1
|
Banaszkiewicz S, Tabiś A, Wałecki B, Łyżwińska K, Bystroń J, Bania J. spa Types and Staphylococcal Enterotoxin Production of Staphylococcus aureus Isolated from Wild Boar. MICROBIAL ECOLOGY 2023; 86:2184-2191. [PMID: 37156959 PMCID: PMC10497643 DOI: 10.1007/s00248-023-02236-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 05/01/2023] [Indexed: 05/10/2023]
Abstract
Little is known about the structure of S. aureus population and the enterotoxin gene content in wild boar. In 1025 nasal swabs from wild boars, 121 S. aureus isolates were identified. Staphylococcal enterotoxin (SE) genes were identified in 18 isolates (14.9%). The seb gene was found in 2 S. aureus isolates, sec in 2 isolates, the see and seh genes were found in 4 and 11 isolates, respectively. The production of SEs was evaluated in bacteria grown in microbial broth. Concentration of SEB reached 2.70 µg/ml after 24 h and 4.46 µg/ml at 48 h. SEC was produced at 952.6 ng/ml after 24 h and 7.2 µg/ml at 48 h. SEE reached 124.1 ng/ml after 24 h and 191.6 ng/ml at 48 h of culture. SEH production reached 4.36 µg/ml at 24 h and 5.42 µg/ml at 48 h of culture. Thirty-nine spa types were identified among S. aureus isolates. The most prevalent spa types were t091 and t1181, followed by t4735 and t742, t3380 and t127. Twelve new spa types, i.e., t20572‒t20583 were identified. The wild boar S. aureus population was shown to contain previously identified animal/human-associated spa types and spa types not identified in humans or animals. We also indicate that wildlife animals can be a significant reservoir of see-positive S. aureus.
Collapse
Affiliation(s)
- Sylwia Banaszkiewicz
- Department of Food Hygiene and Consumer Health Protection, Wrocław University of Environmental and Life Sciences, Wrocław, Poland
| | - Aleksandra Tabiś
- Department of Food Hygiene and Consumer Health Protection, Wrocław University of Environmental and Life Sciences, Wrocław, Poland
| | - Bartosz Wałecki
- Department of Food Hygiene and Consumer Health Protection, Wrocław University of Environmental and Life Sciences, Wrocław, Poland
| | - Karolina Łyżwińska
- Department of Food Hygiene and Consumer Health Protection, Wrocław University of Environmental and Life Sciences, Wrocław, Poland
| | - Jarosław Bystroń
- Department of Food Hygiene and Consumer Health Protection, Wrocław University of Environmental and Life Sciences, Wrocław, Poland
| | - Jacek Bania
- Department of Food Hygiene and Consumer Health Protection, Wrocław University of Environmental and Life Sciences, Wrocław, Poland.
| |
Collapse
|
2
|
Altissimi C, Noé-Nordberg C, Ranucci D, Paulsen P. Presence of Foodborne Bacteria in Wild Boar and Wild Boar Meat-A Literature Survey for the Period 2012-2022. Foods 2023; 12:foods12081689. [PMID: 37107481 PMCID: PMC10137515 DOI: 10.3390/foods12081689] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 04/12/2023] [Accepted: 04/15/2023] [Indexed: 04/29/2023] Open
Abstract
The wild boar is an abundant game species with high reproduction rates. The management of the wild boar population by hunting contributes to the meat supply and can help to avoid a spillover of transmissible animal diseases to domestic pigs, thus compromising food security. By the same token, wild boar can carry foodborne zoonotic pathogens, impacting food safety. We reviewed literature from 2012-2022 on biological hazards, which are considered in European Union legislation and in international standards on animal health. We identified 15 viral, 10 bacterial, and 5 parasitic agents and selected those nine bacteria that are zoonotic and can be transmitted to humans via food. The prevalence of Campylobacter, Listeria monocytogenes, Salmonella, Shiga toxin-producing E. coli, and Yersinia enterocolitica on muscle surfaces or in muscle tissues of wild boar varied from 0 to ca. 70%. One experimental study reported the transmission and survival of Mycobacterium on wild boar meat. Brucella, Coxiella burnetii, Listeria monocytogenes, and Mycobacteria have been isolated from the liver and spleen. For Brucella, studies stressed the occupational exposure risk, but no indication of meat-borne transmission was evident. Furthermore, the transmission of C. burnetii is most likely via vectors (i.e., ticks). In the absence of more detailed data for the European Union, it is advisable to focus on the efficacy of current game meat inspection and food safety management systems.
Collapse
Affiliation(s)
- Caterina Altissimi
- Department of Veterinary Medicine, University of Perugia, Via San Costanzo 4, 06121 Perugia, Italy
| | | | - David Ranucci
- Department of Veterinary Medicine, University of Perugia, Via San Costanzo 4, 06121 Perugia, Italy
| | - Peter Paulsen
- Unit of Food Hygiene and Technology, Institute of Food Safety, Food Technology and Veterinary Public Health, University of Veterinary Medicine Vienna, Veterinärplatz 1, 1210 Vienna, Austria
| |
Collapse
|
3
|
Mateus-Vargas RH, Lienen T, Maaz D, Richter M, Maurischat S, Steinhoff-Wagner J. Evaluation of the Occurrence of Staphylococcaceae with Reduced Susceptibility to Cefoxitin in Wild Ungulates in Brandenburg, Germany, Based on Land Use-Related Factors. Microbiol Spectr 2022; 10:e0256022. [PMID: 36169418 PMCID: PMC9603044 DOI: 10.1128/spectrum.02560-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 09/14/2022] [Indexed: 01/04/2023] Open
Abstract
Interactions between natural and human-used environments have a significant influence on the spread of antimicrobial resistance in wild ecosystems. Despite current knowledge, fundamental questions about the degree of impact of land use-related factors on the spread of antimicrobial-resistant staphylococci in European wild game animal populations have not yet been answered with certainty. In this study, we evaluated the occurrence of Staphylococcaceae showing reduced susceptibility to cefoxitin in nasal swabs of fallow deer (Dama dama), red deer (Cervus elaphus), roe deer (Capreolus capreolus), and wild boar (Sus scrofa) hunted in Brandenburg, Germany. Evaluations were focused on the use of open-source data regarding the extent as well as the degree of land use, especially for settlement or animal husbandry. Results showed that the detection rate of Staphylococcaceae showing a non-wild-type phenotype for cefoxitin differed between animal species of the studied hunting districts. Statistical analyses of results combined with data on land use features revealed that a high density of cattle or poultry in a county may be associated with an increased detection rate in roe deer or wild boar, respectively. Furthermore, positive correlations were determined between the prevalence of non-wild-type Staphylococcaceae in roe deer or fallow deer and the proportional extent of surface water bodies in the corresponding area. The presented approach establishes a general basis for a risk-oriented assessment of the effects of human activities on the epidemiology of transmissible microorganisms in the human-animal-environment interface, including antimicrobial-resistant bacteria. IMPORTANCE Intensive research regarding the impact of land use-related factors on the prevalence and distribution of antimicrobial-resistant Staphylococcaceae in game ungulate populations is necessary for adequately determining risks related to interactions between wild animals, domestic animals, and humans in common geographic locations. This systematic approach for the analysis of the observations in specific hunting districts of Brandenburg, Germany, adds an innovative value to the research strategy of antimicrobial resistance in wild game animals, which is in accordance with current recommendations worldwide. Thus, results and information obtained in this study build a relevant foundation for future risk assessment regarding the safety of game products. Furthermore, the data generated represent an important basis for improving existing guidelines in land use practices and hunting practices. The use of existing open source data collections provided by official governmental and nongovernmental entities increases not only the impact but also the applicability and comparability of information beyond the regional level.
