1
|
Ghinet A, Furman C, Zubaş A, Apostol G, Nica AS, Lipka E. Evaluation of various polysaccharide-based stationary phases for enantioseparation of chloro-containing derivatives in normal phase liquid chromatography. Biomed Chromatogr 2024; 38:e6020. [PMID: 39349358 DOI: 10.1002/bmc.6020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 09/04/2024] [Accepted: 09/10/2024] [Indexed: 10/02/2024]
Abstract
Six polysaccharide-based chiral stationary phases were screened to separate the enantiomers of six chloro-containing derivatives and one derivative bearing electron donating mesomeric substituents, chosen for comparison. These compounds are expected to be P2X7 receptor antagonists with potential anti-inflammatory activity. The study was carried out with four different mobile phases composed of n-heptane and ethanol or isopropanol. Thus, a total of 168 experiments were implemented to find the best conditions aimed at scaling-up the separation of these anti-inflammatory compounds. Chiralpak AD-H separated half of them, i.e., 1, 2, and 6; Chiralpak AS separated also three out of the six compounds, i.e., 1, 2, and 3; Lux Cellulose-5 separated 2, 4, and 6; Lux Cellulose-2 separated 1, 2, and 4; Chiralcel OD-H separated compounds 2 and 5; and finally Chiralcel OJ separated only 3, thus having the lowest rate of success. Additionally, the influence of (i) the stationary and mobile phases and (ii) the chemical structure of the analytes on retention and resolution was investigated.
Collapse
Affiliation(s)
- Alina Ghinet
- Univ. Lille, Inserm, RID-AGE U1167, Lille, France
- Health and Environment, Laboratory of Sustainable Chemistry and Health, JUNIA, Lille, France
- Faculty of Chemistry, 'Alexandru Ioan Cuza' University of Iasi, Iasi, Romania
| | - Christophe Furman
- Univ. Lille, Inserm, RID-AGE U1167, Lille, France
- Laboratoire de Pharmacobiochimie, UFR3S-Pharmacie, Lille, BP, France
| | - Andreea Zubaş
- Univ. Lille, Inserm, RID-AGE U1167, Lille, France
- Health and Environment, Laboratory of Sustainable Chemistry and Health, JUNIA, Lille, France
- Faculty of Chemistry, 'Alexandru Ioan Cuza' University of Iasi, Iasi, Romania
| | - Georgiana Apostol
- Univ. Lille, Inserm, RID-AGE U1167, Lille, France
- Health and Environment, Laboratory of Sustainable Chemistry and Health, JUNIA, Lille, France
- Faculty of Chemistry, 'Alexandru Ioan Cuza' University of Iasi, Iasi, Romania
| | - Adrian Sorin Nica
- Univ. Lille, Inserm, RID-AGE U1167, Lille, France
- Health and Environment, Laboratory of Sustainable Chemistry and Health, JUNIA, Lille, France
| | - Emmanuelle Lipka
- Univ. Lille, Inserm, RID-AGE U1167, Lille, France
- Laboratoire de Chimie Analytique, UFR3S-Pharmacie, Lille, BP, France
| |
Collapse
|
2
|
Peluso P, Mamane V, Spissu Y, Casu G, Dessì A, Dallocchio R, Sechi B, Palmieri G, Rozzo C. Iodinated 4,4'-Bipyridines with Antiproliferative Activity Against Melanoma Cell Lines. ChemMedChem 2024; 19:e202300662. [PMID: 38489502 DOI: 10.1002/cmdc.202300662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 03/14/2024] [Accepted: 03/15/2024] [Indexed: 03/17/2024]
Abstract
In the last decade, biological processes involving halogen bond (HaB) as a leading interaction attracted great interest. However, although bound iodine atoms are considered powerful HaB donors, few iodinated new drugs were reported so far. Recently, iodinated 4,4'-bipyridines showed interesting properties as HaB donors in solution and in the solid state. In this paper, a study on the inhibition activity of seven halogenated 4,4'-bipyridines against malignant melanoma (MM) cell proliferation is described. Explorative dose/response proliferation assays were first performed with three 4,4'-bipyridines by using four MM cell lines and the normal BJ fibroblast cell line as control. Among them, the A375 MM cell line was the most sensitive, as determined by MTT assays, which was selected to evaluate the antiproliferative activity of all 4,4'-bipyridines. Significantly, the presence of an electrophilic iodine impacted the biological activity of the corresponding compounds. The 3,3',5,5'-tetrachloro-2-iodo-4,4'-bipyridine showed significant antiproliferation activity against the A375 cell line, and lower toxicity on BJ fibroblasts. Through in silico studies, the stereoelectronic features of possible sites determining the bioactivity were explored. These results pave the way for the utilization of iodinated 4,4'-bipyridines as templates to design new promising HaB-enabled inhibitors of MM cell proliferation.
