAPSITE® ER, determinations of analyte mass loadings that cause mass spectrometer detector saturations, generation of calibration curves, estimations of the limits of detection (LODs) and quantification (LOQs), as well as desorption efficiency and relative response factor repeatability. The LODs using Carbopack™ B and Tenax® TA sampling media were estimated and ranged from 0.2-1.9 ng and 0.045-0.3 ng, respectively. The LOQs using Carbopack™ B and Tenax TA sampling media were estimated and ranged from 1.0-6.3 ng and 0.2-1.1 ng, respectively. We have developed a reliable analytical method for chloroform, benzene, trichloroethylene, and heptane using field-portable HAPSITE® ER instrumentation and Tenax® TA sorbent media. Reliable and accurate methods were developed for chloroform and trichloroethylene using Carbopack™ B sorbent media, however, this particular sorbent hadlow desorption efficiency and insufficient repeatability in relative response factors for many analytes. Our current and ongoing work in determining the uptake rates for analytes on Tenax® TA sorbent media will make the methods described herein applicable for on-site occupational VOC exposure assessments of chloroform, benzene, trichloroethylene, and heptane using either passive or active air sampling techniques.
Collapse
Affiliation(s)
- Michael E. Smith
- Department of Chemistry, University of Cincinnati, Cincinnati, OH, USA
- Centers for Disease Control and Prevention, National Institute for Occupational Safety and Health, Cincinnati, OH, USA
| | - Emily Westbrook
- Centers for Disease Control and Prevention, National Institute for Occupational Safety and Health, Cincinnati, OH, USA
- Department of Science & Health, University of Cincinnati Clermont College, Batavia, OH, USA
| | - Angela L. Stastny
- Centers for Disease Control and Prevention, National Institute for Occupational Safety and Health, Cincinnati, OH, USA
| | - Robert P. Streicher
- Centers for Disease Control and Prevention, National Institute for Occupational Safety and Health, Cincinnati, OH, USA
| | - Michael G. Elliott
- Centers for Disease Control and Prevention, National Institute for Occupational Safety and Health, Cincinnati, OH, USA
- U.S. Department of Energy, Office of Reserve Lands Management, Washington, DC, USA
| |
Collapse
|
4
|
Yang L, Zhou Y, Chen L, Chen H, Liu W, Zheng W, Andersen ME, Zhang Y, Hu Y, Crabbe MJC, Qu W. Single enrichment systems possibly underestimate both exposures and biological effects of organic pollutants from drinking water. CHEMOSPHERE 2022; 292:133496. [PMID: 34990717 DOI: 10.1016/j.chemosphere.2021.133496] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 12/15/2021] [Accepted: 12/29/2021] [Indexed: 06/14/2023]
Abstract
Comprehensive enrichment of contaminants in drinking water is an essential step for accurately determining exposure levels of contaminants and testing their biological effects. Traditional methods using a single absorbent for enriching contaminants in water might not be adequate for complicated matrices with different physical-chemical profiles. To examine this hypothesis, we used an integrated enrichment system that had three sequential stages-XAD-2 resin, poly (styrene-divinylbenzene) and activated charcoal to capture organic pollutants and disinfection by-products (DBPs) from drinking water in Shanghai. Un-adsorbed Organic Compounds in Eluates (UOCEs) named UOCEs-A, -B, and-C following each adsorption stage were determined by gas chromatography-mass spectrometry to evaluate adsorption efficiency of the enrichment system. Meanwhile, biological effects such as cytotoxicity, effects on reactive oxygen species (ROS) generation and glutathione (GSH) depletion were determined in human LO2 cells to identify potential adverse effects on exposure to low dose contaminants. We found that poly-styrene-divinylbenzene (PS-DVB) and activated charcoal (AC) could still partly collect UOCEs-A and-B that the upper adsorption column incompletely captured, and that potential carcinogens like 2-naphthamine were present in all eluates. UOCEs-A at (1-4000), UOCEs-B at (1000-4000), and UOCEs-C at (2400-4000) folds of the actual concentrations had significant cytotoxicity to LO2 cells. Additionally, ROS and GSH change in cells treated with UOCEs indicated the potential for long-term effects of exposure to some mixtures of contaminants such as DBPs at low doses. These results suggested that an enriching system with a single adsorbent would underestimate the exposure level of pollutants and the biological effects of organic pollutants from drinking water. Effective methods for pollutants' enrichment and capture of drinking water should be given priority in future studies on accurate evaluation of biological effects exposed to mixed pollutants via drinking water.
