1
|
Luo H, Ma Y, Bi J, Li Z, Wang Y, Su Z, Gerstweiler L, Ren Y, Zhang S. Experimental and molecular dynamics simulation studies on the physical properties of three HBc-VLP derivatives as nanoparticle protein vaccine candidates. Vaccine 2024; 42:125992. [PMID: 38811268 DOI: 10.1016/j.vaccine.2024.05.040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 05/19/2024] [Accepted: 05/20/2024] [Indexed: 05/31/2024]
Abstract
Self-assembling virus-like particles (VLPs) are promising platforms for vaccine development. However, the unpredictability of the physical properties, such as self-assembly capability, hydrophobicity, and overall stability in engineered protein particles fused with antigens, presents substantial challenges in their downstream processing. We envision that these challenges can be addressed by combining more precise computer-aided molecular dynamics (MD) simulations with experimental studies on the modified products, with more to-date forcefield descriptions and larger models closely resembling real assemblies, realized by rapid advancement in computing technology. In this study, three chimeric designs based on the hepatitis B core (HBc) protein as model vaccine candidates were constructed to study and compare the influence of inserted epitopes as well as insertion strategy on HBc modifications. Large partial VLP models containing 17 chains for the HBc chimeric model vaccines were constructed based on the wild-type (wt) HBc assembly template. The findings from our simulation analysis have demonstrated good consistency with experimental results, pertaining to the surface hydrophobicity and overall stability of the chimeric vaccine candidates. Furthermore, the different impact of foreign antigen insertions on the HBc scaffold was investigated through simulations. It was found that separately inserting two epitopes into the HBc platform at the N-terminal and the major immunogenic regions (MIR) yields better results compared to a serial insertion at MIR in terms of protein structural stability. This study substantiates that an MD-guided design approach can facilitate vaccine development and improve its manufacturing efficiency by predicting products with extreme surface hydrophobicity or structural instability.
Collapse
Affiliation(s)
- Hong Luo
- School of Chemical Engineering, Faculty of Science, Engineering and Technology, University of Adelaide, Adelaide 5005, Australia; State Key Laboratory of Biochemical Engineering, Key Laboratory of Biopharmaceutical Preparation and Delivery (CAS), Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, PR China; Institute of Pharmaceutical and Food Engineering, Shanxi University of Chinese Medicine, Jinzhong 030619, PR China
| | - Yanyan Ma
- State Key Laboratory of Biochemical Engineering, Key Laboratory of Biopharmaceutical Preparation and Delivery (CAS), Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, PR China
| | - Jingxiu Bi
- School of Chemical Engineering, Faculty of Science, Engineering and Technology, University of Adelaide, Adelaide 5005, Australia
| | - Zhengjun Li
- State Key Laboratory of Biochemical Engineering, Key Laboratory of Biopharmaceutical Preparation and Delivery (CAS), Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, PR China
| | - Yingli Wang
- Institute of Pharmaceutical and Food Engineering, Shanxi University of Chinese Medicine, Jinzhong 030619, PR China
| | - Zhiguo Su
- State Key Laboratory of Biochemical Engineering, Key Laboratory of Biopharmaceutical Preparation and Delivery (CAS), Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, PR China
| | - Lukas Gerstweiler
- School of Chemical Engineering, Faculty of Science, Engineering and Technology, University of Adelaide, Adelaide 5005, Australia.
| | - Ying Ren
- State Key Laboratory of Mesoscience and Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, PR China; School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing 100049, PR China.
| | - Songping Zhang
- State Key Laboratory of Biochemical Engineering, Key Laboratory of Biopharmaceutical Preparation and Delivery (CAS), Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, PR China.
