1
|
Zhou Y, Zhao Z, Wu Q, Lei J, Cui H, Pan J, Li R, Lu H. Photoinduced Online Enrichment-Deglycosylation of Glycolipids for Enhancing Lipid Coverage and Identification in Single-Cell Mass Spectrometry. Anal Chem 2024; 96:17576-17585. [PMID: 39435868 DOI: 10.1021/acs.analchem.4c03343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2024]
Abstract
Single-cell lipidomics provides important information for molecular mechanisms of living processes and diseases at the individual cell level. However, single-cell lipidomic mass spectrometry (MS) techniques suffer from low lipid coverage and incomplete structural elucidation, especially for poorly ionizable glycosphingolipids (GSLs). Herein, a photoinduced enrichment-deglycosylation method of GSLs was developed and introduced into an ambient liquid extraction MS system for enhancing detection coverage and identification accuracy of GSLs in single-cell MS. GSL standards were selectively adsorbed on TiO2 in ammonia-added protic solvents. Under UV irradiation, the adsorbed GSLs would lose one hexosyl group (deglycosylation), and the products (>70% conversion efficiency) were desorbed from TiO2. By coating porous TiO2 into the capillary of the ambient liquid extraction MS system, online adsorption of GSLs and their separation from high-abundance phospholipids were achieved, largely reducing ion suppression. By UV irradiation, captured GSLs were rapidly deglycosylated and photodesorbed from TiO2 coating without solvent switching, resulting in 6-fold enrichment. With the new method, the detection coverage of GSLs was enhanced 9-fold without losing other lipidomes, compared with the conventional method. Moreover, deglycosylated GSLs from photodesorption had more MS/MS fragments than intact GSLs, facilitating detailed fatty acyl and sphingosine chain elucidation. Seven deglycosylated GSL peaks were identified with the confirmed hydroxyl group location in the fatty acyl chain, while only 1 was identified for intact GSL. The new method was applied to the single-cell lipidomics study of two types of nerve cells. Totally, 31 lipids including 11 GSLs were identified in a single cell, and 5 hexosylceramides were found significantly altered after neuron injury.
Collapse
Affiliation(s)
- Yongchang Zhou
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, Hunan, P. R. China
| | - Zhihao Zhao
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, Hunan, P. R. China
| | - Qian Wu
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, Hunan, P. R. China
| | - Jiawei Lei
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, Hunan, P. R. China
| | - Hao Cui
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, Hunan, P. R. China
| | - Junnan Pan
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, Hunan, P. R. China
| | - Ruiying Li
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, Hunan, P. R. China
| | - Hongmei Lu
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, Hunan, P. R. China
| |
Collapse
|
2
|
Leontyev D, Olivos H, Shrestha B, Datta Roy PM, LaPlaca MC, Fernández FM. Desorption Electrospray Ionization Cyclic Ion Mobility-Mass Spectrometry Imaging for Traumatic Brain Injury Spatial Metabolomics. Anal Chem 2024; 96:13598-13606. [PMID: 39106040 PMCID: PMC11339727 DOI: 10.1021/acs.analchem.4c02394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 07/20/2024] [Accepted: 07/25/2024] [Indexed: 08/07/2024]
Abstract
Lipidomics focuses on investigating alterations in a wide variety of lipids that harness important information on metabolic processes and disease pathology. However, the vast structural diversity of lipids and the presence of isobaric and isomeric species creates serious challenges in feature identification, particularly in mass spectrometry imaging experiments that lack front-end separations. Ion mobility has emerged as a potential solution to address some of these challenges and is increasingly being utilized as part of mass spectrometry imaging platforms. Here, we present the results of a pilot mass spectrometry imaging study on rat brains subjected to traumatic brain injury (TBI) to evaluate the depth and quality of the information yielded by desorption electrospray ionization cyclic ion mobility mass spectrometry (DESI cIM MSI). Imaging data were collected with one and six passes through the cIM cell. Increasing the number of passes increased the ion mobility resolving power and the resolution of isobaric lipids, enabling the creation of more specific maps. Interestingly, drift time data enabled the recognition of multiply charged phosphoinositide species in the complex data set generated. These species have not been previously reported in TBI MSI studies and were found to decrease in the hippocampus region following injury. These changes were attributed to increased enzymatic activity after TBI, releasing arachidonic acid that is converted to eicosanoids to control inflammation. A substantial reduction in NAD and alterations in other adenine metabolites were also observed, supporting the hypothesis that energy metabolism in the brain is severely disrupted in TBI.
