1
|
Zhang H, He S, Zhang X, Wang R, Tang Y, Yang L, Jiang X, Jiang B, Zhao B. Surface double defects-dominated TiO 2 with high liquid phase stability for smart SERS sensing of dye additives in foods. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2025; 329:125553. [PMID: 39644816 DOI: 10.1016/j.saa.2024.125553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 11/22/2024] [Accepted: 12/01/2024] [Indexed: 12/09/2024]
Abstract
Surface defect engineering is an effective strategy to regulate the physical and chemical properties of semiconductors for a wide range of applications. Herein, a surface-highly-reduced anatase TiO2 (R-TiO2) with double defects (surface oxygen vacancy defect and Ti3+ energy level defect) was developed as a plasmon-free surface-enhanced Raman scattering (SERS) substrate for ultrasensitive detection of food additives. Abundant surface oxygen vacancies enable R-TiO2 to exist stably in liquid phase, which realizes a smart SERS detection for dye target molecules due to evading fluorescent interference from analytes, while SERS enhancement of analytes cannot be observed on the solid phase substrate at all. Due to the joint contribution of surface double defects, a multi-channel charge transfer mode and a stronger Herzberg-Teller coupling between substrate and analyte are formed, which greatly enhance SERS effect of the substrate for sensitive detection of dye additives in foods with an enhancement factor of 1.6 × 106.
Collapse
Affiliation(s)
- Huizhu Zhang
- College of Materials Science and Engineering, College of Pharmacy, Jiamusi University, Jiamusi 154007, China
| | - Shuang He
- College of Materials Science and Engineering, College of Pharmacy, Jiamusi University, Jiamusi 154007, China
| | - Xuewei Zhang
- College of Materials Science and Engineering, College of Pharmacy, Jiamusi University, Jiamusi 154007, China
| | - Rui Wang
- College of Materials Science and Engineering, College of Pharmacy, Jiamusi University, Jiamusi 154007, China
| | - Yimin Tang
- College of Chemistry and Chemical Engineering, Qiqihar University, Qiqihar 161006, China
| | - Libin Yang
- College of Materials Science and Engineering, College of Pharmacy, Jiamusi University, Jiamusi 154007, China; College of Chemistry and Chemical Engineering, Qiqihar University, Qiqihar 161006, China.
| | - Xin Jiang
- College of Materials Science and Engineering, College of Pharmacy, Jiamusi University, Jiamusi 154007, China; College of Chemistry and Chemical Engineering, Qiqihar University, Qiqihar 161006, China.
| | - Baojiang Jiang
- Key Laboratory of Functional Inorganic Material Chemistry of the Ministry of Education, Heilongjiang University, Harbin 150080, China.
| | - Bing Zhao
- State Key Laboratory of Supramolecular Structure and Materials, Jilin University, Changchun 130012, China
| |
Collapse
|
2
|
Du RZ, Zhang Y, Bian Y, Yang CY, Feng XS, He ZW. Rhodamine and related substances in food: Recent updates on pretreatment and analysis methods. Food Chem 2024; 459:140384. [PMID: 38996634 DOI: 10.1016/j.foodchem.2024.140384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 06/02/2024] [Accepted: 07/05/2024] [Indexed: 07/14/2024]
Abstract
Rhodamine, a colorant prohibited in various consumer products due to its demonstrated carcinogenic, mutagenic, and toxic properties, necessitates the development of a straightforward, efficient, sensitive, environmentally friendly, and cost-effective analytical method. This review provides an overview of recent advancements in the pretreatment and determination techniques for rhodamine across diverse sample matrices since 2017. Sample preparation methods encompass both commonly used pretreatment techniques such as filtration, centrifugation, solvent extraction, and cloud point extraction, as well as innovative approaches including solid phase extraction, dispersive liquid-liquid microextraction, hollow fiber liquid phase microextraction, magnetic solid phase extraction, and matrix solid phase dispersion. The analytical techniques encompass high performance liquid chromatography, surface-enhanced Raman scattering, and sensor-based methods. Furthermore, a comprehensive examination is conducted to offer insights for future research on rhodamine regarding the advantages, disadvantages, and advancements in various pretreatment and determination methodologies.
