1
|
Pun Á, Valimaña-Traverso J, García MÁ, Marina ML, Esteve-Núñez A, Boltes K. Enhanced removal of chiral emerging contaminants by an electroactive biofilter. ENVIRONMENTAL SCIENCE AND ECOTECHNOLOGY 2025; 23:100500. [PMID: 39553850 PMCID: PMC11564004 DOI: 10.1016/j.ese.2024.100500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 10/14/2024] [Accepted: 10/20/2024] [Indexed: 11/19/2024]
Abstract
50% of pharmaceuticals and 25% of herbicides used worldwide are chiral. Each enantiomer has a unique toxicity and biodegradation profile, affecting differently to organisms. Chirality plays a key role in the behavior of these emerging contaminants (ECs) in terms of their pharmacological or herbicidal activity, but this peculiarity is often overlooked in environmental research. The complexity of chiral ECs is underestimated, as the varying sensitivity of biological systems to enantiomers is rarely considered. Biofilters can promote the activity of specific microbial communities, facilitating the degradation of ECs, due to the greater interaction between water and microorganisms and their compact design. Here, we show that an electroactive biofilter can alter the chirality of drugs and herbicides in wastewater treatment, impacting their removal and toxicity. The electrochemical biofilter (BioeF) removed 80% of pharmaceuticals and 50-75% of herbicides, outperforming the conventional filter (ConF). BioeF also showed greater chiral alterations and lower ecotoxicity. This work provides the first evidence of a relationship between changes in contaminant chirality and detoxification capacity, enhanced by electroactive systems. The increased microbial activity observed in the BioeF suggests that bioelectrochemical systems offer a valuable advance for ECs removal and ecotoxicity reduction, addressing the environmental challenge posed by ECs.
Collapse
Affiliation(s)
- Álvaro Pun
- Universidad de Alcalá, Departamento de Química Analítica, Química Física e Ingeniería Química, Ctra. Madrid-Barcelona Km. 33,600, Alcalá de Henares, 28871, Madrid, Spain
| | - Jesús Valimaña-Traverso
- Universidad de Alcalá, Departamento de Química Analítica, Química Física e Ingeniería Química, Ctra. Madrid-Barcelona Km. 33,600, Alcalá de Henares, 28871, Madrid, Spain
| | - María Ángeles García
- Universidad de Alcalá, Departamento de Química Analítica, Química Física e Ingeniería Química, Ctra. Madrid-Barcelona Km. 33,600, Alcalá de Henares, 28871, Madrid, Spain
- Universidad de Alcalá, Instituto de Investigación Química Andrés M. del Río, Ctra. Madrid-Barcelona Km. 33.600, 28871, Alcalá de Henares, Madrid, Spain
| | - María Luisa Marina
- Universidad de Alcalá, Departamento de Química Analítica, Química Física e Ingeniería Química, Ctra. Madrid-Barcelona Km. 33,600, Alcalá de Henares, 28871, Madrid, Spain
- Universidad de Alcalá, Instituto de Investigación Química Andrés M. del Río, Ctra. Madrid-Barcelona Km. 33.600, 28871, Alcalá de Henares, Madrid, Spain
| | - Abraham Esteve-Núñez
- Universidad de Alcalá, Departamento de Química Analítica, Química Física e Ingeniería Química, Ctra. Madrid-Barcelona Km. 33,600, Alcalá de Henares, 28871, Madrid, Spain
- METfilter. Avenida Punto Com, nº 2 - Parque Científico Tecnológico de la Universidad de Alcalá, 28805, Alcalá de Henares, Madrid, Spain
- IMDEA Water Institute, Parque Científico Tecnológico, Alcalá de Henares, 28805, Madrid, Spain
| | - Karina Boltes
- Universidad de Alcalá, Departamento de Química Analítica, Química Física e Ingeniería Química, Ctra. Madrid-Barcelona Km. 33,600, Alcalá de Henares, 28871, Madrid, Spain
- IMDEA Water Institute, Parque Científico Tecnológico, Alcalá de Henares, 28805, Madrid, Spain
| |
Collapse
|
2
|
O'Sullivan-Carroll E, Hogan A, O'Mahoney N, Howlett S, Pyne C, Downing P, Lynch M, Moore E. Determination of an Anti-Parasitic Active Pharmaceutical Ingredient in Wastewater Effluents Using Capillary Zone Electrophoresis. Electrophoresis 2024; 45:1906-1914. [PMID: 39373618 DOI: 10.1002/elps.202400131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 09/05/2024] [Accepted: 09/06/2024] [Indexed: 10/08/2024]
Abstract
Ireland has a successful pharmaceutical industry with over 100 pharmaceutical manufacturing sites across the island. Although this success has many benefits, the irreversible effects emissions from pharmaceutical manufacturing can have on the environment are a major drawback. Although known pollutants are regularly monitored with limits set out by the Environmental Protection Agency, one significant pollutant has been overlooked: pharmaceutical pollution. Detecting these pollutants and ensuring they are at a safe concentration for the environment is of utmost importance. In recent years, capillary electrophoresis is being recognised as a suitable alternative to high-performance liquid chromatography due to its many benefits such as faster analysis, water-based buffers and smaller sample volumes. In this paper, a capillary zone electrophoresis (CZE) method with a preconcentration step of solid-phase extraction was developed for an anti-parasitic active pharmaceutical ingredient (API) called ZB23. The API was successfully detected in a wastewater sample in less than 10 min using the CZE parameters of 25 mM borate buffer with a pH of 10.5, 15% MeOH, 10 kV voltage, 25 mbar for 5 s injection size, an Lt of 40 cm, an Ld of 31.5 cm and a detection wavelength of 214 nm.