| |
Collapse
|
2
|
Sheng Y, Li Z, Lin X, Wang L, Zhu H, Su Z, Zhang S. In situ bio-mineralized Mn nanoadjuvant enhances anti-influenza immunity of recombinant virus-like particle vaccines. J Control Release 2024; 368:275-289. [PMID: 38382812 DOI: 10.1016/j.jconrel.2024.02.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 02/14/2024] [Accepted: 02/18/2024] [Indexed: 02/23/2024]
Abstract
Virus like particles (VLPs) have been well recognized as one of the most important vaccine platforms due to their structural similarity to natural viruses to induce effective humoral and cellular immune responses. Nevertheless, lack of viral nucleic acids in VLPs usually leads the vaccine candidates less efficient in provoking innate immune against viral infection. Here, we constructed a biomimetic dual antigen hybrid influenza nanovaccines THM-HA@Mn with robust immunogenicity via in situ synthesizing a stimulator of interferon genes (STING) agonist Mn3O4 inside the cavity of a recombinant Hepatitis B core antigen VLP (HBc VLP) having fused SpyTag and influenza M2e antigen peptides (Tag-HBc-M2e, THM for short), followed by conjugating a recombinant hemagglutinin (rHA) antigen on the surface of the nanoparticles through SpyTag/SpyCatcher ligating. Such inside Mn3O4 immunostimulator-outside rHA antigen design, together with the chimeric M2e antigen on the HBc skeleton, enabled the synthesized hybrid nanovaccines THM-HA@Mn to well imitate the spatial distribution of M2e/HA antigens and immunostimulant in natural influenza virus. In vitro cellular experiments indicated that compared with the THM-HA antigen without Mn3O4 and a mixture vaccine consisting of THM-HA + MnOx, the THM-HA@Mn hybrid nanovaccines showed the highest efficacies in dendritic cells uptake and in promoting BMDC maturation, as well as inducing expression of TNF-α and type I interferon IFN-β. The THM-HA@Mn also displayed the most sustained antigen release at the injection site, the highest efficacies in promoting the DC maturation in lymph nodes and germinal center B cells activation in the spleen of the immunized mice. The co-delivery of immunostimulant and antigens enabled the THM-HA@Mn nanovaccines to induce the highest systemic antigen-specific antibody responses and cellular immunogenicity in mice. Together with the excellent colloid dispersion stability, low cytotoxicity, as well as good biosafety, the synthetic hybrid nanovaccines presented in this study offers a promising strategy to design VLP-based vaccine with robust natural and adaptive immunogenicity against emerging viral pathogens.
Collapse
Affiliation(s)
- Yanan Sheng
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhengjun Li
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China; Key Laboratory of Biopharmaceutical Preparation and Delivery, Chinese Academy of Sciences, Beijing 100190, China
| | - Xuan Lin
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China; Key Laboratory of Biopharmaceutical Preparation and Delivery, Chinese Academy of Sciences, Beijing 100190, China
| | - Liuyang Wang
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hongyu Zhu
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China; Division of Molecular Science, Graduate School of Science and Technology, Gunma University, Kiryu 376-8515, Japan
| | - Zhiguo Su
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China; Key Laboratory of Biopharmaceutical Preparation and Delivery, Chinese Academy of Sciences, Beijing 100190, China
| | - Songping Zhang
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China; Key Laboratory of Biopharmaceutical Preparation and Delivery, Chinese Academy of Sciences, Beijing 100190, China.
