1
|
Wei X, Wang J, Chang X, He S, Duan P, Jia C, Guo X. Interfacial Stereoelectronic Effect Induced by Anchoring Orientation. NANO LETTERS 2024. [PMID: 39018129 DOI: 10.1021/acs.nanolett.4c02665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/19/2024]
Abstract
Heterogeneous interfaces in most devices play a key role in the material performance. Exploring the atomic structure and electronic properties of metal-molecule interfaces is critical for various potential applications, such as surface sensing, molecular recognition, and molecular electronic devices. This study unveils a ubiquitous interfacial stereoelectronic effect in conjugated molecular junctions by combining first-principles simulation and scanning tunneling microscopy break junction technology. Single-molecule junctions with same-side interfacial anchoring (cis configuration) exhibit higher conductance than those with opposite-side interfacial anchoring (trans configuration). The cis and trans configurations can undergo reversible conversions, resulting in a conductance switching. The stability of these configurations can be adjusted by an electric field, achieving precise regulation of conductance states. Our findings provide important insights for designing high-quality materials and enhancing the device performance.
Collapse
Affiliation(s)
- Xiao Wei
- Center of Single-Molecule Sciences, Institute of Modern Optics, Frontiers Science Center for New Organic Matter, Tianjin Key Laboratory of Micro-scale Optical Information Science and Technology, College of Electronic Information and Optical Engineering, Nankai University, 38 Tongyan Road, Jinnan District, Tianjin 300350, People's Republic of China
| | - Jinying Wang
- Center of Single-Molecule Sciences, Institute of Modern Optics, Frontiers Science Center for New Organic Matter, Tianjin Key Laboratory of Micro-scale Optical Information Science and Technology, College of Electronic Information and Optical Engineering, Nankai University, 38 Tongyan Road, Jinnan District, Tianjin 300350, People's Republic of China
| | - Xinyue Chang
- Center of Single-Molecule Sciences, Institute of Modern Optics, Frontiers Science Center for New Organic Matter, Tianjin Key Laboratory of Micro-scale Optical Information Science and Technology, College of Electronic Information and Optical Engineering, Nankai University, 38 Tongyan Road, Jinnan District, Tianjin 300350, People's Republic of China
| | - Suhang He
- Center of Single-Molecule Sciences, Institute of Modern Optics, Frontiers Science Center for New Organic Matter, Tianjin Key Laboratory of Micro-scale Optical Information Science and Technology, College of Electronic Information and Optical Engineering, Nankai University, 38 Tongyan Road, Jinnan District, Tianjin 300350, People's Republic of China
| | - Ping Duan
- Center of Single-Molecule Sciences, Institute of Modern Optics, Frontiers Science Center for New Organic Matter, Tianjin Key Laboratory of Micro-scale Optical Information Science and Technology, College of Electronic Information and Optical Engineering, Nankai University, 38 Tongyan Road, Jinnan District, Tianjin 300350, People's Republic of China
| | - Chuancheng Jia
- Center of Single-Molecule Sciences, Institute of Modern Optics, Frontiers Science Center for New Organic Matter, Tianjin Key Laboratory of Micro-scale Optical Information Science and Technology, College of Electronic Information and Optical Engineering, Nankai University, 38 Tongyan Road, Jinnan District, Tianjin 300350, People's Republic of China
| | - Xuefeng Guo
- Center of Single-Molecule Sciences, Institute of Modern Optics, Frontiers Science Center for New Organic Matter, Tianjin Key Laboratory of Micro-scale Optical Information Science and Technology, College of Electronic Information and Optical Engineering, Nankai University, 38 Tongyan Road, Jinnan District, Tianjin 300350, People's Republic of China
- Beijing National Laboratory for Molecular Sciences, National Biomedical Imaging Center, College of Chemistry and Molecular Engineering, Peking University, 292 Chengfu Road, Haidian District, Beijing 100871, People's Republic of China
| |
Collapse
|
2
|
Chen PH, Iun CP, Tsai JC, Tang M. Grafting of 2-Hydroxyethyl Methacrylate onto Polyacrylonitrile Using Supercritical Carbon Dioxide. J Supercrit Fluids 2022. [DOI: 10.1016/j.supflu.2022.105589] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
3
|
Gao C, Zhang Q, Yang Y, Li Y, Lin W. Recent trends in therapeutic application of engineered blood purification materials for kidney disease. Biomater Res 2022; 26:5. [PMID: 35120554 PMCID: PMC8815201 DOI: 10.1186/s40824-022-00250-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Accepted: 01/10/2022] [Indexed: 12/11/2022] Open
Abstract
Blood purification is a commonly used method to remove excess metabolic waste in the blood in renal replacement therapy. The sufficient removal of these toxins from blood can reduce complications and improve survival lifetime in dialysis patients. However, the current biological blood purification materials in clinical practice are not ideal, where there is an unmet need for producing novel materials that have better biocompatibility, reduced toxicity, and, in particular, more efficient toxin clearance rates and a lower cost of production. Given this, this review has carefully summarized newly developed engineered different structural biomedical materials for blood purification in terms of types and structure characteristics of blood purification materials, the production process, as well as interfacial chemical adsorption properties or mechanisms. This study may provide a valuable reference for fabricating a user-friendly purification device that is more suitable for clinical blood purification applications in dialysis patients.
Collapse
Affiliation(s)
- Cui Gao
- Kidney Disease Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, Zhejiang, China
| | - Qian Zhang
- Kidney Disease Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, Zhejiang, China
| | - Yi Yang
- Kidney Disease Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, Zhejiang, China.
- Department of Nephology, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, 322000, Zhejiang, China.
- International Institutes of Medicine, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, 322000, Zhejiang, China.
| | - Yangyang Li
- Key Laboratory of Women's Reproductive Health Research of Zhejiang Province, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, Zhejiang, China.
- Cancer Center, Zhejiang University, Hangzhou, 310058, Zhejiang, China.
| | - Weiqiang Lin
- Kidney Disease Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, Zhejiang, China.
- International Institutes of Medicine, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, 322000, Zhejiang, China.
| |
Collapse
|
4
|
Preparation of a Cage-Type Polyglycolic Acid/Collagen Nanofiber Blend with Improved Surface Wettability and Handling Properties for Potential Biomedical Applications. Polymers (Basel) 2021; 13:polym13203458. [PMID: 34685218 PMCID: PMC8541674 DOI: 10.3390/polym13203458] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 09/30/2021] [Accepted: 10/05/2021] [Indexed: 11/17/2022] Open
Abstract
Electrospun biobased polymeric nanofiber blends are widely used as biomaterials for different applications, such as tissue engineering and cell adhesion; however, their surface wettability and handling require further improvements for their practical utilization in the assistance of surgical operations. Therefore, Polyglycolic acid (PGA) and collagen-based nanofibers with three different ratios (40:60, 50:50 and 60:40) were prepared using the electrospinning method, and their surface wettability was improved using ozonation and plasma (nitrogen) treatment. The effect on the wettability and the morphology of pristine and blended PGA and collagen nanofibers was assessed using the WCA test and SEM, respectively. It was observed that PGA/collagen with the ratio 60:40 was the optimal blend, which resulted in nanofibers with easy handling and bead-free morphology that could maintain their structural integrity even after the surface treatments, imparting hydrophilicity on the surface, which can be advantageous for cell adhesion applications. Additionally, a cage-type collector was used during the electrospinning process to provide better handling properties to (PGA/collagen 60:40) blend. The resultant nanofiber mat was then incorporated with activated poly (α,β-malic acid) to improve its surface hydrophilicity. The chemical composition of PGA/collagen 60:40 was assessed using FTIR spectroscopy, supported by Raman spectroscopy.
Collapse
|
5
|
Wang L, Jiao L, Pang S, Yan P, Wang X, Qiu T. The Development of Design and Manufacture Techniques for Bioresorbable Coronary Artery Stents. MICROMACHINES 2021; 12:mi12080990. [PMID: 34442612 PMCID: PMC8398368 DOI: 10.3390/mi12080990] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 08/18/2021] [Accepted: 08/18/2021] [Indexed: 02/02/2023]
Abstract
Coronary artery disease (CAD) is the leading killer of humans worldwide. Bioresorbable polymeric stents have attracted a great deal of interest because they can treat CAD without producing long-term complications. Bioresorbable polymeric stents (BMSs) have undergone a sustainable revolution in terms of material processing, mechanical performance, biodegradability and manufacture techniques. Biodegradable polymers and copolymers have been widely studied as potential material candidates for bioresorbable stents. It is a great challenge to find a reasonable balance between the mechanical properties and degradation behavior of bioresorbable polymeric stents. Surface modification and drug-coating methods are generally used to improve biocompatibility and drug loading performance, which are decisive factors for the safety and efficacy of bioresorbable stents. Traditional stent manufacture techniques include etching, micro-electro discharge machining, electroforming, die-casting and laser cutting. The rapid development of 3D printing has brought continuous innovation and the wide application of biodegradable materials, which provides a novel technique for the additive manufacture of bioresorbable stents. This review aims to describe the problems regarding and the achievements of biodegradable stents from their birth to the present and discuss potential difficulties and challenges in the future.