Collapse
Affiliation(s)
- Rong-Zhu Du
- School of Pharmacy, China Medical University, Shenyang, 110122, China
| | - Yuan Zhang
- School of Pharmacy, China Medical University, Shenyang, 110122, China
| | - Yu Bian
- School of Pharmacy, China Medical University, Shenyang, 110122, China
| | - Chun-Yu Yang
- Department of Pharmacy, The Fourth Affiliated Hospital of China Medical University, Shenyang, 110032, China.
| | - Xue-Song Feng
- School of Pharmacy, China Medical University, Shenyang, 110122, China.
| | - Zhen-Wei He
- Department of Neurology, The Fourth Affiliated Hospital of China Medical University, Shenyang 110032, China.
| |
Collapse
|
3
|
Yuan N, Ma H, Li B, Zhang X, Tan K, Chen T, Yuan L. When covalent organic frameworks meet zeolites: Enhancing rhodamine B removal through the synergy in the emerging organic-inorganic nanoadsorbents. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 355:124191. [PMID: 38782164 DOI: 10.1016/j.envpol.2024.124191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 05/02/2024] [Accepted: 05/20/2024] [Indexed: 05/25/2024]
Abstract
The development of new porous materials has attracted intense attention as adsorbents for removing pollutants from wastewater. However, pure inorganic and organic porous materials confront various problems in purifying the wastewater. In this work, we integrated a covalent organic framework (TpPa-1) with an inorganic zeolite (TS-1) for the first time via a solvothermal method to fabricate new-type nanoadsorbents. The covalent organic framework/zeolite (TpPa-1/TS-1) nanoadsorbents combined the merits of the zeolite and COF components and possessed efficient adsorptive removal of organic contaminants from solution. Structural morphology and chemical composition characterization by powder X-ray diffraction, scanning electron microscopy, Fourier-transform infrared spectroscopy, X-ray photoelectron spectroscopy, transmission electron microscopy and thermogravimetric analysis demonstrated the successful preparation of TpPa-1/TS-1 composite nanoadsorbents. The resultant composite adsorbent TpPa-1/TS-1 removed rhodamine B at 1.7 and 2.6 times the efficiency of TpPa-1 and TS-1, respectively. Additional investigation revealed that the Freundlich adsorption isotherm and the pseudo-second-order kinetic model could be employed to represent the adsorption process more appropriately. Thermodynamic calculation analysis showed that the adsorption process proceeded spontaneously and exothermically. Besides, the effects of pH, absorbent mass and ionic strength on the adsorption performance were systematically investigated. The prepared composite adsorbent showed a slight decrease in removal efficiency after eight cycles of repeated use, and real water environment experiments also showed the high stability of the adsorbent. The enhanced performance can be attributed to electrostatic interaction, acid-base interaction, hydrogen bonding and π-π interactions.
Collapse
Affiliation(s)
- Ning Yuan
- School of Chemical and Environmental Engineering, China University of Mining and Technology, Beijing, 100083, China.
