1
|
Hu J, Sun X, Xiao H, Liu C, Yang F, Liu W, Wu Y, Wang Y, Zhao R, Wang H. Effect of guar gum, gelatin, and pectin on moisture changes in freeze-dried restructured strawberry blocks. Food Chem 2024; 449:139244. [PMID: 38583397 DOI: 10.1016/j.foodchem.2024.139244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 03/13/2024] [Accepted: 04/02/2024] [Indexed: 04/09/2024]
Abstract
This study aimed to investigate the effects of edible gum addition on moisture changes in freeze-dried restructured strawberry blocks (FRSB), which involved five groups: the control, 1.2% guar gum, 1.2% gelatin, 1.2% pectin, and the composite group with 0.5% guar gum, 0.5% gelatin, and 0.45% pectin. The results indicated that the drying rates of the five groups of FRSB presented similar early acceleration and later deceleration trends. Moisture content in FRSB was linearly predicted by peak area of low field nuclear magnetic resonance with R2 higher than 0.90 for all the five groups. The FRSB samples in the gelatin and composition groups formed a denser porous structure and had a lower hygroscopicity after four days of storage. This study provides a theoretical basis for controlling the processing of FRSB.
Collapse
Affiliation(s)
- Jiaqi Hu
- School of Food Science, Nanjing Xiaozhuang University, Nanjing 211171, China; College of Food Science, Shenyang Agricultural University, Shenyang 100866, China
| | - Xiyun Sun
- College of Food Science, Shenyang Agricultural University, Shenyang 100866, China
| | - Hongwei Xiao
- College of Engineering, China Agricultural University, Beijing 100083, China
| | - Chunju Liu
- Institute of Agro-product Processing, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Feifei Yang
- School of Food Science, Nanjing Xiaozhuang University, Nanjing 211171, China; College of Food Science, Shenyang Agricultural University, Shenyang 100866, China
| | - Wuyi Liu
- School of Food Science, Nanjing Xiaozhuang University, Nanjing 211171, China; College of Food Science, Shenyang Agricultural University, Shenyang 100866, China
| | - Yulong Wu
- School of Food Science, Nanjing Xiaozhuang University, Nanjing 211171, China
| | - Yaoyao Wang
- School of Food Science, Nanjing Xiaozhuang University, Nanjing 211171, China
| | - Ru Zhao
- School of Food Science, Nanjing Xiaozhuang University, Nanjing 211171, China
| | - Haiou Wang
- School of Food Science, Nanjing Xiaozhuang University, Nanjing 211171, China.
| |
Collapse
|
2
|
Mozhdehei A, Mercury L, Slodczyk A. Ubiquity of the Micrometer-Thick Interface along a Quartz-Water Boundary. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:13025-13041. [PMID: 38870148 DOI: 10.1021/acs.langmuir.4c00742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2024]
Abstract
Water-rock interactions determine how the geochemical cycles revolve from the Earth's surface to the deep interior (large T-P intervals). The underlying mechanisms interweave the fluxes of matter, time, and reactivity between fluid phases and solids. The deformation processes of crustal rocks are also known to be significantly affected by the presence or absence of water, typically with the hydrolytic weakening of quartz, olivine, and other silicate minerals. In fact, fluid-rock interactions mechanistically unfold along their interfaces, developing over a certain thickness within the two phases. Diffraction-limited mid-infrared microspectroscopy was employed to monitor the thermodynamic characteristics of liquid water along a quartz boundary. The hyperspectral Fourier transform infrared data set displayed a very strong distance-dependent signature for water over a 1 ± 0.5 μm thickness, while quartz appears unmodified, which is consistent with recent studies. This unexpected thick interface is tested against the geometry of the inclusion, the chemistry of the occluded liquid (especially pH), and the thermal conditions ranging from room temperature to 155 °C. Throughout this range of physicochemical conditions, the micrometer-thick interface is characterized by a ubiquitous, significant shift in the Gibbs free energy of water inside the interfacial layer. This conclusion suggests that the interface-imprinting phenomenon driving this microthick layer has thermodynamic roots that give rise to specific properties along the quartz-water interface. This finding questions the systematic use of the bulk phase data sets to evaluate how water-rock interactions progress in porous media.
Collapse
Affiliation(s)
- Armin Mozhdehei
- Institut des Sciences de la Terre d'Orléans (ISTO) - UMR 7327 Université d'Orléans, CNRS, BRGM, 45071 Orléans Cedex, France
| | - Lionel Mercury
- Institut des Sciences de la Terre d'Orléans (ISTO) - UMR 7327 Université d'Orléans, CNRS, BRGM, 45071 Orléans Cedex, France
| | - Aneta Slodczyk
- Institut des Sciences de la Terre d'Orléans (ISTO) - UMR 7327 Université d'Orléans, CNRS, BRGM, 45071 Orléans Cedex, France
- CEMHTI, UPR 3079 CNRS - Université d'Orléans, F-45071 Orléans, France
| |
Collapse
|
3
|
Wang A, Pollack GH. Exclusion-zone water inside and outside of plant xylem vessels. Sci Rep 2024; 14:12071. [PMID: 38802675 PMCID: PMC11130298 DOI: 10.1038/s41598-024-62983-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 05/23/2024] [Indexed: 05/29/2024] Open
Abstract
The fourth phase of water has garnered increased attention within the scientific community due to its distinct properties that differentiate it from regular water. This unique state seems to arise potentially from a liquid crystalline structure, which has been observed near various hydrophilic surfaces to possess the capability of excluding microspheres. Consequently, it has been labeled as exclusion zone (EZ) water. When in contact with hydrophilic surfaces, water could exhibit the ability to form organized layers of EZ water. In this study, we investigated the quick buildup of EZ water exposed to xylem vessels of four vegetable plants: cabbage, celery, asparagus, and pumpkin. Among them, pumpkin vessels showed larger EZs, up to 240 ± 56 μm in width. The width of EZ water found near the xylem vessels of the other plants ranged from 133 ± 22 to 142 ± 20 μm. EZ water generally excludes a wide range of particles, including polystyrene microspheres with various surface modifications, as well as silica microspheres. This implies that the formation of EZ water is not an artificial result of using specific microsphere types but rather demonstrates EZ's ability to exclude particles regardless of their composition. Inside single xylem vessels of the pumpkin, we could observe the dynamics of EZ buildup, growing from the inside edge of the vessel toward the center. The relationship between vessel diameter, vessel length, and salt concentration on EZ generation inside the xylem vessel was also explored. The results showed that EZ water can build up both inside and outside the xylem vessels. Our findings suggest that EZ generation inside xylem vessels is associated with water flow, likely driven by a proton gradient. Further research is warranted to elucidate the role of EZ water in the physiology of living plants, particularly considering the limitations of the current experiments conducted on cut-out xylem vessel samples.
Collapse
Affiliation(s)
- Anqi Wang
- Department of Bioengineering, University of Washington, Box 355061, Seattle, WA, 98195, USA.
| | - Gerald H Pollack
- Department of Bioengineering, University of Washington, Box 355061, Seattle, WA, 98195, USA
| |
Collapse
|
4
|
Mahadeva M, Niestępski S, Kowacz M. Dependence of cell's membrane potential on extracellular voltage observed in Chara globularis. Biophys Chem 2024; 307:107199. [PMID: 38335807 DOI: 10.1016/j.bpc.2024.107199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 01/31/2024] [Accepted: 02/04/2024] [Indexed: 02/12/2024]
Abstract
The membrane potential (Vm) of a cell results from the selective movement of ions across the cell membrane. Recent studies have revealed the presence of a gradient of voltage within a few nanometers adjacent to erythrocytes. Very notably this voltage is modified in response to changes in cell's membrane potential thus effectively extending the potential beyond the membrane and into the solution. In this study, using the microelectrode technique, we provide experimental evidence for the existence of a gradient of negative extracellular voltage (Vz) in a wide zone close to the cell wall of algal cells, extending over several micrometers. Modulating the ionic concentration of the extracellular solution with CO2 alters the extracellular voltage and causes an immediate change in Vm. Elevated extracellular CO2 levels depolarize the cell and hyperpolarize the zone of extracellular voltage (ZEV) by the same magnitude. This observation strongly suggests a coupling effect between Vz and Vm. An increase in the level of intracellular CO2 (dark respiration) leads to hyperpolarization of the cell without any immediate effect on the extracellular voltage. Therefore, the metabolic activity of a cell can proceed without inducing changes in Vz. Conversely, Vz can be modified by external stimulation without metabolic input from the cell. The evolution of the ZEV, particularly around spines and wounded cells, where ion exchange is enhanced, suggests that the formation of the ZEV may be attributed to the exchange of ions across the cell wall and cell membrane. By comparing the changes in Vm in response to external stimuli, as measured by electrodes and observed using a potential-sensitive dye, we provide experimental evidence demonstrating the significance of extracellular voltage in determining the cell's membrane potential. This may have implications for our understanding of cell membrane potential generation beyond the activities of ion channels.