Collapse
Affiliation(s)
- Liang Wang
- School of Mechanical Engineering, Beijing Institute of Technology, No. 5 Zhongguancun South Street, Haidian District, Beijing 100081, China; (L.W.); (S.P.)
| | - Li Jiao
- Key Laboratory of Fundamental Science for Advanced Machining Beijing Institute of Technology, No. 5 Zhongguancun South Street, Haidian District, Beijing 100081, China; (L.J.); (P.Y.); (X.W.)
| | - Shuoshuo Pang
- School of Mechanical Engineering, Beijing Institute of Technology, No. 5 Zhongguancun South Street, Haidian District, Beijing 100081, China; (L.W.); (S.P.)
| | - Pei Yan
- Key Laboratory of Fundamental Science for Advanced Machining Beijing Institute of Technology, No. 5 Zhongguancun South Street, Haidian District, Beijing 100081, China; (L.J.); (P.Y.); (X.W.)
| | - Xibin Wang
- Key Laboratory of Fundamental Science for Advanced Machining Beijing Institute of Technology, No. 5 Zhongguancun South Street, Haidian District, Beijing 100081, China; (L.J.); (P.Y.); (X.W.)
| | - Tianyang Qiu
- Key Laboratory of Fundamental Science for Advanced Machining Beijing Institute of Technology, No. 5 Zhongguancun South Street, Haidian District, Beijing 100081, China; (L.J.); (P.Y.); (X.W.)
- Correspondence:
| |
Collapse
|
6
|
Panzarini LCGA, de Araújo Morandim-Giannetti A, Guedes SML. Manufacture of non-thrombogenic polymer surfaces by gamma irradiation to induce simultaneous grafting and heparinization of thin PVC films. J BIOACT COMPAT POL 2021. [DOI: 10.1177/08839115211030634] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Investigations regarding alternative methods for producing polymeric materials with hydrophilic properties have increased considerably. In this context, polymeric biomaterials with hemocompatible surface properties have been successfully obtained by grafting hydrophilic monomers onto commercial polymer films by simultaneous irradiation processes. In this study, simultaneous irradiation and grafting were used to produce a copolymer PVC-co-DMAEMA-co-heparin with hemocompatible surface properties. Characterization by FTIR of the graft copolymer indicates that the increase in monomer grafting levels inhibits the bonding sites to heparin. FTIR-PAS analyses of the graft copolymers showed that the highest graft levels were obtained for the irradiated samples containing 45% of monomer. Heparin, however, could only be detected in the irradiated samples containing 30% of DMAEMA. The analysis of the micrographs, on the other hand, showed that increasing the monomer concentration enhances surface roughness of the graft copolymers. Roughness however decreased with heparin addition. It was possible to verify that an excess of surface roughness of the graft copolymers inhibits anticoagulant properties of heparin, triggering thrombus formation. Platelet adhesion, on its turn, was not significantly affected by the presence of heparin when PVC-co-DMAEMA and PVC-co-DMAEMA-co-heparin, obtained from the systems containing 45% of monomer, are compared. The addition of heparin in the systems containing 30% of DMAEMA resulted in fewer thrombogenic surfaces.
Collapse
Affiliation(s)
- Luz Consuelo Gonzalez Alonso Panzarini
- Departamento de Engenharia Química, Centro Universitário FEI, Bairro Assunção, São Bernardo do Campo/São Paulo, Brazil
- Centro Tecnológico das Radiações (CTRD), Divisão de Pesquisas e Desenvolvimento, Instituto de Pesquisas Energéticas e Nucleares, Comissão Nacional de Energia Nuclear, São Paulo, Brazil
| | | | - Selma Matheus Loureiro Guedes
- Centro Tecnológico das Radiações (CTRD), Divisão de Pesquisas e Desenvolvimento, Instituto de Pesquisas Energéticas e Nucleares, Comissão Nacional de Energia Nuclear, São Paulo, Brazil
| |
Collapse
|
7
|
Ledford B, Barron C, Van Dyke M, He JQ. Keratose hydrogel for tissue regeneration and drug delivery. Semin Cell Dev Biol 2021; 128:145-153. [PMID: 34219034 DOI: 10.1016/j.semcdb.2021.06.017] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 05/16/2021] [Accepted: 06/23/2021] [Indexed: 11/28/2022]
Abstract
Keratin (KRT), a natural fibrous structural protein, can be classified into two categories: "soft" cytosolic KRT that is primarily found in the epithelia tissues (e.g., skin, the inner lining of digestive tract) and "hard" KRT that is mainly found in the protective tissues (e.g., hair, horn). The latter is the predominant form of KRT widely used in biomedical research. The oxidized form of extracted KRT is exclusively denoted as keratose (KOS) while the reduced form of KRT is termed as kerateine (KRTN). KOS can be processed into various forms (e.g., hydrogel, films, fibers, and coatings) for different biomedical applications. KRT/KOS offers numerous advantages over other types of biomaterials, such as bioactivity, biocompatibility, degradability, immune/inflammatory privileges, mechanical resilience, chemical manipulability, and easy accessibility. As a result, KRT/KOS has attracted considerable attention and led to a large number of publications associated with this biomaterial over the past few decades; however, most (if not all) of the published review articles focus on KRT regarding its molecular structure, biochemical/biophysical properties, bioactivity, biocompatibility, drug/cell delivery, and in vivo transplantation, as well as its applications in biotechnical products and medical devices. Current progress that is directly associated with KOS applications in tissue regeneration and drug delivery appears an important topic that merits a commentary. To this end, the present review aims to summarize the current progress of KOS-associated biomedical applications, especially focusing on the in vitro and in vivo effects of KOS hydrogel on cultured cells and tissue regeneration following skin injury, skeletal muscle loss, peripheral nerve injury, and cardiac infarction.
Collapse
Affiliation(s)
- Benjamin Ledford
- Department of Biomedical Sciences and Pathobiology, College of Veterinary Medicine, Virginia Tech, Blacksburg, VA 24061, USA
| | - Catherine Barron
- Department of Biomedical Sciences and Pathobiology, College of Veterinary Medicine, Virginia Tech, Blacksburg, VA 24061, USA
| | - Mark Van Dyke
- Department of Biomedical Engineering, College of Engineering, University of Arizona, 1209 E. 2nd Street, Tucson, AZ 85721, USA
| | - Jia-Qiang He
- Department of Biomedical Sciences and Pathobiology, College of Veterinary Medicine, Virginia Tech, Blacksburg, VA 24061, USA.
| |
Collapse
|
8
|
Mostafavi AH, Hosseini SS. Investigations of the characteristics and performance of modified polyethersulfones (PES) as membrane oxygenator. JOURNAL OF POLYMER ENGINEERING 2021. [DOI: 10.1515/polyeng-2021-0089] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
The modification of membrane oxygenators to minimize protein adsorption onto the surface is often accompanied by the loss of membrane performance. This study aims to explore polyethersulfone (PES) as a new material for membrane oxygenator applications and to assess its potentials. Accordingly, different modification techniques are applied to improve surface properties of PES membranes. To achieve this goal, two separate modification methods including incorporation of TiO2 into the membrane matrix as well as grafting polyethylene glycol (PEG) through oxygen plasma treatment are developed and the effects are examined. The results reveal that protein adsorption to the nanocomposite membrane containing 0.50 wt. % TiO2 and the grafted membrane decreased by 47 and 31%, respectively. In terms of performance, permeability and oxygen transfer rate of all modified membranes exceeded 808 GPU and 2.7 × 10−4 mol·m−2·s−1, respectively. Contact angle analysis revealed signs of hydrophilicity enhancement of membranes after modifications. The findings suggest that upon proper modifications, membranes based on PES could be considered as promising candidates for membrane oxygenator applications and deserves further investigations.
Collapse
Affiliation(s)
- Amir Hossein Mostafavi
- Membrane Science and Technology Research Group, Department of Chemical Engineering , Tarbiat Modares University , Tehran , Iran
| | - Seyed Saeid Hosseini
- Membrane Science and Technology Research Group, Department of Chemical Engineering , Tarbiat Modares University , Tehran , Iran
- Institute for Nanotechnology and Water Sustainability (iNanoWS), College of Science, Engineering and Technology , University of South Africa , Johannesburg , South Africa
| |
Collapse
|
9
|
He T, He J, Wang Z, Cui Z. Modification strategies to improve the membrane hemocompatibility in extracorporeal membrane oxygenator (ECMO). ADVANCED COMPOSITES AND HYBRID MATERIALS 2021; 4:847-864. [PMID: 33969267 PMCID: PMC8091652 DOI: 10.1007/s42114-021-00244-x] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 02/26/2021] [Accepted: 03/16/2021] [Indexed: 05/26/2023]
Abstract
ABSTRACT Since extracorporeal membrane oxygenator (ECMO) has been utilized to save countless lives by providing continuous extracorporeal breathing and circulation to patients with severe cardiopulmonary failure. In particular, it has played an important role during the COVID-19 epidemic. One of the important composites of ECMO is membrane oxygenator, and the core composite of the membrane oxygenator is hollow fiber membrane, which is not only a place for blood oxygenation, but also is a barrier between the blood and gas side. However, the formation of blood clots in the oxygenator is a key problem in the using process. According to the study of the mechanism of thrombosis generation, it was found that improving the hemocompatibility is an efficient approach to reduce thrombus formation by modifying the surface of materials. In this review, the corresponding modification methods (surface property regulation, anticoagulant grafting, and bio-interface design) of hollow fiber membranes in ECMO are classified and discussed, and then, the research status and development prospects are summarized.