Collapse
Affiliation(s)
- Emma O'Sullivan-Carroll
- Sensing and Separations Group, School of Chemistry, University College Cork, Cork, Ireland
- Hovione Ltd., Cork, Ireland
| | - Anna Hogan
- Sensing and Separations Group, School of Chemistry, University College Cork, Cork, Ireland
| | - N O'Mahoney
- Sensing and Separations Group, School of Chemistry, University College Cork, Cork, Ireland
| | | | - C Pyne
- Hovione Ltd., Cork, Ireland
| | | | | | - Eric Moore
- Sensing and Separations Group, School of Chemistry, University College Cork, Cork, Ireland
- Tyndall National Institute, Cork, Ireland
| |
Collapse
|
3
|
Zandian FK, Balalaie S, Amiri K, Bagheri H. Mesoporous organosilicas with highly-content tyrosine framework as extractive phases for non-steroidal anti-inflammatory drugs in aquatic media. Anal Chim Acta 2024; 1290:342206. [PMID: 38246742 DOI: 10.1016/j.aca.2024.342206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 12/27/2023] [Accepted: 01/02/2024] [Indexed: 01/23/2024]
Abstract
BACKGROUND Attentions regarding ordered mesoporous silica materials (OMSs), with large specific surface areas and narrow pore size distribution, which are prepared via self-assembly techniques, have been raised in sorption, separation, and sample preparation. However, in order to extend and improve their applications, a functionalization step is required. Organic units can be anchored on the inner or outer surface as well as in the silica wall framework by co-condensation-, grafting-, and periodic mesoporous organosilica (PMO) preparation approaches. Apparently, by synthesizing PMO with extensive and flexible organic bridging groups within the mesoporous wall, an efficient extractive phase can be achieved. RESULTS We employed tyrosine amino acid to synthesize a PMO-based extractive phase. The FT-IR, 1H NMR, HR-ESI-MS, Low angle-XRD, TEM, FESEM, BET, and EDX-MAP analyses confirmed the successful synthesis of PMO within the salt-assisted templating method. A comprehensive study on sorption behavior of PMO was performed and its efficiency was evaluated against the grafting and co-condensation methods. Then, it was implemented to the pipette tip-micro solid phase extraction (PT-μ-SPE) of widely used non-steroidal anti-inflammatory drugs (NSAIDs) in water/wastewaters. Limits of detection and quantification were obtained in the range of 0.1-1.5 and 0.3-5 μg L-1, respectively. The calibration plots are linear in the 1-1000, 3-1000, 10-750, and 3-750 μg L-1, respectively. The intra-and inter-day precision at 50 and 200 μg L-1 levels are 2.9-7.1 % and 3.5-8%, while recoveries are between 84 and 111 %. SIGNIFICANCE High-capacity tyrosine functionalized PMO with 2D hexagonal symmetry silica mesoporous structures found to be highly efficient extractive media. Despite the bulkiness and flexibility of the bridging group within the mesoporous wall, the synthesis condition was optimized in order to load more organic content in the PMO structure. The PMO performance was superior over organically modified ordered mesoporous silica materials prepared by the grafting and co-condensation methods.
