1
|
Mayer AC, Fent KW, Wilkinson AF, Chen IC, Siegel MR, Toennis C, Sammons D, Meadows J, Kesler RM, Kerber S, Smith DL, Masoud F, Bhandari D, Wang Y, Blount BC, Calafat AM, Horn GP. Evaluating Exposure to VOCs and Naphthalene for Firefighters Wearing Different PPE Configurations through Measures in Air, Exhaled Breath, and Urine. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:6057. [PMID: 37372644 DOI: 10.3390/ijerph20126057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 05/23/2023] [Accepted: 05/29/2023] [Indexed: 06/29/2023]
Abstract
Firefighters are at an increased risk of cancer due to their occupational exposure to combustion byproducts, especially when those compounds penetrate the firefighter personal protective equipment (PPE) ensemble. This has led to questions about the impact of base layers (i.e., shorts vs. pants) under PPE ensembles. This study asked 23 firefighters to perform firefighting activities while wearing one of three different PPE ensembles with varying degrees of protection. Additionally, half of the firefighters unzipped their jackets after the scenario while the other half kept their jackets zipped for five additional minutes. Several volatile organic compound (VOC) and naphthalene air concentrations outside and inside of hoods, turnout jackets, and turnout pants were evaluated; biological (urinary and exhaled breath) samples were also collected. VOCs and naphthalene penetrated the three sampling areas (hoods, jackets, pants). Significant (p-value < 0.05) increases from pre- to post-fire for some metabolites of VOCs (e.g., benzene, toluene) and naphthalene were found. Firefighters wearing shorts and short sleeves absorbed higher amounts of certain compounds (p-value < 0.05), and the PPE designed with enhanced interface control features appeared to provide more protection from some compounds. These results suggest that firefighters can dermally absorb VOCs and naphthalene that penetrate the PPE ensemble.
Collapse
Affiliation(s)
- Alexander C Mayer
- Division of Field Studies and Engineering, National Institute for Occupational Safety and Health (NIOSH), Centers for Disease Control and Prevention (CDC), Cincinnati, OH 45226, USA
| | - Kenneth W Fent
- Division of Field Studies and Engineering, National Institute for Occupational Safety and Health (NIOSH), Centers for Disease Control and Prevention (CDC), Cincinnati, OH 45226, USA
| | - Andrea F Wilkinson
- Division of Field Studies and Engineering, National Institute for Occupational Safety and Health (NIOSH), Centers for Disease Control and Prevention (CDC), Cincinnati, OH 45226, USA
| | - I-Chen Chen
- Division of Field Studies and Engineering, National Institute for Occupational Safety and Health (NIOSH), Centers for Disease Control and Prevention (CDC), Cincinnati, OH 45226, USA
| | - Miriam R Siegel
- Division of Field Studies and Engineering, National Institute for Occupational Safety and Health (NIOSH), Centers for Disease Control and Prevention (CDC), Cincinnati, OH 45226, USA
| | - Christine Toennis
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health (NIOSH), Centers for Disease Control and Prevention (CDC), Cincinnati, OH 45226, USA
| | - Deborah Sammons
- Division of Science Integration, National Institute for Occupational Safety and Health (NIOSH), Centers for Disease Control and Prevention (CDC), Cincinnati, OH 45226, USA
| | - Juliana Meadows
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health (NIOSH), Centers for Disease Control and Prevention (CDC), Cincinnati, OH 45226, USA
| | - Richard M Kesler
- Fire Safety Research Institute, UL Research Institutes, Columbia, MD 21045, USA
| | - Steve Kerber
- Fire Safety Research Institute, UL Research Institutes, Columbia, MD 21045, USA
| | - Denise L Smith
- Health and Human Physiological Sciences, Skidmore College, Saratoga Springs, NY 12866, USA
- Illinois Fire Service Institute, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Farzaneh Masoud
- Illinois Fire Service Institute, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Deepak Bhandari
- Division of Laboratory Sciences, National Center for Environmental Health, Centers for Disease Control and Prevention (CDC), Atlanta, GA 30341, USA
| | - Yuesong Wang
- Division of Laboratory Sciences, National Center for Environmental Health, Centers for Disease Control and Prevention (CDC), Atlanta, GA 30341, USA
| | - Benjamin C Blount
- Division of Laboratory Sciences, National Center for Environmental Health, Centers for Disease Control and Prevention (CDC), Atlanta, GA 30341, USA
| | - Antonia M Calafat
- Division of Laboratory Sciences, National Center for Environmental Health, Centers for Disease Control and Prevention (CDC), Atlanta, GA 30341, USA
| | - Gavin P Horn
- Fire Safety Research Institute, UL Research Institutes, Columbia, MD 21045, USA
| |
Collapse
|
2
|
Westphal K, Dudzik D, Waszczuk-Jankowska M, Graff B, Narkiewicz K, Markuszewski MJ. Common Strategies and Factors Affecting Off-Line Breath Sampling and Volatile Organic Compounds Analysis Using Thermal Desorption-Gas Chromatography-Mass Spectrometry (TD-GC-MS). Metabolites 2022; 13:8. [PMID: 36676933 PMCID: PMC9866406 DOI: 10.3390/metabo13010008] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 12/14/2022] [Accepted: 12/16/2022] [Indexed: 12/24/2022] Open
Abstract
An analysis of exhaled breath enables specialists to noninvasively monitor biochemical processes and to determine any pathological state in the human body. Breath analysis holds the greatest potential to remold and personalize diagnostics; however, it requires a multidisciplinary approach and collaboration of many specialists. Despite the fact that breath is considered to be a less complex matrix than blood, it is not commonly used as a diagnostic and prognostic tool for early detection of disordered conditions due to its problematic sampling, analysis, and storage. This review is intended to determine, standardize, and marshal experimental strategies for successful, reliable, and especially, reproducible breath analysis.
