1
|
Zhu S, Song Z, Wang Y, Zhu J, Hao Y, Lou X, Lu M. Defective porous urchin-like ZnO/NiO microspheres-coated solid-phase microextraction fiber for analysis of trace polychlorinated biphenyls in milk. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:136362. [PMID: 39486328 DOI: 10.1016/j.jhazmat.2024.136362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 10/23/2024] [Accepted: 10/29/2024] [Indexed: 11/04/2024]
Abstract
Owing to the high lipophilicity of polychlorinated biphenyls (PCB), they easily accumulate in dairy products. Although usually present at very low levels, they pose a serious threat to human health. Therefore, developing a sensitive and reliable method for detecting PCB in dairy products is crucial. Herein, Herein, a metal-organic framework (MOF) material named with bimetallic nodes and double ligands was prepared as a precursor using a one-pot hydrothermal method. Defective porous urchin-like ZnO/NiO, derived from these MOF-based precursors (ZnNi-MOF-NH2) as a sacrificial template, was synthesized via pyrolysis to remove heat-sensitive ligands. To the best of our knowledge, this urchin-like nanostructured ZnO/NiO hybrid was utilized as a solid-phase microextraction (SPME) coating for the first time. Headspace SPME (HS-SPME) was developed for non-contact extraction of PCB in milk prior to gas chromatography-tandem mass spectrometry (GC-MS/MS) analysis. Under optimal conditions, the HS-SPME-GC-MS/MS method exhibited a wide linear range (0.01-1000 ng·L-1), low limits of detection (0.003-0.025 ng·L-1), and high enrichment factors (5714-9906). Additionally, the performance of the ZnO/NiO SPME fiber coating showed no noticeable decrease after 175 uses. The method was applied to trace PCB analysis in milk samples, yielding recoveries of 70.3-114.1 %. The ZnO/NiO derived from MOF-based material provides a promising candidate for SPME coatings to extract PCB and other analogs.
Collapse
Affiliation(s)
- Shiping Zhu
- Henan International Joint Laboratory of Medicinal Plants Utilization, College of Chemistry and Molecular Sciences, Henan University, Kaifeng 475004, Henan, China
| | - Zhen Song
- Henan International Joint Laboratory of Medicinal Plants Utilization, College of Chemistry and Molecular Sciences, Henan University, Kaifeng 475004, Henan, China
| | - Youmei Wang
- Henan International Joint Laboratory of Medicinal Plants Utilization, College of Chemistry and Molecular Sciences, Henan University, Kaifeng 475004, Henan, China
| | - Jiawen Zhu
- Henan International Joint Laboratory of Medicinal Plants Utilization, College of Chemistry and Molecular Sciences, Henan University, Kaifeng 475004, Henan, China
| | - Yingge Hao
- Henan International Joint Laboratory of Medicinal Plants Utilization, College of Chemistry and Molecular Sciences, Henan University, Kaifeng 475004, Henan, China
| | - Xuejing Lou
- Henan International Joint Laboratory of Medicinal Plants Utilization, College of Chemistry and Molecular Sciences, Henan University, Kaifeng 475004, Henan, China
| | - Minghua Lu
- Henan International Joint Laboratory of Medicinal Plants Utilization, College of Chemistry and Molecular Sciences, Henan University, Kaifeng 475004, Henan, China.
| |
Collapse
|
2
|
Zhang F, Li P, Lu Y, Han Y, Yan H. Advancing Lung Cancer Diagnosis through NH 2-MON-SPME-GC-MS/MS: Enhanced Sensitivity in Aldehyde Biomarker Detection from Exhaled Breath. Anal Chem 2024. [PMID: 39269845 DOI: 10.1021/acs.analchem.4c03328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/15/2024]
Abstract
The sensitive detection of trace biomarkers in exhaled breath for lung cancer diagnosis represents a critical area of research in life analytical chemistry, with profound implications for early disease detection, therapeutic intervention, and prognosis monitoring. Despite its potential, the analytical process faces significant challenges due to the ultratrace levels of disease biomarkers present and the complex, high-humidity composition of exhaled breath. This study introduces a highly sensitive method for detecting aldehyde biomarkers in exhaled breath by integrating the use of amino-functionalized microporous organic networks (NH2-MON) as a solid-phase microextraction (SPME) fiber coating with gas chromatography-triple quadrupole mass spectrometry (GC-MS/MS) analysis. The method innovatively combines sample collection and extraction, achieving a dual-step enrichment process that significantly enhances both the enrichment efficiency and reproducibility of biomarker detection while effectively mitigating the interference caused by water vapor in exhaled breath. The NH2-MON, utilized as an SPME fiber coating, demonstrates exceptional enrichment capacity for five key aldehyde biomarkers, facilitating the development of a highly sensitive detection approach for these biomarkers in exhaled breath. Compared to previously reported methods, the proposed technique exhibits significantly lower limits of quantification, ranging from 0.77 to 11.89 pg mL-1, and achieves substantially higher enrichment factors, ranging from 9156- to 35723-fold. The practicality and feasibility of the method were validated through the analysis of exhaled breath samples from lung cancer patients, underscoring its potential application in the early diagnosis and monitoring of lung cancer.