Collapse
Affiliation(s)
- Lan Yang
- Center for Water and Health, Key Lab of Health Technology Assessment, National Health Commission, Key Laboratory of Public Health and Safety, Ministry of Education, Department of Environmental Health, School of Public Health, Fudan University, P.O. Box 249, Yi Xue Yuan Road 138, Shanghai, 200032, China
| | - Ying Zhou
- Center for Water and Health, Key Lab of Health Technology Assessment, National Health Commission, Key Laboratory of Public Health and Safety, Ministry of Education, Department of Environmental Health, School of Public Health, Fudan University, P.O. Box 249, Yi Xue Yuan Road 138, Shanghai, 200032, China; Key Laboratory of Public Health and Safety, Ministry of Education, Department of Hygienic Chemistry, School of Public Health, Fudan University, P.O. Box 122, Yi Xue Yuan Road 138, Shanghai, 200032, China
| | - Li Chen
- Center for Water and Health, Key Lab of Health Technology Assessment, National Health Commission, Key Laboratory of Public Health and Safety, Ministry of Education, Department of Environmental Health, School of Public Health, Fudan University, P.O. Box 249, Yi Xue Yuan Road 138, Shanghai, 200032, China
| | - Hanyi Chen
- Center for Water and Health, Key Lab of Health Technology Assessment, National Health Commission, Key Laboratory of Public Health and Safety, Ministry of Education, Department of Environmental Health, School of Public Health, Fudan University, P.O. Box 249, Yi Xue Yuan Road 138, Shanghai, 200032, China
| | - Wenhao Liu
- Center for Water and Health, Key Lab of Health Technology Assessment, National Health Commission, Key Laboratory of Public Health and Safety, Ministry of Education, Department of Environmental Health, School of Public Health, Fudan University, P.O. Box 249, Yi Xue Yuan Road 138, Shanghai, 200032, China
| | - Weiwei Zheng
- Center for Water and Health, Key Lab of Health Technology Assessment, National Health Commission, Key Laboratory of Public Health and Safety, Ministry of Education, Department of Environmental Health, School of Public Health, Fudan University, P.O. Box 249, Yi Xue Yuan Road 138, Shanghai, 200032, China
| | - Melvin E Andersen
- Andersen ToxConsulting LLC, 4242 Granite Lake Court Denver, North Carolina, 28037, USA
| | - Yubing Zhang
- Department of Toxicology, School of Public Health, Fudan University, Yi Xue Yuan Road 138, Shanghai, 200032, China
| | - Yi Hu
- Center for Water and Health, Key Lab of Health Technology Assessment, National Health Commission, Key Laboratory of Public Health and Safety, Ministry of Education, Department of Environmental Health, School of Public Health, Fudan University, P.O. Box 249, Yi Xue Yuan Road 138, Shanghai, 200032, China
| | - M James C Crabbe
- Wolfson College, Oxford University, Oxford, OX2 6UD, United Kingdom; Institute of Biomedical and Environmental Science & Technology, University of Bedfordshire, Luton, LU1 3JU, UK
| | - Weidong Qu
- Center for Water and Health, Key Lab of Health Technology Assessment, National Health Commission, Key Laboratory of Public Health and Safety, Ministry of Education, Department of Environmental Health, School of Public Health, Fudan University, P.O. Box 249, Yi Xue Yuan Road 138, Shanghai, 200032, China.