Collapse
Affiliation(s)
- Paola Peluso
- Istituto di Chimica Biomolecolare ICB-CNR, Consiglio Nazionale delle Ricerche (CNR), Traversa La Crucca, 3, Li Punti, 07100, Sassari, Italy
| | - Victor Mamane
- Institut de Chimie de Strasbourg, UMR CNRS 7177, Centre National de la Recherche Scientifique (CNRS), 1 Rue Blaise Pascal, 67008, Strasbourg, France
| | - Ylenia Spissu
- Istituto di Scienze delle Produzioni Alimentari ISPA-CNR, Consiglio Nazionale delle Ricerche (CNR), Traversa La Crucca, 3, Li Punti, 07100, Sassari, Italy
| | - Giuseppina Casu
- Istituto di Ricerca Genetica e Biomedica IRGB-CNR, Consiglio Nazionale delle Ricerche (CNR), Traversa La Crucca, 3, Li Punti, 07100, Sassari, Italy
| | - Alessandro Dessì
- Istituto di Chimica Biomolecolare ICB-CNR, Consiglio Nazionale delle Ricerche (CNR), Traversa La Crucca, 3, Li Punti, 07100, Sassari, Italy
| | - Roberto Dallocchio
- Istituto di Chimica Biomolecolare ICB-CNR, Consiglio Nazionale delle Ricerche (CNR), Traversa La Crucca, 3, Li Punti, 07100, Sassari, Italy
| | - Barbara Sechi
- Istituto di Chimica Biomolecolare ICB-CNR, Consiglio Nazionale delle Ricerche (CNR), Traversa La Crucca, 3, Li Punti, 07100, Sassari, Italy
| | - Giuseppe Palmieri
- Istituto di Ricerca Genetica e Biomedica IRGB-CNR, Consiglio Nazionale delle Ricerche (CNR), Traversa La Crucca, 3, Li Punti, 07100, Sassari, Italy
| | - Carla Rozzo
- Istituto di Ricerca Genetica e Biomedica IRGB-CNR, Consiglio Nazionale delle Ricerche (CNR), Traversa La Crucca, 3, Li Punti, 07100, Sassari, Italy
| |
Collapse
|
3
|
Scriba GKE. Update on chiral recognition mechanisms in separation science. J Sep Sci 2024; 47:e2400148. [PMID: 38772711 DOI: 10.1002/jssc.202400148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 04/04/2024] [Accepted: 04/12/2024] [Indexed: 05/23/2024]
Abstract
The stereospecific analysis of chiral molecules is an important issue in many scientific fields. In separation sciences, this is achieved via the formation of transient diastereomeric complexes between a chiral selector and the selectand enantiomers driven by molecular interactions including electrostatic, ion-dipole, dipole-dipole, van der Waals or π-π interactions as well as hydrogen or halogen bonds depending on the nature of selector and selectand. Nuclear magnetic resonance spectroscopy and molecular modeling methods are currently the most frequently applied techniques to understand the selector-selectand interactions at a molecular level and to draw conclusions on the chiral separation mechanism. The present short review summarizes some of the recent achievements for the understanding of the chiral recognition of the most important chiral selectors combining separation techniques with molecular modeling and/or spectroscopic techniques dating between 2020 and early 2024. The selectors include polysaccharide derivatives, cyclodextrins, macrocyclic glycopeptides, proteins, donor-acceptor type selectors, ion-exchangers, crown ethers, and molecular micelles. The application of chiral ionic liquids and chiral deep eutectic solvents, as well as further selectors, are also briefly addressed. A compilation of all published literature on chiral selectors has not been attempted.
Collapse
Affiliation(s)
- Gerhard K E Scriba
- Department of Pharmaceutical/Medicinal Chemistry, Friedrich Schiller University, Jena, Germany
| |
Collapse
|
4
|
Dallocchio R, Dessì A, Sechi B, Peluso P. Molecular Dynamics Simulations of Amylose- and Cellulose-Based Selectors and Related Enantioseparations in Liquid Phase Chromatography. Molecules 2023; 28:7419. [PMID: 37959839 PMCID: PMC10647714 DOI: 10.3390/molecules28217419] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 10/27/2023] [Accepted: 10/30/2023] [Indexed: 11/15/2023] Open
Abstract
In the last few decades, theoretical and technical advancements in computer facilities and computational techniques have made molecular modeling a useful tool in liquid-phase enantioseparation science for exploring enantioselective recognition mechanisms underlying enantioseparations and for identifying selector-analyte noncovalent interactions that contribute to binding and recognition. Because of the dynamic nature of the chromatographic process, molecular dynamics (MD) simulations are particularly versatile in the visualization of the three-dimensional structure of analytes and selectors and in the unravelling of mechanisms at molecular levels. In this context, MD was also used to explore enantioseparation processes promoted by amylose and cellulose-based selectors, the most popular chiral selectors for liquid-phase enantioselective chromatography. This review presents a systematic analysis of the literature published in this field, with the aim of providing the reader with a comprehensive picture about the state of the art and what is still missing for modeling cellulose benzoates and the phenylcarbamates of amylose and cellulose and related enantioseparations with MD. Furthermore, advancements and outlooks, as well as drawbacks and pitfalls still affecting the applicability of MD in this field, are also discussed. The importance of integrating theoretical and experimental approaches is highlighted as an essential strategy for profiling mechanisms and noncovalent interaction patterns.
Collapse
Affiliation(s)
| | | | | | - Paola Peluso
- Unit of Enantioselective Chromatography and Molecular Recognition, Institute of Biomolecular Chemistry ICB, Secondary Branch of Sassari, CNR, Traversa La Crucca 3, Regione Baldinca, Li Punti, 07100 Sassari, Italy; (R.D.); (A.D.); (B.S.)
| |
Collapse
|
5
|
Sechi B, Dessì A, Dallocchio R, Tsetskhladze N, Chankvetadze B, Pérez-Baeza M, Cossu S, Jibuti G, Mamane V, Peluso P. Unravelling dispersion forces in liquid-phase enantioseparation. Part I: Impact of ferrocenyl versus phenyl groups. Anal Chim Acta 2023; 1278:341725. [PMID: 37709466 DOI: 10.1016/j.aca.2023.341725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 08/12/2023] [Accepted: 08/14/2023] [Indexed: 09/16/2023]
Abstract
BACKGROUND Highly ordered chiral secondary structures as well as multiple (tunable) recognition sites are the keys to success of polysaccharide carbamate-based chiral selectors in enantioseparation science. Hydrogen bonds (HBs), dipole-dipole, and π-π interactions are classically considered the most frequent noncovalent interactions underlying enantioselective recognition with these chiral selectors. Very recently, halogen, chalcogen and π-hole bonds were also identified as interactions working in polysaccharide carbamate-based selectors to promote enantiomer distinction. On the contrary, the function of dispersion interactions in this field was not explored so far. RESULTS The enantioseparation of chiral ferrocenes featuring chiral axis or chiral plane as stereogenic elements was performed by comparing five polysaccharide carbamate-based chiral columns, with the aim to identify enantioseparation outcomes that could be reasonably determined by dispersion forces, making available a reliable experimental data set for future theoretical studies to confirm the heuristic hypothesis. The effects of mobile phase polarity and temperature on the enantioseparation were considered, and potential recognition sites on analytes and selectors were evaluated by electrostatic potential (V) analysis and molecular dynamics (MD). In this first part, the enantioseparation of 3,3'-dibromo-5,5'-bis-ferrocenylethynyl-4,4'-bipyridine bearing two ferrocenylethynyl units linked to an axially chiral core was performed and compared to that of the analyte featuring the same structural motif with two phenyl groups in place of the ferrocenyl moieties. The results of this study showed the superiority of the ferrocenyl compared to the phenyl group, as a structural element favouring enantiodifferentiation. SIGNIFICANCE AND NOVELTY Even if dispersion (London) forces have been envisaged acting in liquid-phase enantioseparations, focused studies to explore possible contributions of dispersion forces with polysaccharide carbamate-based selectors are practically missing. This study allowed us to collect experimental information that support the involvement of dispersion forces as contributors to liquid-phase enantioseparation, paving the way to a new picture in this field.