Collapse
Affiliation(s)
- Feiran Zhang
- Hebei Key Laboratory of Public Health Safety, College of Pharmaceutical Science, College of Chemistry and Materials Science, Hebei University, Baoding 071002, China
| | - Pengfei Li
- Hebei Key Laboratory of Public Health Safety, College of Pharmaceutical Science, College of Chemistry and Materials Science, Hebei University, Baoding 071002, China
| | - Yanke Lu
- Hebei Key Laboratory of Public Health Safety, College of Pharmaceutical Science, College of Chemistry and Materials Science, Hebei University, Baoding 071002, China
| | - Yehong Han
- Hebei Key Laboratory of Public Health Safety, College of Pharmaceutical Science, College of Chemistry and Materials Science, Hebei University, Baoding 071002, China
| | - Hongyuan Yan
- Hebei Key Laboratory of Public Health Safety, College of Pharmaceutical Science, College of Chemistry and Materials Science, Hebei University, Baoding 071002, China
- State Key Laboratory of New Pharmaceutical Preparations and Excipients, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, Hebei University, Baoding 071002, China
| |
Collapse
|
3
|
Gong J, Chen Y, A W, Zhang X, Ma J, Xie Z, Li P, Huang A, Zhang S, Liao Q. Multiple-component covalent organic frameworks for simultaneous extraction and determination of multitarget pollutants in sea foods. JOURNAL OF HAZARDOUS MATERIALS 2024; 472:134563. [PMID: 38735186 DOI: 10.1016/j.jhazmat.2024.134563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 05/05/2024] [Accepted: 05/06/2024] [Indexed: 05/14/2024]
Abstract
Persistent organic pollutants (POPs), such as perfluoroalkyl and polyfluoroalkyl substances (PFASs), polychlorinated biphenyls (PCBs), and bisphenols (BPs), have been raising global concerns due to their toxic effects on environment and human health. The monitoring of residues of POPs in seafood is crucial for assessing the accumulation of these contaminants in the study area and mitigating potential risks to human health. However, the diversity and complexity of POPs in seafood present significant challenges for their simultaneous detection. Here, a novel multi-component fluoro-functionalized covalent organic framework (OH-F-COF) was designed as SPE adsorbent for simultaneous extraction POPs. On this basis, the recognition and adsorption mechanisms were investigated by molecular simulation. Due to multiple interactions and large specific surface area, OH-F-COF displayed satisfactory coextraction performance for PFASs, PCBs, and BPs. Under optimized conditions, the OH-F-COF sorbent was employed in a strategy of simultaneous extraction and stepwise elution (SESE), in combination with HPLC-MS/MS and GC-MS method, to effectively determined POPs in seafood collected from coastal areas of China. The method obtained low detection limits for BPs (0.0037 -0.0089 ng/g), PFASs (0.0038 -0.0207 ng/g), and PCBs (0.2308 -0.2499 ng/g), respectively. This approach provided new research ideas for analyzing and controlling multitarget POPs in seafood. ENVIRONMENTAL IMPLICATIONS: Persistent organic pollutants (POPs), such as perfluoroalkyl and polyfluoroalkyl substances (PFASs), polychlorinated biphenyls (PCBs), and bisphenols (BPs), have caused serious hazards to human health and ecosystems. Hence, there is a need to develop a quantitative method that can rapidly detect POPs in environmental and food samples. Herein, a novel multi-component fluorine-functionalized covalent organic skeletons (OH-F-COF) were prepared at room temperature, and served as adsorbent for POPs. The SESE-SPE strategy combined with chromatographic techniques was used to achieve a rapid detection of POPs in sea foods from the coastal provinces of China. This method provides a valuable tool for analyzing POPs in environmental and food samples.
Collapse
Affiliation(s)
- Jing Gong
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province, 510006, China
| | - Yanlong Chen
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province, 510006, China.
| | - Wenwei A
- Guangzhou Customs District Technology Center, Guangzhou, Guangdong Province, 510623, China
| | - Xingyuan Zhang
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province, 510006, China
| | - Juanqiong Ma
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province, 510006, China
| | - Zhiyong Xie
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen, Guangdong Province, 518106, China
| | - Pei Li
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province, 510006, China
| | - Aihua Huang
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province, 510006, China
| | - Shusheng Zhang
- Center for Modern Analysis and Gene Sequencing, Zhengzhou University, No. 100 of Kexue Road, Zhengzhou 450001, China
| | - Qiongfeng Liao
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province, 510006, China.
| |
Collapse
|
4
|
Han Z, Li G, Li M, Zhang Y, Meng Z. Ordered mesoporous hairbrush-like nanocarbon assembled microfibers for solid-phase microextraction of benzene series in oilfield sewage. ANAL SCI 2024; 40:1031-1041. [PMID: 38642247 DOI: 10.1007/s44211-024-00506-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Accepted: 01/04/2024] [Indexed: 04/22/2024]
Abstract
The development of advanced functional nanomaterials for solid-phase microextraction (SPME) remains an imperative aspect of sample pretreatment. Herein, we introduce a novel SPME fiber consisting of graphene fibers modified with ordered mesoporous carbon nanotubes arrays (CNTAs) tailored for the determination of benzene series in oilfield wastewater, which is synthesized by an ionic liquid-assisted wet spinning process of graphene nanosheets, followed by a precisely controlled growth of metal-organic framework and subsequent pyrolysis treatment. The resulting robust microfiber structure resembles a "hairbrush" configuration, with a crumpled graphene fiber "stem" and high-order mesoporous CNTAs "hairs". This unique architecture significantly enhances the SPME capacity, as validated by gas chromatography-mass spectrometry. The hairbrush-like nanocarbon assembled microfibers possess structural characteristics, a high specific surface area, and numerous binding sites, offering efficient enrichment of benzene series compounds in oilfield wastewater, including benzene, ethylbenzene, m-xylene, p-xylene, and toluene. Our analysis demonstrates that these microfibers exhibit broad linear ranges (0.2-600 μg L-1), low detection limits (0.005-0.03 mg L-1), and excellent repeatability (3.2-5.5% for one fiber, 2.1-6.7% for fiber-to-fiber) for detection. When compared to commercial alternatives, these hairbrush-like nanocarbon-assembled microfibers exhibit significantly enhanced extraction efficiency for benzene series compounds.
Collapse
Affiliation(s)
- Zhuo Han
- Technology Inspection Center of ShengLi Oilfiled Branch, China Petrochemical Corporation, Dongying, 257000, People's Republic of China
| | - Gangzhu Li
- Technology Inspection Center of ShengLi Oilfiled Branch, China Petrochemical Corporation, Dongying, 257000, People's Republic of China.