| | - Huiying Ma
- School of Chemical and Environmental Engineering, China University of Mining and Technology, Beijing, 100083, China
| | - Bowen Li
- School of Chemical and Environmental Engineering, China University of Mining and Technology, Beijing, 100083, China
| | - Xinling Zhang
- School of Chemical and Environmental Engineering, China University of Mining and Technology, Beijing, 100083, China
| | - Kaiqi Tan
- School of Chemical and Environmental Engineering, China University of Mining and Technology, Beijing, 100083, China
| | - Tianxiang Chen
- School of Chemical and Environmental Engineering, China University of Mining and Technology, Beijing, 100083, China
| | - Lili Yuan
- School of Chemical and Environmental Engineering, China University of Mining and Technology, Beijing, 100083, China
| |
Collapse
|
4
|
Chen X, Li A, Yao P, Wang J, Xing T, Chen G. Preparation of Fe 3O 4@CA/BNNS/AgNP Magnetic Microspheres and Photocatalysis of Dyes. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:7147-7157. [PMID: 38520353 DOI: 10.1021/acs.langmuir.4c00290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/25/2024]
Abstract
In this work, sea urchin-like magnetic Fe3O4@CA/BNNS/AgNP composite microspheres were successfully prepared. The photocatalytic performance of composite microspheres for the organic dye rhodamine B (RhB) was systematically investigated under different conditions, and the catalytic degradation rate of RhB was as high as 95% within 60 min; after three cycles of recycling, the degradation rate of RhB was reduced by only 8%. The main active agents in the reaction are e- and •O2-. Fe3O4@CA/BNNS/AgNP microspheres prepared in this study exhibit photocatalytic and electrochemical properties, making them easy to separate. This work is not limited to the development of Fe3O4-based catalysts but also is expected to provide ideas for the research and progress of photocatalytic composite catalysts with electrochemical properties.
Collapse
Affiliation(s)
- Xinpeng Chen
- College of Textile and Clothing Engineering, Jiangsu Engineering Research Center of Textile Dyeing and Printing for Energy Conservation, Discharge Reduction and Cleaner Production (ERC), Soochow University, Suzhou 215123, China
| | - Aijing Li
- College of Textile and Clothing Engineering, Jiangsu Engineering Research Center of Textile Dyeing and Printing for Energy Conservation, Discharge Reduction and Cleaner Production (ERC), Soochow University, Suzhou 215123, China
| | - Ping Yao
- College of Textile Arts, Suzhou Institute of Trade and Commerce, Suzhou 215009, China
| | - Jiapeng Wang
- College of Textile and Clothing Engineering, Jiangsu Engineering Research Center of Textile Dyeing and Printing for Energy Conservation, Discharge Reduction and Cleaner Production (ERC), Soochow University, Suzhou 215123, China
| | - Tieling Xing
- College of Textile and Clothing Engineering, Jiangsu Engineering Research Center of Textile Dyeing and Printing for Energy Conservation, Discharge Reduction and Cleaner Production (ERC), Soochow University, Suzhou 215123, China
| | - Guoqiang Chen
- College of Textile and Clothing Engineering, Jiangsu Engineering Research Center of Textile Dyeing and Printing for Energy Conservation, Discharge Reduction and Cleaner Production (ERC), Soochow University, Suzhou 215123, China
| |
Collapse
|
5
|
Xu Y, Zhou Y, Luo H, Li H, Ni T, Xu G, Sugihara O, Xie J, Cai B. Molecularly imprinted polymer-coated hybrid optical waveguides for sub-aM fluorescence sensing. Analyst 2024; 149:800-806. [PMID: 38115790 DOI: 10.1039/d3an01008b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2023]
Abstract
The sensitivity of fluorescent sensors is crucial for their applications. In this study, we propose a molecularly imprinted polymer (MIP)-coated optical fibre-hybrid waveguide-fibre sensing structure for ultrasensitive fluorescence detection. In such a structure, the MIP coated-hybrid waveguide acts as a sensing probe, and the two co-axially connected optical fibres act as a highly efficient probing light launcher and a fluorescence signal collector, respectively. For the dual-layered waveguide sensing probe, the inner hybrid waveguide core was fabricated using a hollow quartz nanoparticle-hybridized polymer composite with a low refractive index, and the outer MIP coating layer possesses a high refractive index. Simulations showed that this dual-layer configuration can cause light propagation from the waveguide core to the MIP sensing layer with an efficiency of 98%, which is essential for detection. To validate this concept, we adopted a popular fluorescent dye, rhodamine B, to evaluate the sensing characteristics of the proposed system. We achieved an extremely low limit of detection of approximately 1.3 × 10-19 g ml-1 (approximately 0.27 aM).