Collapse
Affiliation(s)
- Rafael H. Mateus-Vargas
- German Federal Institute for Risk Assessment, Department Safety in the Food Chain, Berlin, Germany
| | - Tobias Lienen
- German Federal Institute for Risk Assessment, Department Biological Safety, Berlin, Germany
| | - Denny Maaz
- German Federal Institute for Risk Assessment, Department Safety in the Food Chain, Berlin, Germany
| | - Martin Richter
- German Federal Institute for Risk Assessment, Department Biological Safety, Berlin, Germany
| | - Sven Maurischat
- German Federal Institute for Risk Assessment, Department Biological Safety, Berlin, Germany
| | - Julia Steinhoff-Wagner
- German Federal Institute for Risk Assessment, Department Safety in the Food Chain, Berlin, Germany
- Technical University of Munich, School of Life Sciences, Munich, Germany
| |
Collapse
|
4
|
Ramos B, Rosalino LM, Palmeira JD, Torres RT, Cunha MV. Antimicrobial resistance in commensal Staphylococcus aureus from wild ungulates is driven by agricultural land cover and livestock farming. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 303:119116. [PMID: 35276250 DOI: 10.1016/j.envpol.2022.119116] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 03/03/2022] [Accepted: 03/05/2022] [Indexed: 05/25/2023]
Abstract
Staphylococcus aureus is a human pathobiont (i.e., a commensal microorganism that is potentially pathogenic under certain conditions), a nosocomial pathogen and a leading cause of morbidity and mortality in humans. S. aureus is also a commensal and pathogen of companion animals and livestock. The dissemination of antimicrobial resistant (AMR) S. aureus, particularly methicillin-resistant (MRSA), has been associated to its ability for establishing new reservoirs, but limited attention has been devoted to the role of the environment. To fill this gap, we aimed to characterize animal carrier status, AMR phenotypes, predominant clonal lineages and their relationship with clinical and food-chain settings, as well as to find predictors of AMR occurrence. Nasal swabs (n = 254) from wild boar (n = 177), red deer (n = 54) and fallow deer (n = 23) hunted in Portugal, during the season 2019/2020, yielded an overall carrier proportion of 35.8%, ranging from 53.7% for red deer and 32.2% for wild boar to 21.7% for fallow deer. MRSA from wild boar and phenotypically linezolid-resistant S. aureus from wild boar and red deer were isolated, indicating that resistance to antimicrobials restricted to clinical practice also occurs in wildlife. The most prevalent genotypes were t11502/ST2678 (29.6%) and t12939/ST2678 (9.4%), previously reported in wild boar from Spain. Clonal lineages reported in humans and livestock, like CC1, CC5 or CC8 (19.1%) and ST425, CC133 or CC398 (23.5%), respectively, were also found. The sequence type ST544, previously restricted to humans, is described in wildlife for the first time. We also identified that land use (agricultural land cover), human driven disturbance (swine abundance) and host-related factors (sex) determine resistance occurrence. These findings suggest that antibiotics used in clinical settings, agriculture and livestock farming, spill over to wildlife, leading to AMR emergence, with potential biological, ecological, and human health effects. This work is one of the most comprehensive surveys in Europe of S. aureus occurrence and determinants among widely distributed wild ungulates.
Collapse
Affiliation(s)
- Beatriz Ramos
- Centre for Ecology, Evolution and Environmental Changes (cE3c), Faculdade de Ciências da Universidade de Lisboa, 1749-016, Lisboa, Portugal; Biosystems and Integrative Sciences Institute (BioISI), Faculdade de Ciências da Universidade de Lisboa, 1749-016, Lisboa, Portugal
| | - Luís Miguel Rosalino
- Centre for Ecology, Evolution and Environmental Changes (cE3c), Faculdade de Ciências da Universidade de Lisboa, 1749-016, Lisboa, Portugal
| | - Josman D Palmeira
- Department of Biology & Centre for Environmental and Marine Studies (CESAM), Universidade de Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal
| | - Rita T Torres
- Department of Biology & Centre for Environmental and Marine Studies (CESAM), Universidade de Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal
| | - Mónica V Cunha
- Centre for Ecology, Evolution and Environmental Changes (cE3c), Faculdade de Ciências da Universidade de Lisboa, 1749-016, Lisboa, Portugal; Biosystems and Integrative Sciences Institute (BioISI), Faculdade de Ciências da Universidade de Lisboa, 1749-016, Lisboa, Portugal.
| |
Collapse
|
5
|
Silva V, Correia S, Rocha J, Manaia CM, Silva A, García-Díez J, Pereira JE, Semedo-Lemsaddek T, Igrejas G, Poeta P. Antimicrobial Resistance and Clonal Lineages of Staphylococcus aureus from Cattle, Their Handlers, and Their Surroundings: A Cross-Sectional Study from the One Health Perspective. Microorganisms 2022; 10:microorganisms10050941. [PMID: 35630384 PMCID: PMC9144820 DOI: 10.3390/microorganisms10050941] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 04/21/2022] [Accepted: 04/27/2022] [Indexed: 02/01/2023] Open
Abstract
Staphylococcus aureus have been progressively identified in farm animals and in humans with direct contact with these animals showing that S. aureus may be a major zoonotic pathogen. Therefore, we aimed to isolate S. aureus from cows, their handlers, and their immediate surroundings, and to investigate the antimicrobial resistance and genetic lineages of the isolates. Mouth and nose swabs of 244 healthy cows (195 Maronesa, 11 Holstein-Friesians, and 28 crossbreeds), 82 farm workers, 53 water and 63 soil samples were collected. Identification of species was carried out by MALDI-TOF MS Biotyper. The presence of antimicrobial resistance genes and virulence factors was assessed based on gene search by PCR. All isolates were typed by multilocus sequence typing and spa-typing. From 442 samples, 33 (13.9%), 24 (29.3%), 1 (2%), and 1 (2%) S. aureus were recovered from cows, farm workers, water, and soil samples, respectively. Most of the isolates showed resistance only to penicillin. S. aureus isolates were ascribed to 17 sequence types (STs) and 26 spa-types. Some clonal lineages were common to both cows and farm workers such as ST30-t9413, ST72-t148, and ST45-t350. Through a One Health approach, this study revealed that there is a great diversity of clonal lineages of S. aureus in cows and their handlers. Furthermore, some S. aureus lineages are common to cows and handlers, which may suggest a possible transmission.
Collapse
Affiliation(s)
- Vanessa Silva
- Microbiology and Antibiotic Resistance Team (MicroART), Department of Veterinary Sciences, University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal; (V.S.); (S.C.); (A.S.)
- Department of Genetics and Biotechnology, University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal;
- Functional Genomics and Proteomics Unit, University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
- Associated Laboratory for Green Chemistry (LAQV-REQUIMTE), University NOVA of Lisboa, 1099-085 Lisbon, Portugal
| | - Susana Correia
- Microbiology and Antibiotic Resistance Team (MicroART), Department of Veterinary Sciences, University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal; (V.S.); (S.C.); (A.S.)
| | - Jaqueline Rocha
- Centro de Biotecnologia e Química Fina (CBQF), Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, 4169-005 Porto, Portugal; (J.R.); (C.M.M.)
| | - Célia M. Manaia
- Centro de Biotecnologia e Química Fina (CBQF), Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, 4169-005 Porto, Portugal; (J.R.); (C.M.M.)
| | - Adriana Silva
- Microbiology and Antibiotic Resistance Team (MicroART), Department of Veterinary Sciences, University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal; (V.S.); (S.C.); (A.S.)