| | - Mo Li
- Technology Inspection Center of ShengLi Oilfiled Branch, China Petrochemical Corporation, Dongying, 257000, People's Republic of China
| | - Yanbo Zhang
- Technology Inspection Center of ShengLi Oilfiled Branch, China Petrochemical Corporation, Dongying, 257000, People's Republic of China
| | - Zhaoyu Meng
- Technology Inspection Center of ShengLi Oilfiled Branch, China Petrochemical Corporation, Dongying, 257000, People's Republic of China
| |
Collapse
|
5
|
Yang L, Li P, Han Y, Han D, Yan H. Porous chlorine-functionalized covalent organic framework anchored graphene aerogel composite for synergically enhanced solid phase microextraction of polychlorinated naphthalene in environmental water. JOURNAL OF HAZARDOUS MATERIALS 2024; 469:133909. [PMID: 38432094 DOI: 10.1016/j.jhazmat.2024.133909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 02/17/2024] [Accepted: 02/25/2024] [Indexed: 03/05/2024]
Abstract
The residues of polychlorinated naphthalenes (PCNs) produced in multiple industrial production and life processes are continuously entering environmental waters through atmospheric deposition and land drainage, and the water pollution caused by PCNs is continuing public concern due to their potential threat to aquatic ecosystems and public health. Herein, a new chlorine-functionalized covalent organic framework anchored graphene aerogel (COF-GA) was synthesized by covalent modification technology and used as fiber coating of solid-phase microextraction for synergically enhanced extraction of PCNs in environmental water. The extraction efficiency of COF-GA coated fiber was superior to commercial fiber due to the multiple interactions (π-π, hydrophobic interaction, and halogen bonding interaction). The COF-GA coated fiber has good stability, can avoid water vapor interference at 80 °C for a long time (30 -50 min) to maintain adsorption equilibrium, and can be reused at least 96 times. Combined with gas chromatography-tandem mass spectrometry, a sensitive method for the high-efficient enrichment (enrichment factors were 501 -7453 folds) and ultra-sensitive detection (LODs were 0.001 -0.428 pg/mL) of PCNs in environmental water was established. The enrichment factor for PCNs is significantly higher than in previous studies. This proposed method provides new technical support for the daily monitoring and risk assessment of trace PCNs in environmental water.
Collapse
Affiliation(s)
- Lansen Yang
- Hebei Key Laboratory of Public Health Safety, College of Public Health, College of Chemistry and Materials Science, Hebei University, Baoding 071002, China; State Key Laboratory of New Pharmaceutical Preparations and Excipients, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, Hebei University, Baoding 071002, China
| | - Pengfei Li
- State Key Laboratory of New Pharmaceutical Preparations and Excipients, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, Hebei University, Baoding 071002, China
| | - Yehong Han
- Hebei Key Laboratory of Public Health Safety, College of Public Health, College of Chemistry and Materials Science, Hebei University, Baoding 071002, China
| | - Dandan Han
- Hebei Key Laboratory of Public Health Safety, College of Public Health, College of Chemistry and Materials Science, Hebei University, Baoding 071002, China
| | - Hongyuan Yan
- Hebei Key Laboratory of Public Health Safety, College of Public Health, College of Chemistry and Materials Science, Hebei University, Baoding 071002, China; State Key Laboratory of New Pharmaceutical Preparations and Excipients, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, Hebei University, Baoding 071002, China.
| |
Collapse
|
6
|
Yilmaz E, Yavuz E. Use of transition metal dichalcogenides (TMDs) in analytical sample preparation applications. Talanta 2024; 266:125086. [PMID: 37633038 DOI: 10.1016/j.talanta.2023.125086] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 08/10/2023] [Accepted: 08/15/2023] [Indexed: 08/28/2023]
Abstract
Since the discovery of graphene, nano-sized two-dimensional (2D) transition metal dichalcogenides (TMDs) such as MoS2, MoSe2, MoTe2, NbS2, NbSe2, WS2, WSe2, TaS2 and TaSe2, which have been classified as next-generation nanomaterials resembling graphene (G) have complementary basic properties with those of graphene in terms of their practical applications. TMDs are attracting great attention due to their attractive physical, chemical and electronic properties. Despite being overshadowed by graphene in terms of frequency of use, TMDs have been used frequently in many areas in recent years instead of carbon-based materials such as graphene (G), graphene oxide (GO), carbon nanotubes (CNTs) and nanodiamonds (NDs). It is seen that the first and frequent uses of TMDs, which are classified as new generation materials, are in the fields of catalysis, electronic applications, hydrogen production processes and energy storage, but it has been used as an adsorbent in sample preparation techniques in recent years. Similar to graphene, layers of TMDs are held together by weak van der Waals interactions. The sandwiched layers of TMDs provide sufficient and effective interlayer spaces so that foreign molecules, ions and atoms can easily enter these spaces between the layers. Intermolecular interactions increase with the entry of different materials into these spaces, and thus, high activity, adsorption capacity and efficiency are obtained in adsorption-based analytical sample preparation methods. Although there are about 35 research articles using TMDs, which are classified as promising materials in analytical sample preparation techniques, no review studies have been found. This review, which was designed with this awareness, contains important informations on the properties of metal dichalcogenides, their production methods and their use in analytical sample preparation techniques.
Collapse
Affiliation(s)
- Erkan Yilmaz
- Technology Research & Application Center (TAUM), Erciyes University, 38039, Kayseri, Turkey; ERNAM-Erciyes University, Nanotechnology Application and Research Center, 38039, Kayseri, Turkey; Erciyes University, Faculty of Pharmacy, Department of Analytical Chemistry, 38039, Kayseri, Turkey; ChemicaMed Chemical Inc., Erciyes University Technology Development Zone, 38039 Kayseri, Turkey.
| | - Emre Yavuz
- Erzincan Binali Yildirim University, Cayirli Vocational School, Department of Medical Services and Technicians, 24503, Erzincan, Turkey.
| |
Collapse
|
7
|
Zhang Y, Zhao J, Jin Z, Gao Y, Chen L. Quantitative determination of polychlorinated biphenyls in chicken based on QuEChERS extraction and GC-MS/MS detection. Food Control 2022. [DOI: 10.1016/j.foodcont.2022.109579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
8
|
Hou S, Wang X, Lian L, Zhu B, Yue B, Lou D. Determination of Polychlorinated Biphenyls in Water Samples Using a Needle Trap Device Combined with Gas Chromatography. LCGC NORTH AMERICA 2022. [DOI: 10.56530/lcgc.na.pb8772h2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
In this study, a fiber-packed needle trap device (NTD) was developed by packing heat-resistant fibers with a polyethylene glycol sol-gel coating into a 21-gauge, stainless steel needle. The polyethylene glycol sol-gel coating has numerous advantages, including uniform roughness and a large specific surface area. The prepared NTD was used for headspace extraction of five polychlorinated biphenyls (PCBs) in water samples, determined by gas chromatography with a flame ionization detector (GC-FID). The main experimental parameters, including the extraction and desorption conditions, ionic strength, and fiber bundles, were investigated to improve the extraction efficiency. After optimization, satisfactory linearity (r > 0.99) in the concentration range of 0.02–500 μg/L was obtained, and the enrichment factor of NTD for the five PCBs was between 1150 and 9537 times. The limit of detection (S/N = 3) of five PCBs were measured in ranges of 0.0021–0.01 μg/L. Furthermore, the fiber-packed NTD has excellent durability, and can be reused for 60 cycles. After being stored at room temperature for three days, the storage ability of the NTD had a loss of PCBs less than 10%, and the relative standard deviation (RSD) was less than 10%. When analyzing the PCBs in real water samples, good accuracies (spiked recoveries were in the range of 92.19–98.56%) and precision (the RSD was lower than 12.8%) was obtained.