Collapse
Affiliation(s)
- Dmitry Leontyev
- School
of Chemistry and Biochemistry, Georgia Institute
of Technology, Atlanta, Georgia 30332, United State
| | - Hernando Olivos
- Waters
Corporation, Milford, Massachusetts 01757, United State
| | | | - Pooja M. Datta Roy
- Coulter
Department of Biomedical Engineering, Georgia
Institute of Technology/Emory University, Atlanta, Georgia 30332, United State
| | - Michelle C. LaPlaca
- Coulter
Department of Biomedical Engineering, Georgia
Institute of Technology/Emory University, Atlanta, Georgia 30332, United State
- Parker
H. Petit Institute for Bioengineering and Bioscience, Atlanta, Georgia 30332, United
States
| | - Facundo M. Fernández
- School
of Chemistry and Biochemistry, Georgia Institute
of Technology, Atlanta, Georgia 30332, United State
- Parker
H. Petit Institute for Bioengineering and Bioscience, Atlanta, Georgia 30332, United
States
| |
Collapse
|
3
|
Zhao Z, Long Z, Wang H, Wu Q, Wang Y, Lu H. Pulled Flowprobe for Ambient Liquid Extraction-Based High Spatial Resolution Mass Spectrometry Imaging with Enhanced Sensitivity and Stability. Anal Chem 2023; 95:16927-16935. [PMID: 37939311 DOI: 10.1021/acs.analchem.3c03046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2023]
Abstract
Ambient liquid extraction techniques enable direct mass spectrometry imaging (MSI) under ambient conditions with minimal sample preparation. However, currently an integrated probe for ambient liquid extraction-based MSI with high spatial resolution, high sensitivity, and stability is still lacking. In this work, we developed a new integrated probe made of pulled coaxial capillaries, named pulled flowprobe, and compared it with the previously reported single-probe. Mass transfer kinetics in probes was first investigated. The extraction kinetic curves during probe sampling indicate a narrower and higher peak shape for the pulled flowprobe than single-probe. Computational fluid dynamics analysis reveals that in the pulled flowprobe flow velocities are lower in liquid microjunction and higher in the transferring channels, resulting in higher extraction efficiencies and reduced band diffusion compared with single-probe and other probes with a similar flow route. Results of ambient liquid extraction-based MSI of lipids in rat cerebrum show that signals of low-abundance lipids were 2-5 times higher via a pulled flowprobe than via a single-probe, and 26 more lipid species were detected on brain tissue via a pulled flowprobe than via a single-probe. The stability of MSI with the pulled flowprobe was found to be higher than that with single-probe (averaged relative standard deviation = 18% vs 80%) by imaging a lab-made uniform ink coating. Moreover, in the pulled flowprobe, no retraction of the inner capillary from outer capillary is optimal for both sensitivity and stability. The spatial resolution of the pulled flowprobe (30-40 μm) was measured to be higher than that of a comparable size single-probe by calculation with the "80-20" rule. Finally, the new pulled flowprobe was applied to high-resolution MSI of lipids in the hippocampus, and localization of several lipids to the specific cell layers in the hippocampus region was observed. Thus, this work provides an alternative easily fabricated sampling probe with enhanced sensitivity, stability, and spatial resolution, promoting the use of ambient liquid extraction-based MSI in biological and clinical research.
Collapse
Affiliation(s)
- Zhihao Zhao
- College of Chemistry and Chemical Engineering, Central South University, Hunan, Changsha 410083, P. R. China
| | - Zheng Long
- College of Chemistry and Chemical Engineering, Central South University, Hunan, Changsha 410083, P. R. China
| | - Huabei Wang
- College of Chemistry and Chemical Engineering, Central South University, Hunan, Changsha 410083, P. R. China
| | - Qian Wu
- College of Chemistry and Chemical Engineering, Central South University, Hunan, Changsha 410083, P. R. China
| | - Yang Wang
- Laboratory of Ethnopharmacology, Institute of Integrated Traditional Chinese and Western Medicine, Xiangya Hospital, Central South University, Hunan, Changsha 410008, P. R. China
| | - Hongmei Lu
- College of Chemistry and Chemical Engineering, Central South University, Hunan, Changsha 410083, P. R. China
| |
Collapse
|
4
|
King ME, Lin M, Spradlin M, Eberlin LS. Advances and Emerging Medical Applications of Direct Mass Spectrometry Technologies for Tissue Analysis. ANNUAL REVIEW OF ANALYTICAL CHEMISTRY (PALO ALTO, CALIF.) 2023; 16:1-25. [PMID: 36944233 DOI: 10.1146/annurev-anchem-061020-015544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Offering superb speed, chemical specificity, and analytical sensitivity, direct mass spectrometry (MS) technologies are highly amenable for the molecular analysis of complex tissues to aid in disease characterization and help identify new diagnostic, prognostic, and predictive markers. By enabling detection of clinically actionable molecular profiles from tissues and cells, direct MS technologies have the potential to guide treatment decisions and transform sample analysis within clinical workflows. In this review, we highlight recent health-related developments and applications of direct MS technologies that exhibit tangible potential to accelerate clinical research and disease diagnosis, including oncological and neurodegenerative diseases and microbial infections. We focus primarily on applications that employ direct MS technologies for tissue analysis, including MS imaging technologies to map spatial distributions of molecules in situ as well as handheld devices for rapid in vivo and ex vivo tissue analysis.
Collapse
Affiliation(s)
- Mary E King
- Department of Chemistry, The University of Texas at Austin, Austin, Texas, USA;
- Department of Surgery, Baylor College of Medicine, Houston, Texas, USA;
| | - Monica Lin
- Department of Chemistry, The University of Texas at Austin, Austin, Texas, USA;
| | - Meredith Spradlin
- Department of Chemistry, The University of Texas at Austin, Austin, Texas, USA;
| | - Livia S Eberlin
- Department of Surgery, Baylor College of Medicine, Houston, Texas, USA;
| |
Collapse
|
5
|
Zhang L, Huang Y, Zhou Y, Wu Q, Wang Y, Lu H. Photocatalytic reactive liquid microjunction surface sampling-mass spectrometry for rapid and selective in-situ analysis of alpha-unsubstituted amine metabolites or drugs in brain tissue. J Chromatogr A 2023; 1696:463958. [PMID: 37054640 DOI: 10.1016/j.chroma.2023.463958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 03/28/2023] [Accepted: 03/29/2023] [Indexed: 04/15/2023]
Abstract
In in-situ mass spectrometry (MS), different on-tissue derivatization methods have been developed to enhance the signals of poorly ionizable primary amines. However, those chemical derivatization methods are laborious and time-consuming, and are usually limited to detection of high-abundance amino acids which suppress the reaction of low-abundance monoamine neurotransmitters and drugs. Herein, A rapid and selective photocatalytic derivatization technique for alpha-unsubstituted primary amine was developed with 5-hydroxyindole as derivatization reagent and TiO2 as photocatalyst, and was introduced into liquid microjunction surface sampling (LMJSS)-MS system as online derivatization. The results showed that the photocatalytic derivatization method largely enhanced the signals of primary amines by 5-300 fold, and were selective to alpha-unsubstituted primary amines. Thus, the suppression effects from high-abundance amino acids to the reaction of monoamine neurotransmitters and benzylamine drugs proved to be largely reduced in the new method (matrix effect>50%) comparing with those in chemical derivatization method (matrix effect<10%). In addition, the optimal pH of the derivatization reaction was measured to be 7, which indicates the mild and physiologically compatible reaction conditions. By in-situ synthesis of TiO2 monolith in the transfer capillary of the LMJSS-MS system, rapid on-line photocatalytic derivatization was achieved and completed in 5 s during the transfer of sampling extract from the flow-probe to the MS inlet. With the new photocatalytic reactive LMJSS-MS method, detection limits of three primary amines on glass slides were in the range of 0.031-0.17 ng/mm2 with acceptable linearity (r=0.9815-0.9998) and relatively high repeatability (relative standard deviations <22.1%). Finally, endogenous tyramine, serotonin, two dipeptides and one doped benzylamine drug were identified and in-situ analyzed in the mouse cerebrum by the new method with largely enhanced signals comparing with LMJSS-MS without online derivatization. The new method provides a more selective, rapid and automated way to analyze alpha-unsubstituted amine metabolites and drugs in-situ comparing with traditional methods.
Collapse
Affiliation(s)
- Lihua Zhang
- College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan 410083, PR China
| | - Yuxuan Huang
- College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan 410083, PR China
| | - Yongchang Zhou
- College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan 410083, PR China
| | - Qian Wu
- College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan 410083, PR China.
| | - Yang Wang
- Laboratory of Ethnopharmacology, Institute of Integrated Traditional Chinese and Western Medicine, Xiangya Hospital Central South University, Changsha, Hunan 410008, PR China
| | - Hongmei Lu
- College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan 410083, PR China
| |
Collapse
|
6
|
Wu Q. A review on quantitation-related factors and quantitation strategies in mass spectrometry imaging of small biomolecules. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2022; 14:3932-3943. [PMID: 36164961 DOI: 10.1039/d2ay01257j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Accurate quantitative information of the analytes in mass spectrometry imaging (MSI) is fundamental for determining the accurate spatial distribution, which can provide additional insight into the living processes, disease progression or the pharmacokinetic-pharmacodynamic mechanisms. However, performing a quantitative analysis in MSI is still challenging. This review focuses on the quantitation-related factors and recent advances in the strategies of quantitative MSI (q-MSI) of small molecules. The main quantitation-related factors are discussed according to the new investigations in recent years, including the regionally varied extraction efficiencies and ionization efficiencies, signal-concentration regression functions, and the repeatability of surface sampling/ionization methods. Newly developed quantitation strategies in MSI based on aforementioned factors are introduced, including new techniques in standard curve calibration with normalization to an internal standard, kinetic calibration, and chemometric methods. Different strategies for validating q-MSI methods are discussed. Finally, the future perspectives to q-MSI are proposed.
Collapse
Affiliation(s)
- Qian Wu
- College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan, 410083, P. R. China.
| |
Collapse
|
7
|
Liu C. Acoustic Ejection Mass Spectrometry: Fundamentals and Applications in High-Throughput Drug Discovery. Expert Opin Drug Discov 2022; 17:775-787. [DOI: 10.1080/17460441.2022.2084069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Affiliation(s)
- Chang Liu
- SCIEX, 71 Four Valley Drive, Concord, ON, L4K 4V8, Canada
| |
Collapse
|
8
|
Zheng Q, Guo Z, Chen Y. Capillary array electrophoresis imaging of biochemicals in tissue sections. Talanta 2022; 240:123183. [PMID: 34996017 DOI: 10.1016/j.talanta.2021.123183] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 12/21/2021] [Accepted: 12/25/2021] [Indexed: 10/19/2022]
Abstract
It is of great significance to reveal the molecular distribution images in biological tissues, which has led to the bloom of mass spectrometry imaging. Unfortunately, its application is encountering the resistance of high technical barriers and equipment cost, as well as the inability to image substances that cannot be desorbed or ionized, or cannot be separated by their mass-to-charge ratios. Herein presented is a complementary and cost-effective method called capillary array electrophoresis (CAE) imaging. To have the information of molecules and their spatial location, a gridding cutter was fabricated to orderly dissect a tissue section into a leakproof array of micro wells enclosed by the grid-blade arrays. After in situ extraction and fluorophore-labeling of analytes, the samples in the wells were directly subjected to CAE-LIF (laser-induced fluorescence), and the molecular distribution images were depicted with the separated peaks. The practicability was demonstrated by CAE imaging of rat brain tissue sections with amino acid neurotransmitters (e.g., glutamine, 4-aminobutyric acid, alanine, glutamic acid and aspartic acid) as targets. The resultant images showed the global differences of molecular distributions, with a spatial resolution of 1000 μm that was presently determined by the well width but ultimately by the bore size of capillary (down to 10-50 μm). CAE imaging can hence be promising for its low cost, low technical barriers and abundant mechanisms to separate the charged and non-charged, chiral and non-chiral substances.
Collapse
Affiliation(s)
- Qingfeng Zheng
- Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhenpeng Guo
- Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Yi Chen
- Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China; University of Chinese Academy of Sciences, Beijing, 100049, China; Huaiyin Institute of Technology, Huaian, 223001, China; Beijing National Laboratory for Molecular Science, Beijing, 100190, China.
| |
Collapse
|
9
|
Chen B, Vavrek M, Cancilla MT, Kertesz V. Development and Application of DropletProbe Mass Spectrometry for Examining Biodistribution of Therapeutics. Methods Mol Biol 2022; 2437:171-180. [PMID: 34902148 DOI: 10.1007/978-1-0716-2030-4_12] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
dropletProbe mass spectrometry is a novel technique for molecular characterization of surfaces. It can be used for rapid ex vivo analysis of therapeutics from thin animal tissue sections and has been shown to improve understanding of a drug's absorption, distribution, metabolism and excretion (ADME) properties. Here, we describe the tissue distribution analysis of diclofenac from a dosed whole-body mouse thin tissue section using a dropletProbe mass spectrometry system.
Collapse
Affiliation(s)
- Bingming Chen
- Department of Preclinical Development, Merck & Co., Inc., Kenilworth, NJ, USA.
| | - Marissa Vavrek
- Department of Preclinical Development, Merck & Co., Inc., Kenilworth, NJ, USA
| | - Mark T Cancilla
- Department of Preclinical Development, Merck & Co., Inc., Kenilworth, NJ, USA
| | - Vilmos Kertesz
- Bioanalytical Mass Spectrometry Group, Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA
| |
Collapse
|
10
|
Abstract
Mass spectrometry imaging (MSI) could provide chemical spatial distribution within a diverse range of samples, but absolute quantitation with those techniques is still challenging. Recent years, ambient liquid extraction-based MSI techniques, such as liquid microjunction surface sampling (LMJSS), have been largely developed and were found to be favorable to quantitation by directly doping standards in the extraction solvent. Here, we describe the detailed experimental protocols and the data processing methods for quantitative MSI with LMJSS. The new methods could have absolute quantitative MSI of both endogenous lipids and small metabolites from tissue samples.
Collapse
Affiliation(s)
- Qian Wu
- College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan, P. R. China
| | - Hongmei Lu
- College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan, P. R. China.
| |
Collapse
|
11
|
Pánczél J, Schudok M, Schiell M, Riedel J, Kertesz V. An Effective QWBA/UHPLC-MS/Tissue Punch Approach: Solving a Pharmacokinetic Issue via Quantitative Met-ID. Drug Metab Lett 2021; 14:152-162. [PMID: 34818998 DOI: 10.2174/1872312814666210813114700] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 07/05/2021] [Accepted: 07/06/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND Methods to provide absolute quantitation of the administered drug and corresponding metabolites in tissue in a spatially resolved manner is a challenging but much needed capability in pharmaceutical research. Quantitative Whole-Body Autoradiography (QWBA) after a single- dose intravenous (3 mg/kg) and extravascular (30 mg/kg) administrations of an in vitro metabolically stable test compound (structure not reported here) indicated quick tissue distribution and excretion. OBJECTIVE Good bioavailability and short in vivo half-lives were determined formerly for the same test compound. For closing gaps in the understanding of pharmacokinetic data and in vitro results, radioactive hot spots on whole-body tissue sections had been profiled. METHODS Punches from selected tissue regions containing high radioactivity in the tissue sections previously analyzed by QWBA were extracted by a highly organic solvent and analyzed without any consecutive sample preparation step, applying Ultra High Performance Liquid Chromatography- Mass Spectrometry (UHPLC-MS) and off-line radioanalysis to maximize signal levels for metabolite identification and profiling. RESULTS The analysis revealed that the test compound was metabolized intensively by phase I reactions in vivo and the metabolites formed were excreted in bile and urine. The predominant metabolites showed abundant signal intensities both by MS and by radioanalysis but the MS signal intensities generally underestimated the real abundances of metabolites relative to the unchanged drug. CONCLUSION This work illustrates that maximizing the sensitivity of tissue punch radioanalysis and the combination with UHPLC-MS leads to a better insight into pharmacokinetic processes by providing quantitative data with high molecular selectivity.