- Department of Genetics and Biotechnology, University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal;
- Functional Genomics and Proteomics Unit, University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
- Associated Laboratory for Green Chemistry (LAQV-REQUIMTE), University NOVA of Lisboa, 1099-085 Lisbon, Portugal
| | - Juan García-Díez
- Veterinary and Animal Research Centre (CECAV), University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal; (J.G.-D.); (J.E.P.)
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
| | - José Eduardo Pereira
- Veterinary and Animal Research Centre (CECAV), University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal; (J.G.-D.); (J.E.P.)
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
| | - Teresa Semedo-Lemsaddek
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
- Centro de Investigação Interdisciplinar em Sanidade Animal (CIISA), Faculdade de Medicina Veterinária, Avenida da Universidade Técnica, Universidade de Lisboa, 1300-477 Lisboa, Portugal
- Correspondence: (T.S.-L.); (P.P.)
| | - Gilberto Igrejas
- Department of Genetics and Biotechnology, University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal;
- Functional Genomics and Proteomics Unit, University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
- Associated Laboratory for Green Chemistry (LAQV-REQUIMTE), University NOVA of Lisboa, 1099-085 Lisbon, Portugal
| | - Patrícia Poeta
- Microbiology and Antibiotic Resistance Team (MicroART), Department of Veterinary Sciences, University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal; (V.S.); (S.C.); (A.S.)
- Associated Laboratory for Green Chemistry (LAQV-REQUIMTE), University NOVA of Lisboa, 1099-085 Lisbon, Portugal
- Veterinary and Animal Research Centre (CECAV), University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal; (J.G.-D.); (J.E.P.)
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
- Correspondence: (T.S.-L.); (P.P.)
| |
Collapse
|
6
|
A One Health Approach Molecular Analysis of Staphylococcus aureus Reveals Distinct Lineages in Isolates from Miranda Donkeys (Equus asinus) and Their Handlers. Antibiotics (Basel) 2022; 11:antibiotics11030374. [PMID: 35326837 PMCID: PMC8944429 DOI: 10.3390/antibiotics11030374] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 02/24/2022] [Accepted: 03/04/2022] [Indexed: 12/11/2022] Open
Abstract
Donkeys (Equus asinus) are in decline in Europe. Occupational exposure to farm animals has been associated with increased staphylococci carriage. We aimed to isolate S. aureus and coagulase-negative staphylococci (CoNS) from donkeys and handlers and characterize the antimicrobial resistance profiles and genetic lineages of S. aureus strains. Oral and nasal swab samples were collected from 49 Miranda donkeys and 23 handlers from 15 different farms. Staphylococci species were identified by MALDI-TOF MS. The presence of antimicrobial resistance genes and virulence factors was investigated by PCR. Molecular typing was performed in S. aureus isolates. From the 49 donkey samples, 4 S. aureus (8.2%) and 21 CoNS (42.9%) were isolated. Ten handlers (43.5%) were carriers of S. aureus and 4 (17.4%) carried CoNS. The CoNS isolates showed resistance to several classes of antimicrobials encoded by the mecA, aph (3′)-IIIa, ant (4′)-Ia, tetM, tetK, lnuA, ermB, ermC, dfrA and dfrG genes. S. aureus isolates were resistant to penicillin, aminoglicosides and tetracycline harboring the blaZ, aph (3′)-IIIa, tetL, tetM and tetK genes. All S. aureus isolates from donkeys belonged to ST49 and spa-type t208 while the strains isolated from the handlers were ascribed to 3 STs and 7 spa-types. However, human isolates were from different STs than the donkey isolates. Donkeys are mainly colonized by methicillin-resistant S. sciuri. S. aureus transmission between donkeys and their handlers appears not to have occurred since the isolates belonged to different genetic lineages.
Collapse
|
7
|
Nocturnal Birds of Prey as Carriers of Staphylococcus aureus and Other Staphylococci: Diversity, Antimicrobial Resistance and Clonal Lineages. Antibiotics (Basel) 2022; 11:antibiotics11020240. [PMID: 35203842 PMCID: PMC8868206 DOI: 10.3390/antibiotics11020240] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 02/03/2022] [Accepted: 02/08/2022] [Indexed: 02/01/2023] Open
Abstract
Owls are nocturnal predators that inhabit urbanized and farmlands. They are in direct contact with other animals, both livestock and small wild rodents that they mostly feed on. Staphylococci can be both commensal and pathogenic bacteria that are widespread across the various ecological niches. We aimed to isolate staphylococci from owls and to characterize their antimicrobial resistance, virulence factors and genetic lineages. Swab samples were collected from the throat and cloaca of 114 owls admitted to two rehabilitation centers in Portugal. The identification of staphylococci species was performed by MALDI-TOF. Staphylococci antimicrobial resistance and virulence genes were investigated by means of the disk diffusion method and PCR. Staphylococcus aureus isolates were characterized by MLST, agr and spa-typing. Of the tested animals, 66 isolates were recovered, including 10 different species of staphylococci, of which 25 were coagulase-positive (CoPS) and 41 were coagulase-negative (CoNS). Twenty-three S. aureus were isolated, of which one mecC-MRSA was identified. The isolates were mainly resistant to penicillin, aminoglycosides, clindamycin and tetracycline. mecC-MRSA belonged to ST1245 and spa-type t843 and the remaining S. aureus were ascribed to 12 STs and 15 spa types. A high diversity of clonal lineages was identified among the S. aureus isolated from wild owls. Owls feed mainly on small rodents often exposed to waste and anthropogenic sources, which may explain the moderate prevalence of S. aureus in these animals.
Collapse
|
8
|
A Preliminary Study on Antimicrobial Susceptibility of Staphylococcus spp. and Enterococcus spp. Grown on Mannitol Salt Agar in European Wild Boar ( Sus scrofa) Hunted in Campania Region-Italy. Animals (Basel) 2021; 12:ani12010085. [PMID: 35011191 PMCID: PMC8749723 DOI: 10.3390/ani12010085] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 12/22/2021] [Accepted: 12/28/2021] [Indexed: 12/11/2022] Open
Abstract
Simple Summary During the last decade, an increase in the European wild boar (Sus scrofa) population occurred; thus, over the years, wild boars have become an important potential carrier of pathogenic bacteria for both livestock animals and pets, but also for humans. Since antibiotic resistance has become one of the greatest challenges of global public health, the aim of the present study was to define the prevalence and the antibiotic resistance profiles of bacteria grown on the selective medium mannitol salt agar (MSA), isolated from nasal swabs of wild boars hunted in Campania Region (southern Italy). The most prevalent isolated bacteria were represented by the Staphylococcus spp. and Enterococcus spp. strains, which showed worrying antibiotic-resistant profiles. Consequently, constant surveillance of wild boars is strongly recommended, in order to assess their role as reservoirs of antibiotic resistant bacteria and as sentinels of a possible environmental contamination. Abstract The importance of wild boar lies in its role as a bioindicator for the control of numerous zoonotic and non-zoonotic diseases, including antibiotic resistance. Mannitol Salt Agar (MSA) is a selective medium used for isolation, enumeration, and differentiation of pathogenic staphylococci. Other genera such as Enterococcus spp. are also salt tolerant and able to grow on MSA. The present study focused on the identification, by matrix assisted laser desorption/ionization-time of flight mass spectrometry (MALDI-TOF-MS), of bacteria grown on MSA isolated from the nasal cavities of 50 healthy wild boars hunted in Campania Region (southern Italy) in the year 2019. In addition, the antimicrobial resistance phenotype of the isolated strains was determined by disk diffusion method. Among genus Staphylococcus, coagulase-negative Staphylococcus (CoNS) were the most common isolated species, with Staphylococcus xylosus as the most prevalent species (33.3%). Furthermore, Enterococcus spp. strains were isolated, and Enterococcus faecalis was the species showing the highest frequency of isolation (93.8%). For staphylococci, high levels of resistance to oxacillin (93.3%) were recorded. Differently, they exhibited low frequencies of resistance to tested non-β-lactams antibiotics. Among enterococci, the highest resistances were observed for penicillin (93.7%), followed by ampicillin (75%), and ciprofloxacin (68.7%). Interestingly, 43.7% of the isolated strains were vancomycin-resistant. In conclusion, this study reports the phenotypic antibiotic resistance profiles of Staphylococcus spp. and Enterococcus spp. strains isolated from nasal cavities of wild boars hunted in Campania Region, highlighting that these wild animals are carriers of antibiotic resistant bacteria.