| |
Collapse
|
3
|
Ganeva V, Kranz A. Selective extraction of recombinant membrane proteins from Hansenula polymorpha by pulsed electric field and lytic enzyme pretreatment. Microb Cell Fact 2023; 22:251. [PMID: 38066481 PMCID: PMC10704748 DOI: 10.1186/s12934-023-02259-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Accepted: 11/25/2023] [Indexed: 12/18/2023] Open
Abstract
BACKGROUND In yeast, recombinant membrane proteins including viral scaffold proteins used for the formation of enveloped Virus-like particles (eVLPs) typically accumulate intracellularly. Their recovery is carried out by mechanical disruption of the cells, often in combination with detergent treatment. Cell permeabilization is an attractive alternative to mechanical lysis because it allows for milder and more selective recovery of different intracellular products. RESULTS Here, we present a novel approach for extraction of integral membrane proteins from yeast based on cell envelope permeabilization through a combination of pulsed electric field and lytic enzyme pretreatment of the cells. Our primary experiments focused on Hansenula polymorpha strain #25-5 co-expressing the integral membrane small surface protein (dS) of the duck hepatitis B virus and a fusion protein of dS with a trimer of a Human papillomavirus (HPV) L2-peptide (3xL2-dS). Irreversible plasma membrane permeabilization was induced by treating the cell suspension with monopolar rectangular pulses using a continuous flow system. The permeabilized cells were incubated with lyticase and dithiothreitol. This treatment increased the cell wall permeability, resulting in the release of over 50% of the soluble host proteins without causing significant cell lysis. The subsequent incubation with Triton X-100 resulted in the solubilization and release of a significant portion of 3xL2-dS and dS from the cells. By applying two steps: (i) brief heating of the cells before detergent treatment, and (ii) incubation of the extracts with KSCN, an 80% purity on the protein level has been achieved. Experiments performed with H. polymorpha strain T#3-3, co-expressing dS and the fusion protein EDIIIWNV-dS consisting of dS and the antigen from the West Nile virus (WSV), confirmed the applicability of this approach for recovering dS. The treatment, optimal for solubilization of 3xL2-dS and a significant part of dS, was not effective in isolating the fused protein EDIIIWNV-dS from the membranes, resulting in its retention within the cells. CONCLUSIONS This study presents an alternative approach for the recovery and partial purification of viral membrane proteins expressed in H. polymorpha. The factors influencing the effectiveness of this procedure and its potential use for the recovery of other integral membrane proteins are discussed.
Collapse
Affiliation(s)
- Valentina Ganeva
- Biological Faculty, Department of Biophysics & Radiobiology, Sofia University, 8 Dragan Tzankov blvd, Sofia, 1164, Bulgaria.
| | - Andreas Kranz
- ARTES Biotechnology GmbH, Elizabeth Selbert str. 9, 40764, Langenfeld, Germany
| |
Collapse
|
4
|
Huynh NH, Davey K, Jin B, Bi J. A statistical approach to boost soluble expression of E. coli-derived virus-like particles in shake-flask cultivation. J Biotechnol 2022; 347:56-66. [PMID: 35202741 DOI: 10.1016/j.jbiotec.2022.02.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 02/05/2022] [Accepted: 02/09/2022] [Indexed: 11/17/2022]
Abstract
Hepatitis B core virus-like particles (HBc-VLP) have been widely used as carrier platforms to present an epitope of interest. Escherichia coli expression system is cost effective and produces high yields of recombinant protein. However major drawbacks include difficulties in obtaining soluble expression and tendency to form inclusion bodies. To boost solubility of proteins during expression of E. coli-derived HBc-VLPs carrying EBNA1 epitope, a statistical approach involving fractional factorial design (FFD) and response surface methodology (RSM) was used. For the first time, this approach was applied to quantitatively determine the impact of key parameters in shake-flask cultivation. Expression conditions including post-induction temperature and shaker-speed, and cell density at induction were optimized. Based on native agarose gel electrophoresis, optimized soluble protein cellular yield was 210.5mgg-1 dry cell mass and volumetric yield was 272mgL-1 of culture media. Findings highlight: 1) the significant interaction between post-induction temperature and shaker-speed on production, and; 2) sufficient oxygen level is required during induction. It is concluded that this statistical approach can be practically applied to optimize expression of HBc-VLP in shake-flask cultivation, and to determine key parameters for large-scale productions.
Collapse
Affiliation(s)
- Nhat Hoang Huynh
- School of Chemical Engineering & Advanced Materials, The University of Adelaide, SA 5005, Australia
| | - Kenneth Davey
- School of Chemical Engineering & Advanced Materials, The University of Adelaide, SA 5005, Australia
| | - Bo Jin
- School of Chemical Engineering & Advanced Materials, The University of Adelaide, SA 5005, Australia
| | - Jingxiu Bi
- School of Chemical Engineering & Advanced Materials, The University of Adelaide, SA 5005, Australia.
