1
|
Niu J, Lin S, Xu Y, Tong S, Wang Z, Cui S, Liu Y, Chen D, Cui D. A stepwise multi-stage continuous dielectrophoresis separation microfluidic chip with microfilter structures. Talanta 2024; 279:126585. [PMID: 39053361 DOI: 10.1016/j.talanta.2024.126585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 07/09/2024] [Accepted: 07/16/2024] [Indexed: 07/27/2024]
Abstract
The separation of target microparticles using microfluidic systems owns extensive applications in biomedical, chemical, and materials science fields. Integration of microfluidic sorting systems employing dielectrophoresis (DEP) technology has been widely investigated. However, enhancing separation efficiency, purity, stability, and integration remains a pressing issue. This study proposes a stepwise multi-stage continuous DEP separation microfluidic chip with a microfilter structure. By leveraging a stepwise electrode configuration, a gradient electric field is generated to drive target microparticles along the electric field gradient, thereby enhancing separation efficiency. Innovative integration of a microfilter structure facilitates simultaneous filtration and improves flow field distribution, thus enhancing system stability. Through the synergistic effect of stepwise electrodes and the microfilter structure, superior coupling of electric and flow fields is achieved, consequently improving the sorting purity, separation efficiency, and system stability of the DEP-based microfluidic sorting system. Validation through simulation and separation of polystyrene microspheres demonstrates the excellent particle separation performance of the proposed system. It evidently shows potential for seamless extension to various biological microparticle sorting applications, harboring significant prospects in the biomedical domain field.
Collapse
Affiliation(s)
- Jiaqi Niu
- School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, PR China
| | - Shujing Lin
- School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, PR China; Shanghai Engineering Research Center for Intelligent Diagnosis and Treatment Instrument, Shanghai Jiao Tong University, Shanghai, 200240, PR China.
| | - Yichong Xu
- School of Future Technology, University of Chinese Academy of Sciences, Beijing, PR China
| | - Siyu Tong
- School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, PR China
| | - Zhitao Wang
- School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, PR China
| | - Shengsheng Cui
- School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, PR China; Shanghai Engineering Research Center for Intelligent Diagnosis and Treatment Instrument, Shanghai Jiao Tong University, Shanghai, 200240, PR China
| | - Yanlei Liu
- School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, PR China; Shanghai Engineering Research Center for Intelligent Diagnosis and Treatment Instrument, Shanghai Jiao Tong University, Shanghai, 200240, PR China
| | - Di Chen
- School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, PR China; Shanghai Engineering Research Center for Intelligent Diagnosis and Treatment Instrument, Shanghai Jiao Tong University, Shanghai, 200240, PR China
| | - Daxiang Cui
- School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, PR China; Shanghai Engineering Research Center for Intelligent Diagnosis and Treatment Instrument, Shanghai Jiao Tong University, Shanghai, 200240, PR China.
| |
Collapse
|
2
|
Zhang X, Zheng Z, Gu Q, He Y, Huang D, Liu Y, Mi J, Oseyemi AE. Spiral microchannels with concave cross-section for enhanced cancer cell inertial separation. Mikrochim Acta 2024; 191:634. [PMID: 39347843 DOI: 10.1007/s00604-024-06724-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Accepted: 09/21/2024] [Indexed: 10/01/2024]
Abstract
Inertial microfluidic technologies have proven effective for particle focusing and separation in many microchannels, typically the channels with the rectangular and trapezoidal shapes. To advance particle focusing in complex channels, we propose a spiral channel combining rectangular and concave cross-sections for high-resolution particle and cell focusing and separation. Numerical simulations were conducted to illustrate the effects of channel geometry on secondary flow distribution and particle focusing positions. The simulation shows the concave cross-section generates two asymmetrical Dean vortices skewing towards the inner and outer channel walls, resulting to stronger flow velocity magnitudes near the walls than the channel center. Consequently, larger particles focus near the inner wall, while smaller particles are trapped closer to the outer wall under the influence of the stronger velocity magnitude near the walls. A microfluidic chip with the proposed channel geometry, along with a traditional rectangular channel, was fabricated by 3D printing and PDMS casting. Fluorescent microbeads were used to investigate inertial focusing and separation behaviors in the microfluidic chips. Experimental results show that the concave channel facilitates particle focusing or trapping much closer to the walls than the traditional rectangular channel, achieving better separation resolution. Finally, the proposed channel was applied to separate lung cancer A549 cells from human blood, achieving a cancer cell recovery rate of ~ 84.78% (enrichment ratio over 820-fold) and a blood cell rejection rate of ~ 99.88%. This innovative channel design in inertial microfluidics offers new insights for enhanced particle focusing and holds significant promise for cell manipulation with improved separation resolution.
Collapse
Affiliation(s)
- Xinjie Zhang
- College of Mechanical and Electrical Engineering, Hohai University, Changzhou, 213200, China.
- Department of Chemistry, School of Science, Tokyo Institute of Technology, Tokyo, 152-8550, Japan.
| | - Zixiao Zheng
- College of Mechanical and Electrical Engineering, Hohai University, Changzhou, 213200, China
| | - Qiao Gu
- Department of Gynecology and Obstetrics, The Third Affiliated Hospital of Soochow University, Changzhou, 213000, China
| | - Yang He
- Department of Pathology, The Third Affiliated Hospital of Soochow University, Changzhou, 213000, China
| | - Di Huang
- School of Mechatronic Engineering, China University of Mining and Technology, Xuzhou, 211189, China
| | - Yuyang Liu
- College of Mechanical and Electrical Engineering, Hohai University, Changzhou, 213200, China
| | - Jian Mi
- College of Mechanical and Electrical Engineering, Hohai University, Changzhou, 213200, China
| | | |
Collapse
|
3
|
Hu S, Ji J, Chen X, Tong R. Dielectrophoresis: Measurement technologies and auxiliary sensing applications. Electrophoresis 2024; 45:1574-1596. [PMID: 38738705 DOI: 10.1002/elps.202300299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 04/17/2024] [Accepted: 04/24/2024] [Indexed: 05/14/2024]
Abstract
Dielectrophoresis (DEP), which arises from the interaction between dielectric particles and an aqueous solution in a nonuniform electric field, contributes to the manipulation of nano and microparticles in many fields, including colloid physics, analytical chemistry, molecular biology, clinical medicine, and pharmaceutics. The measurement of the DEP force could provide a more complete solution for verifying current classical DEP theories. This review reports various imaging, fluidic, optical, and mechanical approaches for measuring the DEP forces at different amplitudes and frequencies. The integration of DEP technology into sensors enables fast response, high sensitivity, precise discrimination, and label-free detection of proteins, bacteria, colloidal particles, and cells. Therefore, this review provides an in-depth overview of DEP-based fabrication and measurements. Depending on the measurement requirements, DEP manipulation can be classified into assistance and integration approaches to improve sensor performance. To this end, an overview is dedicated to developing the concept of trapping-on-sensing, improving its structure and performance, and realizing fully DEP-assisted lab-on-a-chip systems.
