1
|
Agatić ZF, Tepavčević V, Puača G, Poša M. Interaction of drug molecules with surfactants below (Benesi-Hildebrand equation) and above the critical micelle concentration (Kawamura equation). Int J Pharm 2024; 665:124675. [PMID: 39265847 DOI: 10.1016/j.ijpharm.2024.124675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 08/12/2024] [Accepted: 09/05/2024] [Indexed: 09/14/2024]
Abstract
Drug molecules can interact with surfactant molecules either in their monomeric form, where the Benesi-Hildebrand equation determines the binding constant, or when a micellar pseudophase is formed, where the Kawamura equation assesses the partition coefficient. Benesi-Hildebrand plots represent the differential absorbance as a function of surfactant concentration below the critical micelle concentration (CMC), while Kawamura plots show this relationship above the CMC, where the drug can influence the CMC and needs consideration. This review aims to provide an overview of methods for evaluating drug-surfactant interactions in aqueous solutions, particularly below and above the CMC, using spectroscopic data. Understanding these interactions is crucial for pharmacodynamics, affecting drug binding, enzymatic activity, and formulation. Various surfactants were analyzed with diphenhydramine hydrochloride, levofloxacin, phenothiazine, moxifloxacin, and chlorpromazine hydrochloride to determine monomeric binding constants, while sulfathiazole, sodium valproate, cefotaxime, losