1
|
Wang T, Xue L, Di C, Ma P, Feng X, Chen P, Du W, Liu BF. Sensitive colorimetric detection of heparin using reverse modulation of peroxidase- and oxidase-mimetic activities in Fe 3O 4@PDA@MnO 2 nanocomposites. Talanta 2025; 281:126847. [PMID: 39276576 DOI: 10.1016/j.talanta.2024.126847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 08/20/2024] [Accepted: 09/07/2024] [Indexed: 09/17/2024]
Abstract
Heparin, a widely studied glycosaminoglycan, plays crucial roles in the regulation of various physiological and pathological processes. Therefore, it's important to develop highly selective and sensitive methods for convenient monitoring of heparin levels in biological systems. We report the design and synthesis of Fe3O4@PDA@MnO2 nanoparticles (FPM-NPs), which exhibit dual enzymatic activities, enabling quantitative detection of heparin. The FPM-NPs feature a unique tri-layer spherical shell structure, possessing both peroxidase-like and oxidase-like activities, and catalyze the oxidation of 3,3',5,5'-tetramethylbenzidine (TMB) in the presence or absence of H2O2. Remarkably, upon co-incubated with heparin, the oxidase activity of FPM-NPs decreases, while the peroxidase activity increases. By leveraging these dual enzymatic properties of FPM-NPs, a highly sensitive and specific colorimetric detection of heparin is achieved, with a detection limit reaching 6.51 nM and a good linear response to quantify heparin ranging 10-800 nM. Additionally, the developed FPM-NPs are successfully applied to measure heparin in fetal bovine serum samples. We also extend this detection method to a paper-based chip, enabling portable detection of heparin through grayscale analysis of mobile phone photographs. The multi-nanozyme-based heparin detection approach provides a new perspective for future research on expanding the application of nanocomposite materials in biomedical detection and analysis.
Collapse
Affiliation(s)
- Tengteng Wang
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics - Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Lian Xue
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics - Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Chao Di
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics - Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Peng Ma
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics - Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Xiaojun Feng
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics - Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Peng Chen
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics - Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Wei Du
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics - Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China.
| | - Bi-Feng Liu
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics - Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China.
| |
Collapse
|
2
|
Zhao Y, Li J, Yang Y, Bi Y, Cai C, Ke Y. Pseudomorphic synthesis of pore size-tunable mesoporous silica spherical particles and their application for the fraction of low-molecular-weight heparin. J Sep Sci 2024; 47:e2400367. [PMID: 39210554 DOI: 10.1002/jssc.202400367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 08/14/2024] [Accepted: 08/19/2024] [Indexed: 09/04/2024]
Abstract
In this study, spherical silica with pore size varied from 30 to 200 Å was synthesized by pseudomorphic transformation at atmospheric pressure. 40-80 Å silica particles with a narrow pore distribution were obtained by using quaternary amine cationic surfactants and different kinds of swelling agents, including polypropylene glycol, 1,3,5-trimethylbenzene, alkanes, and alkanols. Alkyl imidazolium ionic liquid surfactants were used to synthesize large pore size distribution silica spheres with pore sizes in the range of 110-200 Å. All these silica particles can be synthesized under mild conditions within 12 h, which provides a facile synthesis method for the preparation of a chromatographic matrix with tunable pore size. The method is reproducible and the relative standard deviation of silica sphere pore structure parameters in scaled-up preparations is less than 6%. The pore size on the fraction of low-molecular-weight heparin (LMWH) was investigated in size exclusion chromatography. Matrixes with different pore size distributions have various size exclusion regions. By using UPS-60-Diol columns in a twin-column recirculation separation process, LMWH with >85% heparin with molecular weight within the range of 3000-8000 Da were separated in five-column volumes.
Collapse
Affiliation(s)
- Yang Zhao
- Engineering Research Center of Pharmaceutical Process Chemistry, Ministry of Education, School of Pharmacy, East China University of Science and Technology, Shanghai, China
| | - Jie Li
- Engineering Research Center of Pharmaceutical Process Chemistry, Ministry of Education, School of Pharmacy, East China University of Science and Technology, Shanghai, China
| | - Yang Yang
- Engineering Research Center of Pharmaceutical Process Chemistry, Ministry of Education, School of Pharmacy, East China University of Science and Technology, Shanghai, China
| | - Yujie Bi
- Engineering Research Center of Pharmaceutical Process Chemistry, Ministry of Education, School of Pharmacy, East China University of Science and Technology, Shanghai, China
| | - Changyu Cai
- Engineering Research Center of Pharmaceutical Process Chemistry, Ministry of Education, School of Pharmacy, East China University of Science and Technology, Shanghai, China
| | - Yanxiong Ke
- Engineering Research Center of Pharmaceutical Process Chemistry, Ministry of Education, School of Pharmacy, East China University of Science and Technology, Shanghai, China
| |
Collapse
|
3
|
Joshi A, Chopra P, Venot A, Boons GJ. Chemical Synthesis of Δ-4,5 Unsaturated Heparan Sulfate Oligosaccharides for Biomarker Discovery. Org Lett 2024; 26:2462-2466. [PMID: 38498917 PMCID: PMC10985652 DOI: 10.1021/acs.orglett.4c00596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 03/12/2024] [Accepted: 03/15/2024] [Indexed: 03/20/2024]
Abstract
A methodology is described that can provide heparan sulfate oligosaccharides having a Δ4,5-double bond, which are needed as analytical standards and biomarkers for mucopolysaccharidoses. It is based on chemical oligosaccharide synthesis followed by modification of the C-4 hydroxyl of the terminal uronic acid moiety as methanesulfonate. This leaving group is stable under conditions used to remove temporary protecting groups, O-sulfation, and hydrogenolysis. Treatment with NaOH results in elimination of the methanesulfonate and formation of a Δ4,5-double bond.
Collapse
Affiliation(s)
- Apoorva Joshi
- Complex
Carbohydrate Research Center, University
of Georgia, 315 Riverbend Road, Athens, Georgia 30602, United States
| | - Pradeep Chopra
- Complex
Carbohydrate Research Center, University
of Georgia, 315 Riverbend Road, Athens, Georgia 30602, United States
| | - Andre Venot
- Complex
Carbohydrate Research Center, University
of Georgia, 315 Riverbend Road, Athens, Georgia 30602, United States
| | - Geert-Jan Boons
- Complex
Carbohydrate Research Center, University
of Georgia, 315 Riverbend Road, Athens, Georgia 30602, United States
- Department
of Chemistry, University of Georgia, Athens, Georgia 30602, United States
- Department
of Chemical Biology and Drug Discovery, Utrecht Institute for Pharmaceutical
Sciences, and Bijvoet Center for Biomolecular Research, Utrecht University, Universiteitsweg
99, 3584 CG Utrecht, The Netherlands
| |
Collapse
|
4
|
Liu Y, Zhang Y, Liu C, Wang C, Xu B, Zhao L. Construction of a highly sensitive detection platform for heparin based on a "turn-off" cationic fluorescent dye. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 308:123670. [PMID: 38006866 DOI: 10.1016/j.saa.2023.123670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 11/10/2023] [Accepted: 11/19/2023] [Indexed: 11/27/2023]
Abstract
A highly sensitive detection platform for heparin was constructed via the utilization of a commercially available cationic fluorescent dye (cresyl violet acetate, CV) as a fluorescence probe. The electrostatic binding between CV and heparin quenched the fluorescence in 4-(2-hydroxyethyl)-1-piperazineethanesulfonic (HEPES) buffer solution (10 mM, pH 7.1). CV was highly selective towards heparin over other potential inferring substances. The detection limit of heparin detection was 5.19 ng/mL, and the linear working range was 0 ∼ 1 μg/mL in HEPES solution. In 1 % serum, the detection platform based on the fluorescence "turn-off" behavior of CV was also successfully constructed with a detection limit of 5.86 ng/mL in the linear range of 0 ∼ 0.8 μg/mL. Moreover, the CV-heparin complex was considered a potential sensor platform for the detection of protamine because of its stronger affinity for heparin and protamine.