Collapse
Affiliation(s)
- Yingying Xu
- School of Optical Electrical and Computer Engineering, University of Shanghai for Science and Technology, No. 516 Jungong Rd, Shanghai, 200093, China.
| | - Yingtao Zhou
- School of Optical Electrical and Computer Engineering, University of Shanghai for Science and Technology, No. 516 Jungong Rd, Shanghai, 200093, China.
| | - Hong Luo
- School of Optical Electrical and Computer Engineering, University of Shanghai for Science and Technology, No. 516 Jungong Rd, Shanghai, 200093, China.
| | - Hao Li
- School of Optical Electrical and Computer Engineering, University of Shanghai for Science and Technology, No. 516 Jungong Rd, Shanghai, 200093, China.
| | - Tiancheng Ni
- School of Optical Electrical and Computer Engineering, University of Shanghai for Science and Technology, No. 516 Jungong Rd, Shanghai, 200093, China.
| | - Gongjie Xu
- School of Optical Electrical and Computer Engineering, University of Shanghai for Science and Technology, No. 516 Jungong Rd, Shanghai, 200093, China.
| | - Okihiro Sugihara
- Graduate School of Engineering, Utsunomiya University, Utsunomiya 321-8585, Japan
| | - Jingya Xie
- School of Optical Electrical and Computer Engineering, University of Shanghai for Science and Technology, No. 516 Jungong Rd, Shanghai, 200093, China.
| | - Bin Cai
- School of Optical Electrical and Computer Engineering, University of Shanghai for Science and Technology, No. 516 Jungong Rd, Shanghai, 200093, China.
| |
Collapse
|
6
|
Yang J, Huang L, You J, Yamauchi Y. Magnetic Covalent Organic Framework Composites for Wastewater Remediation. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2301044. [PMID: 37156746 DOI: 10.1002/smll.202301044] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 04/03/2023] [Indexed: 05/10/2023]
Abstract
Covalent organic frameworks (COFs) with high specific surface area, tailored structure, easy functionalization, and excellent chemical stability have been extensively exploited as fantastic materials in various fields. However, in most cases, COFs prepared in powder form suffer from the disadvantages of tedious operation, strong tendency to agglomerate, and poor recyclability, greatly limiting their practical application in environmental remediation. To tackle these issues, the fabrication of magnetic COFs (MCOFs) has attracted tremendous attention. In this review, several reliable strategies for the fabrication of MCOFs are summarized. In addition, the recent application of MCOFs as outstanding adsorbents for the removal of contaminants including toxic metal ions, dyes, pharmaceuticals and personal care products, and other organic pollutants is discussed. Moreover, in-depth discussions regarding the structural parameters affecting the practical potential of MCOFs are highlighted in detail. Finally, the current challenges and future prospects of MCOFs in this field are provided with the expectation to boost their practical application.