Collapse
Affiliation(s)
- Kinga Westphal
- Department of Hypertension and Diabetology, Medical University of Gdansk, 80-214 Gdansk, Poland
| | - Danuta Dudzik
- Department of Biopharmaceutics and Pharmacodynamics, Faculty of Pharmacy, Medical University of Gdansk, 80-416 Gdansk, Poland
| | - Małgorzata Waszczuk-Jankowska
- Department of Biopharmaceutics and Pharmacodynamics, Faculty of Pharmacy, Medical University of Gdansk, 80-416 Gdansk, Poland
| | - Beata Graff
- Department of Hypertension and Diabetology, Medical University of Gdansk, 80-214 Gdansk, Poland
| | - Krzysztof Narkiewicz
- Department of Hypertension and Diabetology, Medical University of Gdansk, 80-214 Gdansk, Poland
| | - Michał Jan Markuszewski
- Department of Biopharmaceutics and Pharmacodynamics, Faculty of Pharmacy, Medical University of Gdansk, 80-416 Gdansk, Poland
| |
Collapse
|
3
|
von Hoermann C, Weithmann S, Sikorski J, Nevo O, Szpila K, Grzywacz A, Grunwald JE, Reckel F, Overmann J, Steiger S, Ayasse M. Linking bacteria, volatiles and insects on carrion: the role of temporal and spatial factors regulating inter-kingdom communication via volatiles. ROYAL SOCIETY OPEN SCIENCE 2022; 9:220555. [PMID: 36061525 PMCID: PMC9428529 DOI: 10.1098/rsos.220555] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 08/10/2022] [Indexed: 06/15/2023]
Abstract
Multi-kingdom community complexity and the chemically mediated dynamics between bacteria and insects have recently received increased attention in carrion research. However, the strength of these inter-kingdom interactions and the factors that regulate them are poorly studied. We used 75 piglet cadavers across three forest regions to survey the relationship between three actors (epinecrotic bacteria, volatile organic compounds (VOCs) and flies) during the first 4 days of decomposition and the factors that regulate this interdependence. The results showed a dynamic bacterial change during decomposition (temperature-time index) and across the forest management gradient, but not between regions. Similarly, VOC emission was dynamic across a temperature-time index and the forest management gradient but did not differ between regions. However, fly occurrence was dynamic across both space and time. The strong interdependence between the three actors was mainly regulated by the temperature-time index and the study regions, thereby revealing regulation at temporal and spatial scales. Additionally, the actor interdependence was stable across a gradient of forest management intensity. By combining different actors of decomposition, we have expanded our knowledge of the holistic mechanisms regulating carrion community dynamics and inter-kingdom interactions, an important precondition for better describing food web dynamics and entire ecosystem functions.
Collapse
Affiliation(s)
- Christian von Hoermann
- Department of Conservation and Research, Bavarian Forest National Park, Grafenau, Germany
| | - Sandra Weithmann
- Institute of Evolutionary Ecology and Conservation Genomics, University of Ulm, Ulm, Germany
| | - Johannes Sikorski
- Department of Microbial Ecology and Diversity Research, Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures GmbH, Braunschweig, Germany
| | - Omer Nevo
- Institute of Evolutionary Ecology and Conservation Genomics, University of Ulm, Ulm, Germany
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
- Institute of Biodiversity, Friedrich Schiller University, Jena, Germany
| | - Krzysztof Szpila
- Department of Ecology and Biogeography, Nicolaus Copernicus University, Torun, Poland
| | - Andrzej Grzywacz
- Department of Ecology and Biogeography, Nicolaus Copernicus University, Torun, Poland
| | - Jan-Eric Grunwald
- Bavarian State Criminal Police Office, SG 204, Microtraces/Biology, 80636 Munich, Germany
| | - Frank Reckel
- Bavarian State Criminal Police Office, SG 204, Microtraces/Biology, 80636 Munich, Germany
| | - Jörg Overmann
- Department of Microbial Ecology and Diversity Research, Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures GmbH, Braunschweig, Germany
| | - Sandra Steiger
- Department of Evolutionary Animal Ecology, University of Bayreuth, Bayreuth, Germany
| | - Manfred Ayasse
- Institute of Evolutionary Ecology and Conservation Genomics, University of Ulm, Ulm, Germany
| |
Collapse
|
4
|
Mayer AC, Fent KW, Wilkinson A, Chen IC, Kerber S, Smith DL, Kesler RM, Horn GP. Characterizing exposure to benzene, toluene, and naphthalene in firefighters wearing different types of new or laundered PPE. Int J Hyg Environ Health 2022; 240:113900. [PMID: 34902715 PMCID: PMC9903203 DOI: 10.1016/j.ijheh.2021.113900] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 11/22/2021] [Accepted: 12/03/2021] [Indexed: 01/25/2023]
Abstract
The fire service has become more aware of the potential for adverse health outcomes due to occupational exposure to hazardous combustion byproducts. Because of these concerns, personal protective equipment (PPE) manufacturers have developed new protection concepts like particulate-blocking hoods to reduce firefighters' exposures. Additionally, fire departments have implemented exposure reduction interventions like routine laundering of PPE after fire responses. This study utilized a fireground exposure simulator (FES) with 24 firefighters performing firefighting activities on three consecutive days wearing one of three PPE ensembles (stratified by hood design and treatment of PPE): 1) new knit hood, new turnout jacket and new turnout pants 2) new particulate-blocking hood, new turnout jacket and new turnout pants or 3) laundered particulate-blocking hood, laundered turnout jacket and laundered turnout pants. As firefighters performed the firefighting activities, personal air sampling on the outside and inside the turnout jacket was conducted to quantify exposures to volatile organic compounds (VOCs) and naphthalene. Pre- and immediately post-fire exhaled breath samples were collected to characterize the absorption of VOCs. Benzene, toluene, and naphthalene were found to diffuse through and/or around the turnout jacket, as inside jacket benzene concentrations were often near levels reported outside the turnout jacket (9.7-11.7% median benzene reduction from outside the jacket to inside the jacket). The PPE ensemble did not appear to affect the level of contamination found inside the jacket for the compounds evaluated here. Benzene concentrations in exhaled breath increased significantly from pre to post-fire for all three groups (p-values < 0.05). The difference of pre-to post-fire benzene exhaled breath concentrations were positively associated with inside jacket and outside jacket benzene concentrations, even though self-contained breathing apparatus (SCBA) were worn during each response. This suggests the firefighters can absorb these compounds via the dermal route.
Collapse
Affiliation(s)
- Alexander C Mayer
- Division of Field Studies and Engineering, National Institute for Occupational Safety and Health (NIOSH), Centers for Disease Control and Prevention (CDC), Cincinnati, OH, USA.