Collapse
Affiliation(s)
- Yu Liu
- School of Light Industry, Beijing Technology and Business University, Beijing 100048, China
| | - Yue Zhang
- School of Light Industry, Beijing Technology and Business University, Beijing 100048, China
| | - Changyao Liu
- School of Light Industry, Beijing Technology and Business University, Beijing 100048, China
| | - Ce Wang
- School of Light Industry, Beijing Technology and Business University, Beijing 100048, China
| | - Baocai Xu
- School of Light Industry, Beijing Technology and Business University, Beijing 100048, China.
| | - Li Zhao
- School of Light Industry, Beijing Technology and Business University, Beijing 100048, China.
| |
Collapse
|
5
|
Jeanroy F, Comby-Zerbino C, Demesmay C, Dugas V. Miniaturized affinity chromatography: A powerful technique for the isolation of high affinity GAGs sequences prior to their identification by MALDI-TOF MS. Anal Chim Acta 2023; 1277:341656. [PMID: 37604620 DOI: 10.1016/j.aca.2023.341656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 07/24/2023] [Indexed: 08/23/2023]
Abstract
Glycosaminoglycans (GAGS) are involved in many biological processes through interactions with a variety of proteins, including proteases, growth factors, cytokines, chemokines and adhesion molecules. Identifying druggable GAG-protein interactions for therapeutic purposes is a challenge for the analytical community. In this context, this work investigates the use of a new miniaturized monolithic affinity column (poly(GMA-co-MBA) grafted with antithrombin III (AT III)) to specifically capture and elute high affinity sequences contained in low molecular weight heparin (enoxaparin) for further on-line characterization. This miniaturized, high binding capacity affinity column allows the specific capture of high-affinity oligosaccharide chains from Enoxaparin, even at low concentrations and with a minimal consumption of AT III. In addition to purification, this elution process enables preconcentration for direct analysis by capillary zone electrophoresis. It was found that many of oligosaccharide chains in enoxaparin were eliminated and that certain chain sequences were retained and enriched. Direct coupling with MALDI-TOF MS was successfully used to further characterize the specifically retained oligosaccharides where nano-ESI-TOF MS failed. After optimization of the sample preparation and ionization parameters, direct on-line analysis was performed by applying the elution volume released from the miniaturized affinity column (≤1 μL) directly to the MALDI plate. Finally, this original miniaturized analytical workflow coupling miniaturized AT III-affinity chromatography to MALDI-TOF MS detection is able to select, enrich and detect and identify high affinity sequences (mainly DP4 in size length with a high degree of sulfation) from low molecular weight heparin samples. A more specific selection of GAG sequences can be achieved by increasing the ionic strength during the washing step of affinity chromatography. This is consistent with the known binding pattern between heparin and AT III.
Collapse
Affiliation(s)
- Frédéric Jeanroy
- Université de Lyon, CNRS, Université Claude Bernard Lyon 1, Institut des Sciences Analytiques, UMR, 5280, 5 Rue de la Doua, F-69100, Villeurbanne, France
| | - Clothilde Comby-Zerbino
- Université de Lyon, CNRS, Université Claude Bernard Lyon 1, Institut Lumière Matière, UMR 5306, F-69100, Villeurbanne, France
| | - Claire Demesmay
- Université de Lyon, CNRS, Université Claude Bernard Lyon 1, Institut des Sciences Analytiques, UMR, 5280, 5 Rue de la Doua, F-69100, Villeurbanne, France
| | - Vincent Dugas
- Université de Lyon, CNRS, Université Claude Bernard Lyon 1, Institut des Sciences Analytiques, UMR, 5280, 5 Rue de la Doua, F-69100, Villeurbanne, France.
| |
Collapse
|
6
|
Maciej-Hulme ML, Van Gemst JJ, Sanderson P, Rops ALWMM, Berden JH, Smeets B, Amster IJ, Rabelink TJ, Van Der Vlag J. Glomerular endothelial glycocalyx-derived heparan sulfate inhibits glomerular leukocyte influx and attenuates experimental glomerulonephritis. Front Mol Biosci 2023; 10:1177560. [PMID: 37325479 PMCID: PMC10267401 DOI: 10.3389/fmolb.2023.1177560] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 05/15/2023] [Indexed: 06/17/2023] Open
Abstract
Proliferative forms of glomerulonephritis are characterized by the influx of leukocytes, albuminuria, and loss of kidney function. The glomerular endothelial glycocalyx is a thick carbohydrate layer that covers the endothelium and is comprised of heparan sulfate (HS), which plays a pivotal role in glomerular inflammation by facilitating endothelial-leukocyte trafficking. We hypothesize that the exogenous glomerular glycocalyx may reduce the glomerular influx of inflammatory cells during glomerulonephritis. Indeed, administration of mouse glomerular endothelial cell (mGEnC)-derived glycocalyx constituents, or the low-molecular-weight heparin enoxaparin, reduced proteinuria in mice with experimental glomerulonephritis. Glomerular influx of granulocytes and macrophages, as well as glomerular fibrin deposition, was reduced by the administration of mGEnC-derived glycocalyx constituents, thereby explaining the improved clinical outcome. HSglx also inhibited granulocyte adhesion to human glomerular endothelial cells in vitro. Notably, a specific HSglx fraction inhibited both CD11b and L-selectin binding to activated mGEnCs. Mass spectrometry analysis of this specific fraction revealed six HS oligosaccharides, ranging from tetra- to hexasaccharides with 2-7 sulfates. In summary, we demonstrate that exogenous HSglx reduces albuminuria during glomerulonephritis, which is possibly mediated via multiple mechanisms. Our results justify the further development of structurally defined HS-based therapeutics for patients with (acute) inflammatory glomerular diseases, which may be applicable to non-renal inflammatory diseases as well.