Collapse
Affiliation(s)
- Sheng Hu
- College of Information Science and Engineering, Northeastern University, Shenyang, P. R. China
- Hebei Key Laboratory of Micro-Nano Precision Optical Sensing and Measurement Technology, Qinhuangdao, P. R. China
| | - Junyou Ji
- College of Information Science and Engineering, Northeastern University, Shenyang, P. R. China
| | - Xiaoming Chen
- College of Information Science and Engineering, Northeastern University, Shenyang, P. R. China
- Hebei Key Laboratory of Micro-Nano Precision Optical Sensing and Measurement Technology, Qinhuangdao, P. R. China
| | - Ruijie Tong
- College of Information Science and Engineering, Northeastern University, Shenyang, P. R. China
- Hebei Key Laboratory of Micro-Nano Precision Optical Sensing and Measurement Technology, Qinhuangdao, P. R. China
| |
Collapse
|
4
|
Tabarhoseini SM, Kale AS, Koniers PM, Boone AC, Bentor J, Boies A, Zhao H, Xuan X. Charge-Based Separation of Microparticles Using AC Insulator-Based Dielectrophoresis. Anal Chem 2024; 96:13672-13678. [PMID: 39126704 DOI: 10.1021/acs.analchem.4c02646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/12/2024]
Abstract
Surface charge is an important property of particles. It has been utilized to separate particles in microfluidic devices, where dielectrophoresis (DEP) is often the driving force. However, current DEP-based particle separations based on the charge differences work only for particles of similar sizes. They become less effective and may even fail for a mixture of particles differing in both charge and size. We demonstrate that our recently developed AC insulator-based dielectrophoresis (AC iDEP) technique can direct microparticles toward charge-dependent equilibrium positions in a ratchet microchannel. Such charge-based particle separation is controlled by the imposed AC voltage frequency and amplitude but is nearly unaffected by the size of either type of particle in the mixture except for the time required to achieve an effective separation. This AC iDEP technique may potentially be used to focus and separate submicron or even nanoparticles because of its virtually "infinite" channel length.
Collapse
Affiliation(s)
| | - Akshay Shridhar Kale
- Department of Engineering, University of Cambridge, Cambridge, CB2 1PZ, United Kingdom
| | - Peter Michael Koniers
- Department of Mechanical Engineering, Clemson University, Clemson, South Carolina 29634, United States
| | - Anna Claire Boone
- Department of Mechanical Engineering, Clemson University, Clemson, South Carolina 29634, United States
| | - Joseph Bentor
- Department of Mechanical Engineering, Clemson University, Clemson, South Carolina 29634, United States
| | - Adam Boies
- Department of Engineering, University of Cambridge, Cambridge, CB2 1PZ, United Kingdom
| | - Hui Zhao
- Department of Mechanical Engineering, University of Nevada, Las Vegas, Nevada 89154, United States
| | - Xiangchun Xuan
- Department of Mechanical Engineering, Clemson University, Clemson, South Carolina 29634, United States
| |
Collapse
|
5
|
Zhao H, Zhang Y, Hua D. A Review of Research Progress in Microfluidic Bioseparation and Bioassay. MICROMACHINES 2024; 15:893. [PMID: 39064404 PMCID: PMC11278910 DOI: 10.3390/mi15070893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 07/03/2024] [Accepted: 07/05/2024] [Indexed: 07/28/2024]
Abstract
With the rapid development of biotechnology, the importance of microfluidic bioseparation and bioassay in biomedicine, clinical diagnosis, and other fields has become increasingly prominent. Microfluidic technology, with its significant advantages of high throughput, automated operation, and low sample consumption, has brought new breakthroughs in the field of biological separation and bioassay. In this paper, the latest research progress in microfluidic technology in the field of bioseparation and bioassay is reviewed. Then, we focus on the methods of bioseparation including active separation, passive separation, and hybrid separation. At the same time, the latest research results of our group in particle separation are introduced. Finally, some application examples or methods for bioassay after particle separation are listed, and the current challenges and future prospects of bioseparation and bioassay are discussed.
Collapse
Affiliation(s)
| | | | - Dengxin Hua
- Center for Lidar Remote Sensing Research, School of Mechanical and Precision Instrument Engineering, Xi’an University of Technology, Xi’an 710048, China.; (H.Z.); (Y.Z.)
| |
Collapse
|
6
|
Hashemiesfahan M, Christiaens JW, Maisto A, Gelin P, Gardeniers H, De Malsche W. Characterizing Acoustic Behavior of Silicon Microchannels Separated by a Porous Wall. MICROMACHINES 2024; 15:868. [PMID: 39064377 PMCID: PMC11279238 DOI: 10.3390/mi15070868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 06/27/2024] [Accepted: 06/29/2024] [Indexed: 07/28/2024]
Abstract
Lateral flow membrane microdevices are widely used for chromatographic separation processes and diagnostics. The separation performance of microfluidic lateral membrane devices is determined by mass transfer limitations in the membrane, and in the liquid phase, mass transfer resistance is dependent on the channel dimensions and transport properties of the species separated by the membrane. We present a novel approach based on an active bulk acoustic wave (BAW) mixing method to enhance lateral transport in micromachined silicon devices. BAWs have been previously applied in channels for mixing and trapping cells and particles in single channels, but this is, to the best of our knowledge, the first instance of their application in membrane devices. Our findings demonstrate that optimal resonance is achieved with minimal influence of the pore configuration on the average lateral flow. This has practical implications for the design of microfluidic devices, as the channels connected through porous walls under the acoustic streaming act as 760 µm-wide channels rather than two 375 µm-wide channels in the context of matching the standing pressure wave criteria of the piezoelectric transducer. However, the roughness of the microchannel walls does seem to play a significant role in mixing. A roughened (black silicon) wall results in a threefold increase in average streaming flow in BAW mode, suggesting potential avenues for further optimization.