| | - Kenneth W Fent
- Division of Field Studies and Engineering, National Institute for Occupational Safety and Health (NIOSH), Centers for Disease Control and Prevention (CDC), Cincinnati, OH, USA
| | - Andrea Wilkinson
- Division of Field Studies and Engineering, National Institute for Occupational Safety and Health (NIOSH), Centers for Disease Control and Prevention (CDC), Cincinnati, OH, USA
| | - I-Chen Chen
- Division of Field Studies and Engineering, National Institute for Occupational Safety and Health (NIOSH), Centers for Disease Control and Prevention (CDC), Cincinnati, OH, USA
| | - Steve Kerber
- Fire Safety Research Institute, Underwriters Laboratories, Columbia, MD, USA
| | - Denise L Smith
- Health and Human Physiological Sciences, Skidmore College, Saratoga Springs, NY, USA; Illinois Fire Service Institute, University of Illinois at Urbana-Champaign, IL, USA
| | - Richard M Kesler
- Illinois Fire Service Institute, University of Illinois at Urbana-Champaign, IL, USA
| | - Gavin P Horn
- Fire Safety Research Institute, Underwriters Laboratories, Columbia, MD, USA
| |
Collapse
|
5
|
Zhao JJ, Guo XM, Wang XC, Zhang Y, Ma XL, Ma MH, Zhang JN, Liu JN, Yu YJ, Lv Y, She YB. A chemometric strategy to automatically screen selected ion monitoring ions for gas chromatography-mass spectrometry-based pseudotargeted metabolomics. J Chromatogr A 2022; 1664:462801. [PMID: 35007865 DOI: 10.1016/j.chroma.2021.462801] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 12/29/2021] [Accepted: 12/31/2021] [Indexed: 12/27/2022]
Abstract
The pseudotargeted metabolomics based on gas chromatography-mass spectrometry (GC-MS) has the advantage of filtering out artifacts originating from sample treatment and accurately quantifying underlying compounds in the analyzed samples. However, this technique faces the problem of selecting high-quality selective ions for performing selected ion monitoring (SIM) on instruments. In this work, we proposed AntDAS-SIMOpt, an automatic untargeted strategy for SIM ion optimization that was accomplished on the basis of an experimental design combined with advanced chemometric algorithms. First, a group of diluted quality control samples was used to screen underlying compounds in samples automatically. Ions in each of the resolved mass spectrum were then evaluated by using the developed algorithms to identify the SIM ion. A Matlab graphical user interface (GUI) was designed to facilitate routine analysis, which can be obtained from http://www.pmdb.org.cn/antdassimopt. The performance of the developed strategy was comprehensively investigated by using standard and complex plant datasets. Results indicated that AntDAS-SIMOpt may be useful for GC-MS-based metabolomics.
Collapse
Affiliation(s)
- Juan-Juan Zhao
- College of Pharmacy, Ningxia Medical University, Yinchuan 750004, China; Key Laboratory of Ningxia Minority Medicine Modernization, Ministry of Education, Yinchuan 750004, China
| | - Xiao-Meng Guo
- College of Pharmacy, Ningxia Medical University, Yinchuan 750004, China; Key Laboratory of Ningxia Minority Medicine Modernization, Ministry of Education, Yinchuan 750004, China
| | - Xing-Cai Wang
- Zhejiang University of Technology, Hangzhou 310014, China
| | - Yang Zhang
- College of Pharmacy, Ningxia Medical University, Yinchuan 750004, China; Key Laboratory of Ningxia Minority Medicine Modernization, Ministry of Education, Yinchuan 750004, China
| | - Xing-Ling Ma
- College of Pharmacy, Ningxia Medical University, Yinchuan 750004, China; Key Laboratory of Ningxia Minority Medicine Modernization, Ministry of Education, Yinchuan 750004, China
| | - Meng-Han Ma
- College of Pharmacy, Ningxia Medical University, Yinchuan 750004, China; Key Laboratory of Ningxia Minority Medicine Modernization, Ministry of Education, Yinchuan 750004, China
| | - Jia-Ni Zhang
- College of Pharmacy, Ningxia Medical University, Yinchuan 750004, China; Key Laboratory of Ningxia Minority Medicine Modernization, Ministry of Education, Yinchuan 750004, China
| | - Jia-Nan Liu
- College of Pharmacy, Ningxia Medical University, Yinchuan 750004, China; Key Laboratory of Ningxia Minority Medicine Modernization, Ministry of Education, Yinchuan 750004, China
| | - Yong-Jie Yu
- College of Pharmacy, Ningxia Medical University, Yinchuan 750004, China; Key Laboratory of Ningxia Minority Medicine Modernization, Ministry of Education, Yinchuan 750004, China.
| | - Yi Lv
- Ningxia Inspection and Research Institution of Food Control, Yinchuan 750000, China.
| | - Yuan-Bin She
- Zhejiang University of Technology, Hangzhou 310014, China
| |
Collapse
|
6
|
Drabińska N, Flynn C, Ratcliffe N, Belluomo I, Myridakis A, Gould O, Fois M, Smart A, Devine T, Costello BDL. A literature survey of all volatiles from healthy human breath and bodily fluids: the human volatilome. J Breath Res 2021; 15. [PMID: 33761469 DOI: 10.1088/1752-7163/abf1d0] [Citation(s) in RCA: 105] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Accepted: 03/24/2021] [Indexed: 02/06/2023]
Abstract
This paper comprises an updated version of the 2014 review which reported 1846 volatile organic compounds (VOCs) identified from healthy humans. In total over 900 additional VOCs have been reported since the 2014 review and the VOCs from semen have been added. The numbers of VOCs found in breath and the other bodily fluids are: blood 379, breath 1488, faeces 443, milk 290, saliva 549, semen 196, skin 623 and urine 444. Compounds were assigned CAS registry numbers and named according to a common convention where possible. The compounds have been included in a single table with the source reference(s) for each VOC, an update on our 2014 paper. VOCs have also been grouped into tables according to their chemical class or functionality to permit easy comparison. Careful use of the database is needed, as a number of the identified VOCs only have level 2-putative assignment, and only a small fraction of the reported VOCs have been validated by standards. Some clear differences are observed, for instance, a lack of esters in urine with a high number in faeces and breath. However, the lack of compounds from matrices such a semen and milk compared to breath for example could be due to the techniques used or reflect the intensity of effort e.g. there are few publications on VOCs from milk and semen compared to a large number for breath. The large number of volatiles reported from skin is partly due to the methodologies used, e.g. by collecting skin sebum (with dissolved VOCs and semi VOCs) onto glass beads or cotton pads and then heating to a high temperature to desorb VOCs. All compounds have been included as reported (unless there was a clear discrepancy between name and chemical structure), but there may be some mistaken assignations arising from the original publications, particularly for isomers. It is the authors' intention that this work will not only be a useful database of VOCs listed in the literature but will stimulate further study of VOCs from healthy individuals; for example more work is required to confirm the identification of these VOCs adhering to the principles outlined in the metabolomics standards initiative. Establishing a list of volatiles emanating from healthy individuals and increased understanding of VOC metabolic pathways is an important step for differentiating between diseases using VOCs.