Collapse
Affiliation(s)
- Marissa L Maciej-Hulme
- Department of Nephrology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands
| | - Jasper J Van Gemst
- Department of Nephrology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands
| | - Patience Sanderson
- Department of Chemistry, University of Georgia, Athens, GA, United States
| | - Angelique L W M M Rops
- Department of Nephrology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands
| | - Jo H Berden
- Department of Nephrology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands
| | - Bart Smeets
- Department of Pathology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands
| | - I Jonathan Amster
- Department of Chemistry, University of Georgia, Athens, GA, United States
| | - Ton J Rabelink
- Department of Nephrology, Einthoven Laboratory for Vascular Medicine, Leiden University Medical Center, Leiden, Netherlands
| | - Johan Van Der Vlag
- Department of Nephrology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands
| |
Collapse
|
7
|
Cavallero GJ, Zaia J. Resolving Heparan Sulfate Oligosaccharide Positional Isomers Using Hydrophilic Interaction Liquid Chromatography-Cyclic Ion Mobility Mass Spectrometry. Anal Chem 2022; 94:2366-2374. [PMID: 35090117 PMCID: PMC8943687 DOI: 10.1021/acs.analchem.1c03543] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Heparan sulfate (HS) is a linear polysaccharide covalently attached to proteoglycans on cell surfaces and within extracellular matrices in all animal tissues. Many biological processes are triggered by the interactions among HS binding proteins and short structural motifs in HS chains. The determination of HS oligosaccharide structures using liquid chromatography-mass spectrometry (LC-MS) is made challenging by the existence of positional sulfation and acetylation isomers. The determination of uronic acid epimer positions is even more challenging. While hydrophilic interaction liquid chromatography (HILIC) separates HS saccharides based on their composition, there is a very limited resolution of positional isomers. This lack of resolution places a burden on the tandem mass spectrometry step for assigning saccharide isomers. In this work, we explored the use of the ion mobility dimension to separate HS saccharide isomers based on molecular shape in the gas phase. We showed that the combination of HILIC and cyclic ion mobility mass spectrometry (cIM-MS) was extremely useful for resolving HS positional isomers including uronic acid epimers and sulfate positions. Furthermore, HILIC-cIM-MS differentiated multicomponent HS isomeric saccharide mixtures. In summary, HILIC-cIM-MS provided high-quality data for analysis of HS oligosaccharide isomeric mixtures that may prove useful in the discovery of new structural motifs for HS binding proteins and for the targeted quality control analysis of commercial HS products.
Collapse
Affiliation(s)
- Gustavo J Cavallero
- Department of Biochemistry, Center for Biomedical Mass Spectrometry, Boston University School of Medicine, Boston, Massachusetts 02118, United States
| | - Joseph Zaia
- Department of Biochemistry, Center for Biomedical Mass Spectrometry, Boston University School of Medicine, Boston, Massachusetts 02118, United States
| |
Collapse
|
8
|
Suntornsuk L, Anurukvorakun O. Sensitivity enhancement in capillary electrophoresis and their applications for analyses of pharmaceutical and related biochemical substances. Electrophoresis 2021; 43:939-954. [PMID: 34902168 DOI: 10.1002/elps.202100236] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 11/23/2021] [Accepted: 11/30/2021] [Indexed: 11/11/2022]
Abstract
This review aims to illustrate sensitivity enhancement methods in capillary electrophoresis (CE) and their applications for pharmaceutical and related biochemical substance analyses. The first two parts of the article describe the introduction and principle of CE. The main part focuses on strategies for sensitivity improvement in CE including detector and capillary technologies and pre-concentration techniques. Applications of these techniques for pharmaceutical and biomedical substance analyses are surveyed during the years 2018-2021. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Leena Suntornsuk
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Mahidol University, Bangkok, 10400, Thailand
| | - Oraphan Anurukvorakun
- Department of Cosmetic Science, Phranakorn Rajabhat University, Bangkok, 10220, Thailand
| |
Collapse
|
9
|
Spliid CB, Toledo AG, Sanderson P, Mao Y, Gatto F, Gustavsson T, Choudhary S, Saldanha AL, Vogelsang RP, Gögenur I, Theander TG, Leach FE, Amster IJ, Esko JD, Salanti A, Clausen TM. The specificity of the malarial VAR2CSA protein for chondroitin sulfate depends on 4-O-sulfation and ligand accessibility. J Biol Chem 2021; 297:101391. [PMID: 34762909 DOI: 10.1016/j.jbc.2021.101391] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 11/02/2021] [Accepted: 11/03/2021] [Indexed: 10/19/2022] Open
Abstract
Placental malaria infection is mediated by the binding of the malarial VAR2CSA protein to the placental glycosaminoglycan, chondroitin sulfate. Recombinant sub-fragments of VAR2CSA (rVAR2) have also been shown to bind specifically and with high affinity to cancer cells and tissues, suggesting the presence of a shared type of oncofetal chondroitin sulfate (ofCS) in the placenta and in tumors. However, the exact structure of ofCS and what determines the selective tropism of VAR2CSA remains poorly understood. In this study, ofCS was purified by affinity chromatography using rVAR2 and subjected to detailed structural analysis. We found high levels of N-acetylgalactosamine 4-O-sulfation (∼80-85%) in placenta- and tumor-derived ofCS. This level of 4-O-sulfation was also found in other tissues that do not support parasite sequestration, suggesting that VAR2CSA tropism is not exclusively determined by placenta- and tumor-specific sulfation. Here, we show that both placenta and tumors contain significantly more chondroitin sulfate moieties of higher molecular weight than other tissues. In line with this, CHPF and CHPF2, which encode proteins required for chondroitin polymerization, are significantly upregulated in most cancer types. CRISPR/Cas9 targeting of CHPF and CHPF2 in tumor cells reduced the average molecular weight of cell-surface chondroitin sulfate and resulted in a marked reduction of rVAR2 binding. Finally, utilizing a cell-based glycocalyx model, we showed that rVAR2 binding correlates with the length of the chondroitin sulfate chains in the cellular glycocalyx. These data demonstrate that the total amount and cellular accessibility of chondroitin sulfate chains impact rVAR2 binding and thus malaria infection.
Collapse
Affiliation(s)
- Charlotte B Spliid
- Department of Cellular and Molecular Medicine, and Glycobiology Research and Training Center, University of California San Diego, La Jolla, CA, USA; Centre for Medical Parasitology at Department for Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen and Department of Infectious Disease, Copenhagen University Hospital, 2200 Copenhagen, Denmark
| | - Alejandro Gomez Toledo
- Department of Cellular and Molecular Medicine, and Glycobiology Research and Training Center, University of California San Diego, La Jolla, CA, USA; Department of Clinical Sciences, Division of Infection Medicine, Lund University, Sweden
| | | | - Yang Mao
- School of Pharmaceutical Sciences, Sun Yat-sen University, 510006 Guangzhou, China and Guangdong Provincial Key Laboratory of Drug Non-Clinical Evaluation and Research, 510990 Guangzhou, China
| | - Francesco Gatto
- Department of Biology and Biological Engineering, Chalmers University of Technology, 42196 Gothenburg, Sweden
| | - Tobias Gustavsson
- Centre for Medical Parasitology at Department for Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen and Department of Infectious Disease, Copenhagen University Hospital, 2200 Copenhagen, Denmark
| | - Swati Choudhary
- Centre for Medical Parasitology at Department for Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen and Department of Infectious Disease, Copenhagen University Hospital, 2200 Copenhagen, Denmark
| | - Ana L Saldanha
- Centre for Medical Parasitology at Department for Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen and Department of Infectious Disease, Copenhagen University Hospital, 2200 Copenhagen, Denmark
| | - Rasmus P Vogelsang
- Center for Surgical Science, Department of Surgery, Zealand University Hospital, DK-4600 Koege, Denmark
| | - Ismail Gögenur
- Center for Surgical Science, Department of Surgery, Zealand University Hospital, DK-4600 Koege, Denmark
| | - Thor G Theander
- Centre for Medical Parasitology at Department for Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen and Department of Infectious Disease, Copenhagen University Hospital, 2200 Copenhagen, Denmark
| | - Franklin E Leach
- Department of Environmental Health Science, University of Georgia, Athens, GA 30602
| | | | - Jeffrey D Esko
- Department of Cellular and Molecular Medicine, and Glycobiology Research and Training Center, University of California San Diego, La Jolla, CA, USA
| | - Ali Salanti
- Centre for Medical Parasitology at Department for Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen and Department of Infectious Disease, Copenhagen University Hospital, 2200 Copenhagen, Denmark
| | - Thomas Mandel Clausen
- Department of Cellular and Molecular Medicine, and Glycobiology Research and Training Center, University of California San Diego, La Jolla, CA, USA; Centre for Medical Parasitology at Department for Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen and Department of Infectious Disease, Copenhagen University Hospital, 2200 Copenhagen, Denmark.