Collapse
Affiliation(s)
- Manohara Mahadeva
- Department of Reproductive Immunology & Pathology, Institute of Animal Reproduction and Food Research Polish Academy of Sciences, 10-748 Olsztyn, Poland
| | - Sebastian Niestępski
- Department of Reproductive Immunology & Pathology, Institute of Animal Reproduction and Food Research Polish Academy of Sciences, 10-748 Olsztyn, Poland
| | - Magdalena Kowacz
- Department of Reproductive Immunology & Pathology, Institute of Animal Reproduction and Food Research Polish Academy of Sciences, 10-748 Olsztyn, Poland.
| |
Collapse
|
5
|
Snow AW, Ananth R. Sulfobetaine-Siloxanes: A Class of Self-Destructive Surfactants. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:4831-4844. [PMID: 38381614 DOI: 10.1021/acs.langmuir.3c03735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/23/2024]
Abstract
The hydrolytic susceptibility of sulfobetaine-siloxane surfactants is investigated by comparison of a homologous series in this subclass of surfactants (R-(CH2)3N+(Me)2(CH2)3SO3-; R = (Me3SiO)3Si-, (Me3SiO)2Si(Me)-, (Me2SiO)3-Si(Me)-) with an analogue series of oxyethylene-siloxane surfactants (R-(CH2)3(OCH2CH2)10.2OH; R = (Me3SiO)3Si-, (Me3SiO)2Si(Me)-, (Me2SiO)3-Si(Me)-). Nuclear magnetic resonance (NMR) monitoring of these surfactants in an aqueous solution shows that the presence of the sulfobetaine head structure greatly enhances the hydrolysis rate of the siloxane tail as compared with oxyethylene-siloxane analogue control experiments. This sulfobetaine effect is confirmed by adding a model compound, (Me)3N+(CH2)3SO3-, to the oxyethylene-siloxane surfactants and observing the large hydrolysis enhancement. Measurements of pH indicate the sulfobetaine presence greatly enhances acidity, but rigorous analysis could discover no source of acid other than the presence of the sulfobetaine structure. Titration measurements confirmed the presence of a tightly bound hydration layer of 4-7 water molecules per sulfobetaine group. It is speculated that the source of acidity may originate from an aqueous exclusion zone nucleated by the hydrated sulfobetaine at the interface of a sulfobetaine-siloxane surfactant bilayer aggregate. Hydrolysis prevention is investigated by addition of a pH 7 phosphate buffer, of an alkyl polyglycoside cosurfactant, and of a combination of both, with a finding of very significant but not complete suppression of the hydrolysis.
Collapse
Affiliation(s)
- Arthur W Snow
- Chemistry Division, Naval Research Laboratory, 4555 Overlook Avenue, SW, Washington, District of Columbia 20375, United States
| | - Ramagopal Ananth
- Chemistry Division, Naval Research Laboratory, 4555 Overlook Avenue, SW, Washington, District of Columbia 20375, United States
| |
Collapse
|
6
|
Zhang H, Wang F, Guo Z. The antifouling mechanism and application of bio-inspired superwetting surfaces with effective antifouling performance. Adv Colloid Interface Sci 2024; 325:103097. [PMID: 38330881 DOI: 10.1016/j.cis.2024.103097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 01/14/2024] [Accepted: 01/28/2024] [Indexed: 02/10/2024]
Abstract
With the rapid development of industries, the issue of pollution on Earth has become increasingly severe. This has led to the deterioration of various surfaces, rendering them ineffective for their intended purposes. Examples of such surfaces include oil rigs, seawater intakes, and more. A variety of functional surface techniques have been created to address these issues, including superwetting surfaces, antifouling coatings, nano-polymer composite materials, etc. They primarily exploit the membrane's surface properties and hydration layer to improve the antifouling property. In recent years, biomimetic superwetting surfaces with non-toxic and environmental characteristics have garnered massive attention, greatly aiding in solving the problem of pollution. In this work, a detailed presentation of antifouling superwetting materials was made, including superhydrophobic surface, superhydrophilic surface, and superhydrophilic/underwater superoleophobic surface, along with the antifouling mechanisms. Then, the applications of the superwetting antifouling materials in antifouling domain were addressed in depth.
Collapse
Affiliation(s)
- Huayang Zhang
- Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei Key Laboratory of Polymer Materials, Hubei University, Wuhan 430062, China
| | - Fengyi Wang
- Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei Key Laboratory of Polymer Materials, Hubei University, Wuhan 430062, China; School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, China.
| | - Zhiguang Guo
- Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei Key Laboratory of Polymer Materials, Hubei University, Wuhan 430062, China; State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
| |
Collapse
|
7
|
Fan K, Zhou S, Xie L, Jia S, Zhao L, Liu X, Liang K, Jiang L, Kong B. Interfacial Assembly of 2D Graphene-Derived Ion Channels for Water-Based Green Energy Conversion. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2307849. [PMID: 37873917 DOI: 10.1002/adma.202307849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 10/12/2023] [Indexed: 10/25/2023]
Abstract
The utilization of sustained and green energy is believed to alleviate increasing menace of global environmental concerns and energy dilemma. Interfacial assembly of 2D graphene-derived ion channels (2D-GDICs) with tunable ion/fluid transport behavior enables efficient harvesting of renewable green energy from ubiquitous water, especially for osmotic energy harvesting. In this review, various interfacial assembly strategies for fabricating diverse 2D-GDICs are summarized and their ion transport properties are discussed. This review analyzes how particular structure and charge density/distribution of 2D-GDIC can be modulated to minimize internal resistance of ion/fluid transport and enhance energy conversion efficiency, and highlights stimuli-responsive functions and stability of 2D-GDIC and further examines the possibility of integrating 2D-GDIC with other energy conversion systems. Notably, the presented preparation and applications of 2D-GDIC also inspire and guide other 2D materials to fabricate sophisticated ion channels for targeted applications. Finally, potential challenges in this field is analyzed and a prospect to future developments toward high-performance or large-scale real-word applications is offered.
Collapse
Affiliation(s)
- Kun Fan
- College of Electrical Engineering, Sichuan University, Chengdu, 610065, P. R. China
| | - Shan Zhou
- Department of Chemistry, Shanghai Key Lab of Molecular Catalysis and Innovative Materials, Collaborative Innovation Center of Chemistry for Energy Materials, Fudan University, Shanghai, 200438, P. R. China
| | - Lei Xie
- Department of Chemistry, Shanghai Key Lab of Molecular Catalysis and Innovative Materials, Collaborative Innovation Center of Chemistry for Energy Materials, Fudan University, Shanghai, 200438, P. R. China
| | - Shenli Jia
- College of Electrical Engineering, Sichuan University, Chengdu, 610065, P. R. China
| | - Lihua Zhao
- College of Electrical Engineering, Sichuan University, Chengdu, 610065, P. R. China
| | - Xiangyang Liu
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Material and Engineering, Sichuan University, Chengdu, 610065, P. R. China
| | - Kang Liang
- School of Chemical Engineering and Graduate School of Biomedical Engineering, The University of New South Wales, Sydney, New South Wales, 2052, Australia
| | - Lei Jiang
- Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Biao Kong
- Department of Chemistry, Shanghai Key Lab of Molecular Catalysis and Innovative Materials, Collaborative Innovation Center of Chemistry for Energy Materials, Fudan University, Shanghai, 200438, P. R. China
- Shandong Research Institute, Fudan University, Shandong, 250103, China
| |
Collapse
|
8
|
Li Z, Pollack GH. On the driver of blood circulation beyond the heart. PLoS One 2023; 18:e0289652. [PMID: 37856567 PMCID: PMC10586597 DOI: 10.1371/journal.pone.0289652] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Accepted: 07/23/2023] [Indexed: 10/21/2023] Open
Abstract
The heart is widely acknowledged as the unique driver of blood circulation. Recently, we discovered a flow-driving mechanism that can operate without imposed pressure, using infrared (IR) energy to propel flow. We considered the possibility that, by exploiting this mechanism, blood vessels, themselves, could propel flow. We verified the existence of this driving mechanism by using a three-day-old chick-embryo model. When the heart was stopped, blood continued to flow for approximately 50 minutes, albeit at a lower velocity. When IR was introduced, the postmortem flow increased from ~41.1 ± 25.6 μm/s to ~153.0 ± 59.5 μm/s (n = 6). When IR energy was diminished under otherwise physiological conditions, blood failed to flow. Hence, this IR-dependent, vessel-based flow-driving mechanism may indeed operate in the circulatory system, complementing the action of the heart.
Collapse
Affiliation(s)
- Zheng Li
- Department of Bioengineering, University of Washington, Seattle, Washington, United States of America
| | - Gerald H. Pollack
- Department of Bioengineering, University of Washington, Seattle, Washington, United States of America
| |
Collapse
|
9
|
Kowacz M, Withanage S, Niestępski S. Voltage and concentration gradients across membraneless interface generated next to hydrogels: relation to glycocalyx. SOFT MATTER 2023; 19:7528-7540. [PMID: 37750247 DOI: 10.1039/d3sm00889d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/27/2023]
Abstract
Next to many hydrophilic surfaces, including those of biological cells and tissues, a layer of water that effectively excludes solutes and particles can be generated. This interfacial water is the subject of research aiming for practical applications such as removal of salts, pathogens or manipulation of biomolecules. However, the exact mechanism of its creation is still elusive because its persistence and extension contradict hydrogen-bond dynamics and electric double layer predictions. The experimentally recorded negative voltage of this interfacial water remains to be properly explained. Even less is known about the nature of such water layers in biological systems. We present experimental evidence for ion and particle exclusion as a result of separation of ionic charges with distinct diffusion rates across a liquid junction at the gel/water interface and the subsequent repulsion of ions of a given sign by a like-charged gel surface. Gels represent features of biological interfaces (in terms of functional groups and porosity) and are subject to biologically relevant chemical triggers. Our results show that gels with -OSO3- and -COO- groups can effectively generate ion- and particle-depleted regions of water reaching over 100 μm and having negative voltage up to -30 mV. Exclusion distance and electric potential depend on the liquid junction potential at the gel/water interface and on the concentration gradient at the depleted region/bulk interface, respectively. The voltage and extension of these ion- and particle-depleted water layers can be effectively modified by CO2 (respiratory gas) or KH2PO4 (cell metabolite). Possible implications pertain to biologically unstirred water layers and a cell's bioenergetics.