Collapse
Affiliation(s)
- Natalia Drabińska
- Division of Food Sciences, Institute of Animal Reproduction and Food Research of Polish Academy of Sciences, Tuwima 10, 10-747 Olsztyn, Poland
| | - Cheryl Flynn
- Centre of Research in Biosciences, University of the West of England, Frenchay Campus, Coldharbour Lane, Bristol BS16 1QY, United Kingdom
| | - Norman Ratcliffe
- Centre of Research in Biosciences, University of the West of England, Frenchay Campus, Coldharbour Lane, Bristol BS16 1QY, United Kingdom
| | - Ilaria Belluomo
- Department of Surgery and Cancer, Imperial College London, St. Mary's Campus, QEQM Building, London W2 1NY, United Kingdom
| | - Antonis Myridakis
- Department of Surgery and Cancer, Imperial College London, St. Mary's Campus, QEQM Building, London W2 1NY, United Kingdom
| | - Oliver Gould
- Centre of Research in Biosciences, University of the West of England, Frenchay Campus, Coldharbour Lane, Bristol BS16 1QY, United Kingdom
| | - Matteo Fois
- Centre of Research in Biosciences, University of the West of England, Frenchay Campus, Coldharbour Lane, Bristol BS16 1QY, United Kingdom
| | - Amy Smart
- Centre of Research in Biosciences, University of the West of England, Frenchay Campus, Coldharbour Lane, Bristol BS16 1QY, United Kingdom
| | - Terry Devine
- Centre of Research in Biosciences, University of the West of England, Frenchay Campus, Coldharbour Lane, Bristol BS16 1QY, United Kingdom
| | - Ben De Lacy Costello
- Centre of Research in Biosciences, University of the West of England, Frenchay Campus, Coldharbour Lane, Bristol BS16 1QY, United Kingdom
| |
Collapse
|
7
|
Pleil JD, Lowe CN, Wallace MAG, Williams AJ. Using the US EPA CompTox Chemicals Dashboard to interpret targeted and non-targeted GC-MS analyses from human breath and other biological media. J Breath Res 2021; 15:025001. [PMID: 33734097 DOI: 10.1088/1752-7163/abdb03] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The U.S. EPA CompTox Chemicals Dashboard is a freely available web-based application providing access to chemistry, toxicity, and exposure data for ∼900 000 chemicals. Data, search functionality, and prediction models within the Dashboard can help identify chemicals found in environmental analyses and human biomonitoring. It was designed to deliver data generated to support computational toxicology to reduce chemical testing on animals and provide access to new approach methodologies including prediction models. The inclusion of mass and formula-based searches, together with relevant ranking approaches, allows for the identification and prioritization of exogenous (environmental) chemicals from high resolution mass spectrometry in need of further evaluation. The Dashboard includes chemicals that can be detected by liquid chromatography, gas chromatography-mass spectrometry (GC-MS) and direct-MS analyses, and chemical lists have been added that highlight breath-borne volatile and semi-volatile organic compounds. The Dashboard can be searched using various chemical identifiers (e.g. chemical synonyms, CASRN and InChIKeys), chemical formula, MS-ready formulae monoisotopic mass, consumer product categories and assays/genes associated with high-throughput screening data. An integrated search at a chemical level performs searches against PubMed to identify relevant published literature. This article describes specific procedures using the Dashboard as a first-stop tool for exploring both targeted and non-targeted results from GC-MS analyses of chemicals found in breath, exhaled breath condensate, and associated aerosols.
Collapse
Affiliation(s)
- Joachim D Pleil
- Gillings School of Public Health, University of North Carolina, Chapel Hill, NC, United States of America
| | | | | | | |
Collapse
|
8
|
Grashow R, Bessonneau V, Gerona RR, Wang A, Trowbridge J, Lin T, Buren H, Rudel RA, Morello-Frosch R. Integrating Exposure Knowledge and Serum Suspect Screening as a New Approach to Biomonitoring: An Application in Firefighters and Office Workers. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:4344-4355. [PMID: 31971370 PMCID: PMC7182169 DOI: 10.1021/acs.est.9b04579] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 01/15/2020] [Accepted: 01/23/2020] [Indexed: 05/18/2023]
Abstract
Firefighters (FF) are exposed to recognized and probable carcinogens, yet there are few studies of chemical exposures and associated health concerns in women FFs, such as breast cancer. Biomonitoring often requires a priori selection of compounds to be measured, and so, it may not detect relevant, lesser known, exposures. The Women FFs Biomonitoring Collaborative (WFBC) created a biological sample archive and conducted a general suspect screen (GSS) to address this data gap. Using liquid chromatography-quadrupole time-of-flight tandem mass spectrometry, we sought to identify candidate chemicals of interest in serum samples from 83 women FFs and 79 women office workers (OW) in San Francisco. We identified chemical peaks by matching accurate mass from serum samples against a custom chemical database of 722 slightly polar phenolic and acidic compounds, including many of relevance to firefighting or breast cancer etiology. We then selected tentatively identified chemicals for confirmation based on the following criteria: (1) detection frequency or peak area differences between OW and FF; (2) evidence of mammary carcinogenicity, estrogenicity, or genotoxicity; and (3) not currently measured in large biomonitoring studies. We detected 620 chemicals that matched 300 molecular formulas in the WFBC database, including phthalate metabolites, phosphate flame-retardant metabolites, phenols, pesticides, nitro and nitroso compounds, and per- and polyfluoroalkyl substances. Of the 20 suspect chemicals selected for validation, 8 were confirmed-including two alkylphenols, ethyl paraben, BPF, PFOSAA, benzophenone-3, benzyl p-hydroxybenzoate, and triphenyl phosphate-by running a matrix spike of the reference standards and using m/z, retention time, and the confirmation of at least two fragment ions as criteria for matching. GSS provides a powerful high-throughput approach to identify and prioritize novel chemicals for biomonitoring and health studies.
Collapse
Affiliation(s)
- Rachel Grashow
- Silent
Spring Institute, Newton, Massachusetts 02460, United States
| | | | - Roy R. Gerona
- Clinical
Toxicology and Environmental Biomonitoring Lab, Department of Obstetrics,
Gynecology and Reproductive Sciences, University
of California San Francisco, San
Francisco, California 94143, United States
| | - Aolin Wang
- Program
on Reproductive Health and the Environment, Department of Obstetrics,
Gynecology and Reproductive Sciences & Bakar Computational Health
Sciences Institute, University of California
San Francisco, San Francisco, California 94143, United States
| | - Jessica Trowbridge
- School
of Public Health, University of California
Berkeley, Berkeley, California 94720, United States
| | - Thomas Lin
- Clinical
Toxicology and Environmental Biomonitoring Lab, Department of Obstetrics,
Gynecology and Reproductive Sciences, University
of California San Francisco, San
Francisco, California 94143, United States
| | - Heather Buren
- United Fire
Service Women, San Francisco, California 94143, United States
| | - Ruthann A. Rudel
- Silent
Spring Institute, Newton, Massachusetts 02460, United States
- E-mail: . Phone: 617-332-4288 (R.A.R.)
| | - Rachel Morello-Frosch
- School
of Public Health, University of California
Berkeley, Berkeley, California 94720, United States
- Department
of Environmental Science, Policy and Management
University of California Berkeley, Berkeley, California 94720, United States
- E-mail: , Phone: 510-643-6358 (R.M.-F.)
