1
|
Zubair M, Wang J, Yu Y, Faisal M, Qi M, Shah AU, Feng Z, Shao G, Wang Y, Xiong Q. Proteomics approaches: A review regarding an importance of proteome analyses in understanding the pathogens and diseases. Front Vet Sci 2022; 9:1079359. [PMID: 36601329 PMCID: PMC9806867 DOI: 10.3389/fvets.2022.1079359] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 11/28/2022] [Indexed: 12/23/2022] Open
Abstract
Proteomics is playing an increasingly important role in identifying pathogens, emerging and re-emerging infectious agents, understanding pathogenesis, and diagnosis of diseases. Recently, more advanced and sophisticated proteomics technologies have transformed disease diagnostics and vaccines development. The detection of pathogens is made possible by more accurate and time-constrained technologies, resulting in an early diagnosis. More detailed and comprehensive information regarding the proteome of any noxious agent is made possible by combining mass spectrometry with various gel-based or short-gun proteomics approaches recently. MALDI-ToF has been proved quite useful in identifying and distinguishing bacterial pathogens. Other quantitative approaches are doing their best to investigate bacterial virulent factors, diagnostic markers and vaccine candidates. Proteomics is also helping in the identification of secreted proteins and their virulence-related functions. This review aims to highlight the role of cutting-edge proteomics approaches in better understanding the functional genomics of pathogens. This also underlines the limitations of proteomics in bacterial secretome research.
Collapse
Affiliation(s)
- Muhammad Zubair
- Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Jia Wang
- Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Yanfei Yu
- Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, China,School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China,College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Muhammad Faisal
- Division of Hematology, Department of Medicine, The Ohio State University College of Medicine, The Ohio State University Comprehensive Cancer Center, Columbus, OH, United States
| | - Mingpu Qi
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Abid Ullah Shah
- National Research Centre of Engineering and Technology for Veterinary Biologicals, Institute of Veterinary Immunology and Engineering, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Zhixin Feng
- Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Guoqing Shao
- Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, China,School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Yu Wang
- China Pharmaceutical University, Nanjing, China,*Correspondence: Yu Wang
| | - Qiyan Xiong
- Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, China,College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China,School of Life Sciences, Jiangsu University, Zhenjiang, China,Qiyan Xiong
| |
Collapse
|
2
|
Weiße C, Dittmar D, Jakóbczak B, Florian V, Schütze N, Alber G, Klose K, Michalik S, Valentin-Weigand P, Völker U, Baums CG. Immunogenicity and protective efficacy of a Streptococcus suis vaccine composed of six conserved immunogens. Vet Res 2021; 52:112. [PMID: 34433500 PMCID: PMC8390293 DOI: 10.1186/s13567-021-00981-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Accepted: 05/20/2021] [Indexed: 01/12/2023] Open
Abstract
A vaccine protecting against different Streptococcus suis serotypes is highly needed in porcine practice to improve animal welfare and reduce the use of antibiotics. We hypothesized that immunogens prominently recognized by convalescence sera but significantly less so by sera of susceptible piglets are putative protective antigens. Accordingly, we investigated immunogenicity and protective efficacy of a multicomponent vaccine including six main conserved immunogens, namely SSU0934, SSU1869, SSU0757, SSU1950, SSU1664 and SSU0187. Flow cytometry confirmed surface expression of all six immunogens in S. suis serotypes 2, 9 and 14. Although prime-booster vaccination after weaning resulted in significantly higher specific IgG levels against all six immunogens compared to the placebo-treated group, no significant differences between bacterial survival in blood from either vaccinated or control animals were recorded for serotype 2, 9 and 14 strains. Furthermore, vaccinated piglets were not protected against morbidity elicited through intranasal challenge with S. suis serotype 14. As ~50% of animals in both groups did not develop disease, we investigated putative other correlates of protection. Induction of reactive oxygen species (ROS) in blood granulocytes was not associated with vaccination but correlated with protection as all piglets with >5% ROS survived the challenge. Based on these findings we discuss that the main immunogens of S. suis might actually not be a priori good candidates for protective antigens. On the contrary, expression of immunogens that evoke antibodies that do not mediate killing of this pathogen might constitute an evolutionary advantage conserved in many different S. suis strains.