Collapse
Affiliation(s)
- Ting He
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemistry and Chemical Engineering, Nanjing Tech University, 210009 Nanjing, China
| | - Jinhui He
- National Engineering Research Center for Special Separation Membrane, Nanjing Tech University, 210009 Nanjing, China
| | - Zhaohui Wang
- Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University, 210009 Nanjing, China
| | - Zhaoliang Cui
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemistry and Chemical Engineering, Nanjing Tech University, 210009 Nanjing, China
| |
Collapse
|
10
|
Riester O, Borgolte M, Csuk R, Deigner HP. Challenges in Bone Tissue Regeneration: Stem Cell Therapy, Biofunctionality and Antimicrobial Properties of Novel Materials and Its Evolution. Int J Mol Sci 2020; 22:E192. [PMID: 33375478 PMCID: PMC7794985 DOI: 10.3390/ijms22010192] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 12/21/2020] [Accepted: 12/23/2020] [Indexed: 02/06/2023] Open
Abstract
An aging population leads to increasing demand for sustained quality of life with the aid of novel implants. Patients expect fast healing and few complications after surgery. Increased biofunctionality and antimicrobial behavior of implants, in combination with supportive stem cell therapy, can meet these expectations. Recent research in the field of bone implants and the implementation of autologous mesenchymal stem cells in the treatment of bone defects is outlined and evaluated in this review. The article highlights several advantages, limitations and advances for metal-, ceramic- and polymer-based implants and discusses the future need for high-throughput screening systems used in the evaluation of novel developed materials and stem cell therapies. Automated cell culture systems, microarray assays or microfluidic devices are required to efficiently analyze the increasing number of new materials and stem cell-assisted therapies. Approaches described in the literature to improve biocompatibility, biofunctionality and stem cell differentiation efficiencies of implants range from the design of drug-laden nanoparticles to chemical modification and the selection of materials that mimic the natural tissue. Combining suitable implants with mesenchymal stem cell treatment promises to shorten healing time and increase treatment success. Most research studies focus on creating antibacterial materials or modifying implants with antibacterial coatings in order to address the increasing number of complications after surgeries that are mostly caused by bacterial infections. Moreover, treatment of multiresistant pathogens will pose even bigger challenges in hospitals in the future, according to the World Health Organization (WHO). These antibacterial materials will help to reduce infections after surgery and the number of antibiotic treatments that contribute to the emergence of new multiresistant pathogens, whilst the antibacterial implants will help reduce the amount of antibiotics used in clinical treatment.
Collapse
Affiliation(s)
- Oliver Riester
- Institute of Precision Medicine, Medical and Life Sciences Faculty, Furtwangen University, Jakob-Kienzle-Strasse 17, 78054 Villingen-Schwenningen, Germany; (O.R.); (M.B.)
| | - Max Borgolte
- Institute of Precision Medicine, Medical and Life Sciences Faculty, Furtwangen University, Jakob-Kienzle-Strasse 17, 78054 Villingen-Schwenningen, Germany; (O.R.); (M.B.)
| | - René Csuk
- Institute of Organic Chemistry, Martin-Luther-University Halle-Wittenberg, Kurt-Mothes-Str. 2, 06120 Halle (Saale), Germany;
| | - Hans-Peter Deigner
- Institute of Precision Medicine, Medical and Life Sciences Faculty, Furtwangen University, Jakob-Kienzle-Strasse 17, 78054 Villingen-Schwenningen, Germany; (O.R.); (M.B.)
- EXIM Department, Fraunhofer Institute IZI, Leipzig, Schillingallee 68, 18057 Rostock, Germany
- Faculty of Science, University of Tuebingen, Auf der Morgenstelle 8, 72076 Tuebingen, Germany
| |
Collapse
|
11
|
Wang D, Xu Y, Li Q, Turng LS. Artificial small-diameter blood vessels: materials, fabrication, surface modification, mechanical properties, and bioactive functionalities. J Mater Chem B 2020; 8:1801-1822. [PMID: 32048689 PMCID: PMC7155776 DOI: 10.1039/c9tb01849b] [Citation(s) in RCA: 72] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Cardiovascular diseases, especially ones involving narrowed or blocked blood vessels with diameters smaller than 6 millimeters, are the leading cause of death globally. Vascular grafts have been used in bypass surgery to replace damaged native blood vessels for treating severe cardio- and peripheral vascular diseases. However, autologous replacement grafts are not often available due to prior harvesting or the patient's health. Furthermore, autologous harvesting causes secondary injury to the patient at the harvest site. Therefore, artificial blood vessels have been widely investigated in the last several decades. In this review, the progress and potential outlook of small-diameter blood vessels (SDBVs) engineered in vitro are highlighted and summarized, including material selection and development, fabrication techniques, surface modification, mechanical properties, and bioactive functionalities. Several kinds of natural and synthetic polymers for artificial SDBVs are presented here. Commonly used fabrication techniques, such as extrusion and expansion, electrospinning, thermally induced phase separation (TIPS), braiding, 3D printing, hydrogel tubing, gas foaming, and a combination of these methods, are analyzed and compared. Different surface modification methods, such as physical immobilization, surface adsorption, plasma treatment, and chemical immobilization, are investigated and are compared here as well. Mechanical requirements of SDBVs are also reviewed for long-term service. In vitro biological functions of artificial blood vessels, including oxygen consumption, nitric oxide (NO) production, shear stress response, leukocyte adhesion, and anticoagulation, are also discussed. Finally, we draw conclusions regarding current challenges and attempts to identify future directions for the optimal combination of materials, fabrication methods, surface modifications, and biofunctionalities. We hope that this review can assist with the design, fabrication, and application of SDBVs engineered in vitro and promote future advancements in this emerging research field.
Collapse
Affiliation(s)
- Dongfang Wang
- Department of Mechanical Engineering, University of Wisconsin, Madison, WI, USA. and Wisconsin Institute for Discovery, University of Wisconsin, Madison, WI, USA and School of Mechanics and Engineering Science, Zhengzhou University, Zhengzhou 450001, P. R. China and National Center for International Research of Micro-Nano Molding Technology, Zhengzhou University, Zhengzhou 450001, P. R. China
| | - Yiyang Xu
- Department of Mechanical Engineering, University of Wisconsin, Madison, WI, USA. and Wisconsin Institute for Discovery, University of Wisconsin, Madison, WI, USA
| | - Qian Li
- School of Mechanics and Engineering Science, Zhengzhou University, Zhengzhou 450001, P. R. China and National Center for International Research of Micro-Nano Molding Technology, Zhengzhou University, Zhengzhou 450001, P. R. China
| | - Lih-Sheng Turng
- Department of Mechanical Engineering, University of Wisconsin, Madison, WI, USA. and Wisconsin Institute for Discovery, University of Wisconsin, Madison, WI, USA
| |
Collapse
|
12
|
Czeslik C, Wittemann A. Adsorption mechanism, secondary structure and local distribution of proteins at polyelectrolyte brushes. Colloid Polym Sci 2020. [DOI: 10.1007/s00396-019-04590-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
13
|
Movafaghi S, Wang W, Bark DL, Dasi LP, Popat KC, Kota AK. Hemocompatibility of Super-Repellent surfaces: Current and Future. MATERIALS HORIZONS 2019; 6:1596-1610. [PMID: 31903188 PMCID: PMC6941870 DOI: 10.1039/c9mh00051h] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Virtually all blood-contacting medical implants and devices initiate immunological events in the form of thrombosis and inflammation. Typically, patients receiving such implants are also given large doses of anticoagulants, which pose a high risk and a high cost to the patient. Thus, the design and development of surfaces with improved hemocompatibility and reduced dependence on anticoagulation treatments is paramount for the success of blood-contacting medical implants and devices. In the past decade, the hemocompatibility of super-repellent surfaces (i.e., surfaces that are extremely repellent to liquids) has been extensively investigated because such surfaces greatly reduce the blood-material contact area, which in turn reduces the area available for protein adsorption and blood cell or platelet adhesion, thereby offering the potential for improved hemocompatibility. In this review, we critically examine the progress made in characterizing the hemocompatibility of super-repellent surfaces, identify the unresolved challenges and highlight the opportunities for future research on developing medical implants and devices with super-repellent surfaces.
Collapse
Affiliation(s)
- Sanli Movafaghi
- Department of Mechanical Engineering, Colorado State University, Fort Collins, CO 80523, USA
| | - Wei Wang
- Department of Mechanical Engineering, Colorado State University, Fort Collins, CO 80523, USA
| | - David L Bark
- Department of Mechanical Engineering, Colorado State University, Fort Collins, CO 80523, USA
- School of Biomedical Engineering, Colorado State University, Fort Collins, CO 80523, USA
| | - Lakshmi P Dasi
- Department of Biomedical Engineering, The Ohio State University, Columbus, OH 43210, USA
| | - Ketul C Popat
- Department of Mechanical Engineering, Colorado State University, Fort Collins, CO 80523, USA
- School of Biomedical Engineering, Colorado State University, Fort Collins, CO 80523, USA
| | - Arun K Kota
- Department of Mechanical Engineering, Colorado State University, Fort Collins, CO 80523, USA
- School of Biomedical Engineering, Colorado State University, Fort Collins, CO 80523, USA
- Department of Chemical & Biological Engineering, Colorado State University, Fort Collins, CO 80523, USA
| |
Collapse
|
14
|
Engineering antimicrobial and biocompatible electrospun PLGA fibrous membranes by irradiation grafting polyvinylpyrrolidone and periodate. Colloids Surf B Biointerfaces 2019; 181:918-926. [DOI: 10.1016/j.colsurfb.2019.06.059] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 06/16/2019] [Accepted: 06/25/2019] [Indexed: 12/24/2022]
|
15
|
Dave K, Gomes VG. Interactions at scaffold interfaces: Effect of surface chemistry, structural attributes and bioaffinity. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 105:110078. [PMID: 31546353 DOI: 10.1016/j.msec.2019.110078] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Revised: 08/12/2019] [Accepted: 08/12/2019] [Indexed: 01/01/2023]
Abstract
Effective regenerative medicine relies on understanding the interplay between biomaterial implants and the adjoining cells. Scaffolds contribute by presenting sites for cellular adhesion, growth, proliferation, migration, and differentiation which lead to regeneration of tissues over desired periods of time. The fabrication and recruitment of scaffolds often fail to consider the interactions that occur at the interfaces, thereby risking rejection. This lack of knowledge on interfacial microenvironments and related exchanges often causes reduced cellular interactions, poor cell survival and intervention failure. Successful regenerative therapy requires scaffolds with bespoke biocompatibility, optimum pore structure, and cues for cell attachments. These factors determine the development of cellular affinity in scaffolds. For biomedical applications, a detailed understanding of scaffolds and their interfaces is required for better tuning of biomaterials to suit the microenvironments. In this review, we discuss the role of biointerfaces with a focus on surface chemistry, pore structure, scaffold hydro-affinity and their biointeractions. An understanding of the effect of scaffold interfacial properties is crucial for enhancing the progress of tissue engineering towards clinical applications.