| |
Collapse
|
10
|
Techniques for Detection of Clinical Used Heparins. Int J Anal Chem 2021; 2021:5543460. [PMID: 34040644 PMCID: PMC8121598 DOI: 10.1155/2021/5543460] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 04/16/2021] [Accepted: 04/29/2021] [Indexed: 01/21/2023] Open
Abstract
Heparins and sulfated polysaccharides have been recognized as effective clinical anticoagulants for several decades. Heparins exhibit heterogeneity depending on the sources. Meanwhile, the adverse effect in the clinical uses and the adulteration of oversulfated chondroitin sulfate (OSCS) in heparins develop additional attention to analyze the purity of heparins. This review starts with the description of the classification, anticoagulant mechanism, clinical application of heparins and focuses on the existing methods of heparin analysis and detection including traditional detection methods, as well as new methods using fluorescence or gold nanomaterials as probes. The in-depth understanding of these techniques for the analysis of heparins will lay a foundation for the further development of novel methods for the detection of heparins.
Collapse
|
11
|
Wu J, Chopra P, Boons GJ, Zaia J. Influence of saccharide modifications on heparin lyase III substrate specificities. Glycobiology 2021; 32:208-217. [PMID: 33822051 DOI: 10.1093/glycob/cwab023] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 03/01/2021] [Accepted: 03/08/2021] [Indexed: 12/25/2022] Open
Abstract
A library of 23 synthetic heparan sulfate (HS) oligosaccharides, varying in chain length, types and positions of modifications, was used to analyze the substrate specificities of heparin lyase III enzymes from both Flavobacterium heparinum and Bacteroides eggerthii. The influence of specific modifications, including N-substitution, 2-O sulfation, 6-O sulfation and 3-O sulfation on lyase III digestion was examined systematically. It was demonstrated that lyase III from both sources can completely digest oligosaccharides lacking O-sulfates. 2-O Sulfation completely blocked cleavage at the corresponding site; 6-O and 3-O sulfation on glucosamine residues inhibited enzyme activity. We also observed that there are differences in substrate specificities between the two lyase III enzymes for highly sulfated oligosaccharides. These findings will facilitate obtaining and analyzing the functional sulfated domains from large HS polymer, to better understand their structure/function relationships in biological processes.
Collapse
Affiliation(s)
- Jiandong Wu
- Department of Biochemistry, Center for Biomedical Mass Spectrometry, Boston University School of Medicine, Boston, MA 02118, USA
| | - Pradeep Chopra
- Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia 30602, USA
| | - Geert-Jan Boons
- Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia 30602, USA.,Department of Chemistry, University of Georgia, Athens, Georgia 30602, USA.,Department of Chemical Biology and Drug Discovery, Utrecht Institute for Pharmaceutical Sciences and Bijvoet Center for Biomolecular Research, Utrecht University, Utrecht 3584 CG, The Netherlands
| | - Joseph Zaia
- Department of Biochemistry, Center for Biomedical Mass Spectrometry, Boston University School of Medicine, Boston, MA 02118, USA
| |
Collapse
|
12
|
Song Y, Zhang F, Linhardt RJ. Analysis of the Glycosaminoglycan Chains of Proteoglycans. J Histochem Cytochem 2021; 69:121-135. [PMID: 32623943 PMCID: PMC7841699 DOI: 10.1369/0022155420937154] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Accepted: 05/29/2020] [Indexed: 12/16/2022] Open
Abstract
Glycosaminoglycans (GAGs) are heterogeneous, negatively charged, macromolecules that are found in animal tissues. Based on the form of component sugar, GAGs have been categorized into four different families: heparin/heparan sulfate, chondroitin/dermatan sulfate, keratan sulfate, and hyaluronan. GAGs engage in biological pathway regulation through their interaction with protein ligands. Detailed structural information on GAG chains is required to further understanding of GAG-ligand interactions. However, polysaccharide sequencing has lagged behind protein and DNA sequencing due to the non-template-driven biosynthesis of glycans. In this review, we summarize recent progress in the analysis of GAG chains, specifically focusing on techniques related to mass spectroscopy (MS), including separation techniques coupled to MS, tandem MS, and bioinformatics software for MS spectrum interpretation. Progress in the use of other structural analysis tools, such as nuclear magnetic resonance (NMR) and hyphenated techniques, is included to provide a comprehensive perspective.
Collapse
Affiliation(s)
- Yuefan Song
- National R & D Branch Center for Seaweed Processing, College of Food Science and Engineering, Dalian Ocean University, Dalian, P.R. China
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York
| | - Fuming Zhang
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York
| | - Robert J Linhardt
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York
| |
Collapse
|
13
|
Pepi LE, Sanderson P, Stickney M, Amster IJ. Developments in Mass Spectrometry for Glycosaminoglycan Analysis: A Review. Mol Cell Proteomics 2021; 20:100025. [PMID: 32938749 PMCID: PMC8724624 DOI: 10.1074/mcp.r120.002267] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 09/15/2020] [Accepted: 09/16/2020] [Indexed: 12/11/2022] Open
Abstract
This review covers recent developments in glycosaminoglycan (GAG) analysis via mass spectrometry (MS). GAGs participate in a variety of biological functions, including cellular communication, wound healing, and anticoagulation, and are important targets for structural characterization. GAGs exhibit a diverse range of structural features due to the variety of O- and N-sulfation modifications and uronic acid C-5 epimerization that can occur, making their analysis a challenging target. Mass spectrometry approaches to the structure assignment of GAGs have been widely investigated, and new methodologies remain the subject of development. Advances in sample preparation, tandem MS techniques (MS/MS), online separations, and automated analysis software have advanced the field of GAG analysis. These recent developments have led to remarkable improvements in the precision and time efficiency for the structural characterization of GAGs.