Collapse
Affiliation(s)
- Juan Yang
- Key Laboratory for Green Chemical Process of Ministry of Education, Hubei Key Lab of Novel Reactor and Green Chemical Technology, Wuhan Institute of Technology, LiuFang Campus, No. 206, Donghu New & High Technology Development Zone Wuhan, Guanggu 1st Road, Wuhan, Hubei, 430205, P. R. China
| | - Lijin Huang
- State Key Laboratory of Biogeology and Environmental Geology, Faculty of Materials Science and Chemistry, China University of Geosciences, No. 388 Lumo Road, Hongshan District, Wuhan, 430074, P. R. China
| | - Jungmok You
- Department of Plant & Environmental New Resources, College of Life Sciences, Kyung Hee University, 1732 Deogyeong-daero, Giheung-gu, Yongin-si, Gyeonggi-do, 17104, South Korea
| | - Yusuke Yamauchi
- Department of Plant & Environmental New Resources, College of Life Sciences, Kyung Hee University, 1732 Deogyeong-daero, Giheung-gu, Yongin-si, Gyeonggi-do, 17104, South Korea
- School of Chemical Engineering and Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, QLD 4072, Australia
- Department of Materials Process Engineering, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi, 464-8603, Japan
| |
Collapse
|
7
|
Saigl ZM, Aljuaid OA. Removal of Rhodamine dye from foodstuffs using column chromatography and isotherm study. SEP SCI TECHNOL 2023. [DOI: 10.1080/01496395.2023.2197553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 04/09/2023]
Affiliation(s)
- Z. M. Saigl
- Department of Chemistry, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Ohood. A. Aljuaid
- Department of Chemistry, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
8
|
Sun W, Xu Q, Liu Q, Wang T, Liu Z. Post-synthetic modification of a magnetic covalent organic framework with alkyne linkages for efficient magnetic solid-phase extraction and determination of trace basic orange II in food samples. J Chromatogr A 2023; 1690:463777. [PMID: 36640681 DOI: 10.1016/j.chroma.2023.463777] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 12/31/2022] [Accepted: 01/03/2023] [Indexed: 01/06/2023]
Abstract
Efficient magnetic solid phase extraction using covalent organic frameworks (COFs) can find important applications in food safety. In this work, a sulfonate-functionalized magnetic COF (Fe3O4@COF-SO3Na) was synthesized by self-polycondensation of two-in-one monomer 1,6-bis(4-formylphenyl)-3,8-bis((4-aminophenyl) ethynyl)) pyrene (BFBAEPy) on the surface of aminated Fe3O4 and a thiol-yne click reaction. It was further adopted as an adsorbent for the efficient magnetic solid-phase extraction (MSPE) of basic orange II. The selective adsorption experiment indicated that it displayed selective adsorption ability to basic orange II due to the ion exchange, hydrogen bonds, and π-π interactions. Under the optimized conditions, the proposed MSPE method coupled with HPLC-DAD showed excellent linearity in the range of 0.05-0.5 µg/mL (R2 = 0.9997) for basic orange II. The lower limits of detection (LODs) for basic orange II were 1.0-1.4 µg/L for three food samples: yellow croaker, paprika and dried bean curd. The recoveries were 90.1-98.8% with relative standard deviations (RSDs) below 4.2%. Therefore, this work provides an effective strategy to modify magnetic COFs as absorbents in MSPE. Due to the tunability of functional groups in thiol‑yne click reactions, the functional groups of magnetic COFs can be readily designed to enrich their multifunctional applications. Meanwhile, this work proposed a new method to detect trace amounts of basic orange II in food samples.
Collapse
Affiliation(s)
- Wei Sun
- Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province, School of Material Science and Chemical Engineering, Ningbo University, Ningbo 315211, Zhejiang, China
| | - Qing Xu
- Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province, School of Material Science and Chemical Engineering, Ningbo University, Ningbo 315211, Zhejiang, China.
| | - Qili Liu
- Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province, School of Material Science and Chemical Engineering, Ningbo University, Ningbo 315211, Zhejiang, China
| | - Tianliang Wang
- Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province, School of Material Science and Chemical Engineering, Ningbo University, Ningbo 315211, Zhejiang, China
| | - Zhaixin Liu
- Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province, School of Material Science and Chemical Engineering, Ningbo University, Ningbo 315211, Zhejiang, China
| |
Collapse
|
9
|
Wang N, Zhou X, Cui B. Recent advances and applications of magnetic covalent organic frameworks in food analysis. J Chromatogr A 2023; 1687:463702. [PMID: 36508770 DOI: 10.1016/j.chroma.2022.463702] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 12/01/2022] [Accepted: 12/04/2022] [Indexed: 12/07/2022]
Abstract
Recently, covalent organic frameworks (COFs) have been widely used to prepare magnetic adsorbents for food analysis due to their highly tunable porosity, large specific surface area, excellent chemical and thermal stability and large delocalised π-electron system. This review summarises the main types and preparation methods of magnetic COFs and their applications in food analysis for the detection of pesticide residues, veterinary drugs, endocrine-disrupting phenols and estrogens, plasticisers and other food contaminants. Furthermore, challenges and future outlook in the development of magnetic COFs for food analysis are discussed.