Collapse
Affiliation(s)
- József Pánczél
- Research and Development, DMPK, Sanofi-Aventis Deutschland GmbH, Frankfurt, Germany
| | - Manfred Schudok
- Research and Development, DMPK, Sanofi-Aventis Deutschland GmbH, Frankfurt, Germany
| | - Matthias Schiell
- Research and Development, DMPK, Sanofi-Aventis Deutschland GmbH, Frankfurt, Germany
| | - Jens Riedel
- Research and Development, DMPK, Sanofi-Aventis Deutschland GmbH, Frankfurt, Germany
| | - Vilmos Kertesz
- Bioanalytical Mass Spectrometry Group, Biological Sciences Division, Oak Ridge National Laboratory, Oak Ridge TN 37831, United States
| |
Collapse
|
12
|
Luo S, Wu Q, Li Y, Lu H. Per-pixel absolute quantitation for mass spectrometry imaging of endogenous lipidomes by model prediction of mass transfer kinetics in single-probe-based ambient liquid extraction. Talanta 2021; 234:122654. [PMID: 34364463 DOI: 10.1016/j.talanta.2021.122654] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 06/21/2021] [Accepted: 06/22/2021] [Indexed: 10/21/2022]
Abstract
With the development of mass spectrometry imaging (MSI), techniques providing quantitative information on the spatial distribution have attracted more attentions recent years. However, for MSI of endogenous compounds in bio-samples, the uncertainty of locally varied sampling efficiencies always hinders accurate absolute quantitation. Here single-probe was used for ambient liquid extraction MSI in rat cerebellum, and standards of phosphatidylcholines (PCs) and cerebrosides (CBs) were doped in extraction solvent. The extraction kinetic curves of endogenous lipids in the ambient liquid extraction during probe parking in single pixel of tissue were investigated. From the results, the extraction kinetic curves were varied between different lipid species in different brain regions, resulting in variations of extraction efficiencies between imaging pixels, and calibration with standards deposited in tissue could not compensate for the variations. In our approach, the theoretical kinetic model of ambient liquid extraction was established, and original concentrations of endogenous lipids in each pixel of tissue were predicted by fitting the experimental extraction kinetic curve in each imaging pixel to the model. The experimental data was demonstrated to be well fitted to the kinetic model with R2 > 0.86, and only with 18-s extraction in each pixel, the original lipid concentrations were predicted accurately with relative errors <23%. With the new method, totally 157 lipids and small metabolites were imaged, and per-pixel quantitation was achieved for 19 PCs and 4 CBs. Compared with conventional quantitative MSI (q-MSI) method, the new q-MSI method had better reproducibility and wider linear range, and produced better contrast in the quantitative images of lipids in brain tissue with less hot spots and noises. The absolute quantitation results by the new method were verified by quantitative LC-MS method with Pearson'r > 0.9 and the slope of the linear fitting line of the correlation plot near 1.
Collapse
Affiliation(s)
- Shifen Luo
- College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan, 410083, PR China
| | - Qian Wu
- College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan, 410083, PR China.
| | - Youmei Li
- College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan, 410083, PR China
| | - Hongmei Lu
- College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan, 410083, PR China
| |
Collapse
|
13
|
Kertesz V, Cahill JF. Spatially resolved absolute quantitation in thin tissue by mass spectrometry. Anal Bioanal Chem 2021; 413:2619-2636. [PMID: 33140126 DOI: 10.1007/s00216-020-02964-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Mass spectrometry (MS) has become the de facto tool for routine quantitative analysis of biomolecules. MS is increasingly being used to reveal the spatial distribution of proteins, metabolites, and pharmaceuticals in tissue and interest in this area has led to a number of novel spatially resolved MS technologies. Most spatially resolved MS measurements are qualitative in nature due to a myriad of potential biases, such as sample heterogeneity, sampling artifacts, and ionization effects. As applications of spatially resolved MS in the pharmacological and clinical fields increase, demand has become high for quantitative MS imaging and profiling data. As a result, several varied technologies now exist that provide differing levels of spatial and quantitative information. This review provides an overview of MS profiling and imaging technologies that have demonstrated quantitative analysis from tissue. Focus is given on the fundamental processes affecting quantitative analysis in an array of MS imaging and profiling technologies and methods to address these biases.Graphical abstract.