Collapse
Affiliation(s)
- Barbara Sechi
- Istituto di Chimica Biomolecolare ICB-CNR, Sede Secondaria di Sassari, Traversa La Crucca 3, Regione Baldinca, Li Punti, 07100, Sassari, Italy
| | - Alessandro Dessì
- Istituto di Chimica Biomolecolare ICB-CNR, Sede Secondaria di Sassari, Traversa La Crucca 3, Regione Baldinca, Li Punti, 07100, Sassari, Italy
| | - Roberto Dallocchio
- Istituto di Chimica Biomolecolare ICB-CNR, Sede Secondaria di Sassari, Traversa La Crucca 3, Regione Baldinca, Li Punti, 07100, Sassari, Italy
| | - Nutsa Tsetskhladze
- Institute of Physical and Analytical Chemistry, School of Exact and Natural Sciences, Tbilisi State University, Chavchavadze Ave 3, 0179, Tbilisi, Georgia
| | - Bezhan Chankvetadze
- Institute of Physical and Analytical Chemistry, School of Exact and Natural Sciences, Tbilisi State University, Chavchavadze Ave 3, 0179, Tbilisi, Georgia
| | - Mireia Pérez-Baeza
- Departamento de Química Analítica, Universitat de València, Burjassot, València, Spain
| | - Sergio Cossu
- Dipartimento di Scienze Molecolari e Nanosistemi DSMN, Università Ca' Foscari Venezia, Via Torino 155, I-30172, Mestre Venezia, Italy
| | - Giorgi Jibuti
- Institute of Physical and Analytical Chemistry, School of Exact and Natural Sciences, Tbilisi State University, Chavchavadze Ave 3, 0179, Tbilisi, Georgia
| | - Victor Mamane
- Institut de Chimie de Strasbourg, UMR, CNRS 7177, Equipe LASYROC, 1 Rue Blaise Pascal, 67008, Strasbourg Cedex, France.
| | - Paola Peluso
- Istituto di Chimica Biomolecolare ICB-CNR, Sede Secondaria di Sassari, Traversa La Crucca 3, Regione Baldinca, Li Punti, 07100, Sassari, Italy.
| |
Collapse
|
6
|
Weiss R, Aubert E, Groslambert L, Pale P, Mamane V. Evidence for and evaluation of fluorine-tellurium chalcogen bonding. Chem Sci 2023; 14:7221-7229. [PMID: 37416727 PMCID: PMC10321537 DOI: 10.1039/d3sc00849e] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 06/03/2023] [Indexed: 07/08/2023] Open
Abstract
In the field of noncovalent interactions, chalcogen bonding (ChB) involving the tellurium atom is currently attracting much attention in supramolecular chemistry and in catalysis. However, as a prerequisite for its application, the ChB should be studied in solution to assess its formation and, if possible, to evaluate its strength. In this context, new tellurium derivatives bearing CH2F and CF3 groups were designed to exhibit Te⋯F ChB and were synthesized in good to high yields. In both types of compounds, Te⋯F interactions were characterized in solution by combining 19F, 125Te and HOESY NMR techniques. These Te⋯F ChBs were shown to contribute to the overall JTe-F coupling constants (94-170 Hz) measured in the CH2F- and CF3-based tellurium derivatives. Finally, a variable temperature NMR study allowed us to approximate the energy of the Te⋯F ChB, from 3 kJ mol-1 for the compounds with weak Te σ-holes to 11 kJ mol-1 for Te σ-holes activated by the presence of strong electron withdrawing substituents.
Collapse
Affiliation(s)
- Robin Weiss
- LASYROC, UMR 7177, University of Strasbourg 1 Rue Blaise Pascal 67000 Strasbourg France
| | | | - Loic Groslambert
- LASYROC, UMR 7177, University of Strasbourg 1 Rue Blaise Pascal 67000 Strasbourg France
| | - Patrick Pale
- LASYROC, UMR 7177, University of Strasbourg 1 Rue Blaise Pascal 67000 Strasbourg France
| | - Victor Mamane
- LASYROC, UMR 7177, University of Strasbourg 1 Rue Blaise Pascal 67000 Strasbourg France
| |
Collapse
|
7
|
Cheng J, Ma J, Li S, Wang Q, Lv M, Li J, Wang X, Wang H, Chen L. The covalent organic framework based nylon membrane extraction coupled with UHPLC-MS/MS for highly efficiency determination of hexabromocyclododecanes in environmental water. JOURNAL OF HAZARDOUS MATERIALS 2023; 451:131191. [PMID: 36921418 DOI: 10.1016/j.jhazmat.2023.131191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 03/01/2023] [Accepted: 03/09/2023] [Indexed: 06/18/2023]
Abstract
Hexabromocyclododecanes (HBCDs) have given their adverse effects on environment and human health, and highly sensitive analysis of HBCDs in water is urgent. In this study, a new method for the determination of trace HBCDs in water was established by covalent organic framework (COF) based nylon membrane extraction (ME) coupled with ultrahigh-performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS). The COF had been self-assembled onto the nylon membrane in a gentle strategy to fabricate COF nylon membrane. Several important ME parameters including the dosage of COF, pH, eluent condition and salinity were systematically investigated. The limits of detection and quantification were 0.011-0.014 and 0.038-0.047 ng/L for three HBCDs, respectively. The linear ranges were from 0.04 to 20 ng/L, and the relative standard deviations were 5.7-17.8 % (intra-day) and 5.2-14.1 % (inter-day). In addition, density functional theory (DFT) calculations on adsorption energy proved that the introduction of halogen bond (XB) made a key contribution to high extraction efficiency and excellent selectivity of COF nylon membrane for HBCDs. The 500 mL of samples, including tap water and reservoir water, could be extracted only in 23 min. The established method presented highly sensitive for ultra-trace analysis of HBCDs in environmental water.