Collapse
Affiliation(s)
| | | | - Lili Lian
- Jilin Institute of Chemical Technology
| | - Bo Zhu
- Jilin Institute of Chemical Technology
| | | | - Dawei Lou
- Jilin Institute of Chemical Technology
| |
Collapse
|
9
|
Selective enrichment and determination of polychlorinated biphenyls in milk by solid-phase microextraction using molecularly imprinted phenolic resin fiber coating. Anal Chim Acta 2022; 1227:340328. [DOI: 10.1016/j.aca.2022.340328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 08/19/2022] [Accepted: 08/24/2022] [Indexed: 11/30/2022]
|
10
|
ZHANG W, LIU G, MA W, FANG M, ZHANG L. [Application progress of covalent organic framework materials in extraction of toxic and harmful substances]. Se Pu 2022; 40:600-609. [PMID: 35791598 PMCID: PMC9404040 DOI: 10.3724/sp.j.1123.2021.12004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Indexed: 12/03/2022] Open
Abstract
Toxic and hazardous substances constitute a category of compounds that are potentially hazardous to humans, other organisms, and the environment. These substances include pesticides (benzoylureas, pyrethroids, neonicotinoids), persistent organic pollutants (polycyclic aromatic hydrocarbons, polychlorinated biphenyls, perfluorinated compounds), plasticizers (phthalate esters, phenolic endocrine disruptors), medicines (sulfonamides, non-steroid anti-inflammatory drugs, tetracyclines, fluoroquinone antibiotics), heterocyclic aromatic amines, algal toxins, and radioactive substances. Discharge of these toxic and harmful substances, as well as their possible persistence and bioaccumulation, pose a major risk to human health, often to the extent of being life-threatening. Therefore, it is important to analyze and detect toxic and hazardous substances in the environment, drinking water, food, and daily commodities. Sample pretreatment is an imperative step in most of the currently used analytical methods, especially in the analysis of trace toxic and harmful substances in complex samples. An efficient and fast sample pretreatment technology not only helps improve the sensitivity, selectivity, reproducibility, and accuracy of analytical methods, but also avoids contamination of the analytical instruments and even damages the performance and working life of instruments. Sample pretreatment techniques widely used in the extraction of toxic and hazardous substances include solid-phase extraction (SPE), solid-phase microextraction (SPME), and dispersed solid-phase extraction (DSPE). The adsorbent material plays a key role in these pretreatment techniques, thereby determining their selectivity and efficiency. In recent years, covalent organic frameworks (COFs) have attracted increasing attention in sample pretreatment. COFs represent an exciting new class of porous crystalline materials constructed via the strong covalent bonding of organic building units through a reversible condensation reaction. COFs present four advantages: (1) precise control over structure type and pore size by consideration of the target molecular structure based on the connectivity and shape of the building units; (2) post-synthetic modification for chemical optimization of the pore interior toward optimized interaction with the target; (3) straightforward scalable synthesis; (4) feasible formation of composites with magnetic nanoparticles, carbon nanotubes, graphene, silica, etc., which is beneficial to enhance the performance of COFs and meet the requirement of diverse pretreatment technologies. Because of the well-defined crystalline porous structures and tailored functionalities, COFs have excellent potential for use in target extraction. However, some issues need to be addressed for the application of COFs in the extraction of toxic and hazardous substances. (1) For the sample matrix, most of the reported COFs are highly hydrophobic, which limits their dispersibility in water-based samples, leading to poor extraction performance. COFs with good dispersibility in water-based samples are urgently required. (2) Besides, COFs rely on hydrophobic interaction, size repulsion, π-π stacking, and Van der Waals forces to extract target substances, but they are not effective for some polar targets. Thus, it is necessary to develop COFs with high affinity for polar toxic and hazardous substances. (3) Methods for the synthesis of COFs have evolved from solvothermal methods to room-temperature methods, mechanical grinding, microwave-assisted synthesis, ion thermal methods, etc. Most of the existing methods are time-consuming, laborious, and environmentally unfriendly. The starting materials are too expensive to prepare COFs in large quantities. More effort is required to improve the synthesis efficiency and overcome the obstacles in the application of COFs for extraction. This article summarizes and reviews the research progress in COFs toward the extraction of toxic and hazardous substances in recent years. Finally, the application prospects of COFs in this field are summarized, which serves as a reference for further research into pretreatment technologies based on COFs.
Collapse
|
11
|
J MIS, S S, Senthil Kumar P, K VG. New analytical strategies amplified with carbon-based nanomaterial for sensing food pollutants. CHEMOSPHERE 2022; 295:133847. [PMID: 35122811 DOI: 10.1016/j.chemosphere.2022.133847] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 01/19/2022] [Accepted: 01/31/2022] [Indexed: 06/14/2023]
Abstract
The most significant topic currently under the moonlight is Nanobiotechnology and engineered nanomaterials. The novel characteristics displayed by engineered Nanomaterials, especially carbon-based nanomaterials, have spurred interest in its potential application in the food industry. It has provided opportunities for finding solutions to the long-standing challenges in the food industry to assess food safety, maintain food quality, extend the shelf life of produce, and efficiently deliver nutrients. Nanomaterials can be incorporated in food sensors facilitating efficient monitoring of crop maturity and detecting biological and chemical contaminants. When integrated into food packages, nanomaterials could aid in assessing the freshness and improving the quality of packaged foods. In addition, more efficient delivery of nutrients could be possible in foods fortified using nano compounds. The initial section of this review gives an overview of the broad application of nanotechnology in the food industry and carbon-based nanomaterials. The latter part focuses on nanotechnology in biosensors for food safety and quality monitoring.