Collapse
Affiliation(s)
- F Karimi Zandian
- Environmental and Bio-Analytical Laboratories, Department of Chemistry, Sharif University of Technology, P.O. Box 11365-9516, Tehran, Iran
| | - S Balalaie
- Peptide Chemistry Research Institute, Department of Chemistry, K. N. Toosi University of Technology, P. O. Box 15875-4416, Tehran, Iran
| | - K Amiri
- Peptide Chemistry Research Institute, Department of Chemistry, K. N. Toosi University of Technology, P. O. Box 15875-4416, Tehran, Iran
| | - H Bagheri
- Environmental and Bio-Analytical Laboratories, Department of Chemistry, Sharif University of Technology, P.O. Box 11365-9516, Tehran, Iran.
| |
Collapse
|
4
|
Ali I, Perrucci M, Ciriolo L, D'Ovidio C, de Grazia U, Ulusoy HI, Kabir A, Savini F, Locatelli M. Applications of electrophoresis for small enantiomeric drugs in real-world samples: Recent trends and future perspectives. Electrophoresis 2024; 45:55-68. [PMID: 37495859 DOI: 10.1002/elps.202300100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 07/11/2023] [Accepted: 07/12/2023] [Indexed: 07/28/2023]
Abstract
Separation and identification of chiral molecules is a topic widely discussed in the literature and of fundamental importance, especially in the pharmaceutical and food fields, both from industrial and laboratory points of view. Several techniques are used to carry out these analyses, but high-performance liquid chromatography is often the "gold standard." The high costs of chiral columns, necessary for this technique, led researchers to look for an alternative, and capillary electrophoresis (CE) is a technique capable of overcoming some of the disadvantages of liquid chromatography, often providing comparable results in terms of sensitivity and robustness. We addressed this topic, already widely discussed in the literature, providing an overview of the last 6 years of the most frequent and recent applications of CE. To make the manuscript more effective, we decided to divide it into paragraphs that represent the main field of application, from enantioseparation in complex matrices (pharmacokinetic studies or toxicological dosage of drugs, analysis of environmental pollutants, and analyses of foods) to quality control analyses on pharmaceutical formulas. About these, which are the fields of most meaningful use, we mentioned some of the most innovative and performing methods, with a look to the future on the application of new materials used, such as chiral selectors, that can make these types of analyses accessible to all, reducing cost, time, and excessive use of toxic solvents.
Collapse
Affiliation(s)
- Imran Ali
- Department of Chemistry, Jamia Millia Islamia (Central University), New Delhi, India
| | - Miryam Perrucci
- Department of Pharmacy, University "G. d'Annunzio" of Chieti - Pescara, Chieti, Italy
| | - Luigi Ciriolo
- Department of Pharmacy, University "G. d'Annunzio" of Chieti - Pescara, Chieti, Italy
| | - Cristian D'Ovidio
- Section of Legal Medicine, Department of Medicine and Aging Sciences, University "G. d'Annunzio" of Chieti - Pescara, Chieti, Italy
| | - Ugo de Grazia
- Laboratory of Neurological Biochemistry and Neuropharmacology, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Halil Ibrahim Ulusoy
- Department of Analytical Chemistry, Faculty of Pharmacy, Cumhuriyet University, Sivas, Turkey
| | - Abuzar Kabir
- Department of Chemistry and Biochemistry, Florida International University, Miami, Florida, USA
| | - Fabio Savini
- Pharmatoxicology Laboratory-Hospital "Santo Spirito", Pescara, Italy
| | - Marcello Locatelli
- Department of Pharmacy, University "G. d'Annunzio" of Chieti - Pescara, Chieti, Italy
| |
Collapse
|
5
|
MODELLING THE SIMULTANEOUS CHIRAL SEPARATION OF A GROUP OF DRUGS BY ELECTROKINETIC CHROMATOGRAPHY USING MIXTURES OF CYCLODEXTRINS. J Chromatogr A 2022; 1681:463444. [DOI: 10.1016/j.chroma.2022.463444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 08/18/2022] [Accepted: 08/22/2022] [Indexed: 11/20/2022]
|
6
|
Safapoor S, Dekamin MG, Akbari A, Naimi-Jamal MR. Synthesis of (E)-2-(1H-tetrazole-5-yl)-3-phenylacrylenenitrile derivatives catalyzed by new ZnO nanoparticles embedded in a thermally stable magnetic periodic mesoporous organosilica under green conditions. Sci Rep 2022; 12:10723. [PMID: 35750767 PMCID: PMC9232489 DOI: 10.1038/s41598-022-13011-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Accepted: 05/19/2022] [Indexed: 11/20/2022] Open
Abstract