Collapse
Affiliation(s)
- Jiawen Cheng
- School of Environmental & Municipal Engineering, Qingdao University of Technology, Qingdao 266033, China
| | - Jiping Ma
- School of Environmental & Municipal Engineering, Qingdao University of Technology, Qingdao 266033, China.
| | - Shuang Li
- School of Environmental & Municipal Engineering, Qingdao University of Technology, Qingdao 266033, China
| | - Qiaoning Wang
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Shandong Key Laboratory of Coastal Environmental Processes, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China
| | - Min Lv
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Shandong Key Laboratory of Coastal Environmental Processes, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China
| | - Jinhua Li
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Shandong Key Laboratory of Coastal Environmental Processes, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China
| | - Xiaoyan Wang
- School of Pharmacy, Binzhou Medical University, Yantai 264003, China
| | - Hongdan Wang
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Shandong Key Laboratory of Coastal Environmental Processes, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China
| | - Lingxin Chen
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Shandong Key Laboratory of Coastal Environmental Processes, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China; Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology, Qingdao 266237, China.
| |
Collapse
|
8
|
Peluso P, Mamane V. Ferrocene derivatives with planar chirality and their enantioseparation by liquid-phase techniques. Electrophoresis 2023; 44:158-189. [PMID: 35946562 PMCID: PMC10087518 DOI: 10.1002/elps.202200148] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Revised: 07/25/2022] [Accepted: 07/29/2022] [Indexed: 02/01/2023]
Abstract
In the last decade, planar chiral ferrocenes have attracted a growing interest in several fields, particularly in asymmetric catalysis, medicinal chemistry, chiroptical spectroscopy and electrochemistry. In this frame, the access to pure or enriched enantiomers of planar chiral ferrocenes has become essential, relying on the availability of efficient asymmetric synthesis procedures and enantioseparation methods. Despite this, in enantioseparation science, these metallocenes were not comprehensively explored, and very few systematic analytical studies were reported in this field so far. On the other hand, enantioselective high-performance liquid chromatography has been frequently used by organic and organometallic chemists in order to measure the enantiomeric purity of planar chiral ferrocenes prepared by asymmetric synthesis. On these bases, this review aims to provide the reader with a comprehensive overview on the enantioseparation of planar chiral ferrocenes by discussing liquid-phase enantioseparation methods developed over time, integrating this main topic with the most relevant aspects of ferrocene chemistry. Thus, the main structural features of ferrocenes and the methods to model this class of metallocenes will be briefly summarized. In addition, planar chiral ferrocenes of applicative interest as well as the limits of asymmetric synthesis for the preparation of some classes of planar chiral ferrocenes will also be discussed with the aim to orient analytical scientists towards 'hot topics' and issues which are still open for accessing enantiomers of ferrocenes featured by planar chirality.
Collapse
Affiliation(s)
- Paola Peluso
- Istituto di Chimica Biomolecolare ICB CNR, Sede secondaria di Sassari, Sassari, Italy
| | - Victor Mamane
- Institut de Chimie de Strasbourg, UMR 7177, CNRS-Université de Strasbourg, Strasbourg, France
| |
Collapse
|
9
|
Peluso P, Chankvetadze B. Recognition in the Domain of Molecular Chirality: From Noncovalent Interactions to Separation of Enantiomers. Chem Rev 2022; 122:13235-13400. [PMID: 35917234 DOI: 10.1021/acs.chemrev.1c00846] [Citation(s) in RCA: 76] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
It is not a coincidence that both chirality and noncovalent interactions are ubiquitous in nature and synthetic molecular systems. Noncovalent interactivity between chiral molecules underlies enantioselective recognition as a fundamental phenomenon regulating life and human activities. Thus, noncovalent interactions represent the narrative thread of a fascinating story which goes across several disciplines of medical, chemical, physical, biological, and other natural sciences. This review has been conceived with the awareness that a modern attitude toward molecular chirality and its consequences needs to be founded on multidisciplinary approaches to disclose the molecular basis of essential enantioselective phenomena in the domain of chemical, physical, and life sciences. With the primary aim of discussing this topic in an integrated way, a comprehensive pool of rational and systematic multidisciplinary information is provided, which concerns the fundamentals of chirality, a description of noncovalent interactions, and their implications in enantioselective processes occurring in different contexts. A specific focus is devoted to enantioselection in chromatography and electromigration techniques because of their unique feature as "multistep" processes. A second motivation for writing this review is to make a clear statement about the state of the art, the tools we have at our disposal, and what is still missing to fully understand the mechanisms underlying enantioselective recognition.