| |
Collapse
|
5
|
Lu F, Li Z, Sheng Y, Ma Y, Yang Y, Ren Y, Su Z, Yu R, Zhang S. Thermal-triggered packing of lipophilic NIR dye IR780 in hepatitis B core at critical ionic strength and cargo-host ratio for improved stability and enhanced cancer phototherapy. Biomaterials 2021; 276:121035. [PMID: 34303153 DOI: 10.1016/j.biomaterials.2021.121035] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 07/13/2021] [Accepted: 07/19/2021] [Indexed: 02/09/2023]
Abstract
Virus-like particles (VLPs) holding internal cavity with diameter from tens up to one hundred nanometers are attractive platform for drug delivery. Nevertheless, the packing of drugs in the nanocage mainly relies on complicated disassembly-reassembly process. In this study, hepatitis B core protein (HBc) VLPs which can withstand temperature up to 90 °C was employed as carrier to load a lipophilic near infrared dye IR780. It was found that an attaching-dis-atching-diffusing process was involved for the entering of IR780 in the cavity of HBc. The first two steps were associated with the electrostatic interactions between oppositely charged HBc and IR780, which was critically manipulated by ionic strength and HBc/IR780 mass ratio at which they were mixed; while the diffusion of IR780 across the shell of HBc showed a temperature-dependent manner that can be triggered by thermal induced pore-opening of the HBc capsid. At optimized condition, about 1055 IR780 molecules were encapsulated in each HBc by simply mixing them for 10 min at 60 °C. Compared with free IR780, the HBc-IR780 particles showed significantly improved aqueous and photostability, as well as enhanced photothermal and photodynamic performance for cancer therapy. This study provides a novel drug loading strategy and nanomemedicine for cancer phototherapies.
Collapse
Affiliation(s)
- Fengying Lu
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, China; Key Laboratory of Drug-Targeting and Drug Delivery System of the Ministry of Education, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China
| | - Zhengjun Li
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, China
| | - Yanan Sheng
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, China
| | - Yanyan Ma
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, China
| | - Yanli Yang
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, China
| | - Ying Ren
- State Key Laboratory of Multiphase Complex System, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, China
| | - Zhiguo Su
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, China
| | - Rong Yu
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Ministry of Education, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China.
| | - Songping Zhang
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, China.
| |
Collapse
|
6
|
Wätzig H, Hoffstedt M, Krebs F, Minkner R, Scheller C, Zagst H. Protein analysis and stability: Overcoming trial-and-error by grouping according to physicochemical properties. J Chromatogr A 2021; 1649:462234. [PMID: 34038775 DOI: 10.1016/j.chroma.2021.462234] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 04/27/2021] [Accepted: 04/28/2021] [Indexed: 12/15/2022]
Abstract
Today proteins are possibly the most important class of substances. Yet new tasks for proteins are still often solved by trial-and-error approaches. However, in some areas these euphemistically called "screening approaches" are not suitable. E.g. stability tests just take too long and therefore require a more strategic, target-orientated concept. This concept is available by grouping proteins according to their physicochemical properties and then pulling out the right drawer for new tasks. These properties include size, then charge and hydrophobicity as well as their patchinesses, and the degree of order. In addition, solubility, the content of (free) enthalpy, aromatic-amino-acid- and α/β-frequency as well as helix capping, and corresponding patchiness, the number of specific motifs and domains as well as the typical concentration range can be helpful to discriminate between different groups of proteins. Analyzing correlations will reduce the necessary amount of parameters and additional ones, which may be still undiscovered at the present time, can be identified looking at protein subgroups with similar physicochemical properties which still behave heterogeneously. Step-by-step the methodology will be improved. Possibly protein stability will be the driver of this process, but all other areas such as production, purification and analytics including sample pre-treatment and the choice of appropriate separation conditions for e.g. chromatography and electrophoresis will profit from a rational strategy.