Collapse
Affiliation(s)
- Vilmos Kertesz
- Oak Ridge National Laboratory, Oak Ridge, TN, 37831-6131, USA.
| | - John F Cahill
- Oak Ridge National Laboratory, Oak Ridge, TN, 37831-6131, USA.
| |
Collapse
|
14
|
Otsuka Y. Direct Liquid Extraction and Ionization Techniques for Understanding Multimolecular Environments in Biological Systems (Secondary Publication). Mass Spectrom (Tokyo) 2021; 10:A0095. [PMID: 34249586 PMCID: PMC8246329 DOI: 10.5702/massspectrometry.a0095] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 04/21/2021] [Indexed: 11/23/2022] Open
Abstract
A combination of direct liquid extraction using a small volume of solvent and electrospray ionization allows the rapid measurement of complex chemical components in biological samples and visualization of their distribution in tissue sections. This review describes the development of such techniques and their application to biological research since the first reports in the early 2000s. An overview of electrospray ionization, ion suppression in samples, and the acceleration of specific chemical reactions in charged droplets is also presented. Potential future applications for visualizing multimolecular environments in biological systems are discussed.
Collapse
Affiliation(s)
- Yoichi Otsuka
- Graduate School of Science, Osaka University, 1–1 Machikaneyama-cho, Toyonaka, Osaka 560–0043, Japan
- JST, PRESTO, 4–1–8 Honcho, Kawaguchi, Saitama 332–0012, Japan
| |
Collapse
|
15
|
Liu C, Van Berkel GJ, Kovarik P, Perot JB, Inguva V, Covey TR. Fluid Dynamics of the Open Port Interface for High-Speed Nanoliter Volume Sampling Mass Spectrometry. Anal Chem 2021; 93:8559-8567. [DOI: 10.1021/acs.analchem.1c01312] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Chang Liu
- SCIEX, 71 Four Valley Drive, Concord, Ontario L4K 4V8, Canada
| | | | - Peter Kovarik
- SCIEX, 71 Four Valley Drive, Concord, Ontario L4K 4V8, Canada
| | - J. Blair Perot
- Department of Mechanical Engineering, University of Massachusetts, Amherst, Massachusetts 01003, United States
| | - Venkatesh Inguva
- Department of Mechanical Engineering, University of Massachusetts, Amherst, Massachusetts 01003, United States
| | - Thomas R. Covey
- SCIEX, 71 Four Valley Drive, Concord, Ontario L4K 4V8, Canada
| |
Collapse
|
16
|
Li Y, Wu Q, Hu E, Wang Y, Lu H. Quantitative Mass Spectrometry Imaging of Metabolomes and Lipidomes for Tracking Changes and Therapeutic Response in Traumatic Brain Injury Surrounding Injured Area at Chronic Phase. ACS Chem Neurosci 2021; 12:1363-1375. [PMID: 33793210 DOI: 10.1021/acschemneuro.1c00002] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Traumatic brain injury (TBI) is a complex disease process that may contribute to temporary or permanent disability. Tracking spatial changes of lipids and metabolites in the brain helps unveil the underlying mechanisms of the disease procession and therapeutic response. Here, the liquid microjunction surface sampling technique was used for mass spectrometry imaging of both lipids and metabolites in rat models of controlled cortical impact with and without XueFu ZhuYu decoction treatment, and the work was focused on the diffuse changes outside the injured area at chronic phase (14 days after injury). Quantitative information was provided for phosphotidylcholines and cerebrosides by adding internal standards in the sampling solvent. With principal component analysis for the imaging data, the midbrain was found to be the region with the largest diffuse changes following TBI outside the injured area. In detail, several phosphatidylcholines, phosphatidylethanolamines, phosphatidic acids, and diacylglycerols were found to be significantly up-regulated particularly in midbrain and thalamus after TBI and XFZY treatment. It is associated with the reported "self-repair" mechanisms at the chronic phase of TBI activated by neuroinflammation. Several glycosphingolipids were found to be increased in most of brain regions after TBI, which was inferred to be associated with neuroinflammation and oxidative stress triggered by TBI. Moreover, different classes of small matabolites were significantly changed after TBI, including fatty acids, amino acids, and purines. All these compounds were involved in 10 metabolic pathway networks, and 6 target proteins of XFZY were found related to the impacted pathways. These results shed light on the molecular mechanisms of TBI pathologic processes and therapeutic response.
Collapse
Affiliation(s)
- Youmei Li
- College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan 410083, P. R. China
| | - Qian Wu
- College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan 410083, P. R. China
| | - En Hu
- Laboratory of Ethnopharmacology, Institute of Integrated Traditional Chinese and Western Medicine, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P. R. China
| | - Yang Wang
- Laboratory of Ethnopharmacology, Institute of Integrated Traditional Chinese and Western Medicine, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P. R. China
| | - Hongmei Lu
- College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan 410083, P. R. China
| |
Collapse
|
17
|
Abstract
Mass spectrometry imaging (MSI) is a powerful, label-free technique that provides detailed maps of hundreds of molecules in complex samples with high sensitivity and subcellular spatial resolution. Accurate quantification in MSI relies on a detailed understanding of matrix effects associated with the ionization process along with evaluation of the extraction efficiency and mass-dependent ion losses occurring in the analysis step. We present a critical summary of approaches developed for quantitative MSI of metabolites, lipids, and proteins in biological tissues and discuss their current and future applications.