Collapse
Affiliation(s)
- Magdalena Kowacz
- Department of Reproductive Immunology & Pathology, Institute of Animal Reproduction and Food Research Polish Academy of Sciences, Tuwima 10, 10-748 Olsztyn, Poland.
| | - Sinith Withanage
- Department of Reproductive Immunology & Pathology, Institute of Animal Reproduction and Food Research Polish Academy of Sciences, Tuwima 10, 10-748 Olsztyn, Poland.
| | - Sebastian Niestępski
- Department of Reproductive Immunology & Pathology, Institute of Animal Reproduction and Food Research Polish Academy of Sciences, Tuwima 10, 10-748 Olsztyn, Poland.
| |
Collapse
|
10
|
Batsanov SS, Gavrilkin SM, Dan’kin DA, Batsanov AS, Kurakov AV, Shatalova TB, Kulikova IM. Transparent Colloids of Detonation Nanodiamond: Physical, Chemical and Biological Properties. MATERIALS (BASEL, SWITZERLAND) 2023; 16:6227. [PMID: 37763505 PMCID: PMC10532683 DOI: 10.3390/ma16186227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 08/24/2023] [Accepted: 09/13/2023] [Indexed: 09/29/2023]
Abstract
Aqueous suspensions (colloids) containing detonation nano-diamond (DND) feature in most applications of DND and are an indispensable stage of its production; therefore, the interaction of DND with water is actively studied. However, insufficient attention has been paid to the unique physico-chemical and biological properties of transparent colloids with low DND content (≤0.1%), which are the subject of this review. Thus, such colloids possess giant dielectric permittivity which shows peculiar temperature dependence, as well as quasi-periodic fluctuations during slow evaporation or dilution. In these colloids, DND interacts with water and air to form cottonwool-like fibers comprising living micro-organisms (fungi and bacteria) and DND particles, with elevated nitrogen content due to fixation of atmospheric N2. Prolonged contact between these solutions and air lead to the formation of ammonium nitrate, sometimes forming macroscopic crystals. The latter was also formed during prolonged oxidation of fungi in aqueous DND colloids. The possible mechanism of N2 fixation is discussed, which can be attributable to the high reactivity of DND.
Collapse
Affiliation(s)
- Stepan S. Batsanov
- National Research Institute for Physical-Technical Measurements, Mendeleevo 141570, Russia;
| | - Sergey M. Gavrilkin
- National Research Institute for Physical-Technical Measurements, Mendeleevo 141570, Russia;
| | - Dmitry A. Dan’kin
- Fritsch Laboratory Instruments, Moscow Branch, Moscow 115093, Russia;
| | | | | | | | - Inna M. Kulikova
- Institute of Mineralogy, Geochemistry and Crystalchemistry of Rare Elements, Moscow 121357, Russia;
| |
Collapse
|
11
|
Tamagawa H, Nakahata T, Sugimori R, Delalande B, Mulembo T. The Membrane Potential Has a Primary Key Equation. Acta Biotheor 2023; 71:15. [PMID: 37148457 DOI: 10.1007/s10441-023-09467-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 04/17/2023] [Indexed: 05/08/2023]
Abstract
It is common to say that the origin of the membrane potential is attributed to transmembrane ion transport, but it is theoretically possible to explain its generation by the mechanism of ion adsorption. It has been previously suggested that the ion adsorption mechanism even leads to potential formulae identical to the famous Nernst equation or the Goldman-Hodgkin-Katz equation. Our further analysis, presented in this paper, indicates that the potential formula based on the ion adsorption mechanism leads to an equation that is a function of the surface charge density of the material and the surface potential of the material. Furthermore, we have confirmed that the equation holds in all the different experimental systems that we have studied. This equation appears to be a key equation that governs the characteristics of the membrane potential in all systems.
Collapse
Affiliation(s)
- Hirohisa Tamagawa
- Department of Mechanical Engineering, Faculty of Engineering, Gifu University, 1-1 Yanagido, Gifu, 501-1193, Japan.
| | - Toi Nakahata
- Department of Mechanical Engineering, Faculty of Engineering, Gifu University, 1-1 Yanagido, Gifu, 501-1193, Japan
| | - Ren Sugimori
- Department of Mechanical Engineering, Faculty of Engineering, Gifu University, 1-1 Yanagido, Gifu, 501-1193, Japan
| | | | - Titus Mulembo
- Mechatronic Engineering Department, Dedan Kimathi University of Technology DEKUT, Nyeri, Kenya
| |
Collapse
|
12
|
Nooryani M, Benneker AM, Natale G. Self-generated exclusion zone in a dead-end pore microfluidic channel. LAB ON A CHIP 2023; 23:2122-2130. [PMID: 36951143 DOI: 10.1039/d2lc01130a] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Particles can be manipulated by gradients of concentration (diffusiophoresis) and electric potential (electrophoresis) to transport them to desired locations. To establish these gradients, external stimuli are usually required. In this work, we manipulate particles through a self-generated concentration gradient within a PDMS-based microfluidic platform, without directly applying an external field. The interfacial chemistry of the PDMS results in a local increase of hydronium ions, leading to a concentration and electrical potential gradient in the system, which in turn generate a temporary exclusion zone at the pore entrance, extending up to half of the main channel, or 150 μm. With time, this exclusion zone diminishes as equilibrium in the ion concentration is reached. We study the dynamics of the exclusion zone thickness and find that the Sherwood number determines the size and stability of the exclusion zone. Our work shows, that even without introducing external ionic gradients, particle diffusiophoresis is significant in lab-on-a-chip systems. The interfacial chemistry of the microfluidic platform can have a significant influence on particle movement and this should be considered when designing experiments on diffusiophoresis. The observed phenomenon can be employed to design lab-on-a-chip-based sorting of colloidal particles.
Collapse
Affiliation(s)
- Matina Nooryani
- Department of Chemical and Petroleum Engineering, Schulich School of Engineering, University of Calgary, AB, Canada.
| | - Anne M Benneker
- Department of Chemical and Petroleum Engineering, Schulich School of Engineering, University of Calgary, AB, Canada.
| | - Giovanniantonio Natale
- Department of Chemical and Petroleum Engineering, Schulich School of Engineering, University of Calgary, AB, Canada.
| |
Collapse
|
13
|
Sharma A, Traynor-Kaplan A, Pollack GH. Solid Water at Room Temperature? ARAB J CHEM 2023. [DOI: 10.1016/j.arabjc.2022.104537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
|
14
|
Demangeat JL. Water proton NMR relaxation revisited: Ultrahighly diluted aqueous solutions beyond Avogadro’s limit prepared by iterative centesimal dilution under shaking cannot be considered as pure solvent. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.119500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
15
|
Earls A, Calderer MC, Desroches M, Zarnescu A, Rodrigues S. A phenomenological model for interfacial water near hydrophilic polymers. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2022; 34:355102. [PMID: 35732163 DOI: 10.1088/1361-648x/ac7b5d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 06/22/2022] [Indexed: 06/15/2023]
Abstract
We propose a minimalist phenomenological model for the 'interfacial water' phenomenon that occurs near hydrophilic polymeric surfaces. We achieve this by combining a Ginzburg-Landau approach with Maxwell's equations which leads us to a well-posed model providing a macroscopic interpretation of experimental observations. From the derived governing equations, we estimate the unknown parameters using experimental measurements from the literature. The resulting profiles of the polarization and electric potential show exponential decay near the surface, in qualitative agreement with experiments. Furthermore, the model's quantitative prediction of the electric potential at the hydrophilic surface is in excellent agreement with experiments. The proposed model is a first step towards a more complete parsimonious macroscopic model that will, for example, help to elucidate the effects of interfacial water on cells (e.g. neuronal excitability), the effects of infrared neural stimulation or the effects of drugs mediated by interfacial water.
Collapse
Affiliation(s)
- A Earls
- Basque Center for Applied Mathematics, Bilbao, Spain
| | - M-C Calderer
- University of Minnesota, Minneapolis, MN, United States of America
| | - M Desroches
- Inria at Université Côte d'Azur, Sophia Antipolis, France
| | - A Zarnescu
- Basque Center for Applied Mathematics, Bilbao, Spain
- Ikerbasque, Bilbao, Spain
- Simion Stoilow Institute of the Romanian Academy, Bucharest, Romania
| | - S Rodrigues
- Basque Center for Applied Mathematics, Bilbao, Spain
- Ikerbasque, Bilbao, Spain
| |
Collapse
|
16
|
Scholkmann F, Tsenkova R. Changes in Water Properties in Human Tissue after Double Filtration Plasmapheresis-A Case Study. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27123947. [PMID: 35745071 PMCID: PMC9230951 DOI: 10.3390/molecules27123947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 06/08/2022] [Accepted: 06/10/2022] [Indexed: 11/28/2022]
Abstract
Double-filtration plasmapheresis (DFPP) is a blood cleaning technique that enables the removal of unwanted substances from the blood. In our case study, we performed near-infrared (NIR) spectroscopy measurements on the human hand tissue before and after a specific DFPP treatment (INUSpheresis with a TKM58 filter), along with NIR measurements of the substances extracted via DFPP (eluate). The spectral data were analyzed using the aquaphotomics approach. The analysis showed that the water properties in the tissue change after DFPP treatment, i.e., an increase in small water clusters, free water molecules and a decrease in hydroxylated water as well as superoxide in hydration shells was noted. The opposite effect was observed in the eluates of both DFPP treatments. Our study is the first that documents changes in water spectral properties after DFPP treatments in human tissue. The changes in tissue water demonstrated by our case study suggest that the positive physiological effects of DFPP in general, and of INUSpheresis with the TKM58 filter in particular, may be associated with improvements in water quality in blood and tissues.