Collapse
Affiliation(s)
- Mehrnaz Hashemiesfahan
- µFlow Group, Department of Chemical Engineering, Vrije Universiteit Brussel, 1050 Brussels, Belgium; (J.W.C.); (A.M.); (P.G.)
- Mesoscale Chemical Systems Group, MESA+ Institute for Nanotechnology, Faculty of Science and Technology, University of Twente, 7500 AE Enschede, The Netherlands;
| | - Jo Wim Christiaens
- µFlow Group, Department of Chemical Engineering, Vrije Universiteit Brussel, 1050 Brussels, Belgium; (J.W.C.); (A.M.); (P.G.)
- Mesoscale Chemical Systems Group, MESA+ Institute for Nanotechnology, Faculty of Science and Technology, University of Twente, 7500 AE Enschede, The Netherlands;
| | - Antonio Maisto
- µFlow Group, Department of Chemical Engineering, Vrije Universiteit Brussel, 1050 Brussels, Belgium; (J.W.C.); (A.M.); (P.G.)
| | - Pierre Gelin
- µFlow Group, Department of Chemical Engineering, Vrije Universiteit Brussel, 1050 Brussels, Belgium; (J.W.C.); (A.M.); (P.G.)
| | - Han Gardeniers
- Mesoscale Chemical Systems Group, MESA+ Institute for Nanotechnology, Faculty of Science and Technology, University of Twente, 7500 AE Enschede, The Netherlands;
| | - Wim De Malsche
- µFlow Group, Department of Chemical Engineering, Vrije Universiteit Brussel, 1050 Brussels, Belgium; (J.W.C.); (A.M.); (P.G.)
| |
Collapse
|
7
|
Wells TN, Schmidt H, Hawkins AR. Constrained Volume Micro- and Nanoparticle Collection Methods in Microfluidic Systems. MICROMACHINES 2024; 15:699. [PMID: 38930668 PMCID: PMC11206162 DOI: 10.3390/mi15060699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 05/23/2024] [Accepted: 05/23/2024] [Indexed: 06/28/2024]
Abstract
Particle trapping and enrichment into confined volumes can be useful in particle processing and analysis. This review is an evaluation of the methods used to trap and enrich particles into constrained volumes in microfluidic and nanofluidic systems. These methods include physical, optical, electrical, magnetic, acoustic, and some hybrid techniques, all capable of locally enhancing nano- and microparticle concentrations on a microscale. Some key qualitative and quantitative comparison points are also explored, illustrating the specific applicability and challenges of each method. A few applications of these types of particle trapping are also discussed, including enhancing biological and chemical sensors, particle washing techniques, and fluid medium exchange systems.
Collapse
Affiliation(s)
- Tanner N. Wells
- Department of Electrical and Computer Engineering, Brigham Young University, Provo, UT 84602, USA
| | - Holger Schmidt
- School of Engineering, University of California Santa Cruz, Santa Cruz, CA 95064, USA
| | - Aaron R. Hawkins
- Department of Electrical and Computer Engineering, Brigham Young University, Provo, UT 84602, USA
| |
Collapse
|
8
|
Shanehband N, Naghib SM. Recent advances in nano/microfluidics-based cell isolation techniques for cancer diagnosis and treatments. Biochimie 2024; 220:122-143. [PMID: 38176605 DOI: 10.1016/j.biochi.2024.01.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 11/26/2023] [Accepted: 01/01/2024] [Indexed: 01/06/2024]
Abstract
Miniaturization has improved significantly in the recent decade, which has enabled the development of numerous microfluidic systems. Microfluidic technologies have shown great potential for separating desired cells from heterogeneous samples, as they offer benefits such as low sample consumption, easy operation, and high separation accuracy. Microfluidic cell separation approaches can be classified into physical (label-free) and biological (labeled) methods based on their working principles. Each method has remarkable and feasible benefits for the purposes of cancer detection and therapy, as well as the challenges that we have discussed in this article. In this review, we present the recent advances in microfluidic cell sorting techniques that incorporate both physical and biological aspects, with an emphasis on the methods by which the cells are separated. We first introduce and discuss the biological cell sorting techniques, followed by the physical cell sorting techniques. Additionally, we explore the role of microfluidics in drug screening, drug delivery, and lab-on-chip (LOC) therapy. In addition, we discuss the challenges and future prospects of integrated microfluidics for cell sorting.
Collapse
Affiliation(s)
- Nahid Shanehband
- Nanotechnology Department, School of Advanced Technologies, Iran University of Science and Technology, P.O. Box 16846-13114, Tehran, Iran
| | - Seyed Morteza Naghib
- Nanotechnology Department, School of Advanced Technologies, Iran University of Science and Technology, P.O. Box 16846-13114, Tehran, Iran.
| |
Collapse
|
9
|
Hayashi A, Hemmi R, Saito Y, Utoh R, Taniguchi T, Yamada M. High-Density Microporous Drainage-Integrating Sheath Flow Generator for Streamlining Microfluidic Cell Sorting Systems. Anal Chem 2024; 96:6764-6773. [PMID: 38619911 DOI: 10.1021/acs.analchem.4c00485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/17/2024]
Abstract
Tremendous efforts have been made to develop practical and efficient microfluidic cell and particle sorting systems; however, there are technological limitations in terms of system complexity and low operability. Here, we propose a sheath flow generator that can dramatically simplify operational procedures and enhance the usability of microfluidic cell sorters. The device utilizes an embedded polydimethylsiloxane (PDMS) sponge with interconnected micropores, which is in direct contact with microchannels and seamlessly integrated into the microfluidic platform. The high-density micropores on the sponge surface facilitated fluid drainage, and the drained fluid was used as the sheath flow for downstream cell sorting processes. To fabricate the integrated device, a new process for sponge-embedded substrates was developed through the accumulation, incorporation, and dissolution of PMMA microparticles as sacrificial porogens. The effects of the microchannel geometry and flow velocity on the sheath flow generation were investigated. Furthermore, an asymmetric lattice-shaped microchannel network for cell/particle sorting was connected to the sheath flow generator in series, and the sorting performances of model particles, blood cells, and spiked tumor cells were investigated. The sheath flow generation technique developed in this study is expected to streamline conventional microfluidic cell-sorting systems as it dramatically improves versatility and operability.