Collapse
|
9
|
Abdullahi IN, Fernández-Fernández R, Juárez-Fernández G, Martínez-Álvarez S, Eguizábal P, Zarazaga M, Lozano C, Torres C. Wild Animals Are Reservoirs and Sentinels of Staphylococcus aureus and MRSA Clones: A Problem with "One Health" Concern. Antibiotics (Basel) 2021; 10:1556. [PMID: 34943768 PMCID: PMC8698730 DOI: 10.3390/antibiotics10121556] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 12/13/2021] [Accepted: 12/14/2021] [Indexed: 12/27/2022] Open
Abstract
Background: The availability of comprehensive data on the ecology and molecular epidemiology of Staphylococcus aureus/MRSA in wild animals is necessary to understand their relevance in the "One Health" domain. Objective: In this study, we determined the pooled prevalence of nasal, tracheal and/or oral (NTO) Staphylococcus aureus (S. aureus) and methicillin-resistant S. aureus (MRSA) carriage in wild animals, with a special focus on mecA and mecC genes as well as the frequency of MRSA and methicillin susceptible S. aureus (MSSA) of the lineages CC398 and CC130 in wild animals. Methodology: This systematic review was executed on cross-sectional studies that reported S. aureus and MRSA in the NTO cavities of wild animals distributed in four groups: non-human primates (NHP), wild mammals (WM, excluding rodents and NHP), wild birds (WB) and wild rodents (WR). Appropriate and eligible articles published (in English) between 1 January 2011 to 30 August 2021 were searched for from PubMed, Scopus, Google Scholar, SciElo and Web of Science. Results: Of the 33 eligible and analysed studies, the pooled prevalence of NTO S. aureus and MRSA carriage was 18.5% (range: 0-100%) and 2.1% (range: 0.0-63.9%), respectively. The pooled prevalence of S. aureus/MRSA in WM, NHP, WB and WR groups was 15.8/1.6, 32.9/2.0, 10.3/3.4 and 24.2/3.4%, respectively. The prevalence of mecC-MRSA among WM/NHP/WB/WR was 1.64/0.0/2.1/0.59%, respectively, representing 89.9/0.0/59.1/25.0% of total MRSA detected in these groups of animals.The MRSA-CC398 and MRSA-CC130 lineages were most prevalent in wild birds (0.64 and 2.07%, respectively); none of these lineages were reported in NHP studies. The MRSA-CC398 (mainly of spa-type t011, 53%), MRSA-CC130 (mainly of spa types t843 and t1535, 73%), MSSA-CC398 (spa-types t571, t1451, t6606 and t034) and MSSA-CC130 (spa types t843, t1535, t3625 and t3256) lineages were mostly reported. Conclusion: Although the global prevalence of MRSA is low in wild animals, mecC-mediated resistance was particularly prevalent among MRSA isolates, especially among WM and WB. Considering the genetic diversity of MRSA in wild animals, they need to be monitored for effective control of the spread of antimicrobial resistance.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Carmen Torres
- Area of Biochemistry and Molecular Biology, One-Health Research Group, University of La Rioja, 26006 Logroño, Spain; (I.N.A.); (R.F.-F.); (G.J.-F.); (S.M.-Á.); (P.E.); (M.Z.); (C.L.)
| |
Collapse
|
10
|
Silva V, Gabriel SI, Borrego SB, Tejedor-Junco MT, Manageiro V, Ferreira E, Reis L, Caniça M, Capelo JL, Igrejas G, Poeta P. Antimicrobial Resistance and Genetic Lineages of Staphylococcus aureus from Wild Rodents: First Report of mecC-Positive Methicillin-Resistant S. aureus (MRSA) in Portugal. Animals (Basel) 2021; 11:1537. [PMID: 34070357 PMCID: PMC8229929 DOI: 10.3390/ani11061537] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 05/17/2021] [Accepted: 05/20/2021] [Indexed: 12/16/2022] Open
Abstract
The frequent carriage of Staphylococcus aureus, including methicillin-resistant S. aureus (MRSA), by wild animals along with its zoonotic potential poses a public health problem. Furthermore, the repeated detection of the mecA gene homologue, mecC, in wildlife raises the question whether these animals may be a reservoir for mecC-MRSA. Thus, we aimed to isolate S. aureus and MRSA from wild rodents living in port areas and to characterize their antimicrobial resistance and genetic lineages. Mouth and rectal swab samples were recovered from 204 wild rodents. The samples were incubated in BHI broth with 6.5% of NaCl and after 24 h at 37 °C the inoculum was seeded onto Baird-Parker agar, Mannitol Salt agar and ORSAB (supplemented with 2 mg/L of oxacillin) plates. Species identification was confirmed by MALDI-TOF MS. The antimicrobial susceptibility testing was performed by the Kirby-Bauer disc diffusion method against 14 antibiotics. The presence of virulence and resistance genes was performed by PCR. The immune evasion cluster (IEC) system was investigated in all S. aureus. All isolates were characterized by MLST, spa- and agr typing. From 204 samples, 38 S. aureus were isolated of which six MRSA were detected. Among the six MRSA isolates, three harbored the mecC gene and the other three, the mecA gene. All mecC-MRSA isolates were ascribed to sequence type (ST) 1945 (which belongs to CC130) and spa-type t1535 whereas the mecA isolates belonged to ST22 and ST36 and spa-types t747 and t018. Twenty-five S. aureus were susceptible to all antibiotics tested. S. aureus isolates were ascribed to 11 MLST and 12 spa-types. S. aureus presents a great diversity of genetic lineages in wild rodents. This is the first report of mecC-MRSA in Portugal.
Collapse
Affiliation(s)
- Vanessa Silva
- Microbiology and Antibiotic Resistance Team (MicroART), Department of Veterinary Sciences, University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal;
- Department of Genetics and Biotechnology, Functional Genomics and Proteomics’ Unit, University of Trás-os-Montes and Alto Douro, 5000-801 Vila Real, Portugal;
- Functional Genomics and Proteomics Unit, University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
- Associated Laboratory for Green Chemistry (LAQV-REQUIMTE), University NOVA of Lisbon, 2829-516 Lisbon, Portugal
- Veterinary and Animal Research Centre, Associate Laboratory for Animal and Veterinary Science (AL4AnimalS), University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
| | - Sofia I. Gabriel
- CESAM—Centro de Estudos do Ambiente e do Mar, Departamento de Biologia da Universidade de Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal;
- Departamento de Biologia Animal, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal
| | - Sofia B. Borrego
- Direção Regional da Agricultura, Secretaria Regional da Agricultura e Desenvolvimento Rural, Quinta de São Gonçalo, 9500-343 Ponta Delgada, Portugal;
| | - Maria Teresa Tejedor-Junco
- Research Institute of Biomedical and Health Sciences, University of Las Palmas de Gran Canaria, 35001 Canary Islands, Spain;
- Department of Clinical Sciences, University of Las Palmas de Gran Canaria, 35001 Canary Islands, Spain
| | - Vera Manageiro
- National Reference Laboratory of Antibiotic Resistances and Healthcare Associated Infections (NRL-AMR/HAI), Department of Infectious Diseases, National Institute of Health Dr Ricardo Jorge, 1649-016 Lisbon, Portugal; (V.M.); (E.F.); (L.R.); (M.C.)