Collapse
Affiliation(s)
- Felix Scholkmann
- Biomedical Optics Research Laboratory, Department of Neonatology, University Hospital Zurich, University of Zurich, 8091 Zurich, Switzerland
- Correspondence: ; Tel.: +41-44-255-93-26
| | - Roumiana Tsenkova
- Aquaphotomics Research Department, Graduate School of Agricultural Science, Kobe University, Kobe 657-8501, Japan;
| |
Collapse
|
17
|
Staelens M, Di Gregorio E, Kalra AP, Le HT, Hosseinkhah N, Karimpoor M, Lim L, Tuszyński JA. Near-Infrared Photobiomodulation of Living Cells, Tubulin, and Microtubules In Vitro. FRONTIERS IN MEDICAL TECHNOLOGY 2022; 4:871196. [PMID: 35600165 PMCID: PMC9115106 DOI: 10.3389/fmedt.2022.871196] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 03/14/2022] [Indexed: 11/29/2022] Open
Abstract
We report the results of experimental investigations involving photobiomodulation (PBM) of living cells, tubulin, and microtubules in buffer solutions exposed to near-infrared (NIR) light emitted from an 810 nm LED with a power density of 25 mW/cm2 pulsed at a frequency of 10 Hz. In the first group of experiments, we measured changes in the alternating current (AC) ionic conductivity in the 50–100 kHz range of HeLa and U251 cancer cell lines as living cells exposed to PBM for 60 min, and an increased resistance compared to the control cells was observed. In the second group of experiments, we investigated the stability and polymerization of microtubules under exposure to PBM. The protein buffer solution used was a mixture of Britton-Robinson buffer (BRB aka PEM) and microtubule cushion buffer. Exposure of Taxol-stabilized microtubules (~2 μM tubulin) to the LED for 120 min resulted in gradual disassembly of microtubules observed in fluorescence microscopy images. These results were compared to controls where microtubules remained stable. In the third group of experiments, we performed turbidity measurements throughout the tubulin polymerization process to quantify the rate and amount of polymerization for PBM-exposed tubulin vs. unexposed tubulin samples, using tubulin resuspended to final concentrations of ~ 22.7 μM and ~ 45.5 μM in the same buffer solution as before. Compared to the unexposed control samples, absorbance measurement results demonstrated a slower rate and reduced overall amount of polymerization in the less concentrated tubulin samples exposed to PBM for 30 min with the parameters mentioned above. Paradoxically, the opposite effect was observed in the 45.5 μM tubulin samples, demonstrating a remarkable increase in the polymerization rates and total polymer mass achieved after exposure to PBM. These results on the effects of PBM on living cells, tubulin, and microtubules are novel, further validating the modulating effects of PBM and contributing to designing more effective PBM parameters. Finally, potential consequences for the use of PBM in the context of neurodegenerative diseases are discussed.
Collapse
Affiliation(s)
- Michael Staelens
- Department of Physics, University of Alberta, Edmonton, AB, Canada
| | | | - Aarat P. Kalra
- Scholes Lab, Department of Chemistry, Princeton University, Princeton, NJ, United States
| | - Hoa T. Le
- Department of Physics, University of Alberta, Edmonton, AB, Canada
| | | | | | - Lew Lim
- Vielight Inc., Toronto, ON, Canada
| | - Jack A. Tuszyński
- Department of Physics, University of Alberta, Edmonton, AB, Canada
- Department of Oncology, University of Alberta, Edmonton, AB, Canada
- *Correspondence: Jack A. Tuszyński
| |
Collapse
|
18
|
Chierici F, Dogariu A, Tuszynski JA. Computational Investigation of the Ordered Water System Around Microtubules: Implications for Protein Interactions. Front Mol Biosci 2022; 9:884043. [PMID: 35547397 PMCID: PMC9083000 DOI: 10.3389/fmolb.2022.884043] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 04/05/2022] [Indexed: 11/17/2022] Open
Abstract
The existence of an exclusion zone in which particles of a colloidal suspension in water are repelled from hydrophilic surfaces has been experimentally demonstrated in numerous studies, especially in the case of Nafion surfaces. Various explanations have been proposed for the origin of this phenomenon, which is not completely understood yet. In particular, the existence of a fourth phase of water has been proposed by G. Pollack and if this theory is proven correct, its implications on our understanding of the properties of water, especially in biological systems, would be profound and could give rise to new medical therapies. Here, a simple approach based on the linearized Poisson-Boltzmann equation is developed in order to study the repulsive forces mediated by ordered water and involving the following interacting biomolecules: 1) microtubule and a tubulin dimer, 2) two tubulin dimers and 3) a tubulin sheet and a tubulin dimer. The choice of microtubules in this study is motivated because they could be a good candidate for the generation of an exclusion zone in the cell and these models could be a starting point for detailed experimental investigations of this phenomenon.
Collapse
Affiliation(s)
- Francesco Chierici
- DIMEAS, Politecnico di Torino, Torino, Italy
- CREOL, The College of Optics and Photonics, University of Central Florida, Orlando, FL, United States
- *Correspondence: Francesco Chierici,
| | - Aristide Dogariu
- CREOL, The College of Optics and Photonics, University of Central Florida, Orlando, FL, United States
| | - Jack A. Tuszynski
- DIMEAS, Politecnico di Torino, Torino, Italy
- Department of Physics, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
19
|
Hu Y, Zhang Y, Cheng Y. Kinetic insight on the long-range exclusion of dissolved substances by interfacial interactions of water and hydrophilic surface. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2021.118118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
20
|
Yablonskaya OI, Voeikov VL, Novikov KN, Buravleva EV, Menshov VA, Trofimov AV. Effect of Humid Air Exposed to IR Radiation on Enzyme Activity. Int J Mol Sci 2022; 23:ijms23020601. [PMID: 35054784 PMCID: PMC8775401 DOI: 10.3390/ijms23020601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 12/30/2021] [Accepted: 01/03/2022] [Indexed: 11/17/2022] Open
Abstract
Water vapor absorbs well in the infra-red region of the electromagnetic spectrum. Absorption of radiant energy by water or water droplets leads to formation of exclusion zone water that possesses peculiar physico-chemical properties. In the course of this study, normally functioning and damaged alkaline phosphatase, horseradish peroxidase and catalase were treated with humid air irradiated with infrared light with a wavelength in the range of 1270 nm and referred to as coherent humidity (CoHu). One-minute long treatment with CoHu helped to partially protect enzymes from heat inactivation, mixed function oxidation, and loss of activity due to partial unfolding. Authors suggest that a possible mechanism underlying the observed effects involves altering the physicochemical properties of aqueous media while treatment of the objects with CoHu where CoHu acts as an intermediary.
Collapse
Affiliation(s)
- Olga I. Yablonskaya
- Emanuel Institute of Biochemical Physics of Russian Academy of Sciences, 119334 Moscow, Russia; (V.A.M.); (A.V.T.)
- Correspondence:
| | - Vladimir L. Voeikov
- Faculty of Biology, Lomonosov Moscow State University, 119234 Moscow, Russia; (V.L.V.); (K.N.N.); (E.V.B.)
| | - Kirill N. Novikov
- Faculty of Biology, Lomonosov Moscow State University, 119234 Moscow, Russia; (V.L.V.); (K.N.N.); (E.V.B.)
| | - Ekaterina V. Buravleva
- Faculty of Biology, Lomonosov Moscow State University, 119234 Moscow, Russia; (V.L.V.); (K.N.N.); (E.V.B.)
| | - Valeriy A. Menshov
- Emanuel Institute of Biochemical Physics of Russian Academy of Sciences, 119334 Moscow, Russia; (V.A.M.); (A.V.T.)
| | - Aleksei V. Trofimov
- Emanuel Institute of Biochemical Physics of Russian Academy of Sciences, 119334 Moscow, Russia; (V.A.M.); (A.V.T.)
| |
Collapse
|
21
|
Generation of Electromagnetic Field by Microtubules. Int J Mol Sci 2021; 22:ijms22158215. [PMID: 34360980 PMCID: PMC8348406 DOI: 10.3390/ijms22158215] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 07/23/2021] [Accepted: 07/27/2021] [Indexed: 02/02/2023] Open
Abstract
The general mechanism of controlling, information and organization in biological systems is based on the internal coherent electromagnetic field. The electromagnetic field is supposed to be generated by microtubules composed of identical tubulin heterodimers with periodic organization and containing electric dipoles. We used a classical dipole theory of generation of the electromagnetic field to analyze the space–time coherence. The structure of microtubules with the helical and axial periodicity enables the interaction of the field in time shifted by one or more periods of oscillation and generation of coherent signals. Inner cavity excitation should provide equal energy distribution in a microtubule. The supplied energy coherently excites oscillators with a high electrical quality, microtubule inner cavity, and electrons at molecular orbitals and in ‘semiconduction’ and ‘conduction’ bands. The suggested mechanism is supposed to be a general phenomenon for a large group of helical systems.