ZnO nanoparticles embedded in a magnetic isocyanurate-based periodic mesoporous organosilica (Fe3O4@PMO-ICS-ZnO) were prepared through a modified environmentally-benign procedure for the first time and properly characterized by appropriate spectroscopic and analytical methods or techniques used for mesoporous materials. The new thermally stable Fe3O4@PMO-ICS-ZnO nanomaterial with proper active sites and surface area as well as uniform particle size was investigated for the synthesis of medicinally important tetrazole derivatives through cascade condensation and concerted 1,3-cycloaddition reactions as a representative of the Click Chemistry concept. The desired 5-substituted-1H-tetrazole derivatives were smoothly prepared in high to quantitative yields and good purity in EtOH under reflux conditions. Low catalyst loading, short reaction time and the use of green solvents such as EtOH and water instead of carcinogenic DMF as well as easy separation and recyclability of the catalyst for at least five consecutive runs without significant loss of its activity are notable advantages of this new protocol compared to other recent introduced procedures.
Collapse
Affiliation(s)
- Sajedeh Safapoor
- Pharmaceutical and Heterocyclic Compounds Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran, 16846-13114, Iran
| | - Mohammad G Dekamin
- Pharmaceutical and Heterocyclic Compounds Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran, 16846-13114, Iran.
| | - Arezoo Akbari
- Pharmaceutical and Heterocyclic Compounds Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran, 16846-13114, Iran
| | - M Reza Naimi-Jamal
- Pharmaceutical and Heterocyclic Compounds Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran, 16846-13114, Iran
| |
Collapse
|
7
|
Recent Advances on Chiral Mobile Phase Additives: A Critical Review. JOURNAL OF ANALYSIS AND TESTING 2022. [DOI: 10.1007/s41664-022-00222-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
8
|
Gao Z, Zhong W. Recent (2018-2020) development in capillary electrophoresis. Anal Bioanal Chem 2022; 414:115-130. [PMID: 33754195 PMCID: PMC7984737 DOI: 10.1007/s00216-021-03290-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 03/08/2021] [Accepted: 03/11/2021] [Indexed: 12/14/2022]
Abstract
Development of new capillary electrophoresis (CE) methodology and instrumentation, as well as application of CE to solve new problems, remains an active research area because of the attractive features of CE compared to other separation techniques. In this review, we focus on the representative works about sample preconcentration, separation media or capillary coating development, detector construction, and multidimensional separation in CE, which are judiciously selected from the papers published in 2018-2020.
Collapse
Affiliation(s)
- Ziting Gao
- Department of Chemistry, University of California-Riverside, 900 University Ave., Riverside, CA, 92521, USA
| | - Wenwan Zhong
- Department of Chemistry, University of California-Riverside, 900 University Ave., Riverside, CA, 92521, USA.
| |
Collapse
|
9
|
Dal Bosco C, Bonoli F, Gentili A, Fanali C, D’Orazio G. Chiral Nano-Liquid Chromatography and Dispersive Liquid-Liquid Microextraction Applied to the Analysis of Antifungal Drugs in Milk. Molecules 2021; 26:molecules26237094. [PMID: 34885676 PMCID: PMC8659161 DOI: 10.3390/molecules26237094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Revised: 11/11/2021] [Accepted: 11/22/2021] [Indexed: 11/16/2022] Open
Abstract
A novel chromatographic application in chiral separation by using the nano-LC technique is here reported. The chiral recognition of 12 antifungal drugs was obtained through a 75 µm I.D. fused-silica capillary, which was packed with a CSP-cellulose 3,5-dichlorophenylcarbamate (CDCPC), by means of a lab-made slurry packing procedure. The mobile phase composition and the experimental conditions were optimized in order to find the optimum chiral separation for some selected racemic mixtures of imidazole and triazole derivatives. Some important parameters, such as retention faction, enantioresolution, peak efficiency, and peak shape, were investigated as a function of the mobile phase (pH, water content, type and concentration of both the buffer and the organic modifier, and solvent dilution composition). Within one run lasting 25 min, at a flow rate of approximately 400 nL min-1, eight couples of enantiomers were baseline-resolved and four of them were separated in less than 25 min. The method was then applied to milk samples, which were pretreated using a classical dispersive liquid-liquid microextraction technique preceded by protein precipitation. Finally, the DLLME-nano-LC-UV method was validated in a matrix following the main FDA guidelines for bioanalytical methods.
