1
|
Del Río-Rodríguez JL, Gutiérrez-Tarriño S, Chinchilla LE, Holgado JP, Villar-García IJ, Pérez-Dieste V, Calvino JJ, Oña-Burgos P. Multifunctional Heterogeneous Cobalt Catalyst for the One-Pot Synthesis of Benzimidazoles by Reductive Coupling of Dinitroarenes with Aldehydes in Water. CHEMSUSCHEM 2024:e202402141. [PMID: 39651548 DOI: 10.1002/cssc.202402141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 11/29/2024] [Accepted: 12/08/2024] [Indexed: 12/11/2024]
Abstract
The endeavor of sustainable chemistry has led to significant advancements in green methodologies aimed at minimizing environmental impact while maximizing efficiency. Herein, a straightforward synthesis of benzimidazoles by reductive coupling of o-dinitroarenes with aldehydes is reported for the first time in aqueous media while using a non-noble metal catalyst. This work demonstrates that the combination of nitrogen and phosphorous ligands in the synthesis of supported heteroatom-incorporated Co nanoparticles is crucial for obtaining the desired benzimidazoles. The process achieves >99 % conversion, >99 % chemoselectivity and stability for the reduction of dinitroarenes using water as the solvent and hydrogen as the reductant under mild reaction conditions. The robustness of the catalyst has been investigated using several advanced techniques such as HRTEM, HAADF-STEM, XEDS, EELS, and NAP-XPS. In fact, we have shown that the introduction of N and P dopants prevents metal leaching and the sintering of the cobalt nanoparticles. Finally, to explore the general catalytic performance, a wide range of substituted dinitroarenes and benzaldehydes were evaluated, yielding benzimidazoles with competitive and scalable results, including MBIB (94 % yield), which is a compound of pharmaceutical interest.
Collapse
Affiliation(s)
- José Luis Del Río-Rodríguez
- Instituto de Tecnología Química, Universitat Politècnica de València-Consejo Superior de Investigaciones Científicas (UPV-CSIC), Avda. de los Naranjos s/n, 46022, Valencia, Spain
| | - Silvia Gutiérrez-Tarriño
- Instituto de Tecnología Química, Universitat Politècnica de València-Consejo Superior de Investigaciones Científicas (UPV-CSIC), Avda. de los Naranjos s/n, 46022, Valencia, Spain
| | - Lidia E Chinchilla
- Departamento de Ciencia de los Materiales e Ingeniería Metalúrgica y Química Inorgánica, Facultad de Ciencias, Universidad de Cádiz, Campus Río San Pedro S/N, Puerto Real, 11510, Cádiz, Spain
| | - Juan Pedro Holgado
- Instituto de Ciencia de Materiales de Sevilla, Departamento de Química Inorgánica, CSIC-Universidad de Sevilla, Av. Américo Vespucio, 49, 41092, Seville, Spain
| | - Ignacio J Villar-García
- Universidad CEU San Pablo, Departamento de Química, Facultad de Farmacia, Urbanización Montepríncipe, 28668, Boadilla del Monte, Madrid, Spain
| | - Virginia Pérez-Dieste
- ALBA Synchrotron Light Source, Carretera BP 1413 Km. 3.3, 08290, Cerdanyola del Vallès, Barcelona, Spain
| | - Jose J Calvino
- Departamento de Ciencia de los Materiales e Ingeniería Metalúrgica y Química Inorgánica, Facultad de Ciencias, Universidad de Cádiz, Campus Río San Pedro S/N, Puerto Real, 11510, Cádiz, Spain
| | - Pascual Oña-Burgos
- Instituto de Tecnología Química, Universitat Politècnica de València-Consejo Superior de Investigaciones Científicas (UPV-CSIC), Avda. de los Naranjos s/n, 46022, Valencia, Spain
| |
Collapse
|
2
|
Qiu Y, Wang Y, Xie C, Huang Y, Li G, Xia Z. Research on the Selective Extraction of Oxibendazole Residues in Animal-Derived Food Using Molecularly Imprinted Polymers. J Sep Sci 2024; 47:e70052. [PMID: 39681967 DOI: 10.1002/jssc.70052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 11/14/2024] [Accepted: 11/28/2024] [Indexed: 12/18/2024]
Abstract
To achieve specific adsorption-based sample preparation for the poorly soluble veterinary drug oxibendazole, this study employed 4-vinylpyridine as the functional monomer and conducted radical polymerization on the surface of functionalized silica nanoparticles to synthesize a surface molecularly imprinted polymer (OBZMIP). This OBZMIP exhibited good adsorption capacity for oxibendazole within 30 min, with its adsorption behavior conforming to the pseudo-second-order kinetic and Langmuir models, predicting a maximum adsorption capacity of 4.93 mg/g. After five adsorption-desorption cycles, the adsorption capacity remained unchanged, demonstrating excellent reusability. In a mixed system containing eight similar compounds, the selectivity coefficients ranged from 1.3 to 16.9, indicating outstanding specific recognition ability. Utilized as an adsorbent packing material for solid-phase extraction, the prepared OBZMIP demonstrated significantly high recovery rates in the extraction of oxibendazole from four distinct meat samples. Therefore, OBZMIP holds promising applications in the selective extraction of veterinary drug oxibendazole residues during the pretreatment of meat samples.