Collapse
|
22
|
de Lima VMF, Hanke W. Reversibility of excitation waves in brain and heart and the energy of interfacial water. Can reversibility be explained by it? PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2021; 162:129-140. [PMID: 33279573 DOI: 10.1016/j.pbiomolbio.2020.11.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 10/18/2020] [Accepted: 11/13/2020] [Indexed: 11/20/2022]
Abstract
In this manuscript, we interpret the implications of a discovery we made in 1993 for the understanding of the spread of excitation waves in axon, central gray matter (isolated retina) and heart. We propose that the initial burst of energy dissipation in these waves measured as potentials drops, ionic activities marked changes or optical properties being mostly the effect of dissociated water becoming liquid water and be reversible due to the further on dissociation during the refractory period. We also propose experiments in order to falsify or agree with this conjecture.
Collapse
Affiliation(s)
- Vera Maura Fernandes de Lima
- Centro de Biotecnologia CNEN/IPEN-SP, Av. Prof. Lineu Prestes, 2242 Butantan, CEP 05508-000, São Paulo, SP, Brazil
| | - Wolfgang Hanke
- Universität Hohenheim, Institute of Physiology, arbenstrasse 30 70599, Stuttgart, Germany.
| |
Collapse
|
23
|
Mercado-Uribe H, Guevara-Pantoja FJ, García-Muñoz W, García-Maldonado JS, Méndez-Alcaraz JM, Ruiz-Suárez JC. On the evolution of the exclusion zone produced by hydrophilic surfaces: A contracted description. J Chem Phys 2021; 154:194902. [PMID: 34240904 DOI: 10.1063/5.0043084] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
After exciting scientific debates about its nature, the development of the exclusion zone, a region near hydrophilic surfaces from which charged colloidal particles are strongly expelled, has been finally traced back to the diffusiophoresis produced by unbalanced ion gradients. This was done by numerically solving the coupled Poisson equation for electrostatics, the two stationary Stokes equations for low Reynolds numbers in incompressible fluids, and the Nernst-Planck equation for mass transport. Recently, it has also been claimed that the leading mechanism behind the diffusiophoretic phenomenon is electrophoresis [Esplandiu et al., Soft Matter 16, 3717 (2020)]. In this paper, we analyze the evolution of the exclusion zone based on a one-component interaction model at the Langevin equation level, which leads to simple analytical expressions instead of the complex numerical scheme of previous works, yet being consistent with it. We manage to reproduce the evolution of the exclusion zone width and the mean-square displacements of colloidal particles we measure near Nafion, a perfluorinated polymer membrane material, along with all characteristic time regimes, in a unified way. Our findings are also strongly supported by complementary experiments using two parallel planar conductors kept at a fixed voltage, mimicking the hydrophilic surfaces, and some computer simulations.
Collapse
Affiliation(s)
- H Mercado-Uribe
- CINVESTAV-Monterrey, PIIT, 66600 Apodaca, Nuevo León, Mexico
| | | | - W García-Muñoz
- CINVESTAV-Monterrey, PIIT, 66600 Apodaca, Nuevo León, Mexico
| | - J S García-Maldonado
- Departamento de Física, CINVESTAV, Av. IPN 2508, Col. San Pedro Zacatenco, 07360 Ciudad de México, Mexico
| | - J M Méndez-Alcaraz
- Departamento de Física, CINVESTAV, Av. IPN 2508, Col. San Pedro Zacatenco, 07360 Ciudad de México, Mexico
| | - J C Ruiz-Suárez
- CINVESTAV-Monterrey, PIIT, 66600 Apodaca, Nuevo León, Mexico
| |
Collapse
|
24
|
Kowacz M, Pollack GH. Propolis-induced exclusion of colloids: Possible new mechanism of biological action. COLLOID AND INTERFACE SCIENCE COMMUNICATIONS 2020; 38:100307. [PMID: 32864353 PMCID: PMC7442903 DOI: 10.1016/j.colcom.2020.100307] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 08/07/2020] [Accepted: 08/12/2020] [Indexed: 06/11/2023]
Abstract
Propolis is a natural product originating from life activity of honeybees. It exhibits wide range of biological properties applicable in medicine, the food industry, and cosmetics. Chemically, propolis is a complex and variable mixture with more than 300 identified biologically active components. Propolis's many health-promoting effects are attributed to different biochemical mechanisms, mediated by often-concerted actions of some of its many constituents. Propolis is considered safe and biocompatible. Yet due to its intrinsic complexity, standardization of propolis preparations for medical use as well as prediction of e.g. pathogen-specific interactions becomes a non-trivial task. In this work we demonstrate a new physical mechanism of propolis action, largely independent of specific nuances of propolis chemistry, which may underlie some of its biological actions. We show that propolis-bearing surfaces generate an extensive exclusion zone (EZ) water layer. EZ is an interfacial region of water capable of excluding solutes ranging from ions to microorganisms. Propolis-generated EZ may constitute an effective barrier, physically disabling the approach of various pathogens to the propolis-functionalized surfaces. We suggest possible implications of this new mechanism for propolis-based prevention of respiratory infections.
Collapse
Affiliation(s)
- Magdalena Kowacz
- Department of Bioengineering, University of Washington, Box 355061, Seattle, WA 98195, United States
| | - Gerald H Pollack
- Department of Bioengineering, University of Washington, Box 355061, Seattle, WA 98195, United States
| |
Collapse
|
25
|
Kowacz M, Pollack GH. Cells in New Light: Ion Concentration, Voltage, and Pressure Gradients across a Hydrogel Membrane. ACS OMEGA 2020; 5:21024-21031. [PMID: 32875239 PMCID: PMC7450609 DOI: 10.1021/acsomega.0c02595] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Accepted: 07/27/2020] [Indexed: 06/11/2023]
Abstract
The ionic compositions of the intra- and extracellular environments are distinct from one another, with K+ being the main cation in the cytosol and Na+ being the most abundant cation outside of the cell. Specific ions can permeate into and out of the cell at different rates, bringing about uneven distribution of charges and development of negative electric potential inside the cell. Each healthy cell must maintain a specific ion concentration gradient and voltage. To account for these functions, various ionic pumps and channels located within the cell membrane have been invoked. In this work, we use a porous alginate hydrogel as a model gelatinous network representing the plant cell wall or cytoskeleton of the animal cell. We show that the gel barrier is able to maintain a stable separation of ionic solutions of different ionic strengths and chemical compositions without any pumping activity. For the Na+/K+ concentration gradient sustained across the barrier, a negative electric potential develops within the K+-rich side. The situation is reminiscent of that in the cell. Furthermore, also the advective flow of water molecules across the gel barrier is restricted, despite the gel's large pores and the osmotic or hydrostatic pressure gradients across it. This feature has important implications for osmoregulation. We propose a mechanism in which charge separation and electric fields developing across the permselective (gel) membrane prevent ion and bulk fluid flows ordinarily driven by chemical and pressure gradients.
Collapse
|
26
|
Dal Lin C, Brugnolo L, Marinova M, Plebani M, Iliceto S, Tona F, Vitiello G. Toward a Unified View of Cognitive and Biochemical Activity: Meditation and Linguistic Self-Reconstructing May Lead to Inflammation and Oxidative Stress Improvement. ENTROPY 2020; 22:e22080818. [PMID: 33286589 PMCID: PMC7517388 DOI: 10.3390/e22080818] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Revised: 07/23/2020] [Accepted: 07/25/2020] [Indexed: 12/12/2022]
Abstract
Stress appears to be the basis of many diseases, especially myocardial infarction. Events are not objectively “stressful” but what is central is how the individual structures the experience he is facing: the thoughts he produces about an event put him under stress. This cognitive process could be revealed by language (words and structure). We followed 90 patients with ischemic heart disease and 30 healthy volunteers, after having taught them the Relaxation Response (RR) as part of a 4-day Rational–Emotional–Education intervention. We analyzed with the Linguistic Inquiry and Word Count software the words that the subjects used across the study following the progression of blood galectin-3 (inflammation marker) and malondialdehyde (oxidative stress marker). During the follow-up, we confirmed an acute and chronic decrease in the markers of inflammation and oxidative stress already highlighted in our previous studies together with a significant change in the use of language by the subjects of the RR groups. Our results and the precise design of our study would seem to suggest the existence of an intimate relationship and regulatory action by cognitive processes (recognizable by the type of language used) on some molecular processes in the human body.
Collapse
Affiliation(s)
- Carlo Dal Lin
- Department of Cardiac, Thoracic and Vascular Sciences, Padua University Medical School, Via Giustiniani 2, 35100 Padua, Italy; (S.I.); (F.T.)