Collapse
Affiliation(s)
- Lauren E Pepi
- Department of Chemistry, University of Georgia, Athens, Georgia, USA
| | | | - Morgan Stickney
- Department of Chemistry, University of Georgia, Athens, Georgia, USA
| | - I Jonathan Amster
- Department of Chemistry, University of Georgia, Athens, Georgia, USA.
| |
Collapse
|
14
|
Qiao M, Lin L, Xia K, Li J, Zhang X, Linhardt RJ. Recent advances in biotechnology for heparin and heparan sulfate analysis. Talanta 2020; 219:121270. [PMID: 32887160 PMCID: PMC7474733 DOI: 10.1016/j.talanta.2020.121270] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2020] [Revised: 05/29/2020] [Accepted: 05/30/2020] [Indexed: 01/07/2023]
Abstract
Heparan sulfate (HS) is a class of linear, sulfated, anionic polysaccharides, called glycosaminoglycans (GAGs), which present on the mammalian cell surfaces and extracellular matrix. HS GAGs display a wide range of critical biological functions, particularly in cell signaling. HS is composed of repeating units of 1 → 4 glucosidically linked uronic acid and glucosamine residues. Heparin, a pharmacologically important version of HS, having higher sulfation and a higher content of iduronic acid than HS, is a widely used clinical anticoagulant. However, due to their heterogeneity and complex structure, HS and heparin are very challenging to analyze, limiting biological studies and even resulting in safety concerns in their therapeutic application. Therefore, reliable methods of structural analysis of HS and heparin are critically needed. In addition to the structural analysis of heparin, its concentration in blood needs to be closely monitored to avoid complications such as thrombocytopenia or hemorrhage caused by heparin overdose. This review summarizes the progress in biotechnological approaches in the structural characterization of HS and heparin over the past decade and includes the development of the ultrasensitive approaches for detection and measurement in biological samples.
Collapse
Affiliation(s)
- Meng Qiao
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Wenyuan Road 1, Nanjing, 210023, China
| | - Lei Lin
- School of Environment, Nanjing Normal University, Wenyuan Road 1, Nanjing, 210023, China
| | - Ke Xia
- Department of Chemistry and Chemical Biology, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, 12180, USA
| | - Jun Li
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China
| | - Xing Zhang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Wenyuan Road 1, Nanjing, 210023, China.
| | - Robert J Linhardt
- Department of Chemistry and Chemical Biology, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, 12180, USA; Department of Chemical and Biological Engineering, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, 12180, USA.
| |
Collapse
|
15
|
Liu H, Liang Q, Sharp JS. Peracylation Coupled with Tandem Mass Spectrometry for Structural Sequencing of Sulfated Glycosaminoglycan Mixtures without Depolymerization. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2020; 31:2061-2072. [PMID: 32902282 PMCID: PMC7664153 DOI: 10.1021/jasms.0c00178] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
The structures of glycosaminoglycans (GAGs), especially the patterns of modification, are crucial to modulate interactions with various protein targets. It is very challenging to determine the fine structures using liquid chromatography-mass spectrometry (LC-MS) due in large part to the gas-phase sulfate losses upon collisional activation. Previously, our group reported a method for fine structure analysis that required permethylation of the GAG oligosaccharide. However, uncontrolled depolymerization during the permethylation process due to esterification of uronic acid lowers the reliability of the method to resolve structures of GAGs, especially for larger oligosaccharides. Here, we describe a simplified derivatization method using propionylation and desulfation. The oligosaccharides have all hydroxyl and amine groups protected with propionyl groups and then have sulfate groups removed to generate unprotected hydroxyl and amine groups at all sites that were previously sulfated. This derivatized oligosaccharide generates informative fragments during collision-induced dissociation that resolve the original sulfation patterns. This method is demonstrated to enable accurate determination of sulfation patterns of even the highly sulfated pentasaccharide fondaparinux by MS2 and MS3. Using a mixture of dp6 from porcine heparin, we demonstrate that this method allows for structural characterization of complex mixtures, including clear chromatographic separation and sequencing of structural isomers, all at high yields without evidence of depolymerization. This represents a marked improvement in the reliability to structurally characterize GAG oligosaccharides over permethylation-based derivatization schemes.
Collapse
Affiliation(s)
- Hao Liu
- Department of BioMolecular Sciences, University of Mississippi, Oxford, MS 38677, USA
| | - Quntao Liang
- College of Biological Science and Engineering, University of Fuzhou, Fujian, 350108, China
| | - Joshua S. Sharp
- Department of BioMolecular Sciences, University of Mississippi, Oxford, MS 38677, USA
- Department of Chemistry and Biochemistry, University of Mississippi, Oxford, MS 38677, USA
- Correspondence and requests for materials should be addressed to J.S.S. ()
| |
Collapse
|
16
|
Yu Y, Zhang F, Renois-Predelus G, Amster IJ, Linhardt RJ. Filter-entrapment enrichment pull-down assay for glycosaminoglycan structural characterization and protein interaction. Carbohydr Polym 2020; 245:116623. [PMID: 32718661 DOI: 10.1016/j.carbpol.2020.116623] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Revised: 05/28/2020] [Accepted: 06/08/2020] [Indexed: 02/06/2023]
Abstract
Heparins are the most pharmaceutically important polysaccharides. These heparin-based anticoagulant/antithrombotic agents include unfractionated heparins, low molecular weight heparins (LMWHs) and ultralow molecular weight heparins (ULMWHs). Heparins exhibit their pharmacological and biological activities through interaction with heparin-binding proteins. The prototypical heparin-binding protein is antithrombin III (AT), responsible for heparin's anticoagulant/antithrombotic activity. This study describes a filter-trapping method to isolate the chains in enoxaparin, a LMWH, which bind to AT. We demonstrate this method using the ULMWH, fondaparinux, which consists of a single well defined AT binding site. The interacting chains of enoxaparin are then characterized by activity assays, top-down liquid chromatography-mass spectrometry, and capillary zone electrophoresis mass spectrometry. This filter-trapping assay is an improvement over affinity chromatography for isolating heparin chains interacting with heparin binding proteins.
Collapse
Affiliation(s)
- Yanlei Yu
- Department of Chemistry and Chemical Biology, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, 12180, USA
| | - Fuming Zhang
- Department of Chemical and Biological Engineering, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, 12180, USA
| | | | - I Jonathan Amster
- Department of Chemistry, University of Georgia, Athens, GA, 30602, USA
| | - Robert J Linhardt
- Department of Chemistry and Chemical Biology, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, 12180, USA; Department of Chemical and Biological Engineering, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, 12180, USA; Department of Biology, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, 12180, USA; Department of Biomedical Engineering, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, 12180, USA.
| |
Collapse
|
17
|
Han X, Sanderson P, Nesheiwat S, Lin L, Yu Y, Zhang F, Amster IJ, Linhardt RJ. Structural analysis of urinary glycosaminoglycans from healthy human subjects. Glycobiology 2020; 30:143-151. [PMID: 31616929 PMCID: PMC7415306 DOI: 10.1093/glycob/cwz088] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 10/07/2019] [Accepted: 10/09/2019] [Indexed: 11/12/2022] Open
Abstract
Urinary glycosaminoglycans (GAGs) can reflect the health condition of a human being, and the GAGs composition can be directly related to various diseases. In order to effectively utilize such information, a detailed understanding of urinary GAGs in healthy individuals can provide insight into the levels and structures of human urinary GAGs. In this study, urinary GAGs were collected and purified from healthy males and females of adults and young adults. The total creatinine-normalized urinary GAG content, molecular weight distribution and disaccharide compositions were determined. Using capillary zone electrophoresis (CZE)-mass spectrometry (MS) and CZE-MS/MS relying on negative electron transfer dissociation, the major components of healthy human urinary GAGs were determined. The structures of 10 GAG oligosaccharides representing the majority of human urinary GAGs were determined.