Collapse
Affiliation(s)
- Khyati Dave
- The University of Sydney, School of Chemical and Biomolecular Engineering, Sydney, NSW 2006, Australia
| | - Vincent G Gomes
- The University of Sydney, School of Chemical and Biomolecular Engineering, Sydney, NSW 2006, Australia.
| |
Collapse
|
16
|
A heparin-functionalized woven stent graft for endovascular exclusion. Colloids Surf B Biointerfaces 2019; 180:118-126. [DOI: 10.1016/j.colsurfb.2019.04.027] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 03/26/2019] [Accepted: 04/12/2019] [Indexed: 11/21/2022]
|
17
|
Wang W, Cao N, Dong J, Boukherroub R, Liu W, Li Y, Cong H. Chitosan/hydroxyapatite modified carbon/carbon composites: synthesis, characterization and in vitro biocompatibility evaluation. RSC Adv 2019; 9:23362-23372. [PMID: 35514479 PMCID: PMC9067253 DOI: 10.1039/c8ra10396h] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Accepted: 05/22/2019] [Indexed: 12/02/2022] Open
Abstract
Carbon/carbon composite (C/C), due to its bio-inert property, is prone to cause bone consolidation defects and bacterial infections in clinical applications. Therefore, there is a great demand in practical applications to prevent implant infections and enhance its bone consolidation capability. In this study, we have developed a facile approach to construct a chitosan/hydroxyapatite composite modified layer on C/C surface by electrochemical deposition and a covalent grafting technique, and the modified layer has both the antibacterial activity of chitosan (CS) and the bioactivity of hydroxyapatite (HAP). The microstructure and chemical composition of the modified layer were analyzed using scanning electron microscopy (SEM), Fourier transform infrared (FTIR) spectroscopy, X-ray photoelectron spectroscopy (XPS) and water contact angle measurements. The biological properties of the composites were evaluated using cell culture, antimicrobial test and real-time quantitative PCR in vitro. The results showed that the CS/HAP modified C/C exhibited excellent biocompatibility, bacteriostasis and osteoinductive ability. These properties are beneficial for the potential application of the modified C/C composite as a bone tissue replacement material. Carbon/carbon composite (C/C), due to its bio-inert property, is prone to cause bone consolidation defects and bacterial infections in clinical applications.![]()
Collapse
Affiliation(s)
- Wenbo Wang
- Department of Orthopaedics, The 8th Clinical College (Weihai Central Hospital), Qingdao University Qingdao Shandong Province 266021 P. R. China .,Department of Orthopaedics, The Second Affiliated Hospital, Shandong University of Traditional Chinese Medicine Jinan Shandong Province 250001 P. R. China
| | - Ning Cao
- Key Laboratory of Unconventional Oil & Gas Development, China University of Petroleum (East China) Qingdao 266580 P. R. China.,School of Materials Science and Engineering, China University of Petroleum (East China) Qingdao Shandong Province 266580 P. R. China
| | - Jianwen Dong
- Department of Orthopaedics, The Second Affiliated Hospital, Shandong University of Traditional Chinese Medicine Jinan Shandong Province 250001 P. R. China
| | - Rabah Boukherroub
- Univ. Lille, CNRS, Centrale Lille, ISEN, Univ. Valenciennes, UMR 8520, IEMN Lille France
| | - Wei Liu
- Scientific Research Department of Shandong University of Traditional Chinese Medicine Jinan Shandong Province 250001 P. R. China
| | - Yujie Li
- Department of Geriatric Medicine, The Second Affiliated Hospital, Shandong University of Traditional Chinese Medicine Jinan Shandong Province 250001 P. R. China
| | - Haibo Cong
- Department of Orthopaedics, The 8th Clinical College (Weihai Central Hospital), Qingdao University Qingdao Shandong Province 266021 P. R. China
| |
Collapse
|
18
|
Levin A, Cinar S, Paulus M, Nase J, Winter R, Czeslik C. Analyzing protein-ligand and protein-interface interactions using high pressure. Biophys Chem 2019; 252:106194. [PMID: 31177023 DOI: 10.1016/j.bpc.2019.106194] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 05/29/2019] [Accepted: 05/29/2019] [Indexed: 01/06/2023]
Abstract
All protein function is based on interactions with the environment. Proteins can bind molecules for their transport, their catalytic conversion, or for signal transduction. They can bind to each other, and they adsorb at interfaces, such as lipid membranes or material surfaces. An experimental characterization is needed to understand the underlying mechanisms, but also to make use of proteins in biotechnology or biomedicine. When protein interactions are studied under high pressure, volume changes are revealed that directly describe spatial contributions to these interactions. Moreover, the strength of protein interactions with ligands or interfaces can be tuned in a smooth way by pressure modulation, which can be utilized in the design of drugs and bio-responsive interfaces. In this short review, selected studies of protein-ligand and protein-interface interactions are presented that were carried out under high pressure. Furthermore, a perspective on bio-responsive interfaces is given where protein-ligand binding is applied to create functional interfacial structures.
Collapse
Affiliation(s)
- Artem Levin
- Technische Universität Dortmund, Fakultät für Chemie und Chemische Biologie, Otto-Hahn-Str. 4a, D-44227 Dortmund, Germany
| | - Süleyman Cinar
- Technische Universität Dortmund, Fakultät für Chemie und Chemische Biologie, Otto-Hahn-Str. 4a, D-44227 Dortmund, Germany
| | - Michael Paulus
- Technische Universität Dortmund, Fakultät Physik/Delta, D-44221 Dortmund, Germany
| | - Julia Nase
- Technische Universität Dortmund, Fakultät Physik/Delta, D-44221 Dortmund, Germany
| | - Roland Winter
- Technische Universität Dortmund, Fakultät für Chemie und Chemische Biologie, Otto-Hahn-Str. 4a, D-44227 Dortmund, Germany
| | - Claus Czeslik
- Technische Universität Dortmund, Fakultät für Chemie und Chemische Biologie, Otto-Hahn-Str. 4a, D-44227 Dortmund, Germany.
| |
Collapse
|
19
|
Lee SJ, Kim ME, Nah H, Seok JM, Jeong MH, Park K, Kwon IK, Lee JS, Park SA. Vascular endothelial growth factor immobilized on mussel-inspired three-dimensional bilayered scaffold for artificial vascular graft application: In vitro and in vivo evaluations. J Colloid Interface Sci 2019; 537:333-344. [DOI: 10.1016/j.jcis.2018.11.039] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Revised: 11/07/2018] [Accepted: 11/11/2018] [Indexed: 01/01/2023]
|
20
|
Ji M, Chen X, Luo J, Wan Y. Improved blood compatibility of polysulfone membrane by anticoagulant protein immobilization. Colloids Surf B Biointerfaces 2019; 175:586-595. [DOI: 10.1016/j.colsurfb.2018.12.026] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Revised: 12/10/2018] [Accepted: 12/11/2018] [Indexed: 01/27/2023]
|
21
|
Wang L, He M, Gong T, Zhang X, Zhang L, Liu T, Ye W, Pan C, Zhao C. Introducing multiple bio-functional groups on the poly(ether sulfone) membrane substrate to fabricate an effective antithrombotic bio-interface. Biomater Sci 2018; 5:2416-2426. [PMID: 29115308 DOI: 10.1039/c7bm00673j] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
It has been widely recognized that functional groups on biomaterial surfaces play important roles in blood compatibility. To construct an effective antithrombotic bio-interface onto the poly(ether sulfone) (PES) membrane surface, bio-functional groups of sodium carboxylic (-COONa), sodium sulfonic (-SO3Na) and amino (-NH2) groups were introduced onto the PES membrane surface in three steps: the synthesis of PES with carboxylic (-COOH) groups (CPES) and water-soluble PES with sodium sulfonic (-SO3Na) groups and amino (-NH2) groups (SNPES); the introduction of carboxylic groups onto the PES membrane by blending CPES with PES; and the grafting of SNPES onto CPES/PES membranes via the coupling of amino groups and carboxyl groups. The physical/chemical properties and bioactivities were dependent on the proportions of the additives. After introducing bio-functional groups, the excellent hemocompatibility of the modified membranes was confirmed by the inhibited platelet adhesion and activation, prolonged clotting times, suppressed blood-related complement and leukocyte-related complement receptor activations. Furthermore, cell tests indicated that the modified membranes showed better cytocompatibility in endothelial cell proliferation than the pristine PES membrane due to the synergistic promotion of the functional groups. To sum up, these results suggested that modified membranes present great potential in fields using blood-contacting materials, such as hemodialysis and surface endothelialization.