Collapse
Affiliation(s)
- Ayumi Hayashi
- Department of Applied Chemistry and Biotechnology, Graduate School of Engineering, Chiba University, 1-33 Yayoi-cho, Inage-ku, Chiba 263-8522, Japan
| | - Runa Hemmi
- Department of Applied Chemistry and Biotechnology, Graduate School of Engineering, Chiba University, 1-33 Yayoi-cho, Inage-ku, Chiba 263-8522, Japan
| | - Yuhei Saito
- Department of Applied Chemistry and Biotechnology, Graduate School of Engineering, Chiba University, 1-33 Yayoi-cho, Inage-ku, Chiba 263-8522, Japan
| | - Rie Utoh
- Department of Applied Chemistry and Biotechnology, Graduate School of Engineering, Chiba University, 1-33 Yayoi-cho, Inage-ku, Chiba 263-8522, Japan
| | - Tatsuo Taniguchi
- Department of Applied Chemistry and Biotechnology, Graduate School of Engineering, Chiba University, 1-33 Yayoi-cho, Inage-ku, Chiba 263-8522, Japan
| | - Masumi Yamada
- Department of Applied Chemistry and Biotechnology, Graduate School of Engineering, Chiba University, 1-33 Yayoi-cho, Inage-ku, Chiba 263-8522, Japan
| |
Collapse
|
10
|
De Lora JA, Aubermann F, Frey C, Jahnke T, Wang Y, Weber S, Platzman I, Spatz JP. Evaluation of Acoustophoretic and Dielectrophoretic Forces for Droplet Injection in Droplet-Based Microfluidic Devices. ACS OMEGA 2024; 9:16097-16105. [PMID: 38617618 PMCID: PMC11007716 DOI: 10.1021/acsomega.3c09881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 03/05/2024] [Accepted: 03/18/2024] [Indexed: 04/16/2024]
Abstract
Acoustophoretic forces have been successfully implemented into droplet-based microfluidic devices to manipulate droplets. These acoustophoretic forces in droplet microfluidic devices are typically generated as in acoustofluidic devices through transducer actuation of a piezoelectric substrate such as lithium niobate (LiNbO3), which is inherently accompanied by the emergence of electrical fields. Understanding acoustophoretic versus dielectrophoretic forces produced by electrodes and transducers within active microfluidic devices is important for the optimization of device performance during design iterations. In this case study, we design microfluidic devices with a droplet injection module and report an experimental strategy to deduce the respective contribution of the acoustophoretic versus dielectrophoretic forces for the observed droplet injection. Our PDMS-based devices comprise a standard oil-in-water droplet-generating module connected to a T-junction injection module featuring actuating electrodes. We use two different electrode geometries produced within the same PDMS slab as the droplet production/injection channels by filling low-melting-point metal alloy into channels that template the electrode geometries. When these electrodes are constructed on LiNbO3 as the substrate, they have a dual function as a piezoelectric transducer, which we call embedded liquid metal interdigitated transducers (elmIDTs). To decipher the contribution of acoustophoretic versus dielectrophoretic forces, we build the same devices on either piezoelectric LiNbO3 or nonpiezo active glass substrates with different combinations of physical device characteristics (i.e., elmIDT geometry and alignment) and operate in a range of phase spaces (i.e., frequency, voltage, and transducer polarity). We characterize devices using techniques such as laser Doppler vibrometry (LDV) and infrared imaging, along with evaluating droplet injection for our series of device designs, constructions, and operating parameters. Although we find that LiNbO3 device designs generate acoustic fields, we demonstrate that droplet injection occurs only due to dielectrophoretic forces. We deduce that droplet injection is caused by the coupled dielectrophoretic forces arising from the operation of elmIDTs rather than by acoustophoretic forces for this specific device design. We arrive at this conclusion because equivalent droplet injection occurs without the presence of an acoustic field using the same electrode designs on nonpiezo active glass substrate devices. This work establishes a methodology to pinpoint the major contributing force of droplet manipulation in droplet-based acoustomicrofluidics.
Collapse
Affiliation(s)
- Jacqueline A. De Lora
- Department
of Cellular Biophysics, Max Planck Institute
for Medical Research, Jahnstraße 29, 69120 Heidelberg, Germany
- Institute
for Molecular Systems Engineering (IMSE), Heidelberg University, Im Neuenheimer Feld 225, 69120 Heidelberg, Germany
| | - Florian Aubermann
- Department
of Cellular Biophysics, Max Planck Institute
for Medical Research, Jahnstraße 29, 69120 Heidelberg, Germany
- Institute
for Molecular Systems Engineering (IMSE), Heidelberg University, Im Neuenheimer Feld 225, 69120 Heidelberg, Germany
- Max
Planck School Matter to Life, Jahnstraße 29, 69120 Heidelberg, Germany
| | - Christoph Frey
- Department
of Cellular Biophysics, Max Planck Institute
for Medical Research, Jahnstraße 29, 69120 Heidelberg, Germany
- Institute
for Molecular Systems Engineering (IMSE), Heidelberg University, Im Neuenheimer Feld 225, 69120 Heidelberg, Germany
| | - Timotheus Jahnke
- Department
of Cellular Biophysics, Max Planck Institute
for Medical Research, Jahnstraße 29, 69120 Heidelberg, Germany
- Institute
for Molecular Systems Engineering (IMSE), Heidelberg University, Im Neuenheimer Feld 225, 69120 Heidelberg, Germany
| | - Yuanzhen Wang
- Department
of Cellular Biophysics, Max Planck Institute
for Medical Research, Jahnstraße 29, 69120 Heidelberg, Germany
- Institute
for Molecular Systems Engineering (IMSE), Heidelberg University, Im Neuenheimer Feld 225, 69120 Heidelberg, Germany
| | - Sebastian Weber
- Department
of Cellular Biophysics, Max Planck Institute
for Medical Research, Jahnstraße 29, 69120 Heidelberg, Germany
- Institute
for Molecular Systems Engineering (IMSE), Heidelberg University, Im Neuenheimer Feld 225, 69120 Heidelberg, Germany
| | - Ilia Platzman
- Department
of Cellular Biophysics, Max Planck Institute
for Medical Research, Jahnstraße 29, 69120 Heidelberg, Germany
- Institute
for Molecular Systems Engineering (IMSE), Heidelberg University, Im Neuenheimer Feld 225, 69120 Heidelberg, Germany
| | - Joachim P. Spatz
- Department
of Cellular Biophysics, Max Planck Institute
for Medical Research, Jahnstraße 29, 69120 Heidelberg, Germany
- Institute