Collapse
Affiliation(s)
- Daisy Unsihuay
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, USA; , ,
| | - Daniela Mesa Sanchez
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, USA; , ,
| | - Julia Laskin
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, USA; , ,
| |
Collapse
|
18
|
Kertesz V, Cahill JF, Srijanto BR, Collier CP, Vavrek M, Chen B. Absolute quantitation of propranolol from 200-μm regions of mouse brain and liver thin tissues using laser ablation-dropletProbe-mass spectrometry. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2021; 35:e9010. [PMID: 33232548 DOI: 10.1002/rcm.9010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Revised: 11/19/2020] [Accepted: 11/22/2020] [Indexed: 06/11/2023]
Abstract
RATIONALE The ability to quantify drugs and metabolites in tissue with sub-mm resolution is a challenging but much needed capability in pharmaceutical research. To fill this void, a novel surface sampling approach combining laser ablation with the commercial dropletProbe automated liquid surface sampling system (LA-dropletProbe) was developed and is presented here. METHODS Parylene C-coated 200 × 200 μm tissue regions of mouse brain and kidney thin tissue sections were analyzed for propranolol by laser ablation of tissue directly into a preformed liquid junction. Propranolol was detected by high-performance liquid chromatography/tandem mass spectrometry (HPLC/MS/MS) in positive electrospray ionization mode. Quantitation was achieved via application of a stable-isotope-labeled internal standard and an external calibration curve. RESULTS The absolute concentrations of propranolol determined from 200 × 200 μm tissue regions were compared with the propranolol concentrations obtained from 2.3-mm-diameter tissue punches of adjacent, non-coated sections using standard bulk tissue extraction protocols followed by regular HPLC/MS/MS analysis. The average concentration of propranolol in both organs determined by the two employed methods agreed to within ±12%. Furthermore, the relative abundances of phase II hydroxypropranolol glucuronide metabolites were recorded and found to be consistent with previous results. CONCLUSIONS This work illustrates that depositing a thin layer of parylene C onto thin tissue prior to analysis, which seals the surface and prevents direct liquid extraction of the drug from the tissue, coupled to the novel LA-dropletProbe surface sampling system is a viable approach for sub-mm resolution quantitative drug distribution analysis.
Collapse
Affiliation(s)
- Vilmos Kertesz
- Bioanalytical Mass Spectrometry Group, Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
| | - John F Cahill
- Bioanalytical Mass Spectrometry Group, Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
| | - Bernadeta R Srijanto
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
| | - Charles P Collier
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
| | - Marissa Vavrek
- Department of Pharmacokinetics, Pharmacodynamics, and Drug Metabolism, Merck & Co., Inc, 2000 Galloping Hill Rd, Kenilworth, NJ, 07033, USA
| | - Bingming Chen
- Department of Pharmacokinetics, Pharmacodynamics, and Drug Metabolism, Merck & Co., Inc, 2000 Galloping Hill Rd, Kenilworth, NJ, 07033, USA
| |
Collapse
|
19
|
Kertesz V, Cahill JF, Srijanto BR, Collier CP, Vavrek M, Chen B. Integrated laser ablation-dropletProbe-mass spectrometry for absolute drug quantitation, metabolite detection, and distribution in tissue. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2021; 35:e9202. [PMID: 34545636 DOI: 10.1002/rcm.9202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 09/17/2021] [Accepted: 09/17/2021] [Indexed: 06/13/2023]
Abstract
RATIONALE Spatially resolved and accurate quantitation of drug-related compounds in tissue is a much-needed capability in drug discovery research. Here, application of an integrated laser ablation-dropletProbe-mass spectrometry surface sampling system (LADP-MS) is reported, which achieved absolute quantitation of propranolol measured from <500 × 500 μm thin tissue samples. METHODS Mouse liver and kidney thin tissue sections were coated with parylene C and analyzed for propranolol by a laser ablation/liquid extraction workflow. Non-coated adjacent sections were microdissected for validation and processed using standard bulk tissue extraction protocols. High-performance liquid chromatography with positive ion mode electrospray ionization tandem mass spectrometry was applied to detect the drug and its metabolites. RESULTS Absolute propranolol concentration in ~500 × 500 μm tissue regions measured by the two methods agreed within ±8% and had a relative standard deviation within ±17%. Quantitation down to ~400 × 400 μm tissue regions was shown, and this resolution was also used for automated mapping of propranolol and phase II hydroxypropranolol glucuronide metabolites in kidney tissue. CONCLUSIONS This study exemplifies the capabilities of integrated laser ablation-dropletProbe-mass spectrometry (LADP-MS) for high resolution absolute drug quantitation analysis of thin tissue sections. This capability will be valuable for applications needing to quantitatively understand the spatial distribution of small molecules in tissue.