Collapse
Affiliation(s)
- Paola Peluso
- Istituto di Chimica Biomolecolare ICB, CNR, Sede secondaria di Sassari, Traversa La Crucca 3, Regione Baldinca, Li Punti, I-07100 Sassari, Italy
| | - Bezhan Chankvetadze
- Institute of Physical and Analytical Chemistry, School of Exact and Natural Sciences, Tbilisi State University, Chavchavadze Avenue 3, 0179 Tbilisi, Georgia
| |
Collapse
|
10
|
Peluso P, Mamane V. Stereoselective Processes Based on σ-Hole Interactions. Molecules 2022; 27:molecules27144625. [PMID: 35889497 PMCID: PMC9323542 DOI: 10.3390/molecules27144625] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 07/13/2022] [Accepted: 07/15/2022] [Indexed: 02/01/2023] Open
Abstract
The σ-hole interaction represents a noncovalent interaction between atoms with σ-hole(s) on their surface (such as halogens and chalcogens) and negative sites. Over the last decade, significant developments have emerged in applications where the σ-hole interaction was demonstrated to play a key role in the control over chirality. The aim of this review is to give a comprehensive overview of the current advancements in the use of σ-hole interactions in stereoselective processes, such as formation of chiral supramolecular assemblies, separation of enantiomers, enantioselective complexation and asymmetric catalysis.
Collapse
Affiliation(s)
- Paola Peluso
- Istituto di Chimica Biomolecolare ICB, CNR, Sede Secondaria di Sassari, Traversa La Crucca 3, Regione Baldinca, Li Punti, 07100 Sassari, Italy
- Correspondence: (P.P.); (V.M.)
| | - Victor Mamane
- Institut de Chimie de Strasbourg, UMR CNRS 7177, Equipe LASYROC, 1 Rue Blaise Pascal, 67008 Strasbourg, France
- Correspondence: (P.P.); (V.M.)
| |
Collapse
|
11
|
Bonin L, Morvan A, Coadou G, Furman C, Boulanger E, Ghinet A, Lipka E. Supercritical fluid chromatography for separation of chiral planar metallocenes. J Chromatogr A 2022; 1674:463115. [PMID: 35597198 DOI: 10.1016/j.chroma.2022.463115] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 04/29/2022] [Accepted: 05/02/2022] [Indexed: 11/29/2022]
Abstract
Unsymmetrically disubstituted metallocene derivatives, characterized as the first sandwich structure, have found interest in asymmetrical synthesis and in medicinal chemistry as well. Besides, they present a particular case of chirality. Twenty original and six commercially available molecules presenting either i) a planar chirality or ii) an asymmetrical carbon containing group or iii) being symmetrically substituted were analyzed in supercritical fluid chromatography on eleven polysaccharide-based chiral stationary phases with carbon dioxide containing 30% of methanol or 2-propanol as a co-solvent mobile phase. A basic additive, either diethylamine, triethylamine or n-butylamine was also required at 1% to the co-solvent for elution. While some of the tested chiral stationary phases provided enantioseparation for the racemates, chlorinated cellulosic phases proved to be both highly retentive and highly enantioselective towards these particular species with the highest rate of success compared to their non-chlorinated counterparts. For instance, the resolution value was equal to 14.1 for one ferrocene derivative in one-hour analysis time on cellulose tris(3,5-dichlorophenylcarbamate) column with 30% 2-propanol/1% n-butylamine while a single peak was observed under the same conditions on cellulose tris(3,5-dimethylphenylcarbamate) column. Experimental parameters were arbitrarily set at 150 bar outlet pressure, 40 °C temperature and 3 mL/min flow-rate.
Collapse
Affiliation(s)
- Lisa Bonin
- Univ. Lille, Inserm, Institut Pasteur de Lille, U1167 - Risk factors and molecular determinants of aging-related diseases, F-59000 Lille, France; JUNIA, Health & Environment, Laboratory of Sustainable Chemistry and Health, F-59000 Lille, France; Normandie Université, INSA de Rouen, CNRS, Laboratoire COBRA (UMR 6014 & FR 3038), F-76000 Rouen, France
| | - Antoine Morvan
- Univ. Lille, Inserm, Institut Pasteur de Lille, U1167 - Risk factors and molecular determinants of aging-related diseases, F-59000 Lille, France
| | - Gael Coadou
- Normandie Université, INSA de Rouen, CNRS, Laboratoire COBRA (UMR 6014 & FR 3038), F-76000 Rouen, France
| | - Christophe Furman
- Univ. Lille, Inserm, Institut Pasteur de Lille, U1167 - Risk factors and molecular determinants of aging-related diseases, F-59000 Lille, France
| | - Eric Boulanger
- Univ. Lille, Inserm, Institut Pasteur de Lille, U1167 - Risk factors and molecular determinants of aging-related diseases, F-59000 Lille, France
| | - Alina Ghinet
- Univ. Lille, Inserm, Institut Pasteur de Lille, U1167 - Risk factors and molecular determinants of aging-related diseases, F-59000 Lille, France; JUNIA, Health & Environment, Laboratory of Sustainable Chemistry and Health, F-59000 Lille, France; Alexandru Ioan Cuza' University of Iasi, Faculty of Chemistry, Bd. Carol I nr. 11, 700506 Iasi, Romania
| | - Emmanuelle Lipka
- Univ. Lille, Inserm, Institut Pasteur de Lille, U1167 - Risk factors and molecular determinants of aging-related diseases, F-59000 Lille, France.