Collapse
Affiliation(s)
- Chiara Dal Bosco
- Department of Chemistry, Sapienza University of Rome, 00185 Rome, Italy; (C.D.B.); (F.B.); (A.G.)
| | - Flavia Bonoli
- Department of Chemistry, Sapienza University of Rome, 00185 Rome, Italy; (C.D.B.); (F.B.); (A.G.)
| | - Alessandra Gentili
- Department of Chemistry, Sapienza University of Rome, 00185 Rome, Italy; (C.D.B.); (F.B.); (A.G.)
| | - Chiara Fanali
- Unit of Food Science and Nutrition, Department of Science and Technology for Humans and the Environment, Università Campus Bio-Medico di Roma, 00128 Rome, Italy;
| | - Giovanni D’Orazio
- Istituto per i Sistemi Biologici (ISB), CNR-Consiglio Nazionale delle Ricerche, Monterotondo, 00015 Rome, Italy
- Correspondence: ; Tel.: +39-0690672256
| |
Collapse
|
10
|
An overview of analytical methods for enantiomeric determination of chiral pollutants in environmental samples and biota. Trends Analyt Chem 2021. [DOI: 10.1016/j.trac.2021.116370] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
11
|
Enantioselective Study on the Biodegradation of Verapamil and Cytalopram by Chiral Capillary Electrophoresis. SEPARATIONS 2021. [DOI: 10.3390/separations8030029] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Many of the currently available drugs are chiral compounds that are marketed as racemates or, to a lesser extent, in the form of one of the enantiomers since a pair of enantiomers may have different toxicological and ecotoxicological properties compared to each other. The evaluation of enantioselectivity in biodegradation processes is essential for environmental risk assessment. The objective of this research is to study the enantioselectivity in the biodegradation of two common chiral drugs, citalopram and verapamil, using highly sulphated-γ-cyclodextrin (HS-γ-CD) as chiral selector in Capillary Electrophoresis. Biodegradation experiments were performed in batch mode using a minimal salt medium inoculated with an activated sludge and supplemented with the corresponding enantiomeric mixture. The cultures were incubated at 20 °C for 28 days. Abiotic degradation of verapamil and citalopram enantiomers was also assessed. The concentration of the enantiomers of verapamil and citalopram were monitored using 0.7% and 0.1% m/v HS-γ-CD solutions as chiral selector, respectively. Separations were carried out using the complete filling technique. The results of biodegradability tests indicate that citalopram could be considered potentially persistent while verapamil is presumed to be a non-persistent compound. No evidence of enantioselectivity was observed in any of the biodegradation processes.
Collapse
|
12
|
Negatively charged cyclodextrins: Synthesis and applications in chiral analysis-A review. Carbohydr Polym 2020; 256:117517. [PMID: 33483038 DOI: 10.1016/j.carbpol.2020.117517] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 12/02/2020] [Accepted: 12/11/2020] [Indexed: 12/12/2022]
Abstract
The negatively charged cyclodextrins (CDs) play an important role in chiral analysis due to the additional electrostatic effect beyond the host-guest inclusion, especially in enantioanalysis of positively charged and electrically neutral analytes. This review presents recent advances in application of anionic CDs for enantioanalysis during the past five years. Firstly, the synthesis approaches of random substitution and single isomers of anionic CDs are briefly discussed. The main part focuses on the chiral analysis using anionic CDs in various analytical techniques, including capillary electrophoresis, high-performance liquid chromatography, capillary electrochromatography, counter current chromatography, nuclear magnetic resonance, etc. Particular attention is given to the capillary electrophoresis application since charged CDs could be used as a carrier of enantiomers by virtue of their self-mobility and offer an easy adjustment of the enantiomer migration order. Finally, future opportunities are also discussed in the conclusion of this review.