Collapse
Affiliation(s)
- Xiaorui Han
- Departments of Chemistry and Chemical Biology, Biology, Chemical and Biological Engineering and Biomedical Engineering, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, 110 8 Street, Troy, NY 12180, USA
| | - Patience Sanderson
- Department of Chemistry, University of Georgia, 140 Cedar St, Athens, GA 30602, USA
| | - Sara Nesheiwat
- Departments of Chemistry and Chemical Biology, Biology, Chemical and Biological Engineering and Biomedical Engineering, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, 110 8 Street, Troy, NY 12180, USA
| | - Lei Lin
- Departments of Chemistry and Chemical Biology, Biology, Chemical and Biological Engineering and Biomedical Engineering, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, 110 8 Street, Troy, NY 12180, USA
| | - Yanlei Yu
- Departments of Chemistry and Chemical Biology, Biology, Chemical and Biological Engineering and Biomedical Engineering, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, 110 8 Street, Troy, NY 12180, USA
| | - Fuming Zhang
- Departments of Chemistry and Chemical Biology, Biology, Chemical and Biological Engineering and Biomedical Engineering, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, 110 8 Street, Troy, NY 12180, USA
| | - I Jonathan Amster
- Department of Chemistry, University of Georgia, 140 Cedar St, Athens, GA 30602, USA
| | - Robert J Linhardt
- Departments of Chemistry and Chemical Biology, Biology, Chemical and Biological Engineering and Biomedical Engineering, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, 110 8 Street, Troy, NY 12180, USA
| |
Collapse
|
18
|
Kristoff CJ, Li C, Li P, Holland LA. Low Flow Voltage Free Interface for Capillary Electrophoresis and Mass Spectrometry Driven by Vibrating Sharp-Edge Spray Ionization. Anal Chem 2020; 92:3006-3013. [PMID: 31971372 PMCID: PMC7295075 DOI: 10.1021/acs.analchem.9b03994] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Capillary electrophoresis-mass spectrometry is a powerful technique for high-throughput and high efficiency separations combined with structural identification. Electrospray ionization is the primary interface used to couple capillary electrophoresis to mass analyzers; however, improved designs continue to be reported. A new interfacing method based on vibrating sharp-edge spray ionization is presented in this work to overcome the challenges of decoupling applied voltages and to enhance the compatibility with separations performed at near-neutral pH. The versatility and ease of use of this ionization source is demonstrated using β-blockers, peptides, and proteins. The cationic β-blocker pindolol was injected electrokinetically, and detected at concentrations ranging from 10 nM to 5 μM, with an estimated detection limit of 2 nM. The vibrating sharp-edge spray ionization functions with flow rates from 70 to 200 nL/min and did not perturb the capillary electrophoresis separation electroosmotic flow as evidenced by the observation that most migration times differed less than 7% (n = 3) across a lab-built system interfaced to mass spectrometry and a commercial system that utilizes absorbance detection. For cationic beta-blockers the theoretical plates achieved in the capillary electrophoresis-mass spectrometry setup were 80%-95% of that observed with a commercial capillary electrophoresis-UV absorbance detection system.
Collapse
Affiliation(s)
- Courtney J. Kristoff
- C. Eugene Bennett Department of Chemistry, West Virginia University, Morgantown, West Virginia 26506, United States
| | - Chong Li
- C. Eugene Bennett Department of Chemistry, West Virginia University, Morgantown, West Virginia 26506, United States
| | - Peng Li
- C. Eugene Bennett Department of Chemistry, West Virginia University, Morgantown, West Virginia 26506, United States
| | - Lisa A. Holland
- C. Eugene Bennett Department of Chemistry, West Virginia University, Morgantown, West Virginia 26506, United States
| |
Collapse
|
19
|
Zhang N, Li G, Li S, Cai C, Zhang F, Linhardt RJ, Yu G. Mass spectrometric evidence for the mechanism of free-radical depolymerization of various types of glycosaminoglycans. Carbohydr Polym 2020; 233:115847. [PMID: 32059898 DOI: 10.1016/j.carbpol.2020.115847] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 01/03/2020] [Accepted: 01/08/2020] [Indexed: 12/14/2022]
Abstract
Glycosaminoglycans (GAGs) are large, complex carbohydrate molecules that interact with a wide range of proteins involved in physiological and pathological processes. Several naturally derived GAGs have emerged as potentially useful therapeutics in clinical applications. Natural polysaccharides, however, generally have high molecular weights with a degree of polydispersity, making it difficult to investigate their structural properties. In this study, we establish a free-radical-mediated micro-reaction system and use hydrophilic interaction chromatography (HILIC)-Fourier transform mass spectrometry (FTMS) to profile the degraded products of various types of GAGs, heparin, chondroitin sulfate A, NS-heparosan, and oversulfated chondroitin sulfate (OSCS), to reveal the free-radical degradation mechanism of GAGs. The results show that the bulk fragments of GAGs generated by free-radical degradation can maintain their basic structural units and sulfate substituents. In addition, an abundance of oligomers modified with oxidation at their reducing ends or by dehydration also appeared. We discovered that these modifications were related in terms of the degree of sulfation and the α- or β-linkage of HexNY (Y = SO3- or Ac), and especially that the different linkage of the disaccharide unit is the main factor in modification. In addition, the method based on micro-free-radical reaction and HILIC-FTMS is both effective and sensitive, thus suggesting its broad practical value for the structural characterization and in the biological structure-function studies of GAGs.
Collapse
Affiliation(s)
- Ning Zhang
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Shandong Provincial Key Laboratory of Glycoscience and Glycotechnology, Ocean University of China, Qingdao, 266003, China
| | - Guoyun Li
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Shandong Provincial Key Laboratory of Glycoscience and Glycotechnology, Ocean University of China, Qingdao, 266003, China; Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, 266003, China.