| |
Collapse
|
12
|
De Gauquier P, Vanommeslaeghe K, Heyden YV, Mangelings D. Modelling approaches for chiral chromatography on polysaccharide-based and macrocyclic antibiotic chiral selectors: A review. Anal Chim Acta 2022; 1198:338861. [DOI: 10.1016/j.aca.2021.338861] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 07/12/2021] [Accepted: 07/19/2021] [Indexed: 12/25/2022]
|
13
|
Chiral Ferrocenyl–Iodotriazoles and –Iodotriazoliums as Halogen Bond Donors. Synthesis, Solid State Analysis and Catalytic Properties. Eur J Inorg Chem 2022. [DOI: 10.1002/ejic.202100927] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
14
|
Dang QM, Simpson JH, Parish CA, Leopold MC. Evaluating Halogen-Bond Strength as a Function of Molecular Structure Using Nuclear Magnetic Resonance Spectroscopy and Computational Analysis. J Phys Chem A 2021; 125:9377-9393. [PMID: 34661411 DOI: 10.1021/acs.jpca.1c07554] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Halogen bonding (XB) is a highly directional, non-covalent intermolecular interaction between a molecule (XB donor) presenting a halogen with an electron-deficient region or sigma hole (σ-hole) and an electron-rich or Lewis-base molecule (XB acceptor). A systematic, experimental, and theoretical study of solution-phase XB strength as a function of the molecular structure for both XB donor and acceptor molecules is presented. The impact of specific structural features is assessed using 19F and 1H nuclear magnetic resonance (NMR) titrations to determine association constants, density functional theory calculations for interaction energies and bond lengths, as well as 19F-1H HOESY NMR measurements of intermolecular cross-relaxation between the interacting XB donor-acceptor adducts. For XB donor molecules (perfluoro-halogenated benzenes), results indicate the critical importance of iodine coupled with electron-withdrawing entities. Prominent structural components of XB acceptor molecules include a central atom working in conjunction with a Lewis-base atom to present high electron density directed at the σ-hole (e.g., tributylphosphine oxide). Additionally, larger surrounding aliphatic R groups (e.g., butyl and octyl) were found to significantly stabilize strong XB, particularly in solvents that promote the interaction. With a more thorough understanding of structure-optimized XB, one can envision harnessing XB interactions more strategically for specific design of optimal materials and chemical applications.
Collapse
Affiliation(s)
- Quang Minh Dang
- Department of Chemistry, Gottwald Center for the Sciences, University of Richmond, Richmond, Virginia 23173, United States
| | - Jeffrey H Simpson
- Department of Chemistry, Gottwald Center for the Sciences, University of Richmond, Richmond, Virginia 23173, United States
| | - Carol A Parish
- Department of Chemistry, Gottwald Center for the Sciences, University of Richmond, Richmond, Virginia 23173, United States
| | - Michael C Leopold
- Department of Chemistry, Gottwald Center for the Sciences, University of Richmond, Richmond, Virginia 23173, United States
| |
Collapse
|
15
|
Vaňkátová P, Kubíčková A, Kalíková K. How mobile phase composition and column temperature affect enantiomer elution order of liquid crystals on amylose tris(3-chloro-5-methylphenylcarbamate) as chiral selector. Electrophoresis 2021; 42:1844-1852. [PMID: 33596334 DOI: 10.1002/elps.202000350] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 02/08/2021] [Accepted: 02/12/2021] [Indexed: 11/10/2022]
Abstract
A comprehensive study into the effects of mobile phase composition and column temperature on enantiomer elution order was conducted with a set of chiral rod-like liquid crystalline materials. The analytes were structurally similar and comprised variances such as length of terminal alkyl chain, presence of chlorine, number of phenyl rings, and type of chiral center. Experiments were carried out in polar organic and reversed-phase modes using amylose tris(3-chloro-5-methylphenylcarbamate) immobilized on silica gel as the chiral stationary phase. For all liquid crystals, reversal of elution order of enantiomers was observed based on type of used cosolvent and/or its content in the mobile phase; for some of the liquid crystals a temperature-induced reversal was also observed. Both linear and nonlinear dependencies of natural logarithm of enantioselectivity on temperature were found. Tested mobile phases comprised pure organic solvents and binary and tertiary mixtures of acetonitrile with organic solvents and/or water. Effect of acidic/basic mobile phase additives was also tested. Effect of structure of chiral selector is briefly discussed.
Collapse
Affiliation(s)
- Petra Vaňkátová
- Department of Analytical Chemistry, Faculty of Science, Charles University, Prague, Czech Republic.,Institute of Physics, Czech Academy of Sciences, Prague, Czech Republic
| | - Anna Kubíčková
- Department of Analytical Chemistry, Faculty of Science, Charles University, Prague, Czech Republic
| | - Květa Kalíková
- Department of Physical and Macromolecular Chemistry, Faculty of Science, Charles University, Prague, Czech Republic
| |
Collapse
|
16
|
Gros Q, Molineau J, Noireau A, Duval J, Bamba T, Lesellier E, West C. Characterization of stationary phases in supercritical fluid chromatography including exploration of shape selectivity. J Chromatogr A 2021; 1639:461923. [PMID: 33524935 DOI: 10.1016/j.chroma.2021.461923] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 01/09/2021] [Accepted: 01/16/2021] [Indexed: 12/01/2022]
Abstract
Achiral packed column supercritical fluid chromatography (SFC) has shown an important regain of interest in academic and industrial laboratories in the recent years. In relation to this increased concern, major instrument manufacturers have designed some stationary phases specifically for SFC use. SFC stationary phases have been widely examined over the last two decades, based on the use of linear solvation energy relationships (LSER), which relate analyte retention to its properties and to the interaction capabilities of the chromatographic system. The method provides some understanding on retention mechanisms (normal phase, reversed phase or mixed-mode) and the possibility to compare stationary phases on a rational basis, especially through a spider diagram providing a visual classification. The latter can be used as a primary tool to select complementary stationary phases to be screened for any separation at early stages of method development, before optimization steps. In this context, the characterization of the 14 columns from the Shim-pack UC series (Shimadzu Corporation, Kyoto, Japan), which are dedicated to SFC and more broadly to unified chromatography (UC), was performed, using the LSER methodology. As in previous works, seven descriptors, including five Abraham descriptors (E, S, A, B, V) and two descriptors describing positive and negative charges (D- and D+) were first employed to describe interactions with neutral and charged analytes. Secondly, two more descriptors were introduced, which were previously employed solely for the characterization of enantioselective systems and expressing shape features of the analytes (flexibility F and globularity G). They brought additional insight into the retention mechanisms, showing how spatial insertion of the analytes in some stationary phases is contributing to shape separation capabilities and how folding possibilities in flexible molecules is unfavorable to retention in other stationary phases.