Collapse
Affiliation(s)
- Mary Isabella Sonali J
- Department of Biotechnology, Stella Maris College (Autonomous), Affiliated to University of Madras, Chennai, 600 086, India
| | - Subhashree S
- Department of Food Processing and Quality Control, Stella Maris College (Autonomous), Affiliated to University of Madras, Chennai, 600 086, India
| | - P Senthil Kumar
- Department of Chemical Engineering, Sri Sivasubramaniya Nadar College of Engineering, Kalavakkam, 603110, Chennai, India; Centre of Excellence in Water Research (CEWAR), Sri Sivasubramaniya Nadar College of Engineering, Kalavakkam, 603110, Chennai, India.
| | - Veena Gayathri K
- Department of Biotechnology, Stella Maris College (Autonomous), Affiliated to University of Madras, Chennai, 600 086, India.
| |
Collapse
|
12
|
Wang X, Han Y, Cao J, Yan H. Headspace solid-phase-microextraction using a graphene aerogel for gas chromatography–tandem mass spectrometry quantification of polychlorinated naphthalenes in shrimp. J Chromatogr A 2022; 1672:463012. [DOI: 10.1016/j.chroma.2022.463012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 03/27/2022] [Accepted: 03/30/2022] [Indexed: 10/18/2022]
|
13
|
Yu J, Jiang X, Lu Z, Han Q, Chen Z, Liang Q. In situ self-assembly of three-dimensional porous graphene film on zinc fiber for solid-phase microextraction of polychlorinated biphenyls. Anal Bioanal Chem 2022; 414:5585-5594. [PMID: 35288764 DOI: 10.1007/s00216-022-04003-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 02/10/2022] [Accepted: 03/02/2022] [Indexed: 11/24/2022]
Affiliation(s)
- Jiayan Yu
- Beijing Key Lab of Microanalytical Methods & Instrumentation, MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Tsinghua University, Science Building D308, Beijing, 100084, China
| | - Xue Jiang
- Beijing Key Lab of Microanalytical Methods & Instrumentation, MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Tsinghua University, Science Building D308, Beijing, 100084, China.,College of Chemistry and Materials Science, Sichuan Normal University, Chengdu, 610068, China
| | - Zenghui Lu
- Beijing Key Lab of Microanalytical Methods & Instrumentation, MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Tsinghua University, Science Building D308, Beijing, 100084, China
| | - Qiang Han
- Beijing Key Lab of Microanalytical Methods & Instrumentation, MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Tsinghua University, Science Building D308, Beijing, 100084, China.
| | - Zhenling Chen
- The Second Research Institute of Civil Aviation Administration of China, Chengdu, 610041, China
| | - Qionglin Liang
- Beijing Key Lab of Microanalytical Methods & Instrumentation, MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Tsinghua University, Science Building D308, Beijing, 100084, China
| |
Collapse
|
14
|
Tian Y, Xu Z, Yang Y, Wang D, Liu Z, Si X. Magnetic solid phase extraction based on Fe3O4@SiO2@CTS nano adsorbent for the sensitive detection of trace polychlorinated biphenyls in environmental water samples. Microchem J 2022. [DOI: 10.1016/j.microc.2021.106947] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
15
|
Zhang X, Han L, Li M, Qin P, Li D, Zhou Q, Lu M, Cai Z. Nitrogen-rich carbon nitride as solid-phase microextraction fiber coating for high-efficient pretreatment of polychlorinated biphenyls from environmental samples. J Chromatogr A 2021; 1659:462655. [PMID: 34749185 DOI: 10.1016/j.chroma.2021.462655] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 10/21/2021] [Accepted: 10/27/2021] [Indexed: 01/14/2023]
Abstract
A two-dimensional nitrogen-rich carbon nitrogen (C3N5) material was prepared via a facile high temperature thermal polymerization. For the first time, the C3N5 was used as fiber coating of solid-phase microextraction (SPME) to extract and preconcentrate polychlorinated biphenyls (PCBs) before gas chromatography (GC) analysis. The X-ray diffraction, N2 adsorption-desorption, Fourier transform-infrared spectroscopy, thermogravimetric analysis, and X-ray photoelectron spectroscopy were performed to investigate structure, functional groups, thermal stability, bonding type, element composition, and atomic ratio of C3N5. The two-dimensional planar stacking structure was further verified by scanning electron microscopy and transmission electron microscopy. Five PCBs including PCB-4, PCB-12, PCB-29, PCB-52 and PCB-101 were selected as targets to evaluate performance of SPME fiber. Under the optimal conditions, the method showed a good linear range from 0.01 to 1000 ng/mL with the correlation coefficients (R2) higher than 0.9990. Enrichment factors of the method were obtained from 2045 to 3080. The limits of detection (LODs, S/N = 3) and limits of quantification (LOQs, S/N = 10) were calculated as 0.0031-0.0111 ng/mL and 0.01-0.05 ng/mL, respectively. The precisions of intra-day and inter-day were obtained with the relative standard deviations (RSDs) at 1.5-6.6% and 0.8-6.9%, respectively. The fiber-to-fiber producibility was achieved with RSDs ranged from 3.5% to 11.4%. The method was applied to detect PCBs in river water and soil samples. The contents were calculated at 0.040-0.147 ng/mL in water and 0.520-3.218 ng/g in soil. The C3N5 as SPME fiber coating material may be applied to extract and preconcentrate other environmental pollutants which have similar chemical structures with PCBs.