Collapse
Affiliation(s)
- Lingren Wang
- Jiangsu Provincial Key Laboratory for Interventional Medical Devices. Huaiyin Institute of Technology, Huaian 223003, China
| | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Ambi A, Vera C, Parikh N, Perez N, Lopez Rojas A, Kumar S, Stradford C, Borbon K, Bryan J, Traba C. Plasma-initiated graft polymerization as an immobilization platform for metal free Russian propolis ethanol extracts designed specifically for biomaterials. BIOFOULING 2018; 34:557-568. [PMID: 29792343 DOI: 10.1080/08927014.2018.1471467] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Accepted: 04/24/2018] [Indexed: 06/08/2023]
Abstract
The antibacterial and anti-biofilm activities of propolis have been intensively reported. However, the application of this folk remedy as a means to prevent biomedical implant contamination has yet to be completely evaluated. In response to the significant resistant and infectious attributes of biofilms, biomaterials engineered to possess specific chemical and physical properties were immobilized with metal free Russian propolis ethanol extracts (MFRPEE), a known antibacterial agent. The results obtained from this study begin to examine the application of MFRPEE as a novel alternative method for the prevention of medical and biomedical implant infections. When constructed under specific experimental conditions, immobilized biomaterials showed excellent stability when subjected to simulated body fluid and fetal bovine serum. The ability of immobilized biomaterials to specifically target pathogens (both Gram-positive and Gram-negative biofilm forming bacteria), while promoting tissue cell growth, renders these biomaterials as potential candidates for clinical applications.
Collapse
Affiliation(s)
- Ashwin Ambi
- a Department of Chemistry , Saint Peter's University , Jersey City , NJ , USA
| | - Carolina Vera
- a Department of Chemistry , Saint Peter's University , Jersey City , NJ , USA
| | - Nisharg Parikh
- a Department of Chemistry , Saint Peter's University , Jersey City , NJ , USA
| | - Naidel Perez
- a Department of Chemistry , Saint Peter's University , Jersey City , NJ , USA
| | - Anthony Lopez Rojas
- a Department of Chemistry , Saint Peter's University , Jersey City , NJ , USA
| | - Sanket Kumar
- a Department of Chemistry , Saint Peter's University , Jersey City , NJ , USA
| | | | - Katherine Borbon
- a Department of Chemistry , Saint Peter's University , Jersey City , NJ , USA
| | - Julia Bryan
- a Department of Chemistry , Saint Peter's University , Jersey City , NJ , USA
| | - Christian Traba
- a Department of Chemistry , Saint Peter's University , Jersey City , NJ , USA
| |
Collapse
|
23
|
JAGANATHAN SARAVANAK, PRASATH MANIM. UV induced surface modification on improving the cytocompatibility of metallocene polyethylene. ACTA ACUST UNITED AC 2018; 90:195-204. [DOI: 10.1590/0001-3765201820170736] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Accepted: 12/25/2017] [Indexed: 11/22/2022]
Affiliation(s)
- SARAVANA K. JAGANATHAN
- Ton Duc Thang University, Vietnam; Ton Duc Thang University, Vietnam; Universiti Teknologi Malaysia, Malaysia
| | | |
Collapse
|
24
|
Chen Q, Passos A, Balabani S, Chivu A, Zhao S, Azevedo HS, Butler P, Song W. Semi-interpenetrating network hyaluronic acid microgel delivery systems in micro-flow. J Colloid Interface Sci 2018; 519:174-185. [PMID: 29494879 DOI: 10.1016/j.jcis.2018.02.049] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2017] [Revised: 02/15/2018] [Accepted: 02/15/2018] [Indexed: 01/05/2023]
Abstract
Macroscopic hydrogels are commonly used as injectable scaffolds or fillers, however they may easily obstruct blood vessels, which poses risks and limits their clinical use. In the present study, three types of hyaluronic acid (HA)-based hydrogel micro-particles with non-covalent, covalent semi-interpenetrating and conventional 3D molecular networks, have been designed, fabricated and characterized. The micro-particles are spherical, biconcave or irregular in shape and their diameter ranged between 2.5 and 3.5 µm; their suspensions exhibit a tuneable viscosity, shear-thinning behaviour, dynamic stability and dispersity in microfluidic flow as a result of their specific particulate nature, providing thus a well-controlled injectable platform. Hydrogel particle suspensions also demonstrate an enhanced safety profile, in terms of the dispersity, cell safety, and hemocompatibility. In addition, Rhodamine 6G has successfully been loaded and released from the particles as a model for drug delivery. Functionalisation of hydrogel microparticles using synthetic polymers has been proven to be a cost-effective way to achieve desirable rheological properties and flow dynamic stability with improved physicochemical properties and biocompatibility in vitro, showing promise as a multifunctional biomedical material for various advanced surgical devices and therapies.
Collapse
Affiliation(s)
- Qiqing Chen
- Plastic Surgery Department, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China; UCL Centre for Nanotechnology and Regenerative Medicine, Division of Surgery & Interventional Science, University College London, London NW3 2PF, United Kingdom
| | - Andreas Passos
- Department of Mechanical Engineering, University College London, London NW1 2PS, United Kingdom
| | - Stavroula Balabani
- Department of Mechanical Engineering, University College London, London NW1 2PS, United Kingdom
| | - Alexandru Chivu
- UCL Centre for Nanotechnology and Regenerative Medicine, Division of Surgery & Interventional Science, University College London, London NW3 2PF, United Kingdom
| | - Shudong Zhao
- UCL Centre for Nanotechnology and Regenerative Medicine, Division of Surgery & Interventional Science, University College London, London NW3 2PF, United Kingdom
| | - Helena S Azevedo
- School of Engineering and Materials Science, Queen Mary, University of London, Mile End Road, London E1 4NS, UK
| | - Peter Butler
- Department of Plastic and Reconstructive Surgery, Royal Free London NHS Foundation Trust, London NW3 2PF, United Kingdom
| | - Wenhui Song
- UCL Centre for Nanotechnology and Regenerative Medicine, Division of Surgery & Interventional Science, University College London, London NW3 2PF, United Kingdom.
| |
Collapse
|
25
|
Nanda HS, Shah AH, Wicaksono G, Pokholenko O, Gao F, Djordjevic I, Steele TWJ. Nonthrombogenic Hydrogel Coatings with Carbene-Cross-Linking Bioadhesives. Biomacromolecules 2018; 19:1425-1434. [DOI: 10.1021/acs.biomac.8b00074] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- Himansu Sekhar Nanda
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798
- Department of Mechanical Engineering, PDPM-Indian Institute of Information Technology, Design and Manufacturing (IIITDM)-Jabalpur, Dumna Airport Road, Jabalpur-482005, Madhya Pradesh, India
| | - Ankur Harish Shah
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798
| | - Gautama Wicaksono
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798
| | - Oleksandr Pokholenko
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798
| | - Feng Gao
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798
| | - Ivan Djordjevic
- School of Engineering and Sciences, Tecnologico de Monterrey, Monterrey, Nuevo León 64849, Mexico
| | - Terry W. J. Steele
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798
| |
Collapse
|
26
|
Simon-Walker R, Cavicchia J, Prawel DA, Dasi LP, James SP, Popat KC. Hemocompatibility of hyaluronan enhanced linear low density polyethylene for blood contacting applications. J Biomed Mater Res B Appl Biomater 2017; 106:1964-1975. [PMID: 28963863 DOI: 10.1002/jbm.b.34010] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Revised: 08/21/2017] [Accepted: 09/01/2017] [Indexed: 12/17/2022]
Abstract
Despite their overall success, different blood-contacting medical devices such as heart valves, stents, and so forth, are still plagued with hemocompatibility issues which often result in the need for subsequent replacement and/or life-long anticoagulation therapy. Consequently, there is a significant interest in developing biomaterials that can address these issues. Polymeric-based materials have been proposed for use in many applications due to their ability to be finely tuned through manufacturing and surface modification to enhance hemocompatibility. In this study, we have developed a novel, hydrophilic biomaterial comprised of an interpenetrating polymer network (IPN) of hyaluronan (HA) and linear low density polyethylene (LLDPE). HA is a highly lubricous, anionic polysaccharide ubiquitously found in the human body. It is currently being investigated for a vast array of biomedical applications including cardiovascular therapies such as hydrogel-based regenerative cell therapies for myocardial infarction, HA-coated stents, and surface modifications of polyurethane and metals for use in blood-contacting implants. The aim of this study was to assess the in vitro thrombogenic response of the hydrophilic polymer surface, HA-LLDPE for future potential use as flexible heart valve leaflets. The results indicate that HA-LLDPE is non-toxic and reduces thromobogenicity as compared to LLDPE surfaces, asserting its feasibility for use as a blood-contacting biomaterial. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 106B: 1964-1975, 2018.
Collapse
Affiliation(s)
- Rachael Simon-Walker
- School of Biomedical Engineering, Colorado State University, Fort Collins, Colorado
| | - John Cavicchia
- School of Biomedical Engineering, Colorado State University, Fort Collins, Colorado
| | - David A Prawel
- School of Biomedical Engineering, Colorado State University, Fort Collins, Colorado.,Department of Mechanical Engineering, Colorado State University, Fort Collins, Colorado
| | | | - Susan P James
- School of Biomedical Engineering, Colorado State University, Fort Collins, Colorado.,Department of Mechanical Engineering, Colorado State University, Fort Collins, Colorado
| | - Ketul C Popat
- School of Biomedical Engineering, Colorado State University, Fort Collins, Colorado.,Department of Mechanical Engineering, Colorado State University, Fort Collins, Colorado
| |
Collapse
|
27
|
An omniphobic lubricant-infused coating produced by chemical vapor deposition of hydrophobic organosilanes attenuates clotting on catheter surfaces. Sci Rep 2017; 7:11639. [PMID: 28912558 PMCID: PMC5599680 DOI: 10.1038/s41598-017-12149-1] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Accepted: 08/31/2017] [Indexed: 01/19/2023] Open
Abstract
Catheter associated thrombosis is an ongoing problem. Omniphobic coatings based on tethering biocompatible liquid lubricants on self-assembled monolayers of hydrophobic organosilanes attenuate clotting on surfaces. Herein we report an efficient, non-invasive and robust process for coating catheters with an antithrombotic, omniphobic lubricant-infused coating produced using chemical vapor deposition (CVD) of hydrophobic fluorine-based organosilanes. Compared with uncoated catheters, CVD coated catheters significantly attenuated thrombosis via the contact pathway of coagulation. When compared with the commonly used technique of liquid phase deposition (LPD) of fluorine-based organosilanes, the CVD method was more efficient and reproducible, resulted in less disruption of the outer polymeric layer of the catheters and produced greater antithrombotic activity. Therefore, omniphobic coating of catheters using the CVD method is a simple, straightforward and non-invasive procedure. This method has the potential to not only prevent catheter thrombosis, but also to prevent thrombosis on other blood-contacting medical devices.