- Correspondence: (C.D.L.); (G.V.); Tel.: +39-049-8218642 (C.D.L.)
| | - Laura Brugnolo
- Department of Laboratory Medicine, Padua University Medical School, Via Giustiniani 2, 35100 Padua, Italy; (L.B.); (M.M.); (M.P.)
| | - Mariela Marinova
- Department of Laboratory Medicine, Padua University Medical School, Via Giustiniani 2, 35100 Padua, Italy; (L.B.); (M.M.); (M.P.)
| | - Mario Plebani
- Department of Laboratory Medicine, Padua University Medical School, Via Giustiniani 2, 35100 Padua, Italy; (L.B.); (M.M.); (M.P.)
| | - Sabino Iliceto
- Department of Cardiac, Thoracic and Vascular Sciences, Padua University Medical School, Via Giustiniani 2, 35100 Padua, Italy; (S.I.); (F.T.)
| | - Francesco Tona
- Department of Cardiac, Thoracic and Vascular Sciences, Padua University Medical School, Via Giustiniani 2, 35100 Padua, Italy; (S.I.); (F.T.)
| | - Giuseppe Vitiello
- Department of Physics “E.R. Caianiello”, Salerno University, Via Giovanni Paolo II, 132, 84084 Fisciano (Salerno), Italy
- Correspondence: (C.D.L.); (G.V.); Tel.: +39-049-8218642 (C.D.L.)
| |
Collapse
|
27
|
Elton DC, Spencer PD, Riches JD, Williams ED. Exclusion Zone Phenomena in Water-A Critical Review of Experimental Findings and Theories. Int J Mol Sci 2020; 21:E5041. [PMID: 32708867 PMCID: PMC7404113 DOI: 10.3390/ijms21145041] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Revised: 06/27/2020] [Accepted: 07/13/2020] [Indexed: 12/29/2022] Open
Abstract
The existence of the exclusion zone (EZ), a layer of water in which plastic microspheres are repelled from hydrophilic surfaces, has now been independently demonstrated by several groups. A better understanding of the mechanisms which generate EZs would help with understanding the possible importance of EZs in biology and in engineering applications such as filtration and microfluidics. Here we review the experimental evidence for EZ phenomena in water and the major theories that have been proposed. We review experimental results from birefringence, neutron radiography, nuclear magnetic resonance, and other studies. Pollack theorizes that water in the EZ exists has a different structure than bulk water, and that this accounts for the EZ. We present several alternative explanations for EZs and argue that Schurr's theory based on diffusiophoresis presents a compelling alternative explanation for the core EZ phenomenon. Among other things, Schurr's theory makes predictions about the growth of the EZ with time which have been confirmed by Florea et al. and others. We also touch on several possible confounding factors that make experimentation on EZs difficult, such as charged surface groups, dissolved solutes, and adsorbed nanobubbles.
Collapse
Affiliation(s)
- Daniel C Elton
- Radiology and Imaging Sciences, National Institutes of Health Clinical Center, Bethesda, MD 20892, USA
| | - Peter D Spencer
- School of Biomedical Sciences, Faculty of Health, Institute of Health and Biomedical Innovation, Queensland University of Technology (QUT), Brisbane, QLD 4059, Australia
| | - James D Riches
- School of Earth, Environmental and Biological Sciences, Science and Engineering Faculty, Institute for Future Environments, QUT, Brisbane, QLD 4000, Australia
| | - Elizabeth D Williams
- School of Biomedical Sciences, Faculty of Health, Institute of Health and Biomedical Innovation, QUT, Australian Prostate Cancer Research Centre-Queensland, Translational Research Institute, Brisbane, QLD 4059, Australia
| |
Collapse
|
28
|
Madl P, De Filippis A, Tedeschi A. Effects of ultra-weak fractal electromagnetic signals on the aqueous phase in living systems: a test-case analysis of molecular rejuvenation markers in fibroblasts. Electromagn Biol Med 2020; 39:227-238. [PMID: 32447985 DOI: 10.1080/15368378.2020.1762634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Skin aging is primarily associated with the alterations in dermal extracellular matrix, in particular a decrease in collagen type-1 content. Recent studies have shown that collagen-degrading matrix metalloproteinase (MMP-1) is produced by fibroblasts in response to chronoaging, which in human dermal fibroblasts leads to the release of proinflammatory cytokines. Past studies showed that anti-inflammatory capabilities could be induced via non-chemical means. One of these methods makes use of ultra-weak fractal electromagnetic (uwf-EM) signals. Such ultra-/very-low frequency (U/VLF) signals (few nT in intensity and within 0.5-30 kHz) interact with aqueous solutions in living systems. The fractal nature of such EM-signals relates to the self-similar property by which a "cut-out" and magnified piece of this signal reveals again the original. Thus, the aim of this study is twofold, to i) investigate the extent of this modulating effect using Human Dermal Fibroblasts (HDF)-cells, and ii) analyse molecular rejuvenation markers therein. We could demonstrate that a 10 min uwf-EM exposure (prior to incubation) increases type-1 collagen and modulates elastin in human fibroblasts cultured up to 96 h, while at the same time reduces IL-6, TNF-α and MMP-1 (the later three being statistically significant). Such up- respectively down-regulation of corresponding genes are strong indicators of an EM-induced hormetic effect that influences the epigenomic landscape of HDFs. In the Appendix, we present, in the framework of Quantum Field Theory (QFT), water as a biphasic liquid and how its coherent fraction can be affected by uwf-EM signals while at the same time resolving the "kT paradox".
Collapse
Affiliation(s)
- Pierre Madl
- Department of Physics and Biophysics, University of Salzburg , Salzburg, Austria.,Prototyping unit, Edge-Institute Austria at ER-System Mechatronics , Golling, Austria
| | - Anna De Filippis
- Department of Experimental Medicine, Section of Microbiology and Clinical Microbiology, University of Campania "L. Vanvitelli" Naples , Italy
| | - Alberto Tedeschi
- Research & Development Unit, Edge-Institute Italia at WHB , Milano, Italy
| |
Collapse
|
29
|
Sharma A, Pollack GH. Healthy fats and exclusion-zone size. Food Chem 2020; 316:126305. [DOI: 10.1016/j.foodchem.2020.126305] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2019] [Revised: 12/26/2019] [Accepted: 01/26/2020] [Indexed: 11/29/2022]
|
30
|
Lambert K, Gondeau C, Briolotti P, Scheuermann V, Daujat-Chavanieu M, Aimond F. Biocompatible modified water as a non-pharmaceutical approach to prevent metabolic syndrome features in obesogenic diet-fed mice. Food Chem Toxicol 2020; 141:111403. [PMID: 32387306 DOI: 10.1016/j.fct.2020.111403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 04/30/2020] [Accepted: 05/01/2020] [Indexed: 10/24/2022]
Abstract
The prevalence of metabolic syndrome (MetS), elevating cardiovascular risks, is increasing worldwide, with no available global therapeutic options. The intake of plain, mineral or biocompatible modified waters was shown to prevent some MetS features. This study was designed to analyze, in mice fed a high fat and sucrose diet (HFSD), the effects on MetS features of the daily intake of a reverse osmosed, weakly remineralized, water (OW) and of an OW dynamized by a physical processing (ODW), compared to tap water (TW). The HFSD was effective at inducing major features of MetS such as obesity, hepatic steatosis and inflammation, blood dyslipidemia, systemic glucose intolerance and muscle insulin resistance. Compared to TW, OW intake decreased hepatic fibrosis and inflammation, and mitigated hepatic steatosis and dyslipidemia. ODW intake further improved skeletal muscle insulin sensitivity and systemic glucose tolerance. This study highlights the deleterious metabolic impacts of the daily intake of TW, in combination with a high energy diet, and its possible involvement in MetS prevalence increase. In addition, it demonstrates that biocompatible modified water may be promising non-pharmaceutical, cost-effective tools for nutritional approaches in the treatment of MetS.
Collapse
Affiliation(s)
- Karen Lambert
- PhyMedExp, Université Montpellier, INSERM, CNRS, France
| | - Claire Gondeau
- IRMB, Université Montpellier, INSERM, CHU Montpellier, Montpellier, France
| | | | | | | | - Franck Aimond
- PhyMedExp, Université Montpellier, INSERM, CNRS, France.
| |
Collapse
|
31
|
Li Z, Pollack GH. Surface-induced flow: A natural microscopic engine using infrared energy as fuel. SCIENCE ADVANCES 2020; 6:eaba0941. [PMID: 32494720 PMCID: PMC7210001 DOI: 10.1126/sciadv.aba0941] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Accepted: 02/24/2020] [Indexed: 06/11/2023]
Abstract
Fluid commonly flows in response to an external pressure gradient. However, when a tunnel-containing hydrogel is immersed in water, spontaneous flow occurs through the tunnel without any pressure gradient. We confirmed this flow in a wide range of plant- and animal-derived hydrogels. The flow appears to be driven by axial concentration gradients originating from surface activities of the tunnel wall. Those activities include (i) hydrogel-water interaction and (ii) material exchange across the tunnel boundary. Unlike pressure-driven flow, this surface-induced flow has two distinct features: incident infrared energy substantially increases flow velocity, and narrower tunnels generate faster flow. Thus, surface activities in hydrogel-lined tunnels may confer kinetic energy on the enclosed fluid, with infrared as an energy source.
Collapse
Affiliation(s)
- Zheng Li
- Corresponding author. (Z.L.); (G.H.P.)
| | | |
Collapse
|
32
|
Spatola G, Viale A, Brussolo E, Binetti R, Aime S. Insights into Interfacial Water Structuring at the Nafion Surface by T1-Weighted Magnetic Resonance Imaging. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:540-545. [PMID: 31874563 DOI: 10.1021/acs.langmuir.9b03435] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
T1-weighted magnetic resonance images of water in the surroundings of a Nafion surface allowed the identification of the presence of a low-mobility zone (LMZ), 60 μm thick, consisting of water molecules structured in a hydrogen-bonding network, promoted by the presence of the acidic protons on the surface of the sulphonated polymer. In parallel, the exclusion zone (EZ) was assessed by observing in optical microscopy the distribution of microspheres suspended in the medium in contact with the Nafion membrane. It was found that the LMZ and the EZ do not correspond: in fact, the former is thinner and more stable over time than the latter and they behave differently when ions are present in the medium in which Nafion is immersed.