Collapse
Affiliation(s)
- Xiaowan Zhang
- Henan International Joint Laboratory of Medicinal Plants Utilization, School of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004, Henan, China
| | - Lizhen Han
- Henan International Joint Laboratory of Medicinal Plants Utilization, School of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004, Henan, China
| | - Mengyuan Li
- Henan International Joint Laboratory of Medicinal Plants Utilization, School of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004, Henan, China
| | - Peige Qin
- Henan International Joint Laboratory of Medicinal Plants Utilization, School of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004, Henan, China
| | - Dan Li
- Henan International Joint Laboratory of Medicinal Plants Utilization, School of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004, Henan, China
| | - Qian Zhou
- Henan International Joint Laboratory of Medicinal Plants Utilization, School of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004, Henan, China
| | - Minghua Lu
- Henan International Joint Laboratory of Medicinal Plants Utilization, School of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004, Henan, China.
| | - Zongwei Cai
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Hong Kong SAR
| |
Collapse
|
16
|
Su L, Zhang N, Tang J, Zhang L, Wu X. In-situ fabrication of a chlorine-functionalized covalent organic framework coating for solid-phase microextraction of polychlorinated biphenyls in surface water. Anal Chim Acta 2021; 1186:339120. [PMID: 34756254 DOI: 10.1016/j.aca.2021.339120] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 09/21/2021] [Indexed: 01/20/2023]
Abstract
The functionalization of covalent organic frameworks (COFs) identifies significant potential for developing selective coating materials for solid-phase microextraction (SPME). Herein, a chlorine-functionalized covalent organic framework (CF-COF) was in-situ synthesized by employing triformylphloroglucinol (Tp) and 2,5-dichloro-1,4-phenylenediamine (2,5-DCA) as monomers on an amino-functionalized stainless steel wire. The obtained CF-COF coated fiber exhibited a higher enrichment capacity for polychlorinated biphenyls (PCBs) than commercial fibers and non-chlorinated COF fiber, owing to a more hydrophobic surface, size-matching effect, a large number of micropores and the π-π stacking interactions between COF coating and analytes. As a practical application, the CF-COF coated fiber was applied to the headspace extraction of 17 PCBs prior to their quantification by GC/MS. The established analytical method offered a good linearity in the range of 0.1-1000 ng L-1, low detection limits of 0.0015-0.0088 ng L-1, and satisfactory enhancement factors (EFs) of 699-4281. The repeatability for single fiber and the fiber-to-fiber reproducibility was lower than 9.26% and 9.33%, respectively. The proposed method was verified to be sensitive, selective, and applicable for the analysis of ultra-trace PCBs in environmental surface water samples with the recoveries ranged from 78.7% to 124.0%.
Collapse
Affiliation(s)
- Lishen Su
- Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou, 350116, China
| | - Ning Zhang
- Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou, 350116, China
| | - Jingpu Tang
- Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou, 350116, China
| | - Lan Zhang
- Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou, 350116, China
| | - Xiaoping Wu
- Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou, 350116, China.
| |
Collapse
|
17
|
Peng S, Huang X, Huang Y, Huang Y, Zheng J, Zhu F, Xu J, Ouyang G. Novel solid-phase microextraction fiber coatings: A review. J Sep Sci 2021; 45:282-304. [PMID: 34799963 DOI: 10.1002/jssc.202100634] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 11/13/2021] [Accepted: 11/15/2021] [Indexed: 12/27/2022]
Abstract
The materials used for the fabrication of solid-phase microextraction fiber coatings in the past five years are summarized in the current review, including carbon, metal-organic frameworks, covalent organic frameworks, aerogel, polymer, ionic liquids/poly (ionic liquids), metal oxides, and natural materials. The preparation approaches of different coatings, such as sol-gel technique, in-situ growth, electrodeposition, and glue methods, are briefly reviewed together with the evolution of the supporting substrates. In addition, the limitations of the current coatings and the future development directions of solid-phase microextraction are presented.
Collapse
Affiliation(s)
- Sheng Peng
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, KLGHEI of Environment and Energy Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou, P. R. China
| | - Xiaoyu Huang
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, KLGHEI of Environment and Energy Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou, P. R. China
| | - Yuyan Huang
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, KLGHEI of Environment and Energy Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou, P. R. China
| | - Yiquan Huang
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, KLGHEI of Environment and Energy Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou, P. R. China
| | - Juan Zheng
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, KLGHEI of Environment and Energy Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou, P. R. China
| | - Fang Zhu
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, KLGHEI of Environment and Energy Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou, P. R. China
| | - Jianqiao Xu
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, KLGHEI of Environment and Energy Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou, P. R. China
| | - Gangfeng Ouyang
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, KLGHEI of Environment and Energy Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou, P. R. China
| |
Collapse
|
18
|
Sun W, Hu X, Meng X, Xiang Y, Ye N. Molybdenum disulfide-graphene oxide composites as dispersive solid-phase extraction adsorbents for the enrichment of four paraben preservatives in cosmetics. Mikrochim Acta 2021; 188:256. [PMID: 34268616 DOI: 10.1007/s00604-021-04908-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Accepted: 06/21/2021] [Indexed: 10/20/2022]
Abstract
Molybdenum disulfide-graphene oxide composite (MoS2/GO) was synthesized and used as the adsorbent in dispersive solid-phase extraction. Four paraben preservatives, namely, methylparaben, ethylparaben, propylparaben, and butylparaben, were enriched with MoS2/GO and determined by ultra-high-performance liquid chromatography. Molybdenum disulfide was intercalated into graphene oxide layers to reduce self-aggregation by using the solvothermal method. The experimental results indicated that the as-prepared MoS2/GO composite exhibited great enrichment capability toward those four paraben preservatives, and the adsorption time was 10 min and the elution time was as short as 1 min. The mechanism of MoS2/GO composite and parabens is attributed to hydrogen bonding and electrostatic attraction. The relative standard deviation (RSD, n = 9) of this method was below 7.6%. Limits of detection and limits of quantification were in the range 0.4-2.3 ng/mL and 1.4-7.6 ng/mL, respectively. The recoveries obtained from the parabens of cosmetic sample were in the range 91.3-124% with RSDs below 10%. The developed method has great potential for the determination of emerging contaminants with low cost and high sensitivity.