Collapse
|
28
|
Movafaghi S, Leszczak V, Wang W, Sorkin JA, Dasi LP, Popat KC, Kota AK. Response to "Correspondence Concerning Hemocompatibility of Superhemophobic Titania Surfaces". Adv Healthc Mater 2017; 6. [PMID: 28703490 DOI: 10.1002/adhm.201700647] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Indexed: 12/26/2022]
Affiliation(s)
- S. Movafaghi
- Department of Mechanical Engineering; Colorado State University; Fort Collins CO 80523 USA
| | - V. Leszczak
- Department of Mechanical Engineering; Colorado State University; Fort Collins CO 80523 USA
| | - W. Wang
- Department of Mechanical Engineering; Colorado State University; Fort Collins CO 80523 USA
| | - J. A. Sorkin
- Department of Mechanical Engineering; Colorado State University; Fort Collins CO 80523 USA
| | - L. P. Dasi
- Department of Mechanical Engineering; Colorado State University; Fort Collins CO 80523 USA
- School of Biomedical Engineering; Colorado State University; Fort Collins CO 80523 USA
- Department of Biomedical Engineering; Dorothy Davis Heart and Lung Research Institute; Ohio State University; Columbus OH 43210 USA
| | - K. C. Popat
- Department of Mechanical Engineering; Colorado State University; Fort Collins CO 80523 USA
- School of Biomedical Engineering; Colorado State University; Fort Collins CO 80523 USA
| | - A. K. Kota
- Department of Mechanical Engineering; Colorado State University; Fort Collins CO 80523 USA
- School of Biomedical Engineering; Colorado State University; Fort Collins CO 80523 USA
| |
Collapse
|
29
|
Santos AMD, Habert AC, Ferraz HC. Development of functionalized polyetherimide/polyvinylpyrrolidone membranes for application in hemodialysis. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2017; 28:131. [PMID: 28744613 DOI: 10.1007/s10856-017-5946-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Accepted: 07/14/2017] [Indexed: 06/07/2023]
Abstract
The present study aimed to synthesize membranes for hemodialysis based on polyetherimide (PEI) and polyvinylpyrrolidone (PVP), with chemical immobilization of heparin on its surface to increase blood compatibility. The synthesized PEI/PVP membranes were characterized by morphological analysis and transport properties, as well by infrared spectroscopy (FT-IR), protein adsorption, contact angle, activated partial thromboplastin time (aPTT), and platelet adhesion. Hydraulic permeability of the synthesized PEI membranes were comparable to those of current high flux clinical membranes; values of diffusive permeability and rejection for typical solutes were similar to those reported in literature. The immobilization of heparin, in turn, resulted in more hydrophilic membranes, with insignificant protein adsorption and platelet adhesion (as opposed to actual clinical membranes), indicating anti-thrombogenic characteristics as confirmed by increased aPTT.
Collapse
Affiliation(s)
- Alana Melo Dos Santos
- Chemical Engineering Program-COPPE/UFRJ, Federal University of Rio de Janeiro, P.O. Box 68502, CEP 21941-972, Rio de Janeiro, RJ, Brazil.
| | - Alberto Claudio Habert
- Chemical Engineering Program-COPPE/UFRJ, Federal University of Rio de Janeiro, P.O. Box 68502, CEP 21941-972, Rio de Janeiro, RJ, Brazil
| | - Helen Conceição Ferraz
- Chemical Engineering Program-COPPE/UFRJ, Federal University of Rio de Janeiro, P.O. Box 68502, CEP 21941-972, Rio de Janeiro, RJ, Brazil
| |
Collapse
|
30
|
PremVictor S, Kunnumpurathu J, Gayathri devi M, Remya K, Vijayan VM, Muthu J. Design and characterization of biodegradable macroporous hybrid inorganic-organic polymer for orthopedic applications. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2017; 77:513-520. [DOI: 10.1016/j.msec.2017.03.171] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2016] [Revised: 12/30/2016] [Accepted: 03/20/2017] [Indexed: 01/28/2023]
|
31
|
In vitro antibacterial and cytotoxic activities of plasma-modified polyethylene terephthalate nonwoven dressing with aqueous extract of Rhizome Atractylodes macrocephala. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2017; 77:606-612. [DOI: 10.1016/j.msec.2017.03.291] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Revised: 03/11/2017] [Accepted: 03/15/2017] [Indexed: 11/19/2022]
|
32
|
Wu F, Xu T, Zhao G, Meng S, Wan M, Chi B, Mao C, Shen J. Mesoporous Silica Nanoparticles-Encapsulated Agarose and Heparin as Anticoagulant and Resisting Bacterial Adhesion Coating for Biomedical Silicone. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2017; 33:5245-5252. [PMID: 28498661 DOI: 10.1021/acs.langmuir.7b00567] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Silicone catheter has been widely used in peritoneal dialysis. The research missions of improving blood compatibility and the ability of resisting bacterial adhesion of silicone catheter have been implemented for the biomedical requirements. However, most of modification methods of surface modification were only able to develop the blood-contacting biomaterials with good hemocompatibility. It is difficult for the biomaterials to resist bacterial adhesion. Here, agarose was selected to resist bacterial adhesion, and heparin was chosen to improve hemocompatibility of materials. Both of them were loaded into mesoporous silica nanoparticles (MSNs), which were successfully modified on the silicone film surface via electrostatic interaction. Structures of the mesoporous coatings were characterized in detail by dynamic light scattering, transmission electron microscopy, Brunauer-Emmett-Teller surface area, thermogravimetric analysis, Fourier transform infrared spectroscopy, scanning electron microscope, and water contact angle. Platelet adhesion and aggregation, whole blood contact test, hemolysis and related morphology test of red blood cells, in vitro clotting time tests, and bacterial adhesion assay were performed to evaluate the anticoagulant effect and the ability of resisting bacterial adhesion of the modified silicone films. Results indicated that silicone films modified by MSNs had a good anticoagulant effect and could resist bacterial adhesion. The modified silicone films have potential as blood-contacting biomaterials that were attributed to their biomedical properties.
Collapse
Affiliation(s)
- Fan Wu
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Biofunctional Materials, School of Chemistry and Materials Science, Nanjing Normal University , Nanjing 210023, China
| | - Tingting Xu
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Biofunctional Materials, School of Chemistry and Materials Science, Nanjing Normal University , Nanjing 210023, China
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Food Science and Light Industry, Nanjing Tech University , Nanjing 211816, China
| | - Guangyao Zhao
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Biofunctional Materials, School of Chemistry and Materials Science, Nanjing Normal University , Nanjing 210023, China
| | - Shuangshuang Meng
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Biofunctional Materials, School of Chemistry and Materials Science, Nanjing Normal University , Nanjing 210023, China
| | - Mimi Wan
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Biofunctional Materials, School of Chemistry and Materials Science, Nanjing Normal University , Nanjing 210023, China
| | - Bo Chi
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Food Science and Light Industry, Nanjing Tech University , Nanjing 211816, China
| | - Chun Mao
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Biofunctional Materials, School of Chemistry and Materials Science, Nanjing Normal University , Nanjing 210023, China
| | - Jian Shen
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Biofunctional Materials, School of Chemistry and Materials Science, Nanjing Normal University , Nanjing 210023, China
| |
Collapse
|
33
|
Keating JJ, Imbrogno J, Belfort G. Polymer Brushes for Membrane Separations: A Review. ACS APPLIED MATERIALS & INTERFACES 2016; 8:28383-28399. [PMID: 27709877 DOI: 10.1021/acsami.6b09068] [Citation(s) in RCA: 102] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
The fundamentals and applications of polymer brush-modified membranes are reviewed. This new class of synthetic membranes is explored with an emphasis on tuning the membrane performance through polymer brush grafting. This work highlights the intriguing performance characteristics of polymer brush-modified membranes in a variety of separations. Polymer brushes are a versatile and effective means in designing membranes for applications in protein adsorption and purification, colloid stabilization, sensors, water purification, pervaporation of organic compounds, gas separations, and as stimuli responsive materials.
Collapse
Affiliation(s)
- John J Keating
- Department of Chemical and Biological Engineering and Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute , Troy, New York 12180, United States
| | - Joseph Imbrogno
- Department of Chemical and Biological Engineering and Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute , Troy, New York 12180, United States
| | - Georges Belfort
- Department of Chemical and Biological Engineering and Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute , Troy, New York 12180, United States
| |
Collapse
|
34
|
Mierczynska-Vasilev A, Smith PA. Adsorption of Wine Constituents on Functionalized Surfaces. Molecules 2016; 21:E1394. [PMID: 27763562 PMCID: PMC6274309 DOI: 10.3390/molecules21101394] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Revised: 10/13/2016] [Accepted: 10/15/2016] [Indexed: 11/16/2022] Open
Abstract
The adsorption of macromolecules on solid surfaces is of great importance in the field of nanotechnology, biomaterials, biotechnological, and food processes. In the field of oenology adsorption of wine macromolecules such as polyphenols, polysaccharides, and proteins is much less desirable on membrane materials because of fouling and reduced filtering performance. On the other hand, adsorption of these molecules on processing aids is very beneficial for achieving wine clarity and stability. In this article, the effect of surface chemical functionalities on the adsorption of white, rosé, and red wine constituents was evaluated. Allylamine, acrylic acid, and ethanol were selected as precursors for plasma polymerization in order to generate coatings rich in amine, carboxyl, and hydroxyl chemical groups, respectively. The surface chemical functionalities were characterized by X-ray photoelectron spectroscopy (XPS) and the ability of different surface chemical functionalities to adsorb wine constituents were characterized by quartz crystal microbalance with dissipation (QCM-D) and atomic force microscopy (AFM). The results demonstrated that the amine and carboxyl modified surfaces encourage adsorption of constituents from white wine. The hydroxyl modified surfaces have the ability to preferentially adsorb rosé wine constituents, whereas red wine adsorbed to the highest extent on acrylic acid surface.