for Molecular Systems Engineering (IMSE), Heidelberg University, Im Neuenheimer Feld 225, 69120 Heidelberg, Germany
- Max
Planck School Matter to Life, Jahnstraße 29, 69120 Heidelberg, Germany
| |
Collapse
|
11
|
Eftekhari K, Parakhonskiy BV, Grigoriev D, Skirtach AG. Advances in Nanoarchitectonics: A Review of "Static" and "Dynamic" Particle Assembly Methods. MATERIALS (BASEL, SWITZERLAND) 2024; 17:1051. [PMID: 38473523 PMCID: PMC10935451 DOI: 10.3390/ma17051051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 01/20/2024] [Accepted: 02/09/2024] [Indexed: 03/14/2024]
Abstract
Particle assembly is a promising technique to create functional materials and devices from nanoscale building blocks. However, the control of particle arrangement and orientation is challenging and requires careful design of the assembly methods and conditions. In this study, the static and dynamic methods of particle assembly are reviewed, focusing on their applications in biomaterial sciences. Static methods rely on the equilibrium interactions between particles and substrates, such as electrostatic, magnetic, or capillary forces. Dynamic methods can be associated with the application of external stimuli, such as electric fields, magnetic fields, light, or sound, to manipulate the particles in a non-equilibrium state. This study discusses the advantages and limitations of such methods as well as nanoarchitectonic principles that guide the formation of desired structures and functions. It also highlights some examples of biomaterials and devices that have been fabricated by particle assembly, such as biosensors, drug delivery systems, tissue engineering scaffolds, and artificial organs. It concludes by outlining the future challenges and opportunities of particle assembly for biomaterial sciences. This review stands as a crucial guide for scholars and professionals in the field, fostering further investigation and innovation. It also highlights the necessity for continuous research to refine these methodologies and devise more efficient techniques for nanomaterial synthesis. The potential ramifications on healthcare and technology are substantial, with implications for drug delivery systems, diagnostic tools, disease treatments, energy storage, environmental science, and electronics.
Collapse
Affiliation(s)
- Karaneh Eftekhari
- Nanobiotechnology Group, Faculty of Bioscience Engineering, Ghent University, 9000 Ghent, Belgium;
| | - Bogdan V. Parakhonskiy
- Nanobiotechnology Group, Faculty of Bioscience Engineering, Ghent University, 9000 Ghent, Belgium;
| | - Dmitry Grigoriev
- Multifunctional Colloids and Coatings, Division Life Science and Bioprocesses, Fraunhofer Institute for Applied Polymer Research (IAP), 14476 Potsdam-Golm, Germany;
| | - Andre G. Skirtach
- Nanobiotechnology Group, Faculty of Bioscience Engineering, Ghent University, 9000 Ghent, Belgium;
| |
Collapse
|
12
|
Hossein F, Angeli P. A review of acoustofluidic separation of bioparticles. Biophys Rev 2023; 15:2005-2025. [PMID: 38192342 PMCID: PMC10771489 DOI: 10.1007/s12551-023-01112-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 08/09/2023] [Indexed: 01/08/2024] Open
Abstract
Acoustofluidics is an emerging interdisciplinary research field that involves the integration of acoustics and microfluidics to address challenges in various scientific areas. This technology has proven to be a powerful tool for separating biological targets from complex fluids due to its label-free, biocompatible, and contact-free nature. Considering a careful designing process and tuning the acoustic field particles can be separated with high yield. Recently the advancement of acoustofluidics led to the development of point-of-care devices for separations of micro particles which address many of the limitations of conventional separation tools. This review article discusses the working principles and different approaches of acoustofluidic separation and provides a synopsis of its traditional and emerging applications, including the theory and mechanism of acoustofluidic separation, blood component separation, cell washing, fluorescence-activated cell sorting, circulating tumor cell isolation, and exosome isolation. The technology offers great potential for solving clinical problems and advancing scientific research.
Collapse
Affiliation(s)
- Fria Hossein
- Department of Chemical Engineering, University College London, Torrington Place, WC1E 7JE, London, UK
| | - Panagiota Angeli
- Department of Chemical Engineering, University College London, Torrington Place, WC1E 7JE, London, UK
| |
Collapse
|
13
|
Al-Ali A, Waheed W, Dawaymeh F, Alamoodi N, Alazzam A. A surface treatment method for improving the attachment of PDMS: acoustofluidics as a case study. Sci Rep 2023; 13:18141. [PMID: 37875576 PMCID: PMC10598025 DOI: 10.1038/s41598-023-45429-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 10/19/2023] [Indexed: 10/26/2023] Open
Abstract
A method for a permanent surface modification of polydimethylsiloxane (PDMS) is presented. A case study on the attachment of PDMS and the lithium niobate (LiNbO3) wafer for acoustofluidics applications is presented as well. The method includes a protocol for chemically treating the surface of PDMS to strengthen its bond with the LiNbO3 surface. The PDMS surface is modified using the 3-(trimethoxysilyl) propyl methacrylate (TMSPMA) silane reagent. The effect of silane treatment on the hydrophilicity, morphology, adhesion strength to LiNbO3, and surface energy of PDMS is investigated. The results demonstrated that the silane treatment permanently increases the hydrophilicity of PDMS and significantly alters its morphology. The bonding strength between PDMS and LiNbO3increased with the duration of the silane treatment, reaching a maximum of approximately 500 kPa. To illustrate the effectiveness of this method, an acoustofluidic device was tested, and the device demonstrated very promising enhanced bonding and sealing capabilities with particle manipulation at a flow rate of up to 1 L/h by means of traveling surface acoustic waves (TSAW). The device was reused multiple times with no fluid leakage or detachment issues. The utility of the presented PDMS surface modification method is not limited to acoustofluidics applications; it has the potential to be further investigated for applications in various scientific fields in the future.