- Centre for the Studies of Animal Science, Institute of Agrarian and Agri-Food Sciences and Technologies, Oporto University, 4051-401 Oporto, Portugal
| | - Eugénia Ferreira
- National Reference Laboratory of Antibiotic Resistances and Healthcare Associated Infections (NRL-AMR/HAI), Department of Infectious Diseases, National Institute of Health Dr Ricardo Jorge, 1649-016 Lisbon, Portugal; (V.M.); (E.F.); (L.R.); (M.C.)
- Centre for the Studies of Animal Science, Institute of Agrarian and Agri-Food Sciences and Technologies, Oporto University, 4051-401 Oporto, Portugal
| | - Lígia Reis
- National Reference Laboratory of Antibiotic Resistances and Healthcare Associated Infections (NRL-AMR/HAI), Department of Infectious Diseases, National Institute of Health Dr Ricardo Jorge, 1649-016 Lisbon, Portugal; (V.M.); (E.F.); (L.R.); (M.C.)
| | - Manuela Caniça
- National Reference Laboratory of Antibiotic Resistances and Healthcare Associated Infections (NRL-AMR/HAI), Department of Infectious Diseases, National Institute of Health Dr Ricardo Jorge, 1649-016 Lisbon, Portugal; (V.M.); (E.F.); (L.R.); (M.C.)
- Centre for the Studies of Animal Science, Institute of Agrarian and Agri-Food Sciences and Technologies, Oporto University, 4051-401 Oporto, Portugal
| | - José L. Capelo
- BIOSCOPE Group, LAQV@REQUIMTE, Chemistry Department, Faculty of Science and Technology, NOVA University of Lisbon, 2825-466 Almada, Portugal;
- Proteomass Scientific Society, 2825-466 Costa de Caparica, Portugal
| | - Gilberto Igrejas
- Department of Genetics and Biotechnology, Functional Genomics and Proteomics’ Unit, University of Trás-os-Montes and Alto Douro, 5000-801 Vila Real, Portugal;
- Functional Genomics and Proteomics Unit, University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
- Associated Laboratory for Green Chemistry (LAQV-REQUIMTE), University NOVA of Lisbon, 2829-516 Lisbon, Portugal
| | - Patrícia Poeta
- Microbiology and Antibiotic Resistance Team (MicroART), Department of Veterinary Sciences, University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal;
- Associated Laboratory for Green Chemistry (LAQV-REQUIMTE), University NOVA of Lisbon, 2829-516 Lisbon, Portugal
- Veterinary and Animal Research Centre, Associate Laboratory for Animal and Veterinary Science (AL4AnimalS), University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
| |
Collapse
|
11
|
Wild Boars Carry Extended-Spectrum β-Lactamase- and AmpC-Producing Escherichia coli. Microorganisms 2021; 9:microorganisms9020367. [PMID: 33673341 PMCID: PMC7917586 DOI: 10.3390/microorganisms9020367] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 02/08/2021] [Accepted: 02/09/2021] [Indexed: 01/08/2023] Open
Abstract
Extended-spectrum β-lactamase (ESBL)-producing Escherichia coli and methicillin-resistant Staphylococcus aureus (MRSA) represent major healthcare concerns. The role of wildlife in the epidemiology of these bacteria is unclear. The purpose of this study was to determine their prevalence in wild boars in Germany and to characterize individual isolates. A total of 375 fecal samples and 439 nasal swabs were screened for the presence of ESBL-/AmpC-E. coli and MRSA, respectively. The associations of seven demographic and anthropogenic variables with the occurrence of ESBL-/AmpC-E. coli were statistically evaluated. Collected isolates were subjected to antimicrobial susceptibility testing, molecular typing methods, and gene detection by PCR and genome sequencing. ESBL-/AmpC-E. coli were detected in 22 fecal samples (5.9%) whereas no MRSA were detected. The occurrence of ESBL-/AmpC-E. coli in wild boars was significantly and positively associated with human population density. Of the 22 E. coli, 19 were confirmed as ESBL-producers and carried genes belonging to blaCTX-M group 1 or blaSHV-12. The remaining three isolates carried the AmpC-β-lactamase gene blaCMY-2. Several isolates showed additional antimicrobial resistances. All four major phylogenetic groups were represented with group B1 being the most common. This study demonstrates that wild boars can serve as a reservoir for ESBL-/AmpC-producing and multidrug-resistant E. coli.
Collapse
|
12
|
Plaza-Rodríguez C, Alt K, Grobbel M, Hammerl JA, Irrgang A, Szabo I, Stingl K, Schuh E, Wiehle L, Pfefferkorn B, Naumann S, Kaesbohrer A, Tenhagen BA. Wildlife as Sentinels of Antimicrobial Resistance in Germany? Front Vet Sci 2021; 7:627821. [PMID: 33585611 PMCID: PMC7873465 DOI: 10.3389/fvets.2020.627821] [Citation(s) in RCA: 67] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 12/31/2020] [Indexed: 12/21/2022] Open
Abstract
The presence of bacteria carrying antimicrobial resistance (AMR) genes in wildlife is an indicator that resistant bacteria of human or livestock origin are widespread in the environment. In addition, it could represent an additional challenge for human health, since wild animals could act as efficient AMR reservoirs and epidemiological links between human, livestock and natural environments. The aim of this study was to investigate the occurrence and the antibiotic resistance patterns of several bacterial species in certain wild animals in Germany, including wild boars (Sus scrofa), roe deer (Capreolus capreolus) and wild ducks (family Anatidae, subfamily Anatinae) and geese (family Anatidae, subfamily Anserinae). In the framework of the German National Zoonoses Monitoring Program, samples from hunted wild boars, roe deer and wild ducks and geese were collected nationwide in 2016, 2017, and 2019, respectively. Fecal samples were tested for the presence of Salmonella spp. (in wild boars and wild ducks and geese), Campylobacter spp. (in roe deer and wild ducks and geese), Shiga toxin-producing Escherichia (E.) coli (STEC), commensal E. coli and extended-spectrum beta-lactamase- (ESBL) or ampicillinase class C (AmpC) beta-lactamase-producing E. coli (in wild boars, roe deer and wild ducks and geese). In addition, the presence of methicillin-resistant Staphylococcus aureus (MRSA) was investigated in nasal swabs from wild boars. Isolates obtained in the accredited regional state laboratories were submitted to the National Reference Laboratories (NRLs) for confirmation, characterization and phenotypic resistance testing using broth microdilution according to CLSI. AMR was assessed according to epidemiological cut-offs provided by EUCAST. Salmonella spp. were isolated from 13 of 552 (2.4%) tested wild boar fecal samples, but absent in all 101 samples from wild ducks and geese. Nine of the 11 isolates that were submitted to the NRL Salmonella were susceptible to all tested antimicrobial substances. Campylobacter spp. were isolated from four out of 504 (0.8%) roe deer fecal samples, but not from any of the samples from wild ducks and geese. Of the two isolates received in the NRL Campylobacter, neither showed resistance to any of the substances tested. From roe deer, 40.2% of the fecal samples (144 of 358) yielded STEC compared to 6.9% (37 of 536) from wild boars. In wild ducks and geese, no STEC isolates were found. Of 150 STEC isolates received in the NRL (24 from wild boars and 126 from roe deer), only one from each animal species showed resistance. Of the 219 isolates of commensal E. coli from wild boars tested for AMR, 210 were susceptible to all 14 tested substances (95.9%). In roe deer this proportion was even higher (263 of 269, 97.8%), whereas in wild ducks and geese this proportion was lower (41 of 49, 83.7%). Nevertheless, selective isolation of ESBL-/AmpC-producing E. coli yielded 6.5% (36 of 551) positive samples from wild boars, 2.3% (13 of 573) from roe deer and 9.8% (10 of 102) from wild ducks and geese. Among the 25 confirmed ESBL-/AmpC-producing isolates from wild boars, 14 (56.0%) showed resistance up to five classes of substances. This proportion was lower in roe deer (3 of 12, 25%) and higher in wild ducks and geese (7 of 10, 70%). None of the 577 nasal swabs from wild boars yielded MRSA. Results indicate that overall, the prevalence of resistant bacteria from certain wild animals in Germany is low, which may reflect not only the low level of exposure to antimicrobials but also the low level of resistant bacteria in the areas where these animals live and feed. However, despite this low prevalence, the patterns observed in bacteria from the wild animals included in this study are an indicator for specific resistance traits in the environment, including those to highest priority substances such as 3rd generation cephalosporins, fluoroquinolones and colistin. Therefore, also continuous monitoring of the occurrence of such bacteria in wildlife by selective isolation is advisable. Furthermore, the possible role of wildlife as reservoir and disperser of resistant bacteria would need to be assessed, as wild animals, and in particular wild ducks and geese could become spreaders of resistant bacteria given their capacity for long-range movements.