Collapse
Affiliation(s)
| | - Paul A Smith
- The Australian Wine Research Institute, P.O. Box 197, Glen Osmond, Adelaide 5064, South Australia, Australia.
| |
Collapse
|
35
|
Childers EP, Peterson GI, Ellenberger AB, Domino K, Seifert GV, Becker ML. Adhesion of Blood Plasma Proteins and Platelet-rich Plasma on l-Valine-Based Poly(ester urea). Biomacromolecules 2016; 17:3396-3403. [DOI: 10.1021/acs.biomac.6b01195] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Affiliation(s)
- Erin P. Childers
- Department of Polymer Science and ‡Department of Biomedical Engineering, The University of Akron, Akron, Ohio 44325, United States
| | - Gregory I. Peterson
- Department of Polymer Science and ‡Department of Biomedical Engineering, The University of Akron, Akron, Ohio 44325, United States
| | - Alex B. Ellenberger
- Department of Polymer Science and ‡Department of Biomedical Engineering, The University of Akron, Akron, Ohio 44325, United States
| | - Karen Domino
- Department of Polymer Science and ‡Department of Biomedical Engineering, The University of Akron, Akron, Ohio 44325, United States
| | - Gabrielle V. Seifert
- Department of Polymer Science and ‡Department of Biomedical Engineering, The University of Akron, Akron, Ohio 44325, United States
| | - Matthew L. Becker
- Department of Polymer Science and ‡Department of Biomedical Engineering, The University of Akron, Akron, Ohio 44325, United States
| |
Collapse
|
36
|
Peng Z, Yang Y, Luo J, Nie C, Ma L, Cheng C, Zhao C. Nanofibrous polymeric beads from aramid fibers for efficient bilirubin removal. Biomater Sci 2016; 4:1392-401. [DOI: 10.1039/c6bm00328a] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Polymer based hemoperfusion has been developed as an effective therapy to remove the extra bilirubin from patients.
Collapse
Affiliation(s)
- Zihang Peng
- College of Polymer Science and Engineering
- State Key Laboratory of Polymer Materials Engineering
- Sichuan University
- Chengdu 610065
- China
| | - Ye Yang
- College of Polymer Science and Engineering
- State Key Laboratory of Polymer Materials Engineering
- Sichuan University
- Chengdu 610065
- China
| | - Jiyue Luo
- College of Polymer Science and Engineering
- State Key Laboratory of Polymer Materials Engineering
- Sichuan University
- Chengdu 610065
- China
| | - Chuanxiong Nie
- College of Polymer Science and Engineering
- State Key Laboratory of Polymer Materials Engineering
- Sichuan University
- Chengdu 610065
- China
| | - Lang Ma
- College of Polymer Science and Engineering
- State Key Laboratory of Polymer Materials Engineering
- Sichuan University
- Chengdu 610065
- China
| | - Chong Cheng
- College of Polymer Science and Engineering
- State Key Laboratory of Polymer Materials Engineering
- Sichuan University
- Chengdu 610065
- China
| | - Changsheng Zhao
- College of Polymer Science and Engineering
- State Key Laboratory of Polymer Materials Engineering
- Sichuan University
- Chengdu 610065
- China
| |
Collapse
|
37
|
Wang W, Huang X, Yin H, Fan W, Zhang T, Li L, Mao C. Polyethylene glycol acrylate-grafted polysulphone membrane for artificial lungs: plasma modification and haemocompatibility improvement. Biomed Mater 2015; 10:065022. [DOI: 10.1088/1748-6041/10/6/065022] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
38
|
Sheikh Z, Brooks PJ, Barzilay O, Fine N, Glogauer M. Macrophages, Foreign Body Giant Cells and Their Response to Implantable Biomaterials. MATERIALS (BASEL, SWITZERLAND) 2015; 8:5671-5701. [PMID: 28793529 PMCID: PMC5512621 DOI: 10.3390/ma8095269] [Citation(s) in RCA: 415] [Impact Index Per Article: 46.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/03/2015] [Revised: 08/20/2015] [Accepted: 08/21/2015] [Indexed: 12/23/2022]
Abstract
All biomaterials, when implanted in vivo, elicit cellular and tissue responses. These responses include the inflammatory and wound healing responses, foreign body reactions, and fibrous encapsulation of the implanted materials. Macrophages are myeloid immune cells that are tactically situated throughout the tissues, where they ingest and degrade dead cells and foreign materials in addition to orchestrating inflammatory processes. Macrophages and their fused morphologic variants, the multinucleated giant cells, which include the foreign body giant cells (FBGCs) are the dominant early responders to biomaterial implantation and remain at biomaterial-tissue interfaces for the lifetime of the device. An essential aspect of macrophage function in the body is to mediate degradation of bio-resorbable materials including bone through extracellular degradation and phagocytosis. Biomaterial surface properties play a crucial role in modulating the foreign body reaction in the first couple of weeks following implantation. The foreign body reaction may impact biocompatibility of implantation devices and may considerably impact short- and long-term success in tissue engineering and regenerative medicine, necessitating a clear understanding of the foreign body reaction to different implantation materials. The focus of this review article is on the interactions of macrophages and foreign body giant cells with biomaterial surfaces, and the physical, chemical and morphological characteristics of biomaterial surfaces that play a role in regulating the foreign body response. Events in the foreign body response include protein adsorption, adhesion of monocytes/macrophages, fusion to form FBGCs, and the consequent modification of the biomaterial surface. The effect of physico-chemical cues on macrophages is not well known and there is a complex interplay between biomaterial properties and those that result from interactions with the local environment. By having a better understanding of the role of macrophages in the tissue healing processes, especially in events that follow biomaterial implantation, we can design novel biomaterials-based tissue-engineered constructs that elicit a favorable immune response upon implantation and perform for their intended applications.
Collapse
Affiliation(s)
- Zeeshan Sheikh
- Faculty of Dentistry, Matrix Dynamics Group, University of Toronto, 150 College Street, Toronto, ON M5S 3E2, Canada.
| | - Patricia J Brooks
- Faculty of Dentistry, Matrix Dynamics Group, University of Toronto, 150 College Street, Toronto, ON M5S 3E2, Canada.
| | - Oriyah Barzilay
- Faculty of Dentistry, Matrix Dynamics Group, University of Toronto, 150 College Street, Toronto, ON M5S 3E2, Canada.
| | - Noah Fine
- Faculty of Dentistry, Matrix Dynamics Group, University of Toronto, 150 College Street, Toronto, ON M5S 3E2, Canada.
| | - Michael Glogauer
- Faculty of Dentistry, Matrix Dynamics Group, University of Toronto, 150 College Street, Toronto, ON M5S 3E2, Canada.
| |
Collapse
|
39
|
Kaleekkal NJ, Thanigaivelan A, Durga M, Girish R, Rana D, Soundararajan P, Mohan D. Graphene Oxide Nanocomposite Incorporated Poly(ether imide) Mixed Matrix Membranes for in Vitro Evaluation of Its Efficacy in Blood Purification Applications. Ind Eng Chem Res 2015. [DOI: 10.1021/acs.iecr.5b01655] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Noel Jacob Kaleekkal
- Membrane
Laboratory, Department of Chemical Engineering, Alagappa College of
Technology, Anna University, Chennai 600025, India
| | - A. Thanigaivelan
- Membrane
Laboratory, Department of Chemical Engineering, Alagappa College of
Technology, Anna University, Chennai 600025, India
| | - M. Durga
- Membrane
Laboratory, Department of Chemical Engineering, Alagappa College of
Technology, Anna University, Chennai 600025, India
| | - R. Girish
- Department
of Nephrology, Sri Ramachandra University, Porur, Chennai 600116, India
| | - Dipak Rana
- Department
of Chemical and Biological Engineering, University of Ottawa, 161 Louis Pasteur Private, Ottawa, Ontario K1N 6N5, Canada
| | - P. Soundararajan
- Department
of Nephrology, Sri Ramachandra University, Porur, Chennai 600116, India
| | - D. Mohan
- Membrane
Laboratory, Department of Chemical Engineering, Alagappa College of
Technology, Anna University, Chennai 600025, India
| |
Collapse
|
40
|
Hamid Akash MS, Rehman K, Chen S. Natural and Synthetic Polymers as Drug Carriers for Delivery of Therapeutic Proteins. POLYM REV 2015. [DOI: 10.1080/15583724.2014.995806] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
41
|
Stoleru Paslaru E, Tsekov Y, Kotsilkova R, Ivanov E, Vasile C. Mechanical behavior at nanoscale of chitosan-coated PE surface. J Appl Polym Sci 2015. [DOI: 10.1002/app.42344] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Elena Stoleru Paslaru
- “Petru Poni” Institute of Macromolecular Chemistry; Physical Chemistry Department; 41A Gr. Ghica Voda Alley 700487 Iasi Romania
| | - Yuliy Tsekov
- Bulgarian Academy of Sciences; Institute of Mechanics, Open Laboratory for Experimental Micro and Nano Mechanics; Acad. G. Bonchev Street, Block 4 1113 Sofia Bulgaria
| | - Rumiana Kotsilkova
- Bulgarian Academy of Sciences; Institute of Mechanics, Open Laboratory for Experimental Micro and Nano Mechanics; Acad. G. Bonchev Street, Block 4 1113 Sofia Bulgaria
| | - Evgeni Ivanov
- Bulgarian Academy of Sciences; Institute of Mechanics, Open Laboratory for Experimental Micro and Nano Mechanics; Acad. G. Bonchev Street, Block 4 1113 Sofia Bulgaria
| | - Cornelia Vasile
- “Petru Poni” Institute of Macromolecular Chemistry; Physical Chemistry Department; 41A Gr. Ghica Voda Alley 700487 Iasi Romania
| |
Collapse
|
42
|
Electrochemical behavior and effect of heat treatment on morphology, crystalline structure of self-organized TiO2 nanotube arrays on Ti-6Al-7Nb for biomedical applications. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2015; 50:394-401. [PMID: 25746285 DOI: 10.1016/j.msec.2015.02.013] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2014] [Revised: 12/20/2014] [Accepted: 02/09/2015] [Indexed: 11/20/2022]
Abstract
In the present work, we investigate the formation of self-organized titanium oxide nanotube layers by anodic oxidation on titanium alloy Ti-6Al-7Nb in electrolyte solution containing sulfuric acid and hydrofluoric acid. The anodized surface was characterized by micro-Raman, X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM) and energy-dispersive X-ray spectroscopy (EDS). The corrosion behavior of the treated and untreated samples was investigated through electrochemical impedance spectroscopy (EIS) and potentiodynamic polarization studies in simulated body fluid (Hanks' solution). The investigations show that the native oxide on the sample is replaced by self-assembled nanoarray by anodization. FESEM of samples annealed at 450 to 800 °C show tubular morphology whereas those annealed at 850 °C show collapse of nanotubes. Electrochemical impedance data of the substrate and 10 V anodized samples were fitted with a two-time constant equivalent circuit and that of anodized samples (20, 30 V) with a three-time constant equivalent circuit.