| |
Collapse
|
9
|
Fent KW, Toennis C, Sammons D, Robertson S, Bertke S, Calafat AM, Pleil JD, Wallace MAG, Kerber S, Smith D, Horn GP. Firefighters' absorption of PAHs and VOCs during controlled residential fires by job assignment and fire attack tactic. JOURNAL OF EXPOSURE SCIENCE & ENVIRONMENTAL EPIDEMIOLOGY 2020; 30:338-349. [PMID: 31175324 PMCID: PMC7323473 DOI: 10.1038/s41370-019-0145-2] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Revised: 04/11/2019] [Accepted: 04/17/2019] [Indexed: 05/07/2023]
Abstract
To better understand the absorption of combustion byproducts during firefighting, we performed biological monitoring (breath and urine) on firefighters who responded to controlled residential fires and examined the results by job assignment and fire attack tactic. Urine was analyzed for metabolites of polycyclic aromatic hydrocarbons (PAHs) and breath was analyzed for volatile organic compounds (VOCs) including benzene. Median concentrations of PAH metabolites in urine increased from pre-firefighting to 3-h post firefighting for all job assignments. This change was greatest for firefighters assigned to attack and search with 2.3, 5.6, 3.9, and 1.4-fold median increases in pyrene, phenanthrene, naphthalene, and fluorene metabolites. Median exhaled breath concentrations of benzene increased 2-fold for attack and search firefighters (p < 0.01) and 1.4-fold for outside vent firefighters (p = 0.02). Compared to interior attack, transitional attack resulted in 50% less uptake of pyrene (p = 0.09), 36% less uptake phenanthrene (p = 0.052), and 20% less uptake of fluorene (p < 0.01). Dermal absorption likely contributed to firefighters' exposures in this study. Firefighters' exposures will vary by job assignment and can be reduced by employing a transitional fire attack when feasible.
Collapse
Affiliation(s)
- Kenneth W Fent
- Division of Surveillance, Hazard Evaluations, and Field Studies, National Institute for Occupational Safety and Health (NIOSH), Centers for Disease Control and Prevention (CDC), Cincinnati, OH, USA.
| | - Christine Toennis
- Division of Applied Research and Technology, NIOSH, CDC, Cincinnati, OH, USA
| | - Deborah Sammons
- Division of Applied Research and Technology, NIOSH, CDC, Cincinnati, OH, USA
| | - Shirley Robertson
- Division of Applied Research and Technology, NIOSH, CDC, Cincinnati, OH, USA
| | - Stephen Bertke
- Division of Surveillance, Hazard Evaluations, and Field Studies, National Institute for Occupational Safety and Health (NIOSH), Centers for Disease Control and Prevention (CDC), Cincinnati, OH, USA
| | - Antonia M Calafat
- Division of Laboratory Services, National Center for Environmental Health, CDC, Atlanta, GA, USA
| | - Joachim D Pleil
- National Exposure Research Laboratory, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, NC, USA
| | - M Ariel Geer Wallace
- National Exposure Research Laboratory, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, NC, USA
| | - Steve Kerber
- Firefighter Safety Research Institute, Underwriters Laboratories, Columbia, MD, USA
| | - Denise Smith
- Skidmore College, Saratoga Springs, New York, NY, USA
- Illinois Fire Service Institute, University of Illinois at Urbana-, Champaign, IL, USA
| | - Gavin P Horn
- Illinois Fire Service Institute, University of Illinois at Urbana-, Champaign, IL, USA
| |
Collapse
|
10
|
Wallace MAG, Pleil JD, Whitaker DA, Oliver KD. Dataset of polycyclic aromatic hydrocarbon recoveries from a selection of sorbent tubes for thermal desorption-gas chromatography/mass spectrometry analysis. Data Brief 2020; 29:105252. [PMID: 32099879 PMCID: PMC7029160 DOI: 10.1016/j.dib.2020.105252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Accepted: 01/30/2020] [Indexed: 11/20/2022] Open
Abstract
This dataset contains raw area counts and percent recoveries of polycyclic aromatic hydrocarbon (PAH) standards desorbed from selected sorbent tubes and analyzed using thermal desorption-gas chromatography/mass spectrometry (TD-GC/MS). The results of this study were published in the article "Recovery and reactivity of polycyclic aromatic hydrocarbons collected on selected sorbent tubes and analyzed by thermal desorption-gas chromatography/mass spectrometry" in Journal of Chromatography A [1]. The sorbent tubes studied include stainless steel Carbograph 2TD/1TD, glass quartz wool-Carbograph 2TD, inert-coated stainless steel Carbograph 2TD, glass and stainless steel Tenax TA, PAH (chemical weapons), and glass and stainless steel XRO-440 sorbent tubes. Tables listing the experimental conditions, TD methods, and types of sorbent tubes are included in the manuscript. Data for experiments, including the investigation of incomplete desorption of PAHs from Carbograph 2TD/1TD and XRO-440 sorbent tubes, the comparison of PAH recoveries from three different TD methods, the analysis of PAH breakthrough from sorbent tubes, the investigation of the effect of heat on PAH percent recovery from sorbent tubes, and the formation of reaction products during PAH loading and desorption are included in Appendix A. These data can be used to guide sorbent tube selection for PAH analyses in future studies.
Collapse
Affiliation(s)
- M. Ariel Geer Wallace
- Center for Environmental Measurement and Modeling, Office of Research and Development, U.S. Environmental Protection Agency, 109 T.W. Alexander Drive, Research Triangle Park, NC, 27711, USA
- Corresponding author.