Collapse
Affiliation(s)
- Christine Weiße
- Institute of Bacteriology and Mycology, Centre for Infectious Diseases, Faculty of Veterinary Medicine, Leipzig University, Leipzig, Germany
| | - Denise Dittmar
- Department of Functional Genomics, Interfaculty Institute for Genetics and Functional Genomics, University Medicine Greifswald, Greifswald, Germany
| | | | | | - Nicole Schütze
- Institute of Immunology, Centre for Infectious Diseases, Faculty of Veterinary Medicine, Leipzig University, Leipzig, Germany
| | - Gottfried Alber
- Institute of Immunology, Centre for Infectious Diseases, Faculty of Veterinary Medicine, Leipzig University, Leipzig, Germany
| | - Kristin Klose
- Institute of Pathology, Faculty of Veterinary Medicine, Leipzig University, Leipzig, Germany
| | - Stephan Michalik
- Department of Functional Genomics, Interfaculty Institute for Genetics and Functional Genomics, University Medicine Greifswald, Greifswald, Germany
| | - Peter Valentin-Weigand
- Department of Infectious Diseases, Institute for Microbiology, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Uwe Völker
- Department of Functional Genomics, Interfaculty Institute for Genetics and Functional Genomics, University Medicine Greifswald, Greifswald, Germany
| | - Christoph Georg Baums
- Institute of Bacteriology and Mycology, Centre for Infectious Diseases, Faculty of Veterinary Medicine, Leipzig University, Leipzig, Germany.
| |
Collapse
|
3
|
Comparative Exoproteome Analysis of Streptococcus suis Human Isolates. Microorganisms 2021; 9:microorganisms9061287. [PMID: 34204746 PMCID: PMC8231589 DOI: 10.3390/microorganisms9061287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Revised: 06/03/2021] [Accepted: 06/09/2021] [Indexed: 11/23/2022] Open
Abstract
The swine pathogen Streptococcus suis is a Gram-positive bacterium which causes infections in pigs, with an impact in animal health and in the livestock industry, and it is also an important zoonotic agent. During the infection process, surface and secreted proteins are essential in the interaction between microorganisms and their hosts. Here, we report a comparative proteomic analysis of the proteins released to the extracellular milieu in six human clinical isolates belonging to the highly prevalent and virulent serotype 2. The total secreted content was precipitated and analyzed by GeLC-MS/MS. In the six strains, 144 proteins assigned to each of the categories of extracellular or surface proteins were identified, as well as 680 predicted cytoplasmic proteins, many of which are putative moonlighting proteins. Of the nine predicted signal peptide-I secreted proteins, seven had relevant antigenic potential when they were analyzed through bioinformatic analysis. This is the first work comparing the exoproteome fraction of several human isolates of this important pathogen.
Collapse
|
4
|
Galán-Relaño Á, Gómez-Gascón L, Rodríguez-Franco A, Luque I, Huerta B, Tarradas C, Rodríguez-Ortega MJ. Search of Potential Vaccine Candidates against Trueperella pyogenes Infections through Proteomic and Bioinformatic Analysis. Vaccines (Basel) 2020; 8:vaccines8020314. [PMID: 32560444 PMCID: PMC7350218 DOI: 10.3390/vaccines8020314] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Revised: 06/11/2020] [Accepted: 06/14/2020] [Indexed: 11/16/2022] Open
Abstract
Trueperella pyogenes is an opportunistic pathogen, responsible for important infections in pigs and significant economic losses in swine production. To date, there are no available commercial vaccines to control diseases caused by this bacterium. In this work, we performed a comparative proteomic analysis of 15 T. pyogenes clinical isolates, by “shaving” live cells, followed by LC-MS/MS, aiming at the identification of the whole set of surface proteins (i.e., the “pan-surfome”) as a source of antigens to be tested in further studies as putative vaccine candidates, or used in diagnostic tools. A total of 140 surface proteins were detected, comprising 25 cell wall proteins, 10 secreted proteins, 23 lipoproteins and 82 membrane proteins. After describing the “pan-surfome”, the identified proteins were ranked in three different groups based on the following criteria: to be (i) surface-exposed, (ii) highly conserved and (iii) widely distributed among different isolates. Two cell wall proteins, three lipoproteins, four secreted and seven membrane proteins were identified in more than 70% of the studied strains, were highly expressed and highly conserved. These proteins are potential candidates, alone or in combination, to obtain effective vaccines against T. pyogenes or to be used in the diagnosis of this pathogen.
Collapse
Affiliation(s)
- Ángela Galán-Relaño
- Departamento de Sanidad Animal, Universidad de Córdoba; Campus de Excelencia Internacional CeiA3, 14071 Córdoba, Spain; (Á.G.-R.); (I.L.); (B.H.); (C.T.)
| | - Lidia Gómez-Gascón
- Departamento de Sanidad Animal, Universidad de Córdoba; Campus de Excelencia Internacional CeiA3, 14071 Córdoba, Spain; (Á.G.-R.); (I.L.); (B.H.); (C.T.)