Collapse
Affiliation(s)
- Yue Qiu
- Chongqing Academy of Metrology and Quality Inspection, Chongqing, China
| | - Yue Wang
- School of Pharmaceutical Sciences, Chongqing University, Chongqing, China
| | - Chengli Xie
- School of Pharmaceutical Sciences, Chongqing University, Chongqing, China
| | - Yike Huang
- College of Pharmacy, Chongqing Medical University, Chongqing, China
| | - Genrong Li
- Chongqing Academy of Metrology and Quality Inspection, Chongqing, China
| | - Zhining Xia
- School of Pharmaceutical Sciences, Chongqing University, Chongqing, China
| |
Collapse
|
3
|
Wang T, Xie C, You Q, Tian X, Xu X. Qualitative and quantitative analysis of four benzimidazole residues in food by surface-enhanced Raman spectroscopy combined with chemometrics. Food Chem 2023; 424:136479. [PMID: 37263093 DOI: 10.1016/j.foodchem.2023.136479] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Revised: 05/05/2023] [Accepted: 05/26/2023] [Indexed: 06/03/2023]
Abstract
In this study, surface-enhanced Raman spectroscopy (SERS) combined with chemometric methods were developed for qualitative and quantitative analysis of four benzimidazole (BMZs) residues in corn. Sulfhydryl functionalized Fe3O4@SiO2@Ag-SH magnetic SERS substrates were prepared to obtain the SERS spectra of four BMZs for chemometric analysis. The partial least squares regression discrimination analysis (PLS-DA) model performed best, with a recall rate upwards 99.17%, and could successfully distinguish four BMZs. Under the support vector machine regression (SVR) model, the detection limits of carbendazim, benomyl, thiophanate-methyl and thiabendazole were 0.055 mg/L, 0.056 mg/L, 0.067 mg/L and 0.093 mg/L, respectively; the average recovery was in the range of 85.6%-107.5%. Furthermore, the method verified by HPLC, and the results showed that there was no significant difference between two methods (p > 0.05). Therefore, the strategy based on SERS coupling chemometrics can be served as a promising tool for rapid determination of BMZs residues in food.
Collapse
Affiliation(s)
- Tianyao Wang
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Chuangjie Xie
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Qian You
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Xingguo Tian
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou 510642, China.
| | - Xiaoyan Xu
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
4
|
Han P, Rios-Miguel AB, Tang X, Yu Y, Zhou LJ, Hou L, Liu M, Sun D, Jetten MSM, Welte CU, Men Y, Lücker S. Benzimidazole fungicide biotransformation by comammox Nitrospira bacteria: Transformation pathways and associated proteomic responses. JOURNAL OF HAZARDOUS MATERIALS 2023; 445:130558. [PMID: 36495641 DOI: 10.1016/j.jhazmat.2022.130558] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 11/23/2022] [Accepted: 12/03/2022] [Indexed: 06/17/2023]
Abstract
Benzimidazole fungicides are frequently detected in aquatic environments and pose a serious health risk. Here, we investigated the metabolic capacity of the recently discovered complete ammonia-oxidizing (comammox) Nitrospira inopinata and kreftii to transform a representative set of benzimidazole fungicides (i.e., benzimidazole, albendazole, carbendazim, fuberidazole, and thiabendazole). Ammonia-oxidizing bacteria and archaea, as well as the canonical nitrite-oxidizing Nitrospira exhibited no or minor biotransformation activity towards all the five benzimidazole fungicides. In contrast, the investigated comammox bacteria actively transformed all the five benzimidazole fungicides, except for thiabendazole. The identified transformation products indicated hydroxylation, S-oxidation, and glycosylation as the major biotransformation pathways of benzimidazole fungicides. We speculated that these reactions were catalyzed by comammox-specific ammonia monooxygenase, cytochrome P450 monooxygenases, and glycosylases, respectively. Interestingly, the exposure to albendazole enhanced the expression of the antibiotic resistance gene acrB of Nitrospira inopinata, suggesting that some benzimidazole fungicides could act as environmental stressors that trigger cellular defense mechanisms. Altogether, this study demonstrated the distinct substrate specificity of comammox bacteria towards benzimidazole fungicides and implies their significant roles in the biotransformation of these fungicides in nitrifying environments.