Collapse
Affiliation(s)
- Wenjing Sun
- Department of Chemistry, Capital Normal University, Beijing, 100048, People's Republic of China
| | - Xiaoyu Hu
- Department of Chemistry, Capital Normal University, Beijing, 100048, People's Republic of China
| | - Xiaoyang Meng
- Department of Chemistry, Capital Normal University, Beijing, 100048, People's Republic of China
| | - Yuhong Xiang
- Department of Chemistry, Capital Normal University, Beijing, 100048, People's Republic of China.
| | - Nengsheng Ye
- Department of Chemistry, Capital Normal University, Beijing, 100048, People's Republic of China.
| |
Collapse
|
19
|
Feng J, Feng J, Ji X, Li C, Han S, Sun H, Sun M. Recent advances of covalent organic frameworks for solid-phase microextraction. Trends Analyt Chem 2021. [DOI: 10.1016/j.trac.2021.116208] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
20
|
Jagirani MS, Soylak M. Review: Microextraction Technique Based New Trends in Food Analysis. Crit Rev Anal Chem 2020; 52:968-999. [PMID: 33253048 DOI: 10.1080/10408347.2020.1846491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Food chemistry is the study and classification of the quality and origin of foods. The identification of definite biomarkers and the determination of residue contaminants such as toxins, pesticides, metals, human and veterinary drugs, which are a very common source of food-borne diseases. The food analysis is continuously demanding the improvement of more robust, sensitive, highly efficient, and economically beneficial analytical approaches to promise the traceability, safety, and quality of foods in the acquiescence with the consumers and legislation demands. The traditional methods have been used at the starting of the 20th century based on wet chemical methods. Now it existing the powerful analytical techniques used in food analysis and safety. This development has led to substantial enhancements in the analytical accuracy, precision, sensitivity, selectivity, thereby mounting the applied range of food applications. In the present decade, microextraction (micro-scale extraction) pays more attention due to its futures such as low consumption of solvent and sample, throughput analysis easy to operate, greener, robotics, and miniaturization, different adsorbents have been used in the microextraction process with unique nature recognized with wide range applications.
Collapse
Affiliation(s)
- Muhammed Saqaf Jagirani
- Faculty of Sciences, Department of Chemistry, Erciyes University, Kayseri, Turkey.,National Center of Excellence in Analytical Chemistry, University of Sindh, Sindh, Pakistan
| | - Mustafa Soylak
- Faculty of Sciences, Department of Chemistry, Erciyes University, Kayseri, Turkey.,Technology Research and Application Center (TAUM), Erciyes University, Kayseri, Turkey
| |
Collapse
|
21
|
Cai Z, Hu X, Zong R, Wu H, Jin X, Yin H, Huang C, Xiang Y, Ye N. A graphene oxide-molybdenum disulfide composite used as stationary phase for determination of sulfonamides in open-tubular capillary electrochromatography. J Chromatogr A 2020; 1629:461487. [PMID: 32823013 DOI: 10.1016/j.chroma.2020.461487] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 08/12/2020] [Accepted: 08/13/2020] [Indexed: 11/26/2022]
Abstract
A graphene oxide-molybdenum disulfide (GO-MoS2) composite was synthesized and utilized as the highly efficient stationary phase of open-tubular capillary electrochromatography (OT-CEC). The characterization results indicated that GO-MoS2 composite was successfully synthesized. The GO-MoS2-coated capillary column was prepared by covalent immobilization method for the determination of seven sulfonamides. The baseline separation of seven sulfonamides was achieved by GO-MoS2-coated capillary column. The linear range was 0.05-100 μg/mL for sulfisomidine, sulfathiazole, sulfamerazine, phthalylsulfathiazole and sulfacetamide, 0.1-100 μg/mL for sulfamonomethoxine and sulfachloropyridazine with a satisfactory correlation coefficients (R2) > 0.9994. This developed OT-CEC method was successfully applied to determinate of seven sulfonamides in environmental water and milk samples with good recoveries of 85.77% - 109.10% and 80.03% - 109.97%, respectively. These results indicated that GO-MoS2-coated capillary column possessed good stability and repeatability.
Collapse
Affiliation(s)
- Zhimin Cai
- Department of Chemistry, Capital Normal University, Beijing, 100048, PR China
| | - Xiaoyu Hu
- Department of Chemistry, Capital Normal University, Beijing, 100048, PR China
| | - Rui Zong
- Department of Chemistry, Capital Normal University, Beijing, 100048, PR China
| | - Hanqing Wu
- College of Teacher Education, Capital Normal University, Beijing, 100048, PR China.
| | - Xiaotong Jin
- Department of Chemistry, Capital Normal University, Beijing, 100048, PR China
| | - Han Yin
- Department of Chemistry, Capital Normal University, Beijing, 100048, PR China
| | - Chuanlin Huang
- Department of Chemistry, Capital Normal University, Beijing, 100048, PR China
| | - Yuhong Xiang
- Department of Chemistry, Capital Normal University, Beijing, 100048, PR China
| | - Nengsheng Ye
- Department of Chemistry, Capital Normal University, Beijing, 100048, PR China.
| |
Collapse
|
22
|
Guo Y, He X, Huang C, Chen H, Lu Q, Zhang L. Metal–organic framework-derived nitrogen-doped carbon nanotube cages as efficient adsorbents for solid-phase microextraction of polychlorinated biphenyls. Anal Chim Acta 2020; 1095:99-108. [DOI: 10.1016/j.aca.2019.10.023] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2019] [Revised: 10/12/2019] [Accepted: 10/14/2019] [Indexed: 02/06/2023]
|
23
|
Recent advances in emerging nanomaterials based food sample pretreatment methods for food safety screening. Trends Analyt Chem 2019. [DOI: 10.1016/j.trac.2019.115669] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
24
|
Recent Applications and Newly Developed Strategies of Solid-Phase Microextraction in Contaminant Analysis: Through the Environment to Humans. SEPARATIONS 2019. [DOI: 10.3390/separations6040054] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
The present review aims to describe the recent and most impactful applications in pollutant analysis using solid-phase microextraction (SPME) technology in environmental, food, and bio-clinical analysis. The covered papers were published in the last 5 years (2014–2019) thus providing the reader with information about the current state-of-the-art and the future potential directions of the research in pollutant monitoring using SPME. To this end, we revised the studies focused on the investigation of persistent organic pollutants (POPs), pesticides, and emerging pollutants (EPs) including personal care products (PPCPs), in different environmental, food, and bio-clinical matrices. We especially emphasized the role that SPME is having in contaminant surveys following the path that goes from the environment to humans passing through the food web. Besides, this review covers the last technological developments encompassing the use of novel extraction coatings (e.g., metal-organic frameworks, covalent organic frameworks, PDMS-overcoated fiber), geometries (e.g., Arrow-SPME, multiple monolithic fiber-SPME), approaches (e.g., vacuum and cold fiber SPME), and on-site devices. The applications of SPME hyphenated with ambient mass spectrometry have also been described.