Collapse
Affiliation(s)
- Giulia Spatola
- Department of Molecular Biotechnology and Health Sciences , University of Turin , Via Nizza 52 , 10126 Turin , Italy
| | - Alessandra Viale
- Department of Molecular Biotechnology and Health Sciences , University of Turin , Via Nizza 52 , 10126 Turin , Italy
| | - Elisa Brussolo
- Research Centre, Società Metropolitana Acque Torino S.p.A. , Corso Unità d'Italia 235/3 , 10127 Turin , Italy
| | - Rita Binetti
- Research Centre, Società Metropolitana Acque Torino S.p.A. , Corso Unità d'Italia 235/3 , 10127 Turin , Italy
| | - Silvio Aime
- Department of Molecular Biotechnology and Health Sciences , University of Turin , Via Nizza 52 , 10126 Turin , Italy
| |
Collapse
|
33
|
Batsanov SS, Dan’kin DA, Gavrilkin SM, Druzhinina AI, Batsanov AS. Structural changes in colloid solutions of nanodiamond. NEW J CHEM 2020. [DOI: 10.1039/c9nj05191k] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Segregation of particles in a nanodiamond aqueous colloid due to Stokes’ law leads to re-ordering of the lattice of particles.
Collapse
Affiliation(s)
- Stepan S. Batsanov
- National Research Institute of Physical-Technical Measurements
- Moscow Region 141570
- Russia
| | | | - Sergey M. Gavrilkin
- National Research Institute of Physical-Technical Measurements
- Moscow Region 141570
- Russia
| | | | | |
Collapse
|
34
|
Sayin M, Nefedov A, Zharnikov M. Interaction of water with oligo(ethylene glycol) terminated monolayers: wetting versus hydration. Phys Chem Chem Phys 2020; 22:8088-8095. [DOI: 10.1039/d0cp00906g] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Exposure of biorepulsive, oligo(ethylene glycol) (OEG) substituted self-assembled monolayers to water results in its adsorption both onto the surface and, with a higher binding energy, into the OEG matrix.
Collapse
Affiliation(s)
- Mustafa Sayin
- Applied Physical Chemistry
- Heidelberg University
- 69120 Heidelberg
- Germany
| | - Alexei Nefedov
- Institute of Functional Interfaces
- Karlsruhe Institute of Technology (KIT)
- 76344 Eggenstein-Leopoldshafen
- Germany
| | - Michael Zharnikov
- Applied Physical Chemistry
- Heidelberg University
- 69120 Heidelberg
- Germany
| |
Collapse
|
35
|
Kowacz M, Pollack GH. Moving Water Droplets: The Role of Atmospheric CO2 and Incident Radiant Energy in Charge Separation at the Air–Water Interface. J Phys Chem B 2019; 123:11003-11013. [DOI: 10.1021/acs.jpcb.9b09161] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Magdalena Kowacz
- Department of Bioengineering, University of Washington, Box 355061, Seattle, Washington 98195, United States
| | - Gerald H. Pollack
- Department of Bioengineering, University of Washington, Box 355061, Seattle, Washington 98195, United States
| |
Collapse
|
36
|
New chemical-physical properties of water after iterative procedure using hydrophilic polymers: The case of paper filter. J Mol Liq 2019. [DOI: 10.1016/j.molliq.2019.111808] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
37
|
Ye T, Kowacz M, Pollack GH. Unexpected effects of incident radiant energy on evaporation of Water condensate. Colloids Surf A Physicochem Eng Asp 2019. [DOI: 10.1016/j.colsurfa.2019.123992] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
38
|
Renati P, Kovacs Z, De Ninno A, Tsenkova R. Temperature dependence analysis of the NIR spectra of liquid water confirms the existence of two phases, one of which is in a coherent state. J Mol Liq 2019. [DOI: 10.1016/j.molliq.2019.111449] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
39
|
Walski T, Dąbrowska K, Drohomirecka A, Jędruchniewicz N, Trochanowska-Pauk N, Witkiewicz W, Komorowska M. The effect of red-to-near-infrared (R/NIR) irradiation on inflammatory processes. Int J Radiat Biol 2019; 95:1326-1336. [PMID: 31170016 DOI: 10.1080/09553002.2019.1625464] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Introduction: Near-infrared (NIR) and red-to-near-infrared (R/NIR) radiation are increasingly applied for therapeutic use. R/NIR-employing therapies aim to stimulate healing, prevent tissue necrosis, increase mitochondrial function, and improve blood flow and tissue oxygenation. The wide range of applications of this radiation raises questions concerning the effects of R/NIR on the immune system. Methods: In this review, we discuss the potential effects of exposure to R/NIR light on immune cells in the context of physical parameters of light. Discussion: The effects that R/NIR may induce in immune cells typically involve the production of reactive oxygen species (ROS), nitrogen oxide (NO), or interleukins. Production of ROS after exposure to R/NIR can either be inhibited or to some extent increased, which suggests that detailed conditions of experiments, such as the spectrum of radiation, irradiance, exposure time, determine the outcome of the treatment. However, a wide range of immune cell studies have demonstrated that exposure to R/NIR most often has an anti-inflammatory effect. Finally, photobiomodulation molecular mechanism with particular attention to the role of interfacial water structure changes for cell physiology and regulation of the inflammatory process was described. Conclusions: Optimization of light parameters allows R/NIR to act as an anti-inflammatory agent in a wide range of medical applications.
Collapse
Affiliation(s)
- Tomasz Walski
- Research and Development Center, Regional Specialist Hospital , Wrocław , Poland.,Department of Biomedical Engineering, Faculty of Fundamental Problems of Technology, Wrocław University of Science and Technology , Wrocław , Poland
| | - Krystyna Dąbrowska
- Research and Development Center, Regional Specialist Hospital , Wrocław , Poland.,Institute of Immunology and Experimental Therapy, Polish Academy of Sciences , Wrocław , Poland
| | - Anna Drohomirecka
- Department of Heart Failure and Transplantology, Institute of Cardiology , Warsaw , Poland
| | | | - Natalia Trochanowska-Pauk
- Research and Development Center, Regional Specialist Hospital , Wrocław , Poland.,Department of Biomedical Engineering, Faculty of Fundamental Problems of Technology, Wrocław University of Science and Technology , Wrocław , Poland
| | - Wojciech Witkiewicz
- Research and Development Center, Regional Specialist Hospital , Wrocław , Poland
| | - Małgorzata Komorowska
- Research and Development Center, Regional Specialist Hospital , Wrocław , Poland.,Department of Biomedical Engineering, Faculty of Fundamental Problems of Technology, Wrocław University of Science and Technology , Wrocław , Poland
| |
Collapse
|
40
|
Pedregal-Cortés R, Toriz G, Delgado E, Pollack GH. Interfacial water and its potential role in the function of sericin against biofouling. BIOFOULING 2019; 35:732-741. [PMID: 31468985 DOI: 10.1080/08927014.2019.1653863] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Revised: 08/03/2019] [Accepted: 08/05/2019] [Indexed: 06/10/2023]
Abstract
Silk sericin is a globular protein whose resistance against fouling is important for applications in biomaterials and water-purification membranes. Here it is shown how sericin generates a water-exclusion zone that may facilitate antifouling behavior. Negatively charged microspheres were used to mimic the surface charge and hydrophobic domains in bacteria. Immersed in water, regenerated silk sericin formed a 100-µm-sized exclusion zone (for micron-size foulants), along with a proton gradient with a decrease of >2 pH-units. Thus, when in contact with sericin, water molecules near the surface restructure to form a physical exclusionary barrier that might prevent biofouling. The decreased pH turns the aqueous medium unviable for neutrophilic bacteria. Therefore, resistance to biofouling seems explainable, among other factors, on the basis of water-exclusionary phenomena. Furthermore, sericin may play a role in triggering the fibroin assembly process by lowering the pH to the required value.
Collapse
Affiliation(s)
- Ricardo Pedregal-Cortés
- Departamento de Madera, Celulosa y Papel, Universidad de Guadalajara , Zapopan , Jalisco , Mexico
| | - Guillermo Toriz
- Instituto Transdiciplinar de Investigación y Servicios/Departamento de Madera, Celulosa y Papel, Universidad de Guadalajara , Zapopan , Jalisco , México
| | - Ezequiel Delgado
- Departamento de Madera, Celulosa y Papel, Universidad de Guadalajara , Zapopan , Jalisco , Mexico
| | - Gerald H Pollack
- Department of Bioengineering, University of Washington , Seattle , WA , USA
| |
Collapse
|
41
|
|
42
|
Giant Water Clusters: Where Are They From? Int J Mol Sci 2019; 20:ijms20071582. [PMID: 30934854 PMCID: PMC6479811 DOI: 10.3390/ijms20071582] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Revised: 03/22/2019] [Accepted: 03/27/2019] [Indexed: 11/16/2022] Open
Abstract
A new mechanism for the formation and destruction of giant water clusters (ten to hundreds of micrometers) is proposed. Our earlier hypothesis was that the clusters are associates of liquid-crystal spheres (LCS), each of which is formed around a seed particle, a microcrystal of sodium chloride. In this study, we show that the ingress of LCSs into water from the surrounding air is highly likely. We followed the evolution of giant clusters during the evaporation of water. When a certain threshold of the ionic strength of a solution is exceeded, the LCSs begin to “melt”, passing into free water, and the salt crystals dissolve, ensuring re-growth of larger crystals as a precipitate on the substrate. A schematic diagram of the dynamics of phase transitions in water containing LCSs during evaporation is proposed. The results illustrate the salt dust cycle in nature.