Collapse
Affiliation(s)
- Ping Han
- Key Laboratory of Geographic Information Science (Ministry of Education), School of Geographic Sciences, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China; State Key Laboratory of Estuarine and Coastal Research, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China; Institute of Eco-Chongming (IEC), 3663 North Zhongshan Road, Shanghai 200062, China.
| | - Ana B Rios-Miguel
- Department of Microbiology, RIBES, Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen, the Netherlands
| | - Xiufeng Tang
- Key Laboratory of Geographic Information Science (Ministry of Education), School of Geographic Sciences, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
| | - Yaochun Yu
- Department of Chemical and Environmental Engineering, University of California, Riverside, CA 92521, United States; Department of Civil and Environmental Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, United States
| | - Li-Jun Zhou
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China.
| | - Lijun Hou
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China; Institute of Eco-Chongming (IEC), 3663 North Zhongshan Road, Shanghai 200062, China
| | - Min Liu
- Key Laboratory of Geographic Information Science (Ministry of Education), School of Geographic Sciences, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China; Institute of Eco-Chongming (IEC), 3663 North Zhongshan Road, Shanghai 200062, China
| | - Dongyao Sun
- Key Laboratory of Geographic Information Science (Ministry of Education), School of Geographic Sciences, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China; School of Geography Science and Geomatics Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Mike S M Jetten
- Department of Microbiology, RIBES, Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen, the Netherlands
| | - Cornelia U Welte
- Department of Microbiology, RIBES, Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen, the Netherlands
| | - Yujie Men
- Department of Chemical and Environmental Engineering, University of California, Riverside, CA 92521, United States; Department of Civil and Environmental Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, United States.
| | - Sebastian Lücker
- Department of Microbiology, RIBES, Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen, the Netherlands
| |
Collapse
|
5
|
Jiang W, Zhao T, Zhen X, Jin C, Li H, Ha J. Rapid Determination of 9 Tyrosine Kinase Inhibitors for the Treatment of Hepatocellular Carcinoma in Human Plasma by QuEChERS-UPLC-MS/MS. Front Pharmacol 2022; 13:920436. [PMID: 35800447 PMCID: PMC9253689 DOI: 10.3389/fphar.2022.920436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 05/11/2022] [Indexed: 11/13/2022] Open
Abstract
A reliable and rapid method employing QuEChERS (Quick, Easy, Cheap, Effective, Rugged, and Safe) pretreatment coupled with ultra-performance liquid chromatography–tandem mass spectrometry (UPLC–MS/MS) was successfully developed and validated for the analysis of nine tyrosine kinase inhibitors (TKIs) in human plasma. Biological samples were extracted with acetonitrile and salted out with 350 mg of anhydrous magnesium sulfate (MgSO4), followed by purification with 40 mg of ethyl enediamine-N-propylsilane (PSA) adsorbents. All analytes and internal standards (IS) were separated on the Hypersil GOLD VANQUISH C18 (2.1 mm × 100 mm, 1.9 μM) column using the mobile phases composed of acetonitrile (phase A) and 0.1% formic acid in water (phase B) for 8.0 min. Detection was performed by selection reaction monitoring (SRM) in the positive ion electrospray mode. Lenvatinib, sorafenib, cabozantinib, apatinib, gefitinib, regorafenib, and anlotinib rendered good linearity over the range of 0.1–10 ng/ml, and 1–100 ng/ml for tivantinib and galunisertib. All linear correlation coefficients for all standard curves were ≥ 0.9966. The limits of detection (LOD) and the limits of quantitation (LOQ) ranged from 0.003 to 0.11 ng/ml and 0.01–0.37 ng/ml, respectively. The method was deemed satisfactory with an accuracy of -7.34–6.64%, selectivity, matrix effect (ME) of 90.48–107.77%, recovery, and stability. The proposed method is simple, efficient, reliable, and applicable for the detection of TKIs in human plasma samples as well as for providing a reference for the clinical adjustment of drug administration regimen by monitoring the drug concentrations in the plasma of patients.