Collapse
|
13
|
Akbari A, Dekamin MG, Yaghoubi A, Naimi-Jamal MR. Novel magnetic propylsulfonic acid-anchored isocyanurate-based periodic mesoporous organosilica (Iron oxide@PMO-ICS-PrSO 3H) as a highly efficient and reusable nanoreactor for the sustainable synthesis of imidazopyrimidine derivatives. Sci Rep 2020; 10:10646. [PMID: 32606381 PMCID: PMC7327082 DOI: 10.1038/s41598-020-67592-4] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Accepted: 06/11/2020] [Indexed: 11/30/2022] Open
Abstract
In this study, preparation and characterization of a new magnetic propylsulfonic acid-anchored isocyanurate bridging periodic mesoporous organosilica (Iron oxide@PMO-ICS-PrSO3H) is described. The iron oxide@PMO-ICS-PrSO3H nanomaterials were characterized by Fourier transform infrared spectroscopy, energy-dispersive X-ray spectroscopy and field emission scanning electron microscopy as well as thermogravimetric analysis, N2 adsorption-desorption isotherms and vibrating sample magnetometer techniques. Indeed, the new obtained materials are the first example of the magnetic thermally stable isocyanurate-based mesoporous organosilica solid acid. Furthermore, the catalytic activity of the Iron oxide@PMO-ICS-PrSO3H nanomaterials, as a novel and highly efficient recoverable nanoreactor, was investigated for the sustainable heteroannulation synthesis of imidazopyrimidine derivatives through the Traube-Schwarz multicomponent reaction of 2-aminobenzoimidazole, C‒H acids and diverse aromatic aldehydes. The advantages of this green protocol are low catalyst loading, high to quantitative yields, short reaction times and the catalyst recyclability for at least four consecutive runs.
Collapse
Affiliation(s)
- Arezoo Akbari
- Pharmaceutical and Heterocyclic Compounds Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran, 1684613114, Iran
| | - Mohammad G Dekamin
- Pharmaceutical and Heterocyclic Compounds Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran, 1684613114, Iran.
| | - Amene Yaghoubi
- Pharmaceutical and Heterocyclic Compounds Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran, 1684613114, Iran
| | - Mohammad Reza Naimi-Jamal
- Pharmaceutical and Heterocyclic Compounds Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran, 1684613114, Iran
| |
Collapse
|
14
|
Enantiomeric determination of econazole and sulconazole by electrokinetic chromatography using hydroxypropyl-β-cyclodextrin combined with ionic liquids based on L-lysine and L-glutamic acid. J Chromatogr A 2020; 1621:461085. [PMID: 32376018 DOI: 10.1016/j.chroma.2020.461085] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2019] [Revised: 03/23/2020] [Accepted: 03/26/2020] [Indexed: 12/18/2022]
Abstract
Two analytical methodologies based on the combined use of hydroxypropyl-β-cyclodextrin and two different amino acid-based chiral ionic liquids (tetrabutylammonium-L-lysine or tetrabutylammonium-L-glutamic acid) in electrokinetic chromatography were developed in this work to perform the enantioselective determination of econazole and sulconazole in pharmaceutical formulations. The influence of different experimental variables such as buffer concentration, applied voltage, nature and concentration of the ionic liquid, temperature and injection time, on the enantiomeric separation was investigated. The combination of hydroxypropyl-β-cyclodextrin and tetrabutylammonium-L-lysine under the optimized conditions enabled to achieve the enantiomeric determination of both drugs with high enantiomeric resolution (3.5 for econazole and 2.4 for sulconazole). The analytical characteristics of the developed methodologies were evaluated in terms of linearity, precision, LOD, LOQ and recovery showing good performance for the determination of both drugs which were successfully quantitated in pharmaceutical formulations. This work reports the first analytical methodology enabling the enantiomeric determination of sulconazole in pharmaceutical formulations.