| | - Joachim D. Pleil
- Center for Computational Toxicology and Exposure, Office of Research and Development, U.S. Environmental Protection Agency, 109 T.W. Alexander Drive, Research Triangle Park, NC, 27711, USA
| | - Donald A. Whitaker
- Center for Environmental Measurement and Modeling, Office of Research and Development, U.S. Environmental Protection Agency, 109 T.W. Alexander Drive, Research Triangle Park, NC, 27711, USA
| | - Karen D. Oliver
- Center for Environmental Measurement and Modeling, Office of Research and Development, U.S. Environmental Protection Agency, 109 T.W. Alexander Drive, Research Triangle Park, NC, 27711, USA
| |
Collapse
|
11
|
Pleil JD, Wallace MAG, McCord J, Madden MC, Sobus J, Ferguson G. How do cancer-sniffing dogs sort biological samples? Exploring case-control samples with non-targeted LC-Orbitrap, GC-MS, and immunochemistry methods. J Breath Res 2019; 14:016006. [PMID: 31505485 PMCID: PMC8649743 DOI: 10.1088/1752-7163/ab433a] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Early identification of disease onset is regarded as an important factor for successful medical intervention. However, cancer and other long-term latency diseases are rare and may take years to manifest clinically. As such, there are no gold standards with which to immediately validate proposed preclinical screening methodologies. There is evidence that dogs can sort samples reproducibly into yes/no categories based on case-control training, but the basis of their decisions is unknown. Because dogs are sniffing air, the distinguishing chemicals must be either in the gas-phase or attached to aerosols and/or airborne particles. Recent biomonitoring research has shown how to extract and analyze semi- and non-volatile compounds from human breath in exhaled condensates and aerosols. Further research has shown that exhaled aerosols can be directly collected on standard hospital-style olefin polypropylene masks and that these masks can be used as a simple sampling scheme for canine screening. In this article, detailed liquid chromatography-high resolution mass spectrometry (LC-HR-MS) with Orbitrap instrumentation and gas chromatography-mass spectrometry (GC-MS) analyses were performed on two sets of masks sorted by consensus of a four-dog cohort as either cancer or control. Specifically, after sorting by the dogs, sample masks were cut into multiple sections and extracted for LC-MS and GC-MS non-targeted analyses. Extracts were also analyzed for human cytokines, confirming the presence of human aerosol content above levels in blank masks. In preliminary evaluations, 345 and 44 high quality chemical features were detected by LC-MS and GC-MS analyses, respectively. These features were used to develop provisional orthogonal projection to latent structures-discriminant analysis (OPLS-DA) models to determine if the samples classified as cancer (case) or non-cancer (control) by the dogs could be separated into the same groups using analytical instrumentation. While the OPLS-DA model for the LC-HR-MS data was able to separate the two groups with statistical significance, although weak explanatory power, the GC-MS model was not found to be significant. These results suggest that the dogs may rely on the less volatile compounds from breath aerosol that were analyzed by LC-HR-MS than the more volatile compounds observed by GC-MS to sort mask samples into groups. These results provide justification for more expansive studies in the future that aim to characterize specific chemical features, and the role(s) of these features in maintaining homeostatic biological processes.
Collapse
Affiliation(s)
- Joachim D Pleil
- US Environmental Protection Agency, Office of Research and Development, National Exposure Research Laboratory, 109T. W. Alexander Drive, Research Triangle Park, NC, 27709, United States of America
| | | | | | | | | | | |
Collapse
|
12
|
Wallace MAG, Pleil JD, Whitaker DA, Oliver KD. Recovery and reactivity of polycyclic aromatic hydrocarbons collected on selected sorbent tubes and analyzed by thermal desorption-gas chromatography/mass spectrometry. J Chromatogr A 2019; 1602:19-29. [PMID: 31128883 DOI: 10.1016/j.chroma.2019.05.030] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 05/13/2019] [Accepted: 05/14/2019] [Indexed: 12/13/2022]
Abstract
This article describes the optimization of methodology for extending the measurement of volatile organic compounds (VOCs) to increasingly heavier polycyclic aromatic hydrocarbons (PAHs) with a detailed focus on recent sorbent tube technology. Although PAHs have lower volatility than compounds such as benzene, toluene, ethylbenzene and xylenes, these semi-volatile compounds can be detected in air and breath samples. For this work, PAHs were captured on sorbent tubes and subsequently analyzed using automated thermal desorption gas chromatography - mass spectrometry (ATD-GC/MS). While many different sorbent tubes are commercially available, optimization for airborne PAH sampling using sorbent tubes has not been previously considered. Herein, several commercially available sorbent tubes, including Carbograph 2 TD/1TD, Tenax TA, XRO-440, and inert-coated PAH tubes are compared to determine the relative recovery for eight PAHs commonly found in the environment. Certain types of sorbent materials were found to be better suited for PAH recovery during thermal desorption, and PAH reaction products were observed on several types of sorbent tubes, including graphitized carbon black sorbents with stainless steel tube materials. As such, selection of sorbent tube media should be carefully considered prior to embarking on a PAH study.
Collapse
Affiliation(s)
- M Ariel Geer Wallace
- National Exposure Research Laboratory, Office of Research and Development, U.S. Environmental Protection Agency, 109 T.W. Alexander Drive, Research Triangle Park, NC, 27709, USA.
| | - Joachim D Pleil
- National Exposure Research Laboratory, Office of Research and Development, U.S. Environmental Protection Agency, 109 T.W. Alexander Drive, Research Triangle Park, NC, 27709, USA.
| | - Donald A Whitaker
- National Exposure Research Laboratory, Office of Research and Development, U.S. Environmental Protection Agency, 109 T.W. Alexander Drive, Research Triangle Park, NC, 27709, USA.
| | - Karen D Oliver
- National Exposure Research Laboratory, Office of Research and Development, U.S. Environmental Protection Agency, 109 T.W. Alexander Drive, Research Triangle Park, NC, 27709, USA.
| |
Collapse
|
13
|
Fent KW, Toennis C, Sammons D, Robertson S, Bertke S, Calafat AM, Pleil JD, Geer Wallace MA, Kerber S, Smith DL, Horn GP. Firefighters' and instructors’ absorption of PAHs and benzene during training exercises. Int J Hyg Environ Health 2019; 222:991-1000. [PMID: 31272797 PMCID: PMC8848677 DOI: 10.1016/j.ijheh.2019.06.006] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 06/04/2019] [Accepted: 06/19/2019] [Indexed: 01/09/2023]
Abstract
Introduction: Training fires may constitute a major portion of some firefighters’ occupational exposures to smoke. However, the magnitude and composition of those exposures are not well understood and may vary by the type of training scenario and fuels. Objectives: To understand how structure fire training contributes to firefighters’ and instructors’ select chemical exposures, we conducted biological monitoring during exercises involving combustion of pallet and straw and oriented strand board (OSB) or the use of simulated smoke. Methods: Urine was analyzed for metabolites of polycyclic aromatic hydrocarbons (PAHs) and breath was analyzed for volatile organic compounds (VOCs) including benzene. Results: Median concentrations of nearly all PAH metabolites in urine increased from pre-to 3-hr post-training for each scenario and were highest for OSB, followed by pallet and straw, and then simulated smoke. For instructors who supervised three trainings per day, median concentrations increased at each collection. A single day of OSB exercises led to a 30-fold increase in 1-hydroxypyrene for instructors, culminating in a median endof-shift concentration 3.5-fold greater than median levels measured from firefighters in a previous controlledresidential fire study. Breath concentrations of benzene increased 2 to 7-fold immediately after the training exercises (with the exception of simulated smoke training). Exposures were highest for the OSB scenario and instructors accumulated PAHs with repeated daily exercises. Conclusions: Dermal absorption likely contributed to the biological levels as the respiratory route was well protected. Training academies should consider exposure risks as well as instructional objectives when selecting training exercises.