Collapse
Affiliation(s)
- Wen Jiang
- College of Chemistry and Pharmaceutical Engineering, Hebei University of Science and Technology, Shijiazhuang, China
| | - Tingting Zhao
- College of Pharmacy, Hebei Medical University, Shijiazhuang, China
| | - Xiaolan Zhen
- Hebei Institute of Drug and Medical Device Inspection, Shijiazhuang, China
| | - Chengcheng Jin
- College of Chemistry and Pharmaceutical Engineering, Hebei University of Science and Technology, Shijiazhuang, China
| | - Hui Li
- Hebei Institute of Drug and Medical Device Inspection, Shijiazhuang, China
- *Correspondence: Hui Li, ; Jing Ha,
| | - Jing Ha
- College of Chemistry and Pharmaceutical Engineering, Hebei University of Science and Technology, Shijiazhuang, China
- *Correspondence: Hui Li, ; Jing Ha,
| |
Collapse
|
6
|
Anagnostopoulou K, Nannou C, Evgenidou E, Lambropoulou D. Overarching issues on relevant pesticide transformation products in the aquatic environment: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 815:152863. [PMID: 34995614 DOI: 10.1016/j.scitotenv.2021.152863] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 12/28/2021] [Accepted: 12/29/2021] [Indexed: 06/14/2023]
Abstract
The intensification of agricultural production during the last decades has forced the rapid increase in the use of pesticides that finally end up in the aquatic environment. Albeit well-documented, pesticides continue to raise researchers' attention, because of their potential adverse impacts on the environment and, inevitably, humans. Once entering the aquatic bodies, pesticides undergo biotic and abiotic processes, resulting in transformation products (TPs) that sometimes are even more toxic than the parent compounds. A substantial shift of the scientific interest in the TPs of pesticides has been observed since their environmental fate, occurrence and toxicity is still in its formative stage. In an ongoing effort to expand the existing knowledge on the topic, several interesting works have been performed mostly in European countries, such as France, Germany, Italy, Switzerland, Greece, and Spain that counts the highest number of relevant publications. Pesticide TPs have been also studied to a lesser extent in Asia, North and South America. To this end, the main objective of this review is to delineate the global occurrence, fate, toxicity as well as the analytical challenges related to pesticide TPs in surface, ground, and wastewaters, with the view to contribute to a better understanding of the environmental problems related with TPs formation. The concentration levels of the TPs, ranging from the low ng/L to high μg/L scale and distributed worldwide. Ultimately, an attempt to predict the acute and chronic toxicity of TPs has been carried out with the aid of an in-silico approach based on ECOSAR, revealing increased chronic toxicity for the majority of the identified TPs, despite the change they underwent, while a small portion of them presented serious acute toxicity values.
Collapse
Affiliation(s)
- Kyriaki Anagnostopoulou
- Department of Chemistry, Aristotle University of Thessaloniki, GR 54124 Thessaloniki, Greece
| | - Christina Nannou
- Department of Chemistry, Aristotle University of Thessaloniki, GR 54124 Thessaloniki, Greece; Centre for Interdisciplinary Research and Innovation (CIRI-AUTH), Balkan Center, Thessaloniki, 10th km Thessaloniki-Thermi Rd, GR 57001, Greece
| | - Eleni Evgenidou
- Department of Chemistry, Aristotle University of Thessaloniki, GR 54124 Thessaloniki, Greece; Centre for Interdisciplinary Research and Innovation (CIRI-AUTH), Balkan Center, Thessaloniki, 10th km Thessaloniki-Thermi Rd, GR 57001, Greece
| | - Dimitra Lambropoulou
- Department of Chemistry, Aristotle University of Thessaloniki, GR 54124 Thessaloniki, Greece; Centre for Interdisciplinary Research and Innovation (CIRI-AUTH), Balkan Center, Thessaloniki, 10th km Thessaloniki-Thermi Rd, GR 57001, Greece.
| |
Collapse
|
7
|
Song L, Zeng W, Li A, Pan C, Pan L. Automated multi-plug filtration cleanup method for analysis of 48 pesticide residues in green tea using liquid chromatography-tandem mass spectrometry. Food Control 2022. [DOI: 10.1016/j.foodcont.2021.108436] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|