| |
Collapse
|
5
|
Odor characterization of a cavity preservation using emission test chambers by different sensory evaluation methods and sampling concepts for instrumental analysis. TALANTA OPEN 2022. [DOI: 10.1016/j.talo.2022.100098] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
|
6
|
Miller DD, Bajracharya A, Dickinson GN, Durbin TA, McGarry JKP, Moser EP, Nuñez LA, Pukkila EJ, Scott PS, Sutton PJ, Johnston NAC. Diffusive uptake rates for passive air sampling: Application to volatile organic compound exposure during FIREX-AQ campaign. CHEMOSPHERE 2022; 287:131808. [PMID: 34461330 PMCID: PMC8612956 DOI: 10.1016/j.chemosphere.2021.131808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 08/02/2021] [Accepted: 08/03/2021] [Indexed: 06/13/2023]
Abstract
Passive (diffusive) sampling using sorbents is an economical and versatile method of measuring pollutants in air, including volatile organic compounds (VOCs). Diffusive uptake rates (UTRs) are needed for each analyte to obtain average concentrations during a specific passive sampling time duration. Here, a simultaneous active/diffusive ambient air sampling technique on Tenax®TA was employed to measure 24-hours, 7, 14 and 28-days UTRs of up to 27 VOCs, including benzene, toluene, ethylbenzene, xylenes (BTEX), C6-C12 hydrocarbons, benzenes derivatives, tetrachloroethylene, pinenes and limonene. Samples were analyzed via thermal desorption-gas chromatography-mass spectrometry (TD-GC-MS) for desired analytes. Seven-day UTR values ranged from 0.17 to 0.59 mL/min and many compounds exhibited a linear relationship with UTR and time duration up to 14 or 28 days. This may be the most comprehensive UTR tabulation of VOCs on Tenax®TA for time periods of 24 hours -28 days available. These rates were applied to VOC data measured during the 2019 NASA/NOAA Fire Influence on Regional to Global Environments and Air Quality (FIREX-AQ) campaign, with goals to determine the chemical composition of western US wildfire smoke and to assess human exposure to air toxics. Summer 2019 exposure levels of BTEX at five Northwestern cities were low and the cancer risk due to benzene was assessed during FIREX-AQ to be background or 1 × 10-6. The UTRs derived here can be useful in applications of diffusive sampling, including estimation of sub-chronic to chronic human exposure risk of air toxics and wildfire smoke.
Collapse
Affiliation(s)
- Dylan D Miller
- Physical, Life, Movement and Sport Sciences Division, Lewis-Clark State College, 500 8th Avenue, Lewiston, ID, USA
| | - Aakriti Bajracharya
- Physical, Life, Movement and Sport Sciences Division, Lewis-Clark State College, 500 8th Avenue, Lewiston, ID, USA
| | - Gabrielle N Dickinson
- Physical, Life, Movement and Sport Sciences Division, Lewis-Clark State College, 500 8th Avenue, Lewiston, ID, USA
| | - Timbre A Durbin
- Physical, Life, Movement and Sport Sciences Division, Lewis-Clark State College, 500 8th Avenue, Lewiston, ID, USA
| | - John K P McGarry
- Physical, Life, Movement and Sport Sciences Division, Lewis-Clark State College, 500 8th Avenue, Lewiston, ID, USA
| | - Elijah P Moser
- Physical, Life, Movement and Sport Sciences Division, Lewis-Clark State College, 500 8th Avenue, Lewiston, ID, USA
| | - Laurel A Nuñez
- Physical, Life, Movement and Sport Sciences Division, Lewis-Clark State College, 500 8th Avenue, Lewiston, ID, USA
| | - Elias J Pukkila
- Physical, Life, Movement and Sport Sciences Division, Lewis-Clark State College, 500 8th Avenue, Lewiston, ID, USA
| | - Phillip S Scott
- Physical, Life, Movement and Sport Sciences Division, Lewis-Clark State College, 500 8th Avenue, Lewiston, ID, USA
| | - Parke J Sutton
- Physical, Life, Movement and Sport Sciences Division, Lewis-Clark State College, 500 8th Avenue, Lewiston, ID, USA
| | - Nancy A C Johnston
- Physical, Life, Movement and Sport Sciences Division, Lewis-Clark State College, 500 8th Avenue, Lewiston, ID, USA.