Collapse
Affiliation(s)
- Na Wang
- State key laboratory of biobased material and green papermaking, School of Food Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China.
| | - Xuesheng Zhou
- School of automotive engineering, ShanDong JiaoTong University, Jinan 250357, China.
| | - Bo Cui
- State key laboratory of biobased material and green papermaking, School of Food Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| |
Collapse
|
10
|
A smartphone-based ratiometric fluorescence and absorbance dual-mode device for Rhodamine B determination in combination with differential molecularly imprinting strategy and primary inner filter effect correction. Microchem J 2022. [DOI: 10.1016/j.microc.2022.108077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
11
|
Wang J, Feng J, Lian Y, Sun X, Wang M, Sun M. Advances of the functionalized covalent organic frameworks for sample preparation in food field. Food Chem 2022. [DOI: 10.1016/j.foodchem.2022.134818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
12
|
Zhou Y, Xu Y, Xu G, Sugihara O, Cai B. Molecularly Imprinted Polymer-Coated Optical Waveguide for Attogram Sensing. ACS APPLIED MATERIALS & INTERFACES 2022; 14:16727-16734. [PMID: 35363485 DOI: 10.1021/acsami.2c02362] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Ultrahigh sensitivity and selectivity are the ultimate goals of sensor development. For such purposes, we propose a sensing platform in which an optical fiber-waveguide-fiber (OFWF) structure is integrated with a molecularly imprinted polymer (MIP). The OFWF works as a highly efficient probe light launcher and signal light collector, and the MIP layer acts as a highly selective and sensitive sensing interface. In the MIP design, a high-molecular refractive index monomer (2-phenylphenoxyethyl acrylate) was copolymerized with a MIP functional monomer (acrylic acid). The resulting high-refractive index MIP layers could effectively extract the probe light from the waveguide and send it to the MIP sensing interface. Moreover, a highly elastic cross-linker (poly(ethylene glycol) 600 diacrylate) was employed to increase the MIP mesh size, which could effectively increase the penetrability of the analyte. Rhodamine B (Rh B) is widely used in the textile industry, and its contamination may lead to serious public health problems. As a proof of concept, the Rh B chromophore was used as a molecular template, and the thin MIP layer was cured on the waveguide surface by utilizing the evanescent wave of the 405 nm propagating light in the waveguide. The MIP-OFWF sensing platform afforded highly selective monitoring of the absorption spectra of the components in a mixture solution of Rh B and methyl blue. It also afforded an extremely low detection limit of approximately 6.5 × 10-17 g/mL, with an absolute mass of 20-30 ag.
Collapse
Affiliation(s)
- Yingtao Zhou
- School of Optical Electrical and Computer Engineering, University of Shanghai for Science and Technology, No. 516 Jungong Road, Shanghai 200093, China
| | - YingYing Xu
- School of Optical Electrical and Computer Engineering, University of Shanghai for Science and Technology, No. 516 Jungong Road, Shanghai 200093, China
| | - Gongjie Xu
- School of Optical Electrical and Computer Engineering, University of Shanghai for Science and Technology, No. 516 Jungong Road, Shanghai 200093, China
| | - Okihiro Sugihara
- Graduate School of Engineering, Utsunomiya University, Utsunomiya 321-8585, Japan
| | - Bin Cai
- School of Optical Electrical and Computer Engineering, University of Shanghai for Science and Technology, No. 516 Jungong Road, Shanghai 200093, China
| |
Collapse
|