Collapse
|
15
|
Bernardo-Bermejo S, Sánchez-López E, Castro-Puyana M, Marina ML. Chiral capillary electrophoresis. Trends Analyt Chem 2020. [DOI: 10.1016/j.trac.2020.115807] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
16
|
Valimaña-Traverso J, Amariei G, Boltes K, García MÁ, Marina ML. Stability and toxicity studies for duloxetine and econazole on Spirodela polyrhiza using chiral capillary electrophoresis. JOURNAL OF HAZARDOUS MATERIALS 2019; 374:203-210. [PMID: 31003121 DOI: 10.1016/j.jhazmat.2019.04.027] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Revised: 04/03/2019] [Accepted: 04/04/2019] [Indexed: 06/09/2023]
Abstract
Stability and toxicity studies for duloxetine and econazole were achieved using individual solutions and their mixtures. Stability of drugs racemates and enantiomers was investigated under abiotic and biotic conditions. Toxicity was evaluated for the first time on Spirodela polyrhiza. EC50 values were calculated for each individual drug and for their binary mixture. Real (not nominal) concentrations determined by Capillary Electrophoresis were employed in the calculations of toxicity parameters. The use of a 25 mM phosphate buffer (pH 3.0) with 1.5% S-β-CD as chiral selector at a temperature of 30 °C and a separation voltage of -20 kV enabled the simultaneous enantiomeric separation of duloxetine and econazole in 7.5 min with enantiomeric resolutions of 7.9 and 6.5, respectively. For individual solutions, decay percentages under abiotic conditions were higher for duloxetine (80%) than for econazole (60%), while in presence of Spirodela polyrhiza they increased for duloxetine but not for econazole. Econazole showed the highest decay percentages under abiotic or biotic conditions (100%) in binary mixtures. EC50 values for duloxetine and econazole enabled to include both drugs within the group of very toxic compounds although econazole showed a higher toxicity than duloxetine and the binary mixture.
Collapse
Affiliation(s)
- Jesús Valimaña-Traverso
- Departamento de Química Analítica, Química Física e Ingeniería Química, Universidad de Alcalá, Ctra. Madrid-Barcelona Km. 33.600, 28871, Alcalá de Henares (Madrid), Spain
| | - Georgiana Amariei
- Departamento de Química Analítica, Química Física e Ingeniería Química, Universidad de Alcalá, Ctra. Madrid-Barcelona Km. 33.600, 28871, Alcalá de Henares (Madrid), Spain
| | - Karina Boltes
- Departamento de Química Analítica, Química Física e Ingeniería Química, Universidad de Alcalá, Ctra. Madrid-Barcelona Km. 33.600, 28871, Alcalá de Henares (Madrid), Spain; Madrid Institute for Advanced Studies of Water (IMDEA Agua), Parque Científico Tecnológico, E-28805, Alcalá de Henares (Madrid), Spain
| | - Maria Ángeles García
- Departamento de Química Analítica, Química Física e Ingeniería Química, Universidad de Alcalá, Ctra. Madrid-Barcelona Km. 33.600, 28871, Alcalá de Henares (Madrid), Spain; Instituto de Investigación Química Andrés M. del Río, Universidad de Alcalá, Ctra, Madrid-Barcelona Km. 33.600, 28871, Alcalá de Henares (Madrid), Spain
| | - Maria Luisa Marina
- Departamento de Química Analítica, Química Física e Ingeniería Química, Universidad de Alcalá, Ctra. Madrid-Barcelona Km. 33.600, 28871, Alcalá de Henares (Madrid), Spain; Instituto de Investigación Química Andrés M. del Río, Universidad de Alcalá, Ctra, Madrid-Barcelona Km. 33.600, 28871, Alcalá de Henares (Madrid), Spain.
| |
Collapse
|
17
|
Preclinical evidence of enhanced analgesic activity of duloxetine complexed with succinyl-β-cyclodextrin: A comparative study with cyclodextrin complexes. Int J Pharm 2019; 566:391-399. [DOI: 10.1016/j.ijpharm.2019.05.077] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Revised: 05/29/2019] [Accepted: 05/30/2019] [Indexed: 12/21/2022]
|
18
|
Song D, Zhang Q, Sun Y, Zhang P, Guo Y, Hu J. Design of Ordered Mesoporous Sulfonic Acid Functionalized ZrO
2
/organosilica Bifunctional Catalysts for Direct Catalytic Conversion of Glucose to Ethyl Levulinate. ChemCatChem 2018. [DOI: 10.1002/cctc.201801089] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Daiyu Song
- School of EnvironmentNortheast Normal University Changchun 130117 P.R. China
| | - Qingqing Zhang
- School of EnvironmentNortheast Normal University Changchun 130117 P.R. China
| | - Yingnan Sun
- School of EnvironmentNortheast Normal University Changchun 130117 P.R. China
| | - Panpan Zhang
- School of EnvironmentNortheast Normal University Changchun 130117 P.R. China
| | - Yi‐Hang Guo
- School of EnvironmentNortheast Normal University Changchun 130117 P.R. China
| | - Jiang‐Lei Hu
- School of Chemical EngineeringChangchun University of Technology Changchun 130012 P.R. China
| |
Collapse
|