| | - Shijie Li
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Shandong Provincial Key Laboratory of Glycoscience and Glycotechnology, Ocean University of China, Qingdao, 266003, China
| | - Chao Cai
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Shandong Provincial Key Laboratory of Glycoscience and Glycotechnology, Ocean University of China, Qingdao, 266003, China; Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, 266003, China
| | - Fuming Zhang
- Department of Chemistry and Chemical Biology, Biomedical Engineering, Biology, Chemical and Biological Engineering, and Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| | - Robert J Linhardt
- Department of Chemistry and Chemical Biology, Biomedical Engineering, Biology, Chemical and Biological Engineering, and Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| | - Guangli Yu
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Shandong Provincial Key Laboratory of Glycoscience and Glycotechnology, Ocean University of China, Qingdao, 266003, China; Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, 266003, China
| |
Collapse
|
20
|
Kristoff CJ, Bwanali L, Veltri LM, Gautam GP, Rutto PK, Newton EO, Holland LA. Challenging Bioanalyses with Capillary Electrophoresis. Anal Chem 2020; 92:49-66. [PMID: 31698907 PMCID: PMC6995690 DOI: 10.1021/acs.analchem.9b04718] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Courtney J. Kristoff
- C. Eugene Bennett Department of Chemistry, West Virginia University, Morgantown, West Virginia 26506, United States
| | - Lloyd Bwanali
- C. Eugene Bennett Department of Chemistry, West Virginia University, Morgantown, West Virginia 26506, United States
| | - Lindsay M. Veltri
- C. Eugene Bennett Department of Chemistry, West Virginia University, Morgantown, West Virginia 26506, United States
| | - Gayatri P. Gautam
- C. Eugene Bennett Department of Chemistry, West Virginia University, Morgantown, West Virginia 26506, United States
| | - Patrick K. Rutto
- C. Eugene Bennett Department of Chemistry, West Virginia University, Morgantown, West Virginia 26506, United States
| | - Ebenezer O. Newton
- C. Eugene Bennett Department of Chemistry, West Virginia University, Morgantown, West Virginia 26506, United States
| | - Lisa A. Holland
- C. Eugene Bennett Department of Chemistry, West Virginia University, Morgantown, West Virginia 26506, United States
| |
Collapse
|
21
|
Stickney M, Sanderson P, Leach FE, Zhang F, Linhardt RJ, Amster IJ. Online Capillary Zone Electrophoresis Negative Electron Transfer Dissociation Tandem Mass Spectrometry of Glycosaminoglycan Mixtures. INTERNATIONAL JOURNAL OF MASS SPECTROMETRY 2019; 445:116209. [PMID: 32641905 PMCID: PMC7343235 DOI: 10.1016/j.ijms.2019.116209] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Glycosaminoglycans (GAGs) are important biological molecules that are highly anionic and occur in nature as complex mixtures. A platform that combines capillary zone electrophoresis (CZE) separations with mass spectrometry (MS) and gas-phase sequencing by using negative electron transfer dissociation (NETD) is shown to be efficacious for the structural analysis of GAG mixtures. CZE is a separation method well suited to the highly negatively charged nature of GAGs. NETD is an electron-based ion activation method that enables the generation of informative fragments with retention of the labile sulfate half-ester modification that determine specific GAG function. Here we combine for the first time NETD and CZE for assigning the structures of GAG oligomers present in mixtures. The speed of ion activation by NETD is found to couple well with the narrow peaks resulting from CZE migration. The platform was optimized with mixtures of GAG tetrasaccharide standards. The potential of the platform is demonstrated by the analysis of enoxaparin, a complex mixture of low molecular weight heparins, which was separated by CZE within 30 minutes and characterized by NETD MS/MS in one online experiment. 37 unique molecular compositions have been identified in enoxaparin using CZE-MS and 9 structures have been assigned with CZE-NETD-MS/MS.
Collapse
Affiliation(s)
- Morgan Stickney
- Department of Chemistry, University of Georgia, Athens, GA 30602
| | | | - Franklin E. Leach
- Department of Environmental Health Science, University of Georgia, Athens, GA 30602
| | - Fuming Zhang
- Center for Biotechnology & Interdisciplinary Studies, Departments of Chemistry and Chemical Engineering, Rensselaer Polytechnic Institute, Troy, NY 12180
| | - Robert J. Linhardt
- Center for Biotechnology & Interdisciplinary Studies, Departments of Chemistry and Chemical Engineering, Rensselaer Polytechnic Institute, Troy, NY 12180
| | | |
Collapse
|
22
|
Klein DR, Leach FE, Amster IJ, Brodbelt JS. Structural Characterization of Glycosaminoglycan Carbohydrates Using Ultraviolet Photodissociation. Anal Chem 2019; 91:6019-6026. [PMID: 30932467 DOI: 10.1021/acs.analchem.9b00521] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Structural characterization of sulfated glycosaminoglycans (GAGs) by mass spectrometry has long been a formidable analytical challenge owing to their high structural variability and the propensity for sulfate decomposition upon activation with low-energy ion activation methods. While derivatization and complexation workflows have aimed to generate informative spectra using low-energy ion activation methods, alternative ion activation methods present the opportunity to obtain informative spectra from native GAG structures. Both electron- and photon-based activation methods, including electron detachment dissociation (EDD), negative electron transfer dissociation (NETD), and extreme ultraviolet photon activation, have been explored previously to overcome the limitations associated with low-energy activation methods for GAGs and other sulfated oligosaccharides. Further, implementation of such methods on high-resolution mass spectrometers has aided the interpretation of the complex spectra generated. Here, we explore ultraviolet photodissociation (UVPD) implemented on an Orbitrap mass spectrometer as another option for structural characterization of GAGs. UVPD spectra for both dermatan and heparan sulfate structures display extensive fragmentation including both glycosidic and cross-ring cleavages with the extent of sulfate retention comparable to that observed by EDD and NETD. In addition, the relatively short activation time of UVPD makes it promising for higher throughput analysis of GAGs in complex mixtures.
Collapse
Affiliation(s)
- Dustin R Klein
- Department of Chemistry , The University of Texas at Austin , Austin , Texas 78712 , United States
| | - Franklin E Leach
- Department of Environmental Health Science , The University of Georgia , Athens , Georgia 30602 , United States
| | - I Jonathan Amster
- Department of Chemistry , The University of Georgia , Athens , Georgia 30602 , United States
| | - Jennifer S Brodbelt
- Department of Chemistry , The University of Texas at Austin , Austin , Texas 78712 , United States
| |
Collapse
|
23
|
A colorimetric heparin assay based on the inhibition of the oxidase mimicking activity of cerium oxide nanoparticles. Mikrochim Acta 2019; 186:274. [DOI: 10.1007/s00604-019-3382-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Accepted: 03/26/2019] [Indexed: 12/20/2022]
|
24
|
Stickney M, Xia Q, Amster IJ. Investigation of electrospray for a capillary electrophoresis-mass spectrometry interface in reverse polarity and negative ion mode. EUROPEAN JOURNAL OF MASS SPECTROMETRY (CHICHESTER, ENGLAND) 2019; 25:157-163. [PMID: 30773923 PMCID: PMC6558982 DOI: 10.1177/1469066719828192] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Capillary zone electrophoresis (CZE) paired with mass spectrometry (MS) is a powerful analytical technique for examining mixtures of ionic analytes such as glycosaminoglycans. This study examines the mechanics of the electrospray process for a sheath flow CZE-MS interface under reverse polarity negative ionization conditions. Liquid flow in a sheath flow nano-electrospray CZE-MS interface is driven by two mechanisms, electroosmotic flow and electrospray nebulization. The contribution of these two processes to the overall flow of solution to the electrospray tip is influenced by the surface coatings of the sheath flow emitter tip and by the solvent composition. We have investigated the application of this interface to the reverse polarity separation of glycosaminoglycans and find that the role of electroosmotic flow is far less than has been reported previously, and the electrospray process itself is the largest contributor to the flow of the sheath liquid.