Collapse
|
14
|
Wallace MAG, Pleil JD, Oliver KD, Whitaker DA, Mentese S, Fent KW, Horn GP. Targeted GC-MS analysis of firefighters' exhaled breath: Exploring biomarker response at the individual level. JOURNAL OF OCCUPATIONAL AND ENVIRONMENTAL HYGIENE 2019; 16:355-366. [PMID: 30932751 PMCID: PMC7027924 DOI: 10.1080/15459624.2019.1588973] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Biomarker measurements can provide unambiguous evidence of environmental exposures as well as the resultant biological responses. Firefighters have a high rate of occupational cancer incidence, which has been proposed to be linked in part to their increased environmental exposure to byproducts of combustion and contaminants produced during fire responses. In this article, the uptake and elimination of targeted volatile organic compounds were investigated by collecting the exhaled breath of firefighters on sorbent tubes before and after controlled structure burns and analyzing samples using automated thermal desorption-gas chromatography (ATD-GC/MS). Volatile organic compounds exposure was assessed by grouping the data according to firefighting job positions as well as visualizing the data at the level of the individual firefighter to determine which individuals had expected exposure responses. When data were assessed at the group level, benzene concentrations were found to be elevated post-exposure in both fire attack, victim search, and outside ventilation firefighting positions. However, the results of the data analysis at the individual level indicate that certain firefighters may be more susceptible to post-exposure volatile organic compounds increases than others, and this should be considered when assessing the effectiveness of firefighting protective gear. Although this work focuses on firefighting activity, the results can be translated to potential human health and ecological effects from building and forest fires.
Collapse
Affiliation(s)
- M Ariel Geer Wallace
- a U.S. Environmental Protection Agency, Office of Research and Development, National Exposure Research Laboratory , Research Triangle Park , North Carolina
| | - Joachim D Pleil
- a U.S. Environmental Protection Agency, Office of Research and Development, National Exposure Research Laboratory , Research Triangle Park , North Carolina
| | - Karen D Oliver
- a U.S. Environmental Protection Agency, Office of Research and Development, National Exposure Research Laboratory , Research Triangle Park , North Carolina
| | - Donald A Whitaker
- a U.S. Environmental Protection Agency, Office of Research and Development, National Exposure Research Laboratory , Research Triangle Park , North Carolina
| | - Sibel Mentese
- b Department of Environmental Engineering , Çanakkale Onsekiz Mart University , Merkez/ Çanakkale , Turkey
| | - Kenneth W Fent
- c Division of Surveillance, Hazard Evaluations and Field Studies , National Institute for Occupational Safety and Health (NIOSH) , Cincinnati , Ohio
| | - Gavin P Horn
- d Illinois Fire Service Institute, University of Illinois at Urbana-Champaign , Champaign , Illinois
| |
Collapse
|
15
|
O’Lenick CR, Pleil JD, Stiegel MA, Sobus JR, Wallace MAG. Detection and analysis of endogenous polar volatile organic compounds (PVOCs) in urine for human exposome research. Biomarkers 2019; 24:240-248. [PMID: 30475075 PMCID: PMC10614422 DOI: 10.1080/1354750x.2018.1548031] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Revised: 10/24/2018] [Accepted: 11/04/2018] [Indexed: 12/14/2022]
Abstract
Background: The human exposome, defined as '…everything that is not the genome', comprises all chemicals in the body interacting with life processes. The exposome drives genes x environment (GxE) interactions that can cause long-term latency and chronic diseases. The exposome constantly changes in response to external exposures and internal metabolism. Different types of compounds are found in different biological media. Objective: Measure polar volatile organic compounds (PVOCs) excreted in urine to document endogenous metabolites and exogenous compounds from environmental exposures. Methods: Use headspace collection and sorbent tube thermal desorption coupled with bench-top gas chromatography-mass spectrometry (GC-MS) for targeted and non-targeted approaches. Identify and categorize PVOCs that may distinguish among healthy and affected individuals. Results: Method is successfully demonstrated to tabulate a series of 28 PVOCs detected in human urine across 120 samples from 28 human subjects. Median concentrations range from below detect to 165 ng/mL. Certain PVOCs have potential health implications. Conclusions: Headspace collection with sorbent tubes is an effective method for documenting PVOCs in urine that are otherwise difficult to measure. This methodology can provide probative information regarding biochemical processes and adverse outcome pathways (AOPs) for toxicity testing.
Collapse
Affiliation(s)
| | - Joachim D. Pleil
- U.S. Environmental Protection Agency, Exposure Methods and Measurements Division, NERL/ORD, Research Triangle Park, NC, USA
| | | | - Jon R. Sobus
- U.S. Environmental Protection Agency, Exposure Methods and Measurements Division, NERL/ORD, Research Triangle Park, NC, USA
| | - M. Ariel Geer Wallace
- U.S. Environmental Protection Agency, Exposure Methods and Measurements Division, NERL/ORD, Research Triangle Park, NC, USA
| |
Collapse
|
16
|
Geer Wallace MA, Pleil JD, Oliver KD, Whitaker DA, Mentese S, Fent KW, Horn GP. Non-targeted GC/MS analysis of exhaled breath samples: Exploring human biomarkers of exogenous exposure and endogenous response from professional firefighting activity. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2019; 82:244-260. [PMID: 30907277 PMCID: PMC8668041 DOI: 10.1080/15287394.2019.1587901] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
A non-targeted analysis workflow was applied to analyze exhaled breath samples collected from firefighters pre- and post-structural fire suppression. Breath samples from firefighters functioning in attack and search positions were examined for target and non-target compounds in automated thermal desorption-GC/MS (ATD-GC/MS) selected ion monitoring (SIM)/scan mode and reviewed for prominent chemicals. Targeted chemicals included products of combustion such as benzene, toluene, xylenes, and polycyclic aromatic hydrocarbons (PAH) that serve as a standard assessment of exposure. Sixty unique chemical features representative of exogenous chemicals and endogenous compounds, including single-ring aromatics, polynuclear aromatic hydrocarbons, volatile sulfur-containing compounds, aldehydes, alkanes, and alkenes were identified using the non-targeted analysis workflow. Fifty-seven out of 60 non-targeted features changed by at least 50% from pre- to post-fire suppression activity in at least one subject, and 7 non-targeted features were found to exhibit significantly increased or decreased concentrations for all subjects as a group. This study is important for (1) alerting the firefighter community to potential new exposures, (2) expanding the current targeted list of toxicants, and (3) finding biomarkers of response to firefighting activity as reflected by changes in endogenous compounds. Data demonstrate that there are non-targeted compounds in firefighters' breath that are indicative of environmental exposure despite the use of protective gear, and this information may be further utilized to improve the effectiveness of personal protective equipment.