Collapse
Affiliation(s)
- Vilmos Kertesz
- Bioanalytical Mass Spectrometry Group, Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA
| | - John F Cahill
- Bioanalytical Mass Spectrometry Group, Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA
| | - Bernadeta R Srijanto
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA
| | - Charles P Collier
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA
| | - Marissa Vavrek
- Department of Pharmacokinetics, Pharmacodynamics, and Drug Metabolism, Merck & Co., Inc., Kenilworth, New Jersey, USA
| | - Bingming Chen
- Department of Pharmacokinetics, Pharmacodynamics, and Drug Metabolism, Merck & Co., Inc., Kenilworth, New Jersey, USA
| |
Collapse
|
20
|
Clark KD, Philip MC, Tan Y, Sweedler JV. Biphasic Liquid Microjunction Extraction for Profiling Neuronal RNA Modifications by Liquid Chromatography-Tandem Mass Spectrometry. Anal Chem 2020; 92:12647-12655. [PMID: 32786436 PMCID: PMC7496823 DOI: 10.1021/acs.analchem.0c02830] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
RNA modifications are emerging as critical players in the spatiotemporal regulation of gene expression. Although liquid chromatography-tandem mass spectrometry (LC-MS/MS) enables the simultaneous quantification of numerous enzymatically modified RNAs in a biological sample, conventional RNA extraction and enzymatic digestion protocols that are employed prior to analysis have precluded the application of this technique for small-volume samples. In this study, a biphasic liquid microjunction (LMJ) extraction system using coaxial capillaries that direct and aspirate extraction solvents onto a ∼350 μm diameter sample spot was developed and applied for the extraction of RNA from individual cell clusters in the central nervous system of the marine mollusk Aplysia californica. To maximize RNA recoveries, optimized extraction solvents consisting of 10% methanol and chloroform were evaluated under dynamic and static extraction conditions. An MS-compatible RNA digestion buffer was developed to minimize the number of sample-transfer steps and facilitate the direct enzymatic digestion of extracted RNA within the sample collection tube. Compared to RNA extraction using a conventional phenol-chloroform method, the LMJ-based method provided a 3-fold greater coverage of the neuronal epitranscriptome for similar amounts of tissues and also produced mRNA of sufficient purity for reverse transcription polymerase chain reaction amplification. Using this approach, the expression of RNA-modifying enzymes in a given neuronal cell cluster can be characterized and simultaneously correlated with the LC-MS/MS analysis of RNA modifications within the same subset of neurons.
Collapse
Affiliation(s)
- Kevin D. Clark
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Marina C. Philip
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Yanqi Tan
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Jonathan V. Sweedler
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| |
Collapse
|
21
|
Specker JT, Van Orden SL, Ridgeway ME, Prentice BM. Identification of Phosphatidylcholine Isomers in Imaging Mass Spectrometry Using Gas-Phase Charge Inversion Ion/Ion Reactions. Anal Chem 2020; 92:13192-13201. [PMID: 32845134 DOI: 10.1021/acs.analchem.0c02350] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Gas-phase ion/ion reactions have been enabled on a commercial dual source, hybrid QhFT-ICR mass spectrometer for use during imaging mass spectrometry experiments. These reactions allow for the transformation of the ion type most readily generated from the tissue surface to an ion type that gives improved chemical structural information upon tandem mass spectrometry (MS/MS) without manipulating the tissue sample. This process is demonstrated via the charge inversion reaction of phosphatidylcholine (PC) lipid cations generated from rat brain tissue via matrix-assisted laser desorption/ionization (MALDI) with 1,4-phenylenedipropionic acid (PDPA) reagent dianions generated via electrospray ionization (ESI). Collision-induced dissociation (CID) of the resulting demethylated PC product anions allows for the determination of the lipid fatty acyl tail identities and positions, which is not possible via CID of the precursor lipid cations. The abundance of lipid isomers revealed by this workflow is found to vary significantly in different regions of the brain. As each isoform may have a unique cellular function, these results underscore the importance of accurately separating and identifying the many isobaric and isomeric lipids and metabolites that can complicate image interpretation and spectral analysis.
Collapse
Affiliation(s)
- Jonathan T Specker
- Department of Chemistry, University of Florida, Gainesville, Florida 32611, United States
| | | | - Mark E Ridgeway
- Bruker Daltonics, Billerica, Massachusetts 01821, United States
| | - Boone M Prentice
- Department of Chemistry, University of Florida, Gainesville, Florida 32611, United States
| |
Collapse
|
22
|
Domenick TM, Vedam-Mai V, Yost RA. Design and Implementation of a Dual-Probe Microsampling Apparatus for the Direct Analysis of Adherent Mammalian Cells by Ion Mobility-Mass Spectrometry. Anal Chem 2020; 92:12055-12061. [DOI: 10.1021/acs.analchem.0c02714] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Affiliation(s)
- Taylor M. Domenick
- Department of Chemistry, University of Florida, P.O. Box 117200, Gainesville, Florida 32611-7200, United States
| | - Vinata Vedam-Mai
- Department of Neurology, University of Florida, P.O. Box 100236, Gainesville, Florida 32610-0236, United States
| | - Richard A. Yost
- Department of Chemistry, University of Florida, P.O. Box 117200, Gainesville, Florida 32611-7200, United States
| |
Collapse
|
23
|
Mei Y, Wu Q, Zhou S, Wang Z, Liang Q, Li Y, Lu H. Rapid in situ quantitation of photoinitiators in packaging by two-points kinetic calibration of liquid microjunction surface sampling-mass spectrometry. Talanta 2020; 216:121017. [DOI: 10.1016/j.talanta.2020.121017] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 04/05/2020] [Accepted: 04/06/2020] [Indexed: 01/02/2023]
|