Collapse
Affiliation(s)
- Quentin Gros
- University of Orleans, ICOA, CNRS UMR 7311; Pôle de chimie rue de Chartres - BP 6759 45067, Orléans Cedex 2, France; Shimadzu France, Le luzard 2, Bat A, Bd Salvador Allende Noisiel, 77448 Marne-la-Vallée, France
| | - Jeremy Molineau
- University of Orleans, ICOA, CNRS UMR 7311; Pôle de chimie rue de Chartres - BP 6759 45067, Orléans Cedex 2, France
| | - Angeline Noireau
- University of Orleans, ICOA, CNRS UMR 7311; Pôle de chimie rue de Chartres - BP 6759 45067, Orléans Cedex 2, France
| | - Johanna Duval
- Shimadzu France, Le luzard 2, Bat A, Bd Salvador Allende Noisiel, 77448 Marne-la-Vallée, France
| | - Takeshi Bamba
- Kyushu University, Division of Metabolomics, Medical Institute of Bioregulation, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Eric Lesellier
- University of Orleans, ICOA, CNRS UMR 7311; Pôle de chimie rue de Chartres - BP 6759 45067, Orléans Cedex 2, France
| | - Caroline West
- University of Orleans, ICOA, CNRS UMR 7311; Pôle de chimie rue de Chartres - BP 6759 45067, Orléans Cedex 2, France.
| |
Collapse
|
17
|
Peluso P, Dessì A, Dallocchio R, Sechi B, Gatti C, Chankvetadze B, Mamane V, Weiss R, Pale P, Aubert E, Cossu S. Enantioseparation of 5,5'-Dibromo-2,2'-Dichloro-3-Selanyl-4,4'-Bipyridines on Polysaccharide-Based Chiral Stationary Phases: Exploring Chalcogen Bonds in Liquid-Phase Chromatography. Molecules 2021; 26:molecules26010221. [PMID: 33406753 PMCID: PMC7794968 DOI: 10.3390/molecules26010221] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 12/26/2020] [Accepted: 12/29/2020] [Indexed: 12/25/2022] Open
Abstract
The chalcogen bond (ChB) is a noncovalent interaction based on electrophilic features of regions of electron charge density depletion (σ-holes) located on bound atoms of group VI. The σ-holes of sulfur and heavy chalcogen atoms (Se, Te) (donors) can interact through their positive electrostatic potential (V) with nucleophilic partners such as lone pairs, π-clouds, and anions (acceptors). In the last few years, promising applications of ChBs in catalysis, crystal engineering, molecular biology, and supramolecular chemistry have been reported. Recently, we explored the high-performance liquid chromatography (HPLC) enantioseparation of fluorinated 3-arylthio-4,4′-bipyridines containing sulfur atoms as ChB donors. Following this study, herein we describe the comparative enantioseparation of three 5,5′-dibromo-2,2′-dichloro-3-selanyl-4,4′-bipyridines on polysaccharide-based chiral stationary phases (CSPs) aiming to understand function and potentialities of selenium σ-holes in the enantiodiscrimination process. The impact of the chalcogen substituent on enantioseparation was explored by using sulfur and non-chalcogen derivatives as reference substances for comparison. Our investigation also focused on the function of the perfluorinated aromatic ring as a π-hole donor recognition site. Thermodynamic quantities associated with the enantioseparation were derived from van’t Hoff plots and local electron charge density of specific molecular regions of the interacting partners were inspected in terms of calculated V. On this basis, by correlating theoretical data and experimental results, the participation of ChBs and π-hole bonds in the enantiodiscrimination process was reasonably confirmed.
Collapse
Affiliation(s)
- Paola Peluso
- Institute of Biomolecular Chemistry ICB, CNR, Secondary Branch of Sassari, Traversa La Crucca 3, Regione Baldinca, Li Punti, 07100 Sassari, Italy; (A.D.); (R.D.); (B.S.)
- Correspondence: (P.P.); (V.M.); Tel.: +39-079-2841218 (P.P.); +33-3-68851612 (V.M.)
| | - Alessandro Dessì
- Institute of Biomolecular Chemistry ICB, CNR, Secondary Branch of Sassari, Traversa La Crucca 3, Regione Baldinca, Li Punti, 07100 Sassari, Italy; (A.D.); (R.D.); (B.S.)
| | - Roberto Dallocchio
- Institute of Biomolecular Chemistry ICB, CNR, Secondary Branch of Sassari, Traversa La Crucca 3, Regione Baldinca, Li Punti, 07100 Sassari, Italy; (A.D.); (R.D.); (B.S.)
| | - Barbara Sechi
- Institute of Biomolecular Chemistry ICB, CNR, Secondary Branch of Sassari, Traversa La Crucca 3, Regione Baldinca, Li Punti, 07100 Sassari, Italy; (A.D.); (R.D.); (B.S.)
| | - Carlo Gatti
- CNR-SCITEC, Istituto di Scienze e Tecnologie Chimiche “Giulio Natta”, sezione di via Golgi, via C. Golgi 19, 20133 Milano, Italy;
| | - Bezhan Chankvetadze
- Institute of Physical and Analytical Chemistry, School of Exact and Natural Sciences, Tbilisi State University, Chavchavadze Ave 3, 0179 Tbilisi, Georgia;
| | - Victor Mamane
- Strasbourg Institute of Chemistry, UMR CNRS 7177, Team LASYROC, 1 rue Blaise Pascal, University of Strasbourg, 67008 Strasbourg CEDEX, France; (R.W.); (P.P.)