Collapse
Affiliation(s)
- Hermann Wätzig
- Technische Universität Braunschweig, Institute of Medicinal and Pharmaceutical Chemistry, Beethovenstraße 55, Braunschweig 38106, Germany.
| | - Marc Hoffstedt
- Technische Universität Braunschweig, Institute of Medicinal and Pharmaceutical Chemistry, Beethovenstraße 55, Braunschweig 38106, Germany
| | - Finja Krebs
- Technische Universität Braunschweig, Institute of Medicinal and Pharmaceutical Chemistry, Beethovenstraße 55, Braunschweig 38106, Germany
| | - Robert Minkner
- Technische Universität Braunschweig, Institute of Medicinal and Pharmaceutical Chemistry, Beethovenstraße 55, Braunschweig 38106, Germany
| | - Christin Scheller
- Technische Universität Braunschweig, Institute of Medicinal and Pharmaceutical Chemistry, Beethovenstraße 55, Braunschweig 38106, Germany
| | - Holger Zagst
- Technische Universität Braunschweig, Institute of Medicinal and Pharmaceutical Chemistry, Beethovenstraße 55, Braunschweig 38106, Germany
| |
Collapse
|
7
|
Yang Y, Su Z, Ma G, Zhang S. Characterization and stabilization in process development and product formulation for super large proteinaceous particles. Eng Life Sci 2020; 20:451-465. [PMID: 33204232 PMCID: PMC7645648 DOI: 10.1002/elsc.202000033] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 06/19/2020] [Accepted: 07/01/2020] [Indexed: 02/06/2023] Open
Abstract
Super large proteinaceous particles (SLPPs) such as virus, virus like particles, and extracellular vesicles have successful and promising applications in vaccination, gene therapy, and cancer treatment. The unstable nature, the complex particulate structure and composition are challenges for their manufacturing and applications. Rational design of the processing should be built on the basis of fully understanding the characteristics of these bio-particles. This review highlights useful analytical techniques for characterization and stabilization of SLPPs in the process development and product formulations, including high performance size exclusion chromatography, multi-angle laser light scattering, asymmetrical flow field-flow fractionation, nanoparticle tracking analysis, CZE, differential scanning calorimetry, differential scanning fluorescence, isothermal titration calorimetry , and dual polarization interferometry. These advanced analytical techniques will be helpful in obtaining deep insight into the mechanism related to denaturation of SLPPs, and more importantly, in seeking solutions to preserve their biological functions against deactivation or denaturation. Combination of different physicochemical techniques, and correlation with in vitro or in vivo biological activity analyses, are considered to be the future trend of development in order to guarantee a high quality, safety, and efficacy of SLPPs.
Collapse
Affiliation(s)
- Yanli Yang
- State Key Laboratory of Biochemical EngineeringInstitute of Process EngineeringChinese Academy of SciencesBeijingP. R. China
| | - Zhiguo Su
- State Key Laboratory of Biochemical EngineeringInstitute of Process EngineeringChinese Academy of SciencesBeijingP. R. China
| | - Guanghui Ma
- State Key Laboratory of Biochemical EngineeringInstitute of Process EngineeringChinese Academy of SciencesBeijingP. R. China
| | - Songping Zhang
- State Key Laboratory of Biochemical EngineeringInstitute of Process EngineeringChinese Academy of SciencesBeijingP. R. China
| |
Collapse
|
8
|
Wei J, Li Z, Yang Y, Ma X, An W, Ma G, Su Z, Zhang S. A biomimetic VLP influenza vaccine with interior NP/exterior M2e antigens constructed through a temperature shift-based encapsulation strategy. Vaccine 2020; 38:5987-5996. [DOI: 10.1016/j.vaccine.2020.07.015] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Revised: 06/27/2020] [Accepted: 07/10/2020] [Indexed: 01/02/2023]
|
9
|
Wei J, Li Z, Yang Y, Ma G, Su Z, Zhang S. An Apoferritin-Hemagglutinin Conjugate Vaccine with Encapsulated Nucleoprotein Antigen Peptide from Influenza Virus Confers Enhanced Cross Protection. Bioconjug Chem 2020; 31:1948-1959. [PMID: 32678574 DOI: 10.1021/acs.bioconjchem.0c00308] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Naturally occurring self-assembling ferritin nanoparticles have become widely appreciated for vaccine design. In this study, an apoferritin (AFt) nanocage was used as a carrier to construct a biomimetic influenza vaccine by encapsulating a conserved internal nucleoprotein (NP) antigen peptide inside the nanocage, followed by chemically conjugating the surface antigen hemagglutinin (HA) protein on the outer surface of the AFt. Benefiting from the excellent thermal stability and thermallyassociated structural flexibility of the AFt nanocages, a novel temperature shift based encapsulation process was proposed and proved efficient for encapsulation of the NP peptides. On average, about 18 NPs were encapsulated and 1.6 HA antigens were conjugated in each of the HA-AFt+NP dual-antigen influenza vaccines. Upon immunization in mice, the HA-AFt+NP vaccine elicited both HA and NP-specific antibodies, and conferred complete protection against a lethal infection of both homologous PR8 H1N1 and heterologous A/FM/1/47 (FM1, H1N1) strains, while the HA-AFt conjugate vaccine without encapsulated NP antigen only conferred 60% protection against the FM1 H1N1 viral challenge. The potential cross-protective effect of the HA-AFt+NP vaccine was further demonstrated by significant specific hemagglutination inhibition (HAI) titers in serum of the immunized mice against heterologous A/Hong Kong/4801/2014 (H3N2) viral strain, which was about 3-fold of that induced by HA antigen and 2-fold of the HA-AFt conjugate vaccine. This biomimetic HA-AFt+NP conjugate vaccine, therefore, may represent a new strategy for developing a potential universal influenza vaccine without the need of any adjuvant, and further broaden the application of AFt nanocages in the areas of vaccine development and delivery system.