Collapse
Affiliation(s)
- M Ariel Geer Wallace
- a Office of Research and Development, National Exposure Research Laboratory , U.S. Environmental Protection Agency , Research Triangle Park , NC , USA
| | - Joachim D Pleil
- a Office of Research and Development, National Exposure Research Laboratory , U.S. Environmental Protection Agency , Research Triangle Park , NC , USA
| | - Karen D Oliver
- a Office of Research and Development, National Exposure Research Laboratory , U.S. Environmental Protection Agency , Research Triangle Park , NC , USA
| | - Donald A Whitaker
- a Office of Research and Development, National Exposure Research Laboratory , U.S. Environmental Protection Agency , Research Triangle Park , NC , USA
| | - Sibel Mentese
- b Department of Environmental Engineering , Çanakkale Onsekiz Mart University , Merkez/Çanakkale , Turkey
| | - Kenneth W Fent
- c Division of Surveillance, Hazard Evaluations and Field Studies , National Institute for Occupational Safety and Health (NIOSH) , Cincinnati , OH , USA
| | - Gavin P Horn
- d Illinois Fire Service Institute , University of Illinois at Urbana-Champaign , Champaign , IL , USA
| |
Collapse
|
17
|
Santos PM, del Nogal Sánchez M, Pérez Pavón JL, Cordero BM, Fernández RV. Liquid-liquid extraction-programmed temperature vaporizer-gas chromatography-mass spectrometry for the determination of polycyclic aromatic hydrocarbons in saliva samples. Application to the occupational exposure of firefighters. Talanta 2019; 192:69-78. [DOI: 10.1016/j.talanta.2018.09.030] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Revised: 09/06/2018] [Accepted: 09/10/2018] [Indexed: 12/14/2022]
|
18
|
EPA's non-targeted analysis collaborative trial (ENTACT): genesis, design, and initial findings. Anal Bioanal Chem 2018; 411:853-866. [PMID: 30519961 DOI: 10.1007/s00216-018-1435-6] [Citation(s) in RCA: 102] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Revised: 09/14/2018] [Accepted: 10/17/2018] [Indexed: 01/19/2023]
Abstract
In August 2015, the US Environmental Protection Agency (EPA) convened a workshop entitled "Advancing non-targeted analyses of xenobiotic chemicals in environmental and biological media." The purpose of the workshop was to bring together the foremost experts in non-targeted analysis (NTA) to discuss the state-of-the-science for generating, interpreting, and exchanging NTA measurement data. During the workshop, participants discussed potential designs for a collaborative project that would use EPA resources, including the ToxCast library of chemical substances, the DSSTox database, and the CompTox Chemicals Dashboard, to evaluate cutting-edge NTA methods. That discussion was the genesis of EPA's Non-Targeted Analysis Collaborative Trial (ENTACT). Nearly 30 laboratories have enrolled in ENTACT and used a variety of chromatography, mass spectrometry, and data processing approaches to characterize ten synthetic chemical mixtures, three standardized media (human serum, house dust, and silicone band) extracts, and thousands of individual substances. Initial results show that nearly all participants have detected and reported more compounds in the mixtures than were intentionally added, with large inter-lab variability in the number of reported compounds. A comparison of gas and liquid chromatography results shows that the majority (45.3%) of correctly identified compounds were detected by only one method and 15.4% of compounds were not identified. Finally, a limited set of true positive identifications indicates substantial differences in observable chemical space when employing disparate separation and ionization techniques as part of NTA workflows. This article describes the genesis of ENTACT, all study methods and materials, and an analysis of results submitted to date. Graphical abstract ᅟ.
Collapse
|
19
|
Erarpat S, Cağlak A, Bodur S, Chormey SD, Engin ÖG, Bakırdere S. Simultaneous Determination of Fluoxetine, Estrone, Pesticides, and Endocrine Disruptors in Wastewater by Gas Chromatography–Mass Spectrometry (GC–MS) Following Switchable Solvent–Liquid Phase Microextraction (SS–LPME). ANAL LETT 2018. [DOI: 10.1080/00032719.2018.1505897] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Sezin Erarpat
- Faculty of Art and Science, Department of Chemistry, Yildiz Technical University, Davutpasa, Esenler, Istanbul, Turkey
| | - Abdulkadir Cağlak
- Faculty of Civil Engineering, Department of Environmental Engineering, Yildiz Technical University, Esenler, Istanbul, Turkey
| | - Süleyman Bodur
- Faculty of Art and Science, Department of Chemistry, Yildiz Technical University, Davutpasa, Esenler, Istanbul, Turkey
| | - Selali Dotse Chormey
- Faculty of Art and Science, Department of Chemistry, Yildiz Technical University, Davutpasa, Esenler, Istanbul, Turkey
| | - Önkal Güleda Engin
- Faculty of Civil Engineering, Department of Environmental Engineering, Yildiz Technical University, Esenler, Istanbul, Turkey
| | - Sezgin Bakırdere
- Faculty of Art and Science, Department of Chemistry, Yildiz Technical University, Davutpasa, Esenler, Istanbul, Turkey
| |
Collapse
|
20
|
Mochalski P, Leja M, Gasenko E, Skapars R, Santare D, Sivins A, Aronsson DE, Ager C, Jaeschke C, Shani G, Mitrovics J, Mayhew CA, Haick H. Ex vivo emission of volatile organic compounds from gastric cancer and non-cancerous tissue. J Breath Res 2018; 12:046005. [PMID: 29893713 DOI: 10.1088/1752-7163/aacbfb] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The presence of certain volatile organic compounds (VOCs) in the breath of patients with gastric cancer has been reported by a number of research groups; however, the source of these compounds remains controversial. Comparison of VOCs emitted from gastric cancer tissue to those emitted from non-cancerous tissue would help in understanding which of the VOCs are associated with gastric cancer and provide a deeper knowledge on their generation. Gas chromatography with mass spectrometric detection (GC-MS) coupled with head-space needle trap extraction (HS-NTE) as the pre-concentration technique, was used to identify and quantify VOCs released by gastric cancer and non-cancerous tissue samples collected from 41 patients during surgery. Excluding contaminants, a total of 32 VOCs were liberated by the tissue samples. The emission of four of them (carbon disulfide, pyridine, 3-methyl-2-butanone and 2-pentanone) was significantly higher from cancer tissue, whereas three compounds (isoprene, γ-butyrolactone and dimethyl sulfide) were in greater concentration from the non-cancerous tissues (Wilcoxon signed-rank test, p < 0.05). Furthermore, the levels of three VOCs (2-methyl-1-propene, 2-propenenitrile and pyrrole) were correlated with the occurrence of H. pylori; and four compounds (acetonitrile, pyridine, toluene and 3-methylpyridine) were associated with tobacco smoking. Ex vivo analysis of VOCs emitted by human tissue samples provides a unique opportunity to identify chemical patterns associated with a cancerous state and can be considered as a complementary source of information on volatile biomarkers found in breath, blood or urine.
Collapse
Affiliation(s)
- Pawel Mochalski
- Institute for Breath Research, University of Innsbruck, Rathausplatz 4, A-6850 Dornbirn, Austria. Institute of Chemistry, Jan Kochanowski University, Świętokrzyska 15G, PL-25406 Kielce, Poland
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|