Collapse
|
43
|
Yee CN, Ooi CHR, Tan LP, Misran M, Tang NT. Large-scale structure formation in ionic solution and its role in electrolysis and conductivity. PLoS One 2019; 14:e0213697. [PMID: 30913207 PMCID: PMC6435176 DOI: 10.1371/journal.pone.0213697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Accepted: 02/26/2019] [Indexed: 11/29/2022] Open
Abstract
That water may not be an inert medium was indicated by the presence at water’s interfaces a negatively charged solute free zone of several hundred microns in thickness called the exclusion zone (EZ). Further evidence was demonstrated by Ovchinnikova’s experiments (2009) showing that water can store and release substantial amount of charge. We demonstrate that the charge storage capacity of water arises from highly stable large-scale ionic structures with measurable charge imbalances and discrete levels of charge density. We also show evidence that the charge zones formation requires ionic solutes, and their formation correlate to large change in conductivity, by as much as 250%. Our experiments indicate that large-scale structuring plays a pivotal role in electrolysis and conductivity in ionic solution. We propose that water is an electrochemically active medium and present a new model of electrolysis and conductivity in ionic solution.
Collapse
Affiliation(s)
- Chut-Ngeow Yee
- Department of Physics, Faculty of Science, University of Malaya, Kuala Lumpur, Malaysia
- * E-mail:
| | - C. H. Raymond Ooi
- Department of Physics, Faculty of Science, University of Malaya, Kuala Lumpur, Malaysia
| | - Luck-Pheng Tan
- Prime Oleochemicals Industries Sdn. Bhd., Petaling Jaya, Malaysia
| | - Misni Misran
- Department of Chemistry, Faculty of Science, University of Malaya, Kuala Lumpur, Malaysia
| | - Nyiak-Tao Tang
- Department of Chemistry, Faculty of Science, University of Malaya, Kuala Lumpur, Malaysia
| |
Collapse
|
44
|
Elbourne A, Dupont MF, Collett S, Truong VK, Xu X, Vrancken N, Baulin V, Ivanova EP, Crawford RJ. Imaging the air-water interface: Characterising biomimetic and natural hydrophobic surfaces using in situ atomic force microscopy. J Colloid Interface Sci 2019; 536:363-371. [DOI: 10.1016/j.jcis.2018.10.059] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Revised: 10/17/2018] [Accepted: 10/19/2018] [Indexed: 12/30/2022]
|
45
|
García-García A, Cambero M, Castejón D, Escudero R, Fernández-Valle M. Dry cured-ham microestructure: A T NMR relaxometry, SEM and uniaxial tensile test combined study. FOOD STRUCTURE 2019. [DOI: 10.1016/j.foostr.2018.100104] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
46
|
Zhang Z, Li X, Yin J, Xu Y, Fei W, Xue M, Wang Q, Zhou J, Guo W. Emerging hydrovoltaic technology. NATURE NANOTECHNOLOGY 2018; 13:1109-1119. [PMID: 30523296 DOI: 10.1038/s41565-018-0228-6] [Citation(s) in RCA: 168] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Revised: 07/01/2018] [Accepted: 07/12/2018] [Indexed: 05/24/2023]
Abstract
Water contains tremendous energy in a variety of forms, but very little of this energy has yet been harnessed. Nanostructured materials can generate electricity on interaction with water, a phenomenon that we term the hydrovoltaic effect, which potentially extends the technical capability of water energy harvesting and enables the creation of self-powered devices. In this Review, starting by describing fundamental properties of water and of water-solid interfaces, we discuss key aspects pertaining to water-carbon interactions and basic mechanisms of harvesting water energy with nanostructured materials. Experimental advances in generating electricity from water flows, waves, natural evaporation and moisture are then reviewed to show the correlations in their basic mechanisms and the potential for their integration towards harvesting energy from the water cycle. We further discuss potential device applications of hydrovoltaic technologies, analyse main challenges in improving the energy conversion efficiency and scaling up the output power, and suggest prospects for developments of the emerging technology.
Collapse
Affiliation(s)
- Zhuhua Zhang
- Key Laboratory for Intelligent Nano Materials and Devices of Ministry of Education, State Key Laboratory of Mechanics and Control of Mechanical Structures and Institute of Nanoscience, Nanjing University of Aeronautics and Astronautics, Nanjing, China
| | - Xuemei Li
- Key Laboratory for Intelligent Nano Materials and Devices of Ministry of Education, State Key Laboratory of Mechanics and Control of Mechanical Structures and Institute of Nanoscience, Nanjing University of Aeronautics and Astronautics, Nanjing, China
| | - Jun Yin
- Key Laboratory for Intelligent Nano Materials and Devices of Ministry of Education, State Key Laboratory of Mechanics and Control of Mechanical Structures and Institute of Nanoscience, Nanjing University of Aeronautics and Astronautics, Nanjing, China
| | - Ying Xu
- Key Laboratory for Intelligent Nano Materials and Devices of Ministry of Education, State Key Laboratory of Mechanics and Control of Mechanical Structures and Institute of Nanoscience, Nanjing University of Aeronautics and Astronautics, Nanjing, China
| | - Wenwen Fei
- Key Laboratory for Intelligent Nano Materials and Devices of Ministry of Education, State Key Laboratory of Mechanics and Control of Mechanical Structures and Institute of Nanoscience, Nanjing University of Aeronautics and Astronautics, Nanjing, China
| | - Minmin Xue
- Key Laboratory for Intelligent Nano Materials and Devices of Ministry of Education, State Key Laboratory of Mechanics and Control of Mechanical Structures and Institute of Nanoscience, Nanjing University of Aeronautics and Astronautics, Nanjing, China
| | - Qin Wang
- Key Laboratory for Intelligent Nano Materials and Devices of Ministry of Education, State Key Laboratory of Mechanics and Control of Mechanical Structures and Institute of Nanoscience, Nanjing University of Aeronautics and Astronautics, Nanjing, China
| | - Jianxin Zhou
- Key Laboratory for Intelligent Nano Materials and Devices of Ministry of Education, State Key Laboratory of Mechanics and Control of Mechanical Structures and Institute of Nanoscience, Nanjing University of Aeronautics and Astronautics, Nanjing, China
| | - Wanlin Guo
- Key Laboratory for Intelligent Nano Materials and Devices of Ministry of Education, State Key Laboratory of Mechanics and Control of Mechanical Structures and Institute of Nanoscience, Nanjing University of Aeronautics and Astronautics, Nanjing, China.
| |
Collapse
|
47
|
Kowacz M, Warszyński P. Effect of infrared light on protein behavior in contact with solid surfaces. Colloids Surf A Physicochem Eng Asp 2018. [DOI: 10.1016/j.colsurfa.2018.03.016] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
48
|
Elia V, Oliva R, Napoli E, Germano R, Pinto G, Lista L, Niccoli M, Toso D, Vitiello G, Trifuoggi M, Giarra A, Yinnon TA. Experimental study of physicochemical changes in water by iterative contact with hydrophilic polymers: A comparison between Cellulose and Nafion. J Mol Liq 2018. [DOI: 10.1016/j.molliq.2018.07.045] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
49
|
He X, Zhou Y, Wen X, Shpilman AA, Ren Q. Effect of Spin Polarization on the Exclusion Zone of Water. J Phys Chem B 2018; 122:8493-8502. [DOI: 10.1021/acs.jpcb.8b04118] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Xian He
- Department of Electronics, Peking University, Beijing 100080, China
| | - Yi Zhou
- Department of Electronics, Peking University, Beijing 100080, China
| | - Xing Wen
- Department of Biology, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | | | - Quansheng Ren
- Department of Electronics, Peking University, Beijing 100080, China
| |
Collapse
|
50
|
Rad I, Pollack GH. Cooling of Pure Water at Room Temperature by Weak Electric Currents. J Phys Chem B 2018; 122:7711-7717. [PMID: 29996049 DOI: 10.1021/acs.jpcb.7b12689] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Flow of electrical current through water is expected to increase water temperature. We passed low-frequency alternating electric current through distilled, deionized water using platinum electrodes and found, instead, a diminution of temperature. The diminution was observed using both an infrared camera and a spectroradiometer, the latter allowing us to obtain spectral information. The diminished temperature persisted for at least half an hour following cessation of the current flow. Diminished radiant energy implies reduced charge displacements, which in turn implies increased structural order. Hence, the passage of charge into water appears to increase the water structure.
Collapse
Affiliation(s)
- Iman Rad
- Department of Bioengineering , University of Washington , Box 355061, Seattle , Washington 98195 , United States.,Stem Cell Technology Research Center , Tehran 1997775555 , Iran
| | - Gerald H Pollack
- Department of Bioengineering , University of Washington , Box 355061, Seattle , Washington 98195 , United States
| |
Collapse
|