Collapse
Affiliation(s)
- Abdulla Al-Ali
- Mechanical Engineering Department, Khalifa University, Abu Dhabi, United Arab Emirates
| | - Waqas Waheed
- Mechanical Engineering Department, Khalifa University, Abu Dhabi, United Arab Emirates
- System on Chip Lab, Khalifa University, Abu Dhabi, United Arab Emirates
| | - Fadi Dawaymeh
- Chemical Engineering Department, Khalifa University, Abu Dhabi, United Arab Emirates
| | - Nahla Alamoodi
- Chemical Engineering Department, Khalifa University, Abu Dhabi, United Arab Emirates
| | - Anas Alazzam
- Mechanical Engineering Department, Khalifa University, Abu Dhabi, United Arab Emirates.
- System on Chip Lab, Khalifa University, Abu Dhabi, United Arab Emirates.
| |
Collapse
|
14
|
Alkhaiyat AM, Badran M. Numerical Simulation of a Lab-on-Chip for Dielectrophoretic Separation of Circulating Tumor Cells. MICROMACHINES 2023; 14:1769. [PMID: 37763932 PMCID: PMC10534381 DOI: 10.3390/mi14091769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Revised: 08/20/2023] [Accepted: 08/26/2023] [Indexed: 09/29/2023]
Abstract
Circulating tumor cells (CTCs) are cancer cells detached from tumors that enter the bloodstream with the rest of the blood cells before settling on remote organs and growing. CTCs play a major role as a target for cancer diagnosis. This study aims to propose and simulate a lab-on-chip (LOC) design that separates CTCs from white blood cells (WBCs) and blood platelets (PLTs) using low-voltage dielectrophoretic separation with high efficiency. The proposed design include two stages a passive and an active one cascaded in a compact package. Numerical simulations are performed on the COMSOL Multiphysics® software package to optimize the geometric parameters of the LOC, such as the width and length of the microchannel and the number of electrodes and their arrangements. Moreover, the effects of adjusting the applied voltage values as well as buffer inlet velocity are investigated. The proposed LOC design uses four electrodes at ±2 V to achieve 100% separation efficiency for the three cell types in simulation. The 919 µm × 440 µm LOC has a channel width of 40 µm. The inlet velocities for the blood-carrying cells and buffer are 134 and 850 µm/s, respectively. The proposed LOC can be used for the early detection of CTCs, which can be beneficial in cancer diagnosis and early treatment. In addition, it can be used in cancer prognosis, treatment monitoring and personalizing medicine.
Collapse
Affiliation(s)
| | - Mohamed Badran
- Department of Mechanical Engineering, The American University in Cairo, New Cairo 11835, Egypt;
| |
Collapse
|
15
|
Valijam S, Nilsson DPG, Malyshev D, Öberg R, Salehi A, Andersson M. Fabricating a dielectrophoretic microfluidic device using 3D-printed moulds and silver conductive paint. Sci Rep 2023; 13:9560. [PMID: 37308526 DOI: 10.1038/s41598-023-36502-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 06/05/2023] [Indexed: 06/14/2023] Open
Abstract
Dielectrophoresis is an electric field-based technique for moving neutral particles through a fluid. When used for particle separation, dielectrophoresis has many advantages compared to other methods, like providing label-free operation with greater control of the separation forces. In this paper, we design, build, and test a low-voltage dielectrophoretic device using a 3D printing approach. This lab-on-a-chip device fits on a microscope glass slide and incorporates microfluidic channels for particle separation. First, we use multiphysics simulations to evaluate the separation efficiency of the prospective device and guide the design process. Second, we fabricate the device in PDMS (polydimethylsiloxane) by using 3D-printed moulds that contain patterns of the channels and electrodes. The imprint of the electrodes is then filled with silver conductive paint, making a 9-pole comb electrode. Lastly, we evaluate the separation efficiency of our device by introducing a mixture of 3 μm and 10 μm polystyrene particles and tracking their progression. Our device is able to efficiently separate these particles when the electrodes are energized with ±12 V at 75 kHz. Overall, our method allows the fabrication of cheap and effective dielectrophoretic microfluidic devices using commercial off-the-shelf equipment.
Collapse
Affiliation(s)
- Shayan Valijam
- Faculty of Electrical Engineering, K. N. Toosi University of Technology, Tehran, 1631714191, Iran
- Department of Physics, Umeå University, 901 87, Umeå, Sweden
| | | | - Dmitry Malyshev
- Department of Physics, Umeå University, 901 87, Umeå, Sweden
| | - Rasmus Öberg
- Department of Physics, Umeå University, 901 87, Umeå, Sweden
| | - Alireza Salehi
- Faculty of Electrical Engineering, K. N. Toosi University of Technology, Tehran, 1631714191, Iran
| | - Magnus Andersson
- Department of Physics, Umeå University, 901 87, Umeå, Sweden.
- Umeå Center for Microbial Research (UCMR), 901 87, Umeå, Sweden.
| |
Collapse
|
16
|
Lomeli-Martin A, Ahamed N, Abhyankar VV, Lapizco-Encinas BH. Electropatterning-Contemporary developments for selective particle arrangements employing electrokinetics. Electrophoresis 2023; 44:884-909. [PMID: 37002779 PMCID: PMC10330388 DOI: 10.1002/elps.202200286] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 02/25/2023] [Accepted: 03/27/2023] [Indexed: 04/04/2023]
Abstract
The selective positioning and arrangement of distinct types of multiscale particles can be used in numerous applications in microfluidics, including integrated circuits, sensors and biochips. Electrokinetic (EK) techniques offer an extensive range of options for label-free manipulation and patterning of colloidal particles by exploiting the intrinsic electrical properties of the target of interest. EK-based techniques have been widely implemented in many recent studies, and various methodologies and microfluidic device designs have been developed to achieve patterning two- and three-dimensional (3D) patterned structures. This review provides an overview of the progress in electropatterning research during the last 5 years in the microfluidics arena. This article discusses the advances in the electropatterning of colloids, droplets, synthetic particles, cells, and gels. Each subsection analyzes the manipulation of the particles of interest via EK techniques such as electrophoresis and dielectrophoresis. The conclusions summarize recent advances and provide an outlook on the future of electropatterning in various fields of application, especially those with 3D arrangements as their end goal.