Collapse
Affiliation(s)
- Carolina Plaza-Rodríguez
- Department Biological Safety, German Federal Institute for Risk Assessment (BfR), Berlin, Germany
| | - Katja Alt
- Department Biological Safety, German Federal Institute for Risk Assessment (BfR), Berlin, Germany
| | - Mirjam Grobbel
- Department Biological Safety, German Federal Institute for Risk Assessment (BfR), Berlin, Germany
| | - Jens Andre Hammerl
- Department Biological Safety, German Federal Institute for Risk Assessment (BfR), Berlin, Germany
| | - Alexandra Irrgang
- Department Biological Safety, German Federal Institute for Risk Assessment (BfR), Berlin, Germany
| | - Istvan Szabo
- Department Biological Safety, German Federal Institute for Risk Assessment (BfR), Berlin, Germany
| | - Kerstin Stingl
- Department Biological Safety, German Federal Institute for Risk Assessment (BfR), Berlin, Germany
| | - Elisabeth Schuh
- Department Biological Safety, German Federal Institute for Risk Assessment (BfR), Berlin, Germany
| | - Lars Wiehle
- Department Food, Feed, Consumer Goods, German Federal Office of Consumer Protection and Food Safety (BVL), Berlin, Germany
| | - Beatrice Pfefferkorn
- Department Food, Feed, Consumer Goods, German Federal Office of Consumer Protection and Food Safety (BVL), Berlin, Germany
| | - Steffen Naumann
- Department Food, Feed, Consumer Goods, German Federal Office of Consumer Protection and Food Safety (BVL), Berlin, Germany
| | - Annemarie Kaesbohrer
- Department Biological Safety, German Federal Institute for Risk Assessment (BfR), Berlin, Germany
| | - Bernd-Alois Tenhagen
- Department Biological Safety, German Federal Institute for Risk Assessment (BfR), Berlin, Germany
| |
Collapse
|
13
|
Staphylococcus Spp. from Wild Mammals in Aragón (Spain): Antibiotic Resistance Status. J Vet Res 2020; 64:373-379. [PMID: 32984626 PMCID: PMC7497752 DOI: 10.2478/jvetres-2020-0057] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Accepted: 08/24/2020] [Indexed: 11/20/2022] Open
Abstract
Introduction Antimicrobial resistance is a global health threat. It has been studied in humans and domestic animals, but there is a lack of data on wild animals. The objective of this study is the elucidation of its patterns in Staphylococcus spp. isolated from wild mammals of the Autonomous Community of Aragón (Spain). Material and Methods A total of 103 mammals (Artiodactyla, Carnivora, Chiroptera, Erinaceomorpha, and Lagomorpha) were studied. A recovery centre provided 32 and hunting 71. Nasal and faecal samples yielded 111 staphylococci, which were identified by matrix-assisted laser desorption/ionization–time of flight mass spectrometry. A susceptibility test to 11 antibiotics was carried out, and statistical analysis was performed. Results Some differences were detected in bacterial prevalence depending on how the mammal fed. Artiodactyla, mainly hunted, were predisposed to carry coagulase-positive staphylococci. The staphylococci species recovered were resistant to at least two classes of antibiotics, and were disseminated in all of the geographical areas studied. Conclusion Resistant staphylococci are widely distributed in the wild mammals in the areas of the study, but the resistance quantified in them is lower than that to be expected if the use of antibiotics in farms had a direct influence on the wildlife and its environment. On the other hand, resistance to antibiotics restricted to human use was widely disseminated in various wild animal species.
Collapse
|
14
|
Torres RT, Fernandes J, Carvalho J, Cunha MV, Caetano T, Mendo S, Serrano E, Fonseca C. Wild boar as a reservoir of antimicrobial resistance. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 717:135001. [PMID: 31839282 DOI: 10.1016/j.scitotenv.2019.135001] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 09/19/2019] [Accepted: 10/14/2019] [Indexed: 06/10/2023]
Abstract
Antimicrobial resistance (AMR) has been recognized as an emerging and growing problem worldwide. Knowledge concerning AMR bacteria circulating in wildlife is currently limited, although it could provide important insights into AMR emergence and persistence. Across Europe, wild boar (Sus scrofa) populations have dramatically increased their distribution and number over the last decades. In the context of AMR dynamics, wild boar is a perfect model species to unveil the emergence, spread and persistence of AMR at the human-livestock-wildlife interface. Here, we summarize the current knowledge on the importance of wild boar as a reservoir of antimicrobial resistant bacteria, and its possible use as sentinel species for surveillance. Analyses of available data showed a rising interest on this topic in the last years, highlighting the growing concern on wild boar potential role as AMR facilitator and it is foreseen that the importance of antimicrobial resistance research in wild boar will continue to increase in years to come. Available studieshave been focused on specific bacterial species, particularlyE. coli, Salmonellaspp. andEnterococcusspp., bioindicators of AMR, and have been mainly conducted in three countries: Spain, Portugal and Germany.Strikingly, AMR surveillance in wild boar is uneven and still poorly allocated as many wild boar high-density countries do not yet have publications on the topic.Overall, accumulated data showed thatwild boar are carriers of antimicrobial resistant bacteria, withvariation in the prevalence of bacterial species and thepercentage of resistance to different antibiotics. Thelack of harmonized sampling and testing protocols makes it difficult to compare AMR in wild boar.The need for the establishment of standardised protocols keen to provide quantitative comparable data is highlighted. We finally suggest the long-term monitoring of wild boar as a sentinel species for AMR surveillance in order to inform public policies on this topic.