Collapse
|
25
|
Hou X, Tang S, Wang J. Recent advances and applications of graphene-based extraction materials in food safety. Trends Analyt Chem 2019. [DOI: 10.1016/j.trac.2019.07.014] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
26
|
In situ self-transformation metal into metal-organic framework membrane for solid-phase microextraction of polycyclic aromatic hydrocarbons. Talanta 2019; 202:145-151. [DOI: 10.1016/j.talanta.2019.04.063] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 04/18/2019] [Accepted: 04/23/2019] [Indexed: 12/22/2022]
|
27
|
Phenyl propyl functionalized hybrid sol–gel reinforced aluminum strip as a thin film microextraction device for the trace quantitation of eight PCBs in liquid foodstuffs. Talanta 2019; 199:547-555. [DOI: 10.1016/j.talanta.2019.02.095] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Revised: 02/26/2019] [Accepted: 02/28/2019] [Indexed: 11/18/2022]
|
28
|
A solid phase microextraction Arrow with zirconium metal–organic framework/molybdenum disulfide coating coupled with gas chromatography–mass spectrometer for the determination of polycyclic aromatic hydrocarbons in fish samples. J Chromatogr A 2019; 1592:9-18. [DOI: 10.1016/j.chroma.2019.01.066] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2018] [Revised: 01/17/2019] [Accepted: 01/23/2019] [Indexed: 12/28/2022]
|
29
|
Li P, Xie J, Tang H, Shi C, Xie Y, He J, Zeng Y, Zhou H, Xia B, Zhang C, Jiang L. Fingerprints of volatile flavor compounds from southern stinky tofu brine with headspace solid-phase microextraction/gas chromatography-mass spectrometry and chemometric methods. Food Sci Nutr 2019; 7:890-896. [PMID: 30847168 PMCID: PMC6392830 DOI: 10.1002/fsn3.943] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Revised: 01/03/2019] [Accepted: 01/08/2019] [Indexed: 12/03/2022] Open
Abstract
It is difficult to produce southern stinky tofu, a famous traditional Chinese snack, at industry scale due to the complex composition of its brine. In this study, the fingerprints of organic volatile flavor compounds in the southern stinky tofu brine samples from five manufacturers were studied using headspace solid-phase microextraction/gas chromatography-mass spectrometry (HS-SPME/GC-MS) with the aid of chemometric methods. The fingerprints were obtained by HS-SPME/GC-MS and analyzed with the time shift alignment method, Shannon entropy, correlation coefficient, and principal component analysis. The results show that the time shifts in the samples can be accurately corrected by the time shift alignment method despite unexpected interferences. The fingerprint information was evaluated by Shannon entropy, while the similarities and differences in the fingerprints were investigated by correlation coefficient. Moreover, the identification of stinky tofu manufacturers can be achieved by principal component analysis. The predominant volatile compounds in southern stinky tofu brines were indole, 3-methylindole, phenol, and 4-methylphenol. Therefore, the established fingerprinting of volatile compounds for the brines by combining HS-SPME/GC-MS with chemometric methods was a simple and reliable method.
Collapse
Affiliation(s)
- Pao Li
- Hunan Provincial Key Laboratory of Food Science and BiotechnologyCollege of Food Science and TechnologyHunan Agricultural UniversityChangshaChina
- Hunan Agricultural Product Processing InstituteHunan Academy of Agricultural SciencesChangshaChina
| | - Jing Xie
- Hunan Provincial Key Laboratory of Food Science and BiotechnologyCollege of Food Science and TechnologyHunan Agricultural UniversityChangshaChina
| | - Hui Tang
- Hunan Provincial Key Laboratory of Food Science and BiotechnologyCollege of Food Science and TechnologyHunan Agricultural UniversityChangshaChina
| | - Cong Shi
- Hunan Provincial Key Laboratory of Food Science and BiotechnologyCollege of Food Science and TechnologyHunan Agricultural UniversityChangshaChina
| | - Yanhua Xie
- Hunan Provincial Key Laboratory of Food Science and BiotechnologyCollege of Food Science and TechnologyHunan Agricultural UniversityChangshaChina
| | - Jing He
- Hunan Provincial Key Laboratory of Food Science and BiotechnologyCollege of Food Science and TechnologyHunan Agricultural UniversityChangshaChina
| | - Yulun Zeng
- Hunan Provincial Key Laboratory of Food Science and BiotechnologyCollege of Food Science and TechnologyHunan Agricultural UniversityChangshaChina
| | - Hongli Zhou
- Hunan Provincial Key Laboratory of Food Science and BiotechnologyCollege of Food Science and TechnologyHunan Agricultural UniversityChangshaChina
| | - Bo Xia
- Hunan Provincial Key Laboratory of Food Science and BiotechnologyCollege of Food Science and TechnologyHunan Agricultural UniversityChangshaChina
| | - Chunyan Zhang
- Hunan Provincial Key Laboratory of Food Science and BiotechnologyCollege of Food Science and TechnologyHunan Agricultural UniversityChangshaChina
| | - Liwen Jiang
- Hunan Provincial Key Laboratory of Food Science and BiotechnologyCollege of Food Science and TechnologyHunan Agricultural UniversityChangshaChina
| |
Collapse
|
30
|
Zheng J, Huang J, Yang Q, Ni C, Xie X, Shi Y, Sun J, Zhu F, Ouyang G. Fabrications of novel solid phase microextraction fiber coatings based on new materials for high enrichment capability. Trends Analyt Chem 2018. [DOI: 10.1016/j.trac.2018.08.021] [Citation(s) in RCA: 83] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
31
|
Pinsrithong S, Bunkoed O. Hierarchical porous nanostructured polypyrrole-coated hydrogel beads containing reduced graphene oxide and magnetite nanoparticles for extraction of phthalates in bottled drinks. J Chromatogr A 2018; 1570:19-27. [DOI: 10.1016/j.chroma.2018.07.074] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2018] [Revised: 07/24/2018] [Accepted: 07/26/2018] [Indexed: 11/27/2022]
|