Collapse
Affiliation(s)
- Adrian Lomeli-Martin
- Microscale Bioseparations Laboratory and Biomedical Engineering Department, Rochester Institute of Technology, Rochester, New York, USA
| | - Nuzhet Ahamed
- Microscale Bioseparations Laboratory and Biomedical Engineering Department, Rochester Institute of Technology, Rochester, New York, USA
| | - Vinay V. Abhyankar
- Biological Microsystems Laboratory and Biomedical Engineering Department, Rochester Institute of Technology, Rochester, New York, USA
| | - Blanca H. Lapizco-Encinas
- Microscale Bioseparations Laboratory and Biomedical Engineering Department, Rochester Institute of Technology, Rochester, New York, USA
| |
Collapse
|
17
|
Derakhshan R, Bozorgzadeh A, Ramiar A. Numerical investigation of ternary particle separation in a microchannel with a wall-mounted obstacle using dielectrophoresis. J Chromatogr A 2023; 1702:464079. [PMID: 37263054 DOI: 10.1016/j.chroma.2023.464079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 05/09/2023] [Accepted: 05/16/2023] [Indexed: 06/03/2023]
Abstract
In recent years, microfluidic-based particle/cell manipulation techniques have catalyzed significant advances in several fields of science. As an efficient, precise, and label-free particle/cell manipulation technique, dielectrophoresis (DEP) has recently attracted widespread attention. This paper presents the design and investigation of a straight sheathless 3D microchannel with a wall-mounted trapezoidal obstacle for continuous-flow separation of three different populations of polystyrene (PS) particles (5, 10 and 20 µm) using DEP. An OpenFOAM code is developed to simulate and investigate the movement of particles in the microchannel. Then, the code is validated by performing various experimental tests using a microdevice previously fabricated in our lab. By comparing the numerical simulation results with the experimental tests, it can be claimed that the newly developed solver is highly accurate, and its results agree well with experimental tests. Next, the effect of various operational and geometrical parameters such as obstacle height, applied voltage, electrode pairs angle, and flow rate on the efficient focusing and separation of particles are numerically investigated. The results showed that efficient particle separation could only be achieved for obstacle heights of more than 350 µm. Furthermore, the appropriate voltage range for efficient particle separation is increased by decreasing the electrode angle as well as increasing the flow rate. Moreover, the results showed that by employing the appropriate channel design and operational conditions, at a maximum applied voltage of 10V, a sample flow rate of 2.5μL/min could be processed. The proposed design can be beneficial for integrating with lab-on-a-chip and clinical diagnosis applications due to advantages, such as simple design, no need for sheath flow, the simultaneous ternary separation of particles, and providing precise particle separation.
Collapse
Affiliation(s)
- Reza Derakhshan
- Mechanical Engineering Department, Microfluidics and MEMS lab, Babol Noshirvani University of Technology, Babol, Mazandaran, Iran.
| | - Ali Bozorgzadeh
- Mechanical Engineering Department, Microfluidics and MEMS lab, Babol Noshirvani University of Technology, Babol, Mazandaran, Iran.
| | - Abas Ramiar
- Mechanical Engineering Department, Microfluidics and MEMS lab, Babol Noshirvani University of Technology, Babol, Mazandaran, Iran.
| |
Collapse
|
18
|
Alazzam A, Alamoodi N, Mathew B, Abutayeh M, Khashan S. Transparent, patterned graphene oxide films with tunable electrical conductivity using thermal, chemical, and photoreduction techniques for lab-on-a-chip applications. Anal Bioanal Chem 2023; 415:1339-1346. [PMID: 36633621 DOI: 10.1007/s00216-023-04524-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 12/22/2022] [Accepted: 01/04/2023] [Indexed: 01/13/2023]
Abstract
This work demonstrates the fabrication of electrically tunable films of graphene oxide (GO). GO thin films were deposited and micropatterned on a cyclic olefin copolymer (COC) substrate using a plasma-enhanced liftoff technique. This article discusses thermal, chemical, and photoreduction methods for controlling the electrical conductivity of the patterned film. The patterned graphene oxide films were used to manipulate cells after embedding them in a microfluidic channel. Cells were manipulated under dielectrophoresis (DEP) using patterned reduced graphene oxide (rGO) films with varying electrical conductivities. The non-uniform electric field required for DEP was created either by arranging and shaping a set of electrodes (eDEP) or by simply implementing low conductivity rGO as an insulator between two metal electrodes (iDEP).
Collapse
Affiliation(s)
- Anas Alazzam
- System On Chip Lab, Department of Mechanical Engineering, Khalifa University, Abu Dhabi, UAE.
| | - Nahla Alamoodi
- System On Chip Lab, Research and Innovation Center in Carbon Dioxide and Hydrogen (RICH), Department of Chemical Engineering, Khalifa University, Abu Dhabi, UAE
| | - Bobby Mathew
- Department of Mechanical and Aerospace Engineering, United Arab Emirates University, Al Ain, UAE
- Zayed Center for Health Sciences, United Arab Emirates University, Al Ain, UAE
| | - Mohammad Abutayeh
- Department of Mechanical Engineering, Colorado State University, Fort Collins, CO, USA
| | - Saud Khashan
- Department of Mechanical Engineering, Jordan University of Science and Technology, Irbid, Jordan
| |
Collapse
|
19
|
Huang C, Han SI, Zhang H, Han A. Tutorial on Lateral Dielectrophoretic Manipulations in Microfluidic Systems. IEEE TRANSACTIONS ON BIOMEDICAL CIRCUITS AND SYSTEMS 2023; 17:21-32. [PMID: 37015136 PMCID: PMC10091972 DOI: 10.1109/tbcas.2022.3226675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Microfluidic lab-on-a-chip systems can offer cost- and time-efficient biological assays by providing high-throughput analysis at very small volume scale. Among these extremely broad ranges of assays, accurate and specific cell and reagent control is considered one of the most important functions. Dielectrophoretic (DEP)-based manipulation technologies have been extensively developed for these purposes due to their label-free and high selectivity natures as well as due to their simple microstructures. Here, we provide a tutorial on how to develop DEP-based microfluidic systems, including a detailed walkthrough of dielectrophoresis theory, instruction on how to conduct simulation and calculation of electric field and generated DEP force, followed with guidance on microfabricating two forms of DEP microfluidic systems, namely lateral DEP and droplet DEP, and how best to conduct experiments in such systems. Finally, we summarize most recent DEP-based microfluidic technologies and applications, including systems for blood diagnoses, pathogenicity studies, in-droplet content manipulations, droplet manipulations and merging, to name a few. We conclude by suggesting possible future directions on how DEP-based technologies can be utilized to overcome current challenges and improve the current status in microfluidic lab-on-a-chip systems.