- Correspondence: (P.P.); (V.M.); Tel.: +39-079-2841218 (P.P.); +33-3-68851612 (V.M.)
| | - Robin Weiss
- Strasbourg Institute of Chemistry, UMR CNRS 7177, Team LASYROC, 1 rue Blaise Pascal, University of Strasbourg, 67008 Strasbourg CEDEX, France; (R.W.); (P.P.)
| | - Patrick Pale
- Strasbourg Institute of Chemistry, UMR CNRS 7177, Team LASYROC, 1 rue Blaise Pascal, University of Strasbourg, 67008 Strasbourg CEDEX, France; (R.W.); (P.P.)
| | - Emmanuel Aubert
- Crystallography, Magnetic Resonance and Modelling (CRM2), UMR CNRS 7036, University of Lorraine, Bd des Aiguillettes, 54506 Vandoeuvre-les-Nancy, France;
| | - Sergio Cossu
- Department of Molecular Sciences and Nanosystems DSMN, Venice Ca’ Foscari University, Via Torino 155, 30172 Mestre Venezia, Italy;
| |
Collapse
|
18
|
Liu Y, Chen Y, Shi Y, Wan D, Chen J, Xiao S. Adsorption of toxic dye Eosin Y from aqueous solution by clay/carbon composite derived from spent bleaching earth. WATER ENVIRONMENT RESEARCH : A RESEARCH PUBLICATION OF THE WATER ENVIRONMENT FEDERATION 2021; 93:159-169. [PMID: 32564442 DOI: 10.1002/wer.1376] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 06/04/2020] [Accepted: 06/05/2020] [Indexed: 06/11/2023]
Abstract
The environmentally friendly clay/carbon composite (SBE/C) was prepared by one-step pyrolysis under N2 atmosphere at 700°C of spent bleaching earth (SBE) from the industrial waste of the refined oil industry. SBE/C was tested to remove anionic dye Eosin Y from aqueous water. The results revealed that SBE/C had larger specific surface area than SBE, and the equilibrium adsorption capacity of SBE/C (11.15 mg/g) was about 3 times than that of SBE (4.04 mg/g). The adsorption process was found to be exothermic and spontaneous. The adsorption capacity of SBE/C was independent on pH (5-12), and exhibits satisfactorily recyclable performance. Combined with characterization analysis, the adsorption mechanism likely includes electrostatic interaction, hydrogen bonding, hydrophobic interaction, halogen bonding, and π-π interaction. Overall, this exploration of SBE/C might open a window to the design of an efficient and low-cost adsorbent for Eosin Y dye elimination from wastewater. PRACTITIONER POINTS: The resource utilization of industrial waste SBE was achieved. SBE/C was synthesized and tested to adsorb Eosin Y for the first time. SBE/C had characteristics with porous structure and large surface area. pH had little effect on adsorption capacity of SBE/C for Eosin Y. SBE/C exhibited potential for dye elimination from wastewater.
Collapse
Affiliation(s)
- Yongde Liu
- School of Environmental Engineering, Henan University of Technology, Zhengzhou, China
- Henan Combined Pollution Control Research Academician Workstation, Zhengzhou, China
| | - Yao Chen
- School of Environmental Engineering, Henan University of Technology, Zhengzhou, China
| | - Yahui Shi
- School of Environmental Engineering, Henan University of Technology, Zhengzhou, China
| | - Dongjin Wan
- School of Environmental Engineering, Henan University of Technology, Zhengzhou, China
- Henan Combined Pollution Control Research Academician Workstation, Zhengzhou, China
| | - Jing Chen
- School of Environmental Engineering, Henan University of Technology, Zhengzhou, China
- Henan Combined Pollution Control Research Academician Workstation, Zhengzhou, China
| | - Shuhu Xiao
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, China
| |
Collapse
|
19
|
Mamane V, Peluso P, Aubert E, Weiss R, Wenger E, Cossu S, Pale P. Disubstituted Ferrocenyl Iodo- and Chalcogenoalkynes as Chiral Halogen and Chalcogen Bond Donors. Organometallics 2020. [DOI: 10.1021/acs.organomet.0c00633] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Victor Mamane
- Institut de Chimie de Strasbourg, UMR CNRS 7177, Equipe LASYROC, 1 rue Blaise Pascal, 67008 Strasbourg Cedex, France
| | - Paola Peluso
- Istituto di Chimica Biomolecolare ICB, CNR, Sede secondaria di Sassari, Traversa La Crucca 3, Regione Baldinca, 07100 Li Punti, Sassari, Italy
| | - Emmanuel Aubert
- , Université de Lorraine, CNRS, CRM2, Bd des Aiguillettes, F-54000 Nancy, France
| | - Robin Weiss
- Institut de Chimie de Strasbourg, UMR CNRS 7177, Equipe LASYROC, 1 rue Blaise Pascal, 67008 Strasbourg Cedex, France
| | - Emmanuel Wenger
- , Université de Lorraine, CNRS, CRM2, Bd des Aiguillettes, F-54000 Nancy, France
| | - Sergio Cossu
- Dipartimento di Scienze Molecolari e Nanosistemi DSMN, Università Ca’ Foscari Venezia, Via Torino 155, 30172 Mestre Venezia, Italy
| | - Patrick Pale
- Institut de Chimie de Strasbourg, UMR CNRS 7177, Equipe LASYROC, 1 rue Blaise Pascal, 67008 Strasbourg Cedex, France
| |
Collapse
|
20
|
Peluso P, Sechi B, Lai G, Dessì A, Dallocchio R, Cossu S, Aubert E, Weiss R, Pale P, Mamane V, Chankvetadze B. Comparative enantioseparation of chiral 4,4’-bipyridine derivatives on coated and immobilized amylose-based chiral stationary phases. J Chromatogr A 2020; 1625:461303. [DOI: 10.1016/j.chroma.2020.461303] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 05/13/2020] [Accepted: 06/01/2020] [Indexed: 12/14/2022]
|
21
|
Noncovalent interactions in high-performance liquid chromatography enantioseparations on polysaccharide-based chiral selectors. J Chromatogr A 2020; 1623:461202. [DOI: 10.1016/j.chroma.2020.461202] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 05/02/2020] [Accepted: 05/04/2020] [Indexed: 12/13/2022]
|