Collapse
Affiliation(s)
| | - Joana Fernandes
- Department of Biology & CESAM, University of Aveiro, Portugal
| | - João Carvalho
- Department of Biology & CESAM, University of Aveiro, Portugal
| | - Mónica V Cunha
- National Institute for Agrarian and Veterinary Research (INIAV, IP), Av. da República, Quinta do Marquês, 2780-157 Oeiras, Portugal; Centre for Ecology, Evolution and Environmental Changes (cE3c), Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisbon, Portugal; Biosystems & Integrative Sciences Institute (BioISI), Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisbon, Portugal
| | - Tânia Caetano
- Department of Biology & CESAM, University of Aveiro, Portugal
| | - Sónia Mendo
- Department of Biology & CESAM, University of Aveiro, Portugal
| | - Emmanuel Serrano
- Wildlife Ecology & Health group (WE&H), and Servei d'Ecopatologia de Fauna Salvatge (SEFaS), Departament de Medicina i Cirurgia Animals, Facultat de Veterinària, Universitat Autònoma de Barcelona (UAB), Bellaterra, Spain; Dipartimento di Scienze Veterinarie, Universitá di Torino, Grugliasco, Torino, Italy
| | - Carlos Fonseca
- Department of Biology & CESAM, University of Aveiro, Portugal
| |
Collapse
|
15
|
Molecular Epidemiology of Staphylococcus aureus Lineages in Wild Animals in Europe: A Review. Antibiotics (Basel) 2020; 9:antibiotics9030122. [PMID: 32183272 PMCID: PMC7148531 DOI: 10.3390/antibiotics9030122] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 03/07/2020] [Accepted: 03/10/2020] [Indexed: 12/20/2022] Open
Abstract
Staphylococcus aureus is an opportunist pathogen that is responsible for numerous types of infections. S. aureus is known for its ability to easily acquire antibiotic resistance determinants. Methicillin-resistant S. aureus (MRSA) is a leading cause of infections both in humans and animals and is usually associated with a multidrug-resistant profile. MRSA dissemination is increasing due to its capability of establishing new reservoirs and has been found in humans, animals and the environment. Despite the fact that the information on the incidence of MRSA in the environment and, in particular, in wild animals, is scarce, some studies have reported the presence of these strains among wildlife with no direct contact with antibiotics. This shows a possible transmission between species and, consequently, a public health concern. The aim of this review is to better understand the distribution, prevalence and molecular lineages of MRSA in European free-living animals.
Collapse
|
16
|
Heaton CJ, Gerbig GR, Sensius LD, Patel V, Smith TC. Staphylococcus aureus Epidemiology in Wildlife: A Systematic Review. Antibiotics (Basel) 2020; 9:E89. [PMID: 32085586 PMCID: PMC7168057 DOI: 10.3390/antibiotics9020089] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Revised: 02/05/2020] [Accepted: 02/13/2020] [Indexed: 01/05/2023] Open
Abstract
Staphylococcus aureus is a common bacterial colonizer of humans and a variety of animal species. Many strains have zoonotic potential, moving between humans and animals, including livestock, pets, and wildlife. We examined publications reporting on S. aureus presence in a variety of wildlife species in order to more cohesively review distribution of strains and antibiotic resistance in wildlife. Fifty-one studies were included in the final qualitative synthesis. The most common types documented included ST398, ST425, ST1, ST133, ST130, and ST15. A mix of methicillin-resistant and methicillin-susceptible strains were noted. A number of molecular types were identified that were likely to be found in wildlife species, including those that are commonly found in humans or other animal species (including livestock). Additional research should include follow-up in geographic areas that are under-sampled in this study, which is dominated by European studies.
Collapse
Affiliation(s)
| | | | | | | | - Tara C. Smith
- Kent State University, College of Public Health, Kent, OH 44240, USA; (C.J.H.); (G.R.G.); (L.D.S.); (V.P.)
| |
Collapse
|
17
|
Mama OM, Ruiz-Ripa L, Fernández-Fernández R, González-Barrio D, Ruiz-Fons JF, Torres C. High frequency of coagulase-positive staphylococci carriage in healthy wild boar with detection of MRSA of lineage ST398-t011. FEMS Microbiol Lett 2019; 366:5301339. [PMID: 30689826 DOI: 10.1093/femsle/fny292] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Accepted: 12/20/2018] [Indexed: 01/03/2023] Open
Abstract
The objective of this study was to determine the frequency and diversity of coagulase-positive staphylococci (CoPS) in nasal samples of healthy wild boar, to study their resistance phenotypes/genotypes and to check the occurrence of the MRSA-ST398. Nasal samples of 371 wild boars were collected in Spain for staphylococci and MRSA recovery. Staphylococci identification was performed by matrix-assisted laser desorption/ionization time of flight mass spectrometry (MALDI-TOF). The susceptibility to 11 antimicrobials was tested by disc-diffusion and the presence of resistance genes by PCR. Molecular typing and virulence factors determination were carried out by PCR and sequencing. The rate of CoPS carriage (Staphylococcus aureus, Staphylococcus hyicus and Staphylococcus pseudintermedius) in wild boar was of 17.8% (13.7%, 2.7% and 1.6%, respectively). Susceptibility to all tested antimicrobials was shown in 74.5% of S. aureus and one strain was MRSA [lineage ST398-t011-agrI, carrying blaZ, mecA, tet(M) and tet(K) genes]. A total of 22 spa-types and 17 STs were detected among S. aureus, including: ST398/CC398 (n = 1), ST2328-ST133/CC133 (n = 20), ST425/CC425 (n = 7), ST5/CC5 (n = 5), ST1/CC1 (n = 3), ST130/CC130 (n = 2) and ST88/CC88 (n = 1). Two spa-types (t02, t15) and four STs (ST455, ST796, ST797, ST798) were detected among the six S. pseudintermedius isolates recovered, and all of them carried the lukF/S-I and siet virulence genes. All S. hyicus isolates were susceptible to antimicrobials tested.
Collapse
Affiliation(s)
- Olouwafemi Mistourath Mama
- Área de Bioquímica y Biología Molecular, Universidad de La Rioja, Logroño, Madre de Dios 51, 26006 Logroño, Spain
| | - Laura Ruiz-Ripa
- Área de Bioquímica y Biología Molecular, Universidad de La Rioja, Logroño, Madre de Dios 51, 26006 Logroño, Spain
| | - Rosa Fernández-Fernández
- Área de Bioquímica y Biología Molecular, Universidad de La Rioja, Logroño, Madre de Dios 51, 26006 Logroño, Spain
| | - David González-Barrio
- Grupo SaBio, Instituto de Investigación en Recursos Cinegéticos IREC (CSIC-UCLM-JCCM), Ronda de Toledo, 12 13071 Ciudad Real España, Spain
| | - Jose Francisco Ruiz-Fons
- Grupo SaBio, Instituto de Investigación en Recursos Cinegéticos IREC (CSIC-UCLM-JCCM), Ronda de Toledo, 12 13071 Ciudad Real España, Spain
| | - Carmen Torres
- Área de Bioquímica y Biología Molecular, Universidad de La Rioja, Logroño, Madre de Dios 51, 26006 Logroño, Spain
| |
Collapse
|
18
|
Molecular Characterization of Equine Staphylococcus aureus Isolates Exhibiting Reduced Oxacillin Susceptibility. Toxins (Basel) 2019; 11:toxins11090535. [PMID: 31540335 PMCID: PMC6783909 DOI: 10.3390/toxins11090535] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Revised: 09/08/2019] [Accepted: 09/09/2019] [Indexed: 01/15/2023] Open
Abstract
The detection of borderline oxacillin-resistant Staphylococcus aureus (BORSA) represents a challenge to both, veterinary and human laboratories. Between 2015 and 2017, 19 equine S. aureus with elevated minimal inhibitory concentrations for oxacillin were detected in routine diagnostics. The aim of this study was to characterize these isolates to identify factors possibly associated with the BORSA phenotype. All S. aureus were subjected to antimicrobial susceptibility testing and whole genome sequencing (WGS). A quantifiable β-lactamase activity assay was performed for a representative subset of 13 isolates. The WGS data analysis of the 19 BORSA isolates identified two different genomic lineages, sequence type (ST) 1 and ST1660. The core genome multilocus sequence typing (cgMLST) revealed a close relatedness of all isolates belonging to either ST1 or ST1660. The WGS analysis identified the resistance genes aadD, dfrG, tet(L), and/or blaZ and aacA-aphD. Phenotypic resistance to penicillins, aminoglycosides, tetracyclines, fluoroquinolones and sulfamethoxazole/trimethoprim was observed in the respective isolates. For the penicillin-binding proteins 1-4, amino acid substitutions were predicted using WGS data. Since neither transglycosylase nor transpeptidase domains were affected, these alterations might not explain the BORSA phenotype. Moreover, β-lactamase activity was found to be associated with an inducible blaZ gene. The lineage-specific differences regarding the expression profiles were noted.