Collapse
Affiliation(s)
| | - Qiangwei Xia
- 760 Parkside Avenue, STE 211, CMP Scientific, Corp, Brooklyn, NY, 11226
| | - I. Jonathan Amster
- 140 Cedar Street, University of Georgia, Athens, GA 30602
- Address for correspondence: Department of Chemistry, University of Georgia, Athens, GA 30602, Phone: 706-542-2726, FAX: 706-542-9454,
| |
Collapse
|
25
|
Wei J, Wu J, Tang Y, Ridgeway ME, Park MA, Costello CE, Zaia J, Lin C. Characterization and Quantification of Highly Sulfated Glycosaminoglycan Isomers by Gated-Trapped Ion Mobility Spectrometry Negative Electron Transfer Dissociation MS/MS. Anal Chem 2019; 91:2994-3001. [PMID: 30649866 DOI: 10.1021/acs.analchem.8b05283] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Glycosaminoglycans (GAGs) play vital roles in many biological processes and are naturally present as complex mixtures of polysaccharides with tremendous structural heterogeneity, including many structural isomers. Mass spectrometric analysis of GAG isomers, in particular highly sulfated heparin (Hep) and heparan sulfate (HS), is challenging because of their structural similarity and facile sulfo losses during analysis. Herein, we show that highly sulfated Hep/HS isomers may be resolved by gated-trapped ion mobility spectrometry (gated-TIMS) with negligible sulfo losses. Subsequent negative electron transfer dissociation (NETD) tandem mass spectrometry (MS/MS) analysis of TIMS-separated Hep/HS isomers generated extensive glycosidic and cross-ring fragments for confident isomer differentiation and structure elucidation. The high mobility resolution and preservation of labile sulfo modifications afforded by gated-TIMS MS analysis also allowed relative quantification of highly sulfated heparin isomers. These results show that the gated-TIMS-NETD MS/MS approach is useful for both qualitative and quantitative analysis of highly sulfated Hep/HS compounds in a manner not possible with other techniques.
Collapse
Affiliation(s)
- Juan Wei
- Center for Biomedical Mass Spectrometry , Boston University School of Medicine , Boston , Massachusetts 02118 , United States
| | - Jiandong Wu
- Center for Biomedical Mass Spectrometry , Boston University School of Medicine , Boston , Massachusetts 02118 , United States
| | - Yang Tang
- Center for Biomedical Mass Spectrometry , Boston University School of Medicine , Boston , Massachusetts 02118 , United States.,Department of Chemistry , Boston University , Boston , Massachusetts 02215 , United States
| | - Mark E Ridgeway
- Bruker Daltonics , Billerica , Massachusetts 01821 , United States
| | - Melvin A Park
- Bruker Daltonics , Billerica , Massachusetts 01821 , United States
| | - Catherine E Costello
- Center for Biomedical Mass Spectrometry , Boston University School of Medicine , Boston , Massachusetts 02118 , United States.,Department of Chemistry , Boston University , Boston , Massachusetts 02215 , United States
| | - Joseph Zaia
- Center for Biomedical Mass Spectrometry , Boston University School of Medicine , Boston , Massachusetts 02118 , United States
| | - Cheng Lin
- Center for Biomedical Mass Spectrometry , Boston University School of Medicine , Boston , Massachusetts 02118 , United States
| |
Collapse
|
26
|
Ouyang Y, Han X, Xia Q, Chen J, Velagapudi S, Xia K, Zhang Z, Linhardt RJ. Negative-Ion Mode Capillary Isoelectric Focusing Mass Spectrometry for Charge-Based Separation of Acidic Oligosaccharides. Anal Chem 2018; 91:846-853. [DOI: 10.1021/acs.analchem.8b03500] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Yilan Ouyang
- Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases and College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu 215021, China
- Departments of Chemistry and Chemical Biology, Biology, Chemical and Biological Engineering, and Biomedical Engineering, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, 110 Eighth Street, Troy, New York 12180, United States
| | - Xiaorui Han
- Departments of Chemistry and Chemical Biology, Biology, Chemical and Biological Engineering, and Biomedical Engineering, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, 110 Eighth Street, Troy, New York 12180, United States
| | - Qiangwei Xia
- CMP Scientific Corporation, 760 Parkside Avenue, STE 211, Brooklyn, New York 11226, United States
| | - Jianle Chen
- Departments of Chemistry and Chemical Biology, Biology, Chemical and Biological Engineering, and Biomedical Engineering, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, 110 Eighth Street, Troy, New York 12180, United States
| | - Sheila Velagapudi
- Departments of Chemistry and Chemical Biology, Biology, Chemical and Biological Engineering, and Biomedical Engineering, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, 110 Eighth Street, Troy, New York 12180, United States
| | - Ke Xia
- Departments of Chemistry and Chemical Biology, Biology, Chemical and Biological Engineering, and Biomedical Engineering, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, 110 Eighth Street, Troy, New York 12180, United States
| | - Zhenqing Zhang
- Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases and College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu 215021, China
| | - Robert J. Linhardt
- Departments of Chemistry and Chemical Biology, Biology, Chemical and Biological Engineering, and Biomedical Engineering, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, 110 Eighth Street, Troy, New York 12180, United States
| |
Collapse
|
27
|
Stolz A, Jooß K, Höcker O, Römer J, Schlecht J, Neusüß C. Recent advances in capillary electrophoresis-mass spectrometry: Instrumentation, methodology and applications. Electrophoresis 2018; 40:79-112. [PMID: 30260009 DOI: 10.1002/elps.201800331] [Citation(s) in RCA: 112] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Revised: 09/06/2018] [Accepted: 09/07/2018] [Indexed: 12/14/2022]
Abstract
Capillary electrophoresis (CE) offers fast and high-resolution separation of charged analytes from small injection volumes. Coupled to mass spectrometry (MS), it represents a powerful analytical technique providing (exact) mass information and enables molecular characterization based on fragmentation. Although hyphenation of CE and MS is not straightforward, much emphasis has been placed on enabling efficient ionization and user-friendly coupling. Though several interfaces are now commercially available, research on more efficient and robust interfacing with nano-electrospray ionization (ESI), matrix-assisted laser desorption/ionization (MALDI) and inductively coupled plasma mass spectrometry (ICP) continues with considerable results. At the same time, CE-MS has been used in many fields, predominantly for the analysis of proteins, peptides and metabolites. This review belongs to a series of regularly published articles, summarizing 248 articles covering the time between June 2016 and May 2018. Latest developments on hyphenation of CE with MS as well as instrumental developments such as two-dimensional separation systems with MS detection are mentioned. Furthermore, applications of various CE-modes including capillary zone electrophoresis (CZE), nonaqueous capillary electrophoresis (NACE), capillary gel electrophoresis (CGE) and capillary isoelectric focusing (CIEF) coupled to MS in biological, pharmaceutical and environmental research are summarized.
Collapse
Affiliation(s)
| | - Kevin Jooß
- Faculty of Chemistry, Aalen University, Aalen, Germany.,Research Unit Analytical BioGeoChemistry, Helmholtz Zentrum München, Neuherberg, Germany
| | - Oliver Höcker
- Faculty of Chemistry, Aalen University, Aalen, Germany.,Instrumental Analytical Chemistry, University of Duisburg-Essen, Essen, Germany
| | - Jennifer Römer
- Faculty of Chemistry, Aalen University, Aalen, Germany.,Institute of Analytical Chemistry, Chemo- and Biosensors, University of Regensburg, Regensburg, Germany
| | - Johannes Schlecht
- Faculty of Chemistry, Aalen University, Aalen, Germany.,Department of Pharmaceutical/Medicinal Chemistry, Friedrich Schiller University, Jena, Germany
| | | |
Collapse
|