Collapse
|
20
|
Alshehhi F, Waheed W, Al-Ali A, Abu-Nada E, Alazzam A. Numerical Modeling Using Immersed Boundary-Lattice Boltzmann Method and Experiments for Particle Manipulation under Standing Surface Acoustic Waves. MICROMACHINES 2023; 14:366. [PMID: 36838066 PMCID: PMC9963542 DOI: 10.3390/mi14020366] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 01/18/2023] [Accepted: 01/30/2023] [Indexed: 06/01/2023]
Abstract
In this work, we employed the Immersed Boundary-Lattice Boltzmann Method (IB-LBM) to simulate the motion of a microparticle in a microchannel under the influence of a standing surface acoustic wave (SSAW). To capture the response of the target microparticle in a straight channel under the effect of the SSAW, in-house code was built in C language. The SSAW creates pressure nodes and anti-nodes inside the microchannel. Here, the target particle was forced to traverse toward the pressure node. A mapping mechanism was developed to accurately apply the physical acoustic force field in the numerical simulation. First, benchmarking studies were conducted to compare the numerical results in the IB-LBM with the available analytical, numerical, and experimental results. Next, several parametric studies were carried out in which the particle types, sizes, compressibility coefficients, and densities were varied. When the SSAW is applied, the microparticles (with a positive acoustic contrast factor) move toward the pressure node locations during their motion in the microchannel. Hence, their steady-state locations are controlled by adjusting the pressure nodes to the desired locations, such as the centerline or near the microchannel sidewalls. Moreover, the geometric parameters, such as radius, density, and compressibility of the particles affect their transient response, and the particles ultimately settle at the pressure nodes. To validate the numerical work, a microfluidic device was fabricated in-house in the cleanroom using lithographic techniques. Experiments were performed, and the target particle was moved either to the centerline or sidewalls of the channel, depending on the location of the pressure node. The steady-state placements obtained in the computational model and experiments exhibit excellent agreement and are reported.
Collapse
Affiliation(s)
- Fatima Alshehhi
- Mechanical Engineering Department, Khalifa University, Abu Dhabi P.O. Box 127788, United Arab Emirates
| | - Waqas Waheed
- Mechanical Engineering Department, Khalifa University, Abu Dhabi P.O. Box 127788, United Arab Emirates
- System on Chip Lab, Khalifa University, Abu Dhabi P.O. Box 127788, United Arab Emirates
| | - Abdulla Al-Ali
- Mechanical Engineering Department, Khalifa University, Abu Dhabi P.O. Box 127788, United Arab Emirates
| | - Eiyad Abu-Nada
- Mechanical Engineering Department, Khalifa University, Abu Dhabi P.O. Box 127788, United Arab Emirates
| | - Anas Alazzam
- Mechanical Engineering Department, Khalifa University, Abu Dhabi P.O. Box 127788, United Arab Emirates
- System on Chip Lab, Khalifa University, Abu Dhabi P.O. Box 127788, United Arab Emirates
| |
Collapse
|
21
|
Wang Y, Tong N, Li F, Zhao K, Wang D, Niu Y, Xu F, Cheng J, Wang J. Trapping of a Single Microparticle Using AC Dielectrophoresis Forces in a Microfluidic Chip. MICROMACHINES 2023; 14:159. [PMID: 36677221 PMCID: PMC9863554 DOI: 10.3390/mi14010159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 12/21/2022] [Accepted: 12/30/2022] [Indexed: 06/17/2023]
Abstract
Precise trap and manipulation of individual cells is a prerequisite for single-cell analysis, which has a wide range of applications in biology, chemistry, medicine, and materials. Herein, a microfluidic trapping system with a 3D electrode based on AC dielectrophoresis (DEP) technology is proposed, which can achieve the precise trapping and release of specific microparticles. The 3D electrode consists of four rectangular stereoscopic electrodes with an acute angle near the trapping chamber. It is made of Ag-PDMS material, and is the same height as the channel, which ensures the uniform DEP force will be received in the whole channel space, ensuring a better trapping effect can be achieved. The numerical simulation was conducted in terms of electrode height, angle, and channel width. Based on the simulation results, an optimal chip structure was obtained. Then, the polystyrene particles with different diameters were used as the samples to verify the effectiveness of the designed trapping system. The findings of this research will contribute to the application of cell trapping and manipulation, as well as single-cell analysis.
Collapse
Affiliation(s)
- Yanjuan Wang
- Software Institute, Dalian Jiaotong University, Dalian 116028, China
- Liaoning Key Laboratory of Marine Sensing and Intelligent Detection, College of Information Science and Technology, Dalian Maritime University, Dalian 116026, China
| | - Ning Tong
- Software Institute, Dalian Jiaotong University, Dalian 116028, China
| | - Fengqi Li
- Software Institute, Dalian Jiaotong University, Dalian 116028, China
| | - Kai Zhao
- Liaoning Key Laboratory of Marine Sensing and Intelligent Detection, College of Information Science and Technology, Dalian Maritime University, Dalian 116026, China
- College of Information Science and Technology, Dalian Maritime University, Dalian 116026, China
| | - Deguang Wang
- Software Institute, Dalian Jiaotong University, Dalian 116028, China
| | - Yijie Niu
- Software Institute, Dalian Jiaotong University, Dalian 116028, China
| | - Fengqiang Xu
- Software Institute, Dalian Jiaotong University, Dalian 116028, China
| | - Jiale Cheng
- Liaoning Key Laboratory of Marine Sensing and Intelligent Detection, College of Information Science and Technology, Dalian Maritime University, Dalian 116026, China
- College of Information Science and Technology, Dalian Maritime University, Dalian 116026, China
| | - Junsheng Wang
- Liaoning Key Laboratory of Marine Sensing and Intelligent Detection, College of Information Science and Technology, Dalian Maritime University, Dalian 116026, China
- College of Information Science and Technology, Dalian Maritime University, Dalian 116026, China
| |
Collapse
|