Collapse
Affiliation(s)
- Jiangxue Wei
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, PR China.,University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Zhengjun Li
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, PR China
| | - Yanli Yang
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, PR China
| | - Guanghui Ma
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, PR China
| | - Zhiguo Su
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, PR China
| | - Songping Zhang
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, PR China
| |
Collapse
|
10
|
Spice AJ, Aw R, Bracewell DG, Polizzi KM. Synthesis and Assembly of Hepatitis B Virus-Like Particles in a Pichia pastoris Cell-Free System. Front Bioeng Biotechnol 2020; 8:72. [PMID: 32117947 PMCID: PMC7033515 DOI: 10.3389/fbioe.2020.00072] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Accepted: 01/28/2020] [Indexed: 12/13/2022] Open
Abstract
Virus-like particles (VLPs) are supramolecular protein assemblies with the potential for unique and exciting applications in synthetic biology and medicine. Despite the attention VLPs have gained thus far, considerable limitations still persist in their production. Poorly scalable manufacturing technologies and inconsistent product architectures continue to restrict the full potential of VLPs. Cell-free protein synthesis (CFPS) offers an alternative approach to VLP production and has already proven to be successful, albeit using extracts from a limited number of organisms. Using a recently developed Pichia pastoris-based CFPS system, we have demonstrated the production of the model Hepatitis B core antigen VLP as a proof-of-concept. The VLPs produced in the CFPS system were found to have comparable characteristics to those previously produced in vivo and in vitro. Additionally, we have developed a facile and rapid synthesis, assembly and purification methodology that could be applied as a rapid prototyping platform for vaccine development or synthetic biology applications. Overall the CFPS methodology allows far greater throughput, which will expedite the screening of optimal assembly conditions for more robust and stable VLPs. This approach could therefore support the characterization of larger sample sets to improve vaccine development efficiency.
Collapse
Affiliation(s)
- Alex J. Spice
- Department of Chemical Engineering, Imperial College London, London, United Kingdom
- The Imperial College Centre for Synthetic Biology Imperial College London, London, United Kingdom
| | - Rochelle Aw
- Department of Chemical Engineering, Imperial College London, London, United Kingdom
- The Imperial College Centre for Synthetic Biology Imperial College London, London, United Kingdom
| | - Daniel G. Bracewell
- Department of Biochemical Engineering, University College London, London, United Kingdom
| | - Karen M. Polizzi
- Department of Chemical Engineering, Imperial College London, London, United Kingdom
- The Imperial College Centre for Synthetic Biology Imperial College London, London, United Kingdom
| |
Collapse
|
11
|
A systematic and methodical approach for the efficient purification of recombinant protein from silkworm larval hemolymph. J Chromatogr B Analyt Technol Biomed Life Sci 2020; 1138:121964. [DOI: 10.1016/j.jchromb.2019.121964] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 12/25/2019] [Accepted: 12/30/2019] [Indexed: 01/16/2023]
|