Collapse
|
19
|
Li P, Liu D, Zhang X, Tuo H, Lei C, Xie X, Gu J, Zhang A. Characterization of Plasmid-Mediated Quinolone Resistance in Gram-Negative Bacterial Strains from Animals and Humans in China. Microb Drug Resist 2019; 25:1050-1056. [DOI: 10.1089/mdr.2018.0405] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Affiliation(s)
- Ping Li
- Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, P.R. China
| | - Dan Liu
- Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, P.R. China
| | - Xiuzhong Zhang
- Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, P.R. China
| | - Hongmei Tuo
- Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, P.R. China
| | - Changwei Lei
- Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, P.R. China
| | - Xianjun Xie
- Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, P.R. China
| | - Ju Gu
- Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, P.R. China
| | - Anyun Zhang
- Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, P.R. China
| |
Collapse
|
20
|
Ruiz-Ripa L, Alcalá L, Simón C, Gómez P, Mama OM, Rezusta A, Zarazaga M, Torres C. Diversity of Staphylococcus aureus clones in wild mammals in Aragon, Spain, with detection of MRSA ST130-mecC in wild rabbits. J Appl Microbiol 2019; 127:284-291. [PMID: 31063623 DOI: 10.1111/jam.14301] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2019] [Revised: 04/05/2019] [Accepted: 04/28/2019] [Indexed: 01/09/2023]
Abstract
AIMS To determine the Staphylococcus aureus carriage rate in wild mammals in Aragon, northern Spain, to analyse their antimicrobial resistance phenotype/genotype and to characterize the recovered isolates. METHODS AND RESULTS Nasal and rectal swabs of 103 mammals were collected in Aragón during the period 2012-2015. Antimicrobial susceptibility, the presence of antimicrobial resistance genes and virulence factors were investigated. Molecular characterization was carried out by spa, MLST, agr and SCCmec. Staphylococcus aureus were recovered from 23 animals (22%). Four of the 23 S. aureus were methicillin-resistant S. aureus (MRSA). Three MRSA were mecC-positive and were isolated from European rabbits and were typed as t843 (ascribed to CC130). The remaining MRSA was a mecA-carrying isolate from European hedgehog, typed as ST1-t386-SCCmecIVa-agrIII and it harboured the blaZ, erm(C), ant(6)-Ia and aph(3´)-IIIa resistance genes. A high diversity of spa-types was detected among the 19 methicillin-susceptible S. aureus isolates, which showed high susceptibility to the antimicrobials tested. The tst gene and different combinations of staphylococcal enterotoxins were found. CONCLUSIONS Staphylococcus aureus were detected in nasal and rectal samples of wild mammals. Wild rabbits could be a reservoir of mecC-MRSA. SIGNIFICANCE AND IMPACT OF THE STUDY This work provides information on the presence and characteristics of S. aureus from mammals in a defined geographic region in Spain.
Collapse
Affiliation(s)
- L Ruiz-Ripa
- Área de Bioquímica y Biología Molecular, Universidad de La Rioja, Logroño, Spain
| | - L Alcalá
- Departamento de Patología Animal, Universidad de Zaragoza, Zaragoza, Spain
| | - C Simón
- Departamento de Patología Animal, Universidad de Zaragoza, Zaragoza, Spain
| | - P Gómez
- Área de Bioquímica y Biología Molecular, Universidad de La Rioja, Logroño, Spain
| | - O M Mama
- Área de Bioquímica y Biología Molecular, Universidad de La Rioja, Logroño, Spain
| | - A Rezusta
- Servicio de Microbiología, Hospital Universitario Miguel Servet, IIS Aragón, Zaragoza, Spain
| | - M Zarazaga
- Área de Bioquímica y Biología Molecular, Universidad de La Rioja, Logroño, Spain
| | - C Torres
- Área de Bioquímica y Biología Molecular, Universidad de La Rioja, Logroño, Spain
| |
Collapse
|
21
|
Mama OM, Ruiz-Ripa L, Lozano C, González-Barrio D, Ruiz-Fons JF, Torres C. High diversity of coagulase negative staphylococci species in wild boars, with low antimicrobial resistance rates but detection of relevant resistance genes. Comp Immunol Microbiol Infect Dis 2019; 64:125-129. [PMID: 31094318 DOI: 10.1016/j.cimid.2019.03.006] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Revised: 03/03/2019] [Accepted: 03/04/2019] [Indexed: 01/27/2023]
Abstract
This work was focused to determine the prevalence and the species diversity of coagulase-negative staphylococci (CoNS) in wild boars, and to study their antimicrobial resistance phenotype and genotype. Nasal samples of 371 wild boars from six Spanish regions were collected for CoNS recovery. The identification was performed by MALDI-TOF mass-spectrometry. Antimicrobial susceptibility for eight antimicrobial agents was studied by disc-diffusion method and the presence of 31 antimicrobial resistance genes by PCR. CoNS were detected in nasal samples of 136/371 animals tested (36.6%), and 161 isolates were obtained (1-3/animal); a high diversity of species was found (n = 17), with predominance of S. sciuri (n = 64), S. xylosus (n = 21) and S. chromogenes (n = 17). Among CoNS isolates, 22.4% showed resistance to at least one antimicrobial tested. Tetracycline-resistance phenotype was the most frequently detected (10.5%), generally mediated by tet(K) gene [associated or not with tet(L)]. Other relevant resistance genes were identified including unusual ones [mecA, erm(B), erm(F), mphC, erm(43), msr(A)/msr(B), lnu(A), dfrG, fexA, and catpC221]. This is the first study in which CoNS isolates from wild boars are analysed. The knowledge of antimicrobial phenotype and genotype of CoNS in natural ecosystems is highly important since these staphylococcal species can act as vectors of relevant antimicrobial resistance mechanisms.
Collapse
Affiliation(s)
| | - Laura Ruiz-Ripa
- Área de Bioquímica y Biología Molecular, Universidad de La Rioja, Logroño, Spain
| | - Carmen Lozano
- Área de Bioquímica y Biología Molecular, Universidad de La Rioja, Logroño, Spain
| | - David González-Barrio
- Grupo SaBio, Instituto de Investigación en Recursos Cinegéticos IREC (CSIC-UCLM-JCCM), Ciudad Real, Spain
| | - Jose Francisco Ruiz-Fons
- Grupo SaBio, Instituto de Investigación en Recursos Cinegéticos IREC (CSIC-UCLM-JCCM), Ciudad Real, Spain
| | - Carmen Torres
- Área de Bioquímica y Biología Molecular, Universidad de La Rioja, Logroño, Spain.
| |
Collapse
|