| |
Collapse
|
7
|
Dörter M, Odabasi M, Yenisoy-Karakaş S. Source apportionment of biogenic and anthropogenic VOCs in Bolu plateau. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 731:139201. [PMID: 32402909 DOI: 10.1016/j.scitotenv.2020.139201] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 04/16/2020] [Accepted: 05/02/2020] [Indexed: 06/11/2023]
Abstract
Total of 69 volatile organic compounds (VOCs) including both biogenic (isoprene, monoterpenes and oxygenated compounds) and anthropogenic ones were investigated in Bolu plateau by passive sampling technique. The main objective of this study was to determine spatial distributions, seasonal variations and possible sources for a wide variety of VOCs. Two-week passive sampling campaigns were performed in the winter and summer of 2017. Anthropogenic VOCs were predominant with a high percentage of contribution, 91% and 69% for winter and summer, respectively. Relatively higher concentrations of biogenic VOCs during the summer campaign were found to be related to higher solar intensity, temperature and amount of broad-leaved tree species. Benzaldehyde, toluene, phenol, benzene, hexane, decanal, benzothiazole, dodecane and acetophenone were anthropogenic VOCs with higher concentrations. Among biogenic VOCs, hexanal, alpha-pinene and limonene were found to be in higher concentrations. Spatial distribution maps were drawn for each VOC. Elevated concentrations of VOCs around the city center and major roads indicate that emissions from domestic heating activities and vehicular emissions can be significant sources of VOCs. The results were also supported by Positive Matrix Factorization (PMF) analyses and G-score distribution maps. Solvent evaporation, wood-coal combustion, biogenic emissions (pine, grain, grass), city atmosphere (styrene emissions from plastic production), biogenic (hornbeam, pine, juniper) and vehicle emissions were the identified as the primary VOC sources in Bolu plateau, contributing 31%, 22%, 8.0%, 8.0%, 13%, and 18%, respectively to the total VOC concentrations.
Collapse
Affiliation(s)
- Melike Dörter
- Department of Chemistry, Bolu Abant Izzet Baysal University, 14030 Bolu, Turkey
| | - Mustafa Odabasi
- Department of Environmental Engineering, Dokuz Eylül University, Izmir, Turkey
| | | |
Collapse
|
8
|
Guo Y, Jud W, Ghirardo A, Antritter F, Benz JP, Schnitzler JP, Rosenkranz M. Sniffing fungi - phenotyping of volatile chemical diversity in Trichoderma species. THE NEW PHYTOLOGIST 2020; 227:244-259. [PMID: 32155672 DOI: 10.1111/nph.16530] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Accepted: 02/26/2020] [Indexed: 05/23/2023]
Abstract
Volatile organic compounds (VOCs) play vital roles in the interaction of fungi with plants and other organisms. A systematic study of the global fungal VOC profiles is still lacking, though it is a prerequisite for elucidating the mechanisms of VOC-mediated interactions. Here we present a versatile system enabling a high-throughput screening of fungal VOCs under controlled temperature. In a proof-of-principle experiment, we characterized the volatile metabolic fingerprints of four Trichoderma spp. over a 48 h growth period. The developed platform allows automated and fast detection of VOCs from up to 14 simultaneously growing fungal cultures in real time. The comprehensive analysis of fungal odors is achieved by employing proton transfer reaction-time of flight-MS and GC-MS. The data-mining strategy based on multivariate data analysis and machine learning allows the volatile metabolic fingerprints to be uncovered. Our data revealed dynamic, development-dependent and extremely species-specific VOC profiles from the biocontrol genus Trichoderma. The two mass spectrometric approaches were highly complementary to each other, together revealing a novel, dynamic view to the fungal VOC release. This analytical system could be used for VOC-based chemotyping of diverse small organisms, or more generally, for any in vivo and in vitro real-time headspace analysis.