Collapse
|
43
|
Zhang Q, Shan G, Cao P, He J, Lin Z, Huang Y, Ao N. Mechanical and biological properties of oxidized horn keratin. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2015; 47:123-34. [DOI: 10.1016/j.msec.2014.11.051] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2014] [Accepted: 11/12/2014] [Indexed: 11/29/2022]
|
44
|
Nie C, Ma L, Xia Y, He C, Deng J, Wang L, Cheng C, Sun S, Zhao C. Novel heparin-mimicking polymer brush grafted carbon nanotube/PES composite membranes for safe and efficient blood purification. J Memb Sci 2015. [DOI: 10.1016/j.memsci.2014.11.005] [Citation(s) in RCA: 100] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
45
|
Mohan L, Anandan C, Rajendran N. Electrochemical behaviour and bioactivity of self-organized TiO2 nanotube arrays on Ti-6Al-4V in Hanks’ solution for biomedical applications. Electrochim Acta 2015. [DOI: 10.1016/j.electacta.2014.12.032] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
46
|
Peng Z, Ao H, Wang L, Guo S, Tang T. Quaternised chitosan coating on titanium provides a self-protective surface that prevents bacterial colonisation and implant-associated infections. RSC Adv 2015. [DOI: 10.1039/c5ra07540h] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The Ti rod-treated group showed radiographic signs of osseous destruction, osteolytic lesions and consecutive deformity after 14 days, while the HTi rod-treated group were free of radiographic signs of infection.
Collapse
Affiliation(s)
- Zhaoxiang Peng
- Shanghai Key Laboratory of Orthopedic Implants
- Department of Orthopedic Surgery
- Shanghai Ninth People's Hospital
- Shanghai Jiao Tong University School of Medicine
- Shanghai 200011
| | - Haiyong Ao
- Shanghai Key Laboratory of Orthopedic Implants
- Department of Orthopedic Surgery
- Shanghai Ninth People's Hospital
- Shanghai Jiao Tong University School of Medicine
- Shanghai 200011
| | - Ling Wang
- School of Pharmacy
- Shanghai Jiao Tong University
- Shanghai 200240
- China
| | - Shengrong Guo
- School of Pharmacy
- Shanghai Jiao Tong University
- Shanghai 200240
- China
| | - Tingting Tang
- Shanghai Key Laboratory of Orthopedic Implants
- Department of Orthopedic Surgery
- Shanghai Ninth People's Hospital
- Shanghai Jiao Tong University School of Medicine
- Shanghai 200011
| |
Collapse
|
47
|
Yang Y, Shi D, Wang X, Shi H, Jiang T, Yang Y, Luan S, Yin J, Li RKY. Preparation of poly(cyclooctene)-g-poly(ethylene glycol) (PCOE-g-PEG) graft copolymers with tunable PEG side chains via ROMP and its protein adsorption and platelet adhesion properties. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2014; 45:539-45. [PMID: 25491862 DOI: 10.1016/j.msec.2014.10.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2013] [Revised: 08/19/2014] [Accepted: 10/02/2014] [Indexed: 11/24/2022]
Abstract
In our previous work [H. Shi, D. Shi et al., Polymer Chemistry 2(2011)679-684], polycyclooctene-g-PEG (PCOE-g-PEG) copolymers were synthesized via ring opening metathesis polymerization (ROMP) from PEG functionalized cyclic olefin macromonomers and cyclooctene. The grafting degree and the grafting site were easily controlled through the "grafting through" approach. The PCOE-g-PEG film surface was imparted excellent anti-protein adsorption properties. In that work, the molecular weight of PEG side chain was fixed at 750 g/mol and the neat PEG content in the copolymer was lower than 50 wt.%. In this work, both the effects of PEG side chain lengths (350 to 1000 g/mol) at a fixed PEG content (50 wt.%) and the neat PEG content (30 wt.% to 70 wt.%) at a fixed PEG molecular weight (750 g/mol) on the anti-protein adsorption and anti-platelet adhesion properties are studied. It is shown that the copolymer with 60 wt.% PEG side chains of 750 g/mol, where both PEG and PCOE form continuous morphology, is optimal to reduce the adsorption of both the bovine serum albumin (BSA) and platelet. When the PEG content reaches 70 wt.%, phase inversion happens. PEG is the continuous phase but PCOE becomes the dispersed phase. The surface roughness of the casting PCOE-g-PEG film increases. In this case, both BSA adsorption and platelet adhesion will slightly increase comparing to the sample with 60 wt.% PEG.
Collapse
Affiliation(s)
- Ying Yang
- Ministry-of-Education Key Laboratory for the Green Preparation and Application of Functional Materials, Faculty of Materials Science and Engineering, Hubei University, Wuhan 430062, PR China
| | - Dean Shi
- Ministry-of-Education Key Laboratory for the Green Preparation and Application of Functional Materials, Faculty of Materials Science and Engineering, Hubei University, Wuhan 430062, PR China.
| | - Xueli Wang
- Ministry-of-Education Key Laboratory for the Green Preparation and Application of Functional Materials, Faculty of Materials Science and Engineering, Hubei University, Wuhan 430062, PR China
| | - Hengchong Shi
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, PR China.
| | - Tao Jiang
- Ministry-of-Education Key Laboratory for the Green Preparation and Application of Functional Materials, Faculty of Materials Science and Engineering, Hubei University, Wuhan 430062, PR China
| | - Yingkui Yang
- Ministry-of-Education Key Laboratory for the Green Preparation and Application of Functional Materials, Faculty of Materials Science and Engineering, Hubei University, Wuhan 430062, PR China
| | - Shifang Luan
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, PR China
| | - Jinghua Yin
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, PR China.
| | - Robert K Y Li
- Department of Physics and Materials Science, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, PR China
| |
Collapse
|
48
|
Wang JJ, Wu MB, Xiang T, Wang R, Sun SD, Zhao CS. Antifouling and blood-compatible poly(ether sulfone) membranes modified by zwitterionic copolymers viaIn situcrosslinked copolymerization. J Appl Polym Sci 2014. [DOI: 10.1002/app.41585] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Jing-Jing Wang
- College of Polymer Science and Engineering; State Key Laboratory of Polymer Materials Engineering, Sichuan University; Chengdu 610065 People's Republic of China
| | - Ming-Bang Wu
- College of Polymer Science and Engineering; State Key Laboratory of Polymer Materials Engineering, Sichuan University; Chengdu 610065 People's Republic of China
| | - Tao Xiang
- College of Polymer Science and Engineering; State Key Laboratory of Polymer Materials Engineering, Sichuan University; Chengdu 610065 People's Republic of China
| | - Rui Wang
- College of Polymer Science and Engineering; State Key Laboratory of Polymer Materials Engineering, Sichuan University; Chengdu 610065 People's Republic of China
| | - Shu-Dong Sun
- College of Polymer Science and Engineering; State Key Laboratory of Polymer Materials Engineering, Sichuan University; Chengdu 610065 People's Republic of China
| | - Chang-Sheng Zhao
- College of Polymer Science and Engineering; State Key Laboratory of Polymer Materials Engineering, Sichuan University; Chengdu 610065 People's Republic of China
- National Engineering Research Center for Biomaterials; Sichuan University; Chengdu 610064 People's Republic of China
| |
Collapse
|
49
|
Cheng C, Sun S, Zhao C. Progress in heparin and heparin-like/mimicking polymer-functionalized biomedical membranes. J Mater Chem B 2014; 2:7649-7672. [DOI: 10.1039/c4tb01390e] [Citation(s) in RCA: 133] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
50
|
A Survey of Surface Modification Techniques for Next-Generation Shape Memory Polymer Stent Devices. Polymers (Basel) 2014. [DOI: 10.3390/polym6092309] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|