- Correspondence:
| | - Antonio Rodríguez-Franco
- Departamento de Bioquímica y Biología Molecular, Universidad de Córdoba, and Campus de Excelencia Internacional CeiA3, 14071 Córdoba, Spain; (A.R.-F.); (M.J.R.-O.)
| | - Inmaculada Luque
- Departamento de Sanidad Animal, Universidad de Córdoba; Campus de Excelencia Internacional CeiA3, 14071 Córdoba, Spain; (Á.G.-R.); (I.L.); (B.H.); (C.T.)
| | - Belén Huerta
- Departamento de Sanidad Animal, Universidad de Córdoba; Campus de Excelencia Internacional CeiA3, 14071 Córdoba, Spain; (Á.G.-R.); (I.L.); (B.H.); (C.T.)
| | - Carmen Tarradas
- Departamento de Sanidad Animal, Universidad de Córdoba; Campus de Excelencia Internacional CeiA3, 14071 Córdoba, Spain; (Á.G.-R.); (I.L.); (B.H.); (C.T.)
| | - Manuel J. Rodríguez-Ortega
- Departamento de Bioquímica y Biología Molecular, Universidad de Córdoba, and Campus de Excelencia Internacional CeiA3, 14071 Córdoba, Spain; (A.R.-F.); (M.J.R.-O.)
| |
Collapse
|
5
|
Xing X, Bi S, Fan X, Jin M, Liu W, Wang B. Intranasal Vaccination With Multiple Virulence Factors Promotes Mucosal Clearance of Streptococcus suis Across Serotypes and Protects Against Meningitis in Mice. J Infect Dis 2020; 220:1679-1687. [PMID: 31287878 DOI: 10.1093/infdis/jiz352] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Accepted: 07/08/2019] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Streptococcus suis is an emerging zoonotic agent. Its natural habitat is the tonsils, which are the main portals of S. suis entry into the bloodstream of pigs. The remarkable variability of the bacteria and complex pathogenic mechanisms make the development of a vaccine a difficult task. METHOD Five conserved virulence factors involved in critical events of S. suis pathogenesis were combined and used as an intranasal vaccine (V5). The effect of V5 was investigated with intranasal and systemic challenge models. RESULTS V5 induced antibody and T-cell responses at the mucosal site and systemically. The immunity promoted clearance of S. suis from the nasopharynx independent of S. suis serotypes and reduced lethality after systemic challenge with S. suis serotype 2. Moreover, mice that survived sepsis from intravenous infection developed meningitis, whereas none of these mice showed neuropathological symptoms after V5 receipt. CONCLUSION Intranasal immunization with multiple conserved virulence factors decreases S. suis colonization at the nasopharynx across serotypes and inhibits the dissemination of the bacteria in the host. The protective mucosal immunity effects would potentially reduce the S. suis reservoir and prevent S. suis disease in pigs.
Collapse
Affiliation(s)
- Xinxin Xing
- Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences.,Savaid Medical School, University of Chinese Academy of Sciences, Beijing
| | - Shuai Bi
- Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences
| | - Xin Fan
- Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences
| | - Meilin Jin
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
| | - Wenjun Liu
- Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences
| | - Beinan Wang
- Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences
| |
Collapse
|
6
|
Proteomic and Bioinformatic Analysis of Streptococcus suis Human Isolates: Combined Prediction of Potential Vaccine Candidates. Vaccines (Basel) 2020; 8:vaccines8020188. [PMID: 32325736 PMCID: PMC7348792 DOI: 10.3390/vaccines8020188] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Revised: 04/14/2020] [Accepted: 04/16/2020] [Indexed: 12/15/2022] Open
Abstract
Streptococcus suis is a Gram-positive bacterium responsible for major infections in pigs and economic losses in the livestock industry, but also an emerging zoonotic pathogen causing serious diseases in humans. No vaccine is available so far against this microorganism. Conserved surface proteins are among the most promising candidates for new and effective vaccines. Until now, research on this pathogen has focused on swine isolates, but there is a lack of studies to identify and characterize surface proteins from human clinical isolates. In this work, we performed a comparative proteomic analysis of six clinical isolates from human patients, all belonging to the major serotype 2, by “shaving” the live bacterial cells with trypsin, followed by LC-MS/MS analysis. We identified 131 predicted surface proteins and carried out a label-free semi-quantitative analysis of protein abundances within the six strains. Then, we combined our proteomics results with bioinformatic tools to help improving the selection of novel antigens that can enter the pipeline of vaccine candidate testing. Our work is then a complement to the reverse vaccinology concept.
Collapse
|