Collapse
Affiliation(s)
- Yuan Guo
- Research Unit Environmental Simulation, Institute of Biochemical Plant Pathology, Helmholtz Zentrum München, D-85764, Neuherberg, Germany
| | - Werner Jud
- Research Unit Environmental Simulation, Institute of Biochemical Plant Pathology, Helmholtz Zentrum München, D-85764, Neuherberg, Germany
| | - Andrea Ghirardo
- Research Unit Environmental Simulation, Institute of Biochemical Plant Pathology, Helmholtz Zentrum München, D-85764, Neuherberg, Germany
| | - Felix Antritter
- Research Unit Environmental Simulation, Institute of Biochemical Plant Pathology, Helmholtz Zentrum München, D-85764, Neuherberg, Germany
| | - J Philipp Benz
- Holzforschung München, TUM School of Life Sciences Weihenstephan, Technical University of Munich, D-85354, Freising, Germany
| | - Jörg-Peter Schnitzler
- Research Unit Environmental Simulation, Institute of Biochemical Plant Pathology, Helmholtz Zentrum München, D-85764, Neuherberg, Germany
| | - Maaria Rosenkranz
- Research Unit Environmental Simulation, Institute of Biochemical Plant Pathology, Helmholtz Zentrum München, D-85764, Neuherberg, Germany
| |
Collapse
|
9
|
Basu D, Ailawar S, Celik G, Edmiston P, Ozkan US. Effect of High Temperature on Swellable Organically Modified Silica (SOMS) and Its Application for Preferential CO Oxidation in H
2
Rich Environment. ChemCatChem 2020. [DOI: 10.1002/cctc.202000397] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Dishari Basu
- William G. Lowrie Department of Chemical and Biomolecular Engineering The Ohio State University 151 West Woodruff Avenue Columbus OH 43210 USA
| | - Saurabh Ailawar
- William G. Lowrie Department of Chemical and Biomolecular Engineering The Ohio State University 151 West Woodruff Avenue Columbus OH 43210 USA
| | - Gokhan Celik
- William G. Lowrie Department of Chemical and Biomolecular Engineering The Ohio State University 151 West Woodruff Avenue Columbus OH 43210 USA
| | - Paul Edmiston
- Department of Chemistry The College of Wooster Wooster OH 44691 USA
| | - Umit S. Ozkan
- William G. Lowrie Department of Chemical and Biomolecular Engineering The Ohio State University 151 West Woodruff Avenue Columbus OH 43210 USA
| |
Collapse
|
10
|
Challenges of fast sampling of volatiles for thermal desorption gas chromatography - mass spectrometry. J Chromatogr A 2020; 1617:460822. [PMID: 31928772 DOI: 10.1016/j.chroma.2019.460822] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 12/19/2019] [Accepted: 12/20/2019] [Indexed: 11/20/2022]
Abstract
Fast active sampling of volatile organic compounds (VOCs) under field conditions still is a great challenge especially when the exposure time to the source of emissions is a restricting factor. Hence, to identify ideal conditions for such applications, we systematically compared fast active sampling of VOCs collected on two common adsorbents under two regimes: first, very low gas volumes (from 300 mL) sampled at nominal flow rate and, second, sampling at the maximal applicable flow rate (0.5 L/min) before loss of sorbent material was experienced. For XAD-2 and Tenax TA, efficient sorbents for on-site VOC-sampling followed by thermal desorption GC-MS, significant differences in the signal response of volatile compounds were related not only to the varied experimental factors alone, but also to their interactions and to compound volatility. In the first regime, volatiles (∼0.004-3.13 mM) from Tenax TA gave the highest signal response only above 800 mL sampled gas volume while at low concentrations (∼0.004-0.12 mM), satisfactory recovery from XAD-2 required longer analyte-sorbent interaction. For the second regime, the relative recovery was severely impaired down to 73 ± 23%, n = 56 for Tenax TA and 72 ± 17%, n = 56 for XAD-2 at intermediate concentration, and 79 ± 11%, n = 84 for Tenax TA at high concentration compared to the relative recovery at standard flow rate. Neither Tenax TA nor XAD-2 provided a 100% total recovery (calculated using breakthrough values) for any of the evaluated compounds. Finally, two-way and three-way interactions identified in a multi-variable model, explained not only the dependence of the signal response on different experimental variables, but also their complex interplay affecting the recovery of the VOCs. In conclusion, we show for the first time that XAD-2, a material only recently introduced for the adsorption of volatiles from the gas phase, competes well with the standard material Tenax TA under conditions of fast sampling. Due to the similar absolute recovery with Tenax TA even at low concentration and with regard to the better detection limits, we consider XAD-2 the better choice for fast sampling of VOCs, particularly with low sample volumes at regular flow. For fast sampling with high flow rate, however, both sorbents might be selected only if the corresponding recovery loss can be accepted for the study.
Collapse
|
11
|
Veenaas C, Ripszam M, Haglund P. Analysis of volatile organic compounds in indoor environments using thermal desorption with comprehensive two-dimensional gas chromatography and high-resolution time-of-flight mass spectrometry. J Sep Sci 2020; 43:1489-1498. [PMID: 32052921 DOI: 10.1002/jssc.201901103] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 01/16/2020] [Accepted: 02/10/2020] [Indexed: 01/31/2023]
Abstract
Building-related health effects are frequently observed. Several factors have been listed as possible causes including temperature, humidity, light conditions, presence of particulate matter, and microorganisms or volatile organic compounds. To be able to link exposure to specific volatile organic compounds to building-related health effects, powerful and comprehensive analytical methods are required. For this purpose, we developed an active air sampling method that utilizes dual-bed tubes loaded with TENAX-TA and Carboxen-1000 adsorbents to sample two parallel air samples of 4 L each. For the comprehensive volatile organic compounds analysis, an automated thermal desorption comprehensive two-dimensional gas chromatography high-resolution time-of-flight mass spectrometry method was developed and used. It allowed targeted analysis of approximately 90 known volatile organic compounds with relative standard deviations below 25% for the vast majority of target volatile organic compounds. It also allowed semiquantification (no matching standards) of numerous nontarget air contaminants using the same data set. The nontarget analysis workflow included peak finding, background elimination, feature alignment, detection frequency filtering, and tentative identification. Application of the workflow to air samples from 68 indoor environments at a large hospital complex resulted in a comprehensive volatile organic compound characterization, including 178 single compounds and 13 hydrocarbon groups.
Collapse
Affiliation(s)
| | | | - Peter Haglund
- Department of Chemistry, Umeå University, Umeå, Sweden
| |
Collapse
|
12
|
Metal-organic frameworks for the sorption of acetone and isopropanol in exhaled breath of diabetics prior to quantitation by gas chromatography. Mikrochim Acta 2019; 186:588. [PMID: 31367797 DOI: 10.1007/s00604-019-3713-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Accepted: 07/22/2019] [Indexed: 02/03/2023]
Abstract
A method is described for non-invasive glucose monitoring of diabetics by means of breath analysis. The metal-organic frameworks (MOFs) ZIF-7, UiO-66 and MOF-5 were chosen as sorbents in packed tubes for sampling and preconcentration of acetone and isopropanol which are established diabetes biomarkers. The MOF UiO-66 was found to be the most appropriate sorbent. Following thermal desorption, acetone and isopropanol where quantified by GC. The method has low limits of detection (0.79-0.84 μg·L-1) and wide linear ranges (5-2000 μg·L-1). It is assumed that the good performance of UiO-66 as a sorbent results from its large surface area and unique porous structure, and from van der Waals interactions. The relative standard deviation for six replicate cycles of sampling and preconcentration using one 50 mg UiO-66 packed tube ranged between 2.3 and 6.7% for intra-day assays, and from 2.7 to 4.3% for inter-day assays. A tube packed with 50 mg of UiO-66 packed tube can be used in over 120 cycles of adsorption/desorption without significant loss of collection efficiency. The GC method has been applied for the analysis of diabetic breath samples, and the recoveries from spiked samples ranged from 89.1 to 107.6%. Graphical abstract Schematic presentation of metal-organic frameworks as sorbents combined with thermal desorption-gas chromatography for the determination of acetone and isopropanol in exhaled breath of diabetics.
Collapse
|
13
|
Time-integrated thermal desorption for quantitative SIFT-MS analyses of atmospheric monoterpenes. Anal Bioanal Chem 2019; 411:2997-3007. [DOI: 10.1007/s00216-019-01782-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Revised: 03/01/2019] [Accepted: 03/13/2019] [Indexed: 01/20/2023]
|
14
|
PTR-MS and GC-MS as complementary techniques for analysis of volatiles: A tutorial review. Anal Chim Acta 2018; 1035:1-13. [PMID: 30224127 DOI: 10.1016/j.aca.2018.06.056] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Revised: 06/18/2018] [Accepted: 06/19/2018] [Indexed: 12/14/2022]
Abstract
This tutorial review is a critical commentary on the combined use of two instrumental analytical techniques, namely GC-MS and PTR-MS. The first mention of such an analytical approach likely appeared after the year 2000 and despite many advantages, it has not been applied very often. Therefore, the aim of this article is to elaborate on the concept of their combined use and to provide a curse tutorial for those considering taking such an approach. The issue of complementarity was raised in a broad sense of this term. Special emphasis was placed on indicating the possibilities of complementary utilization of GC-MS and PTR-MS and presenting the advantages and disadvantages as well as the current application of these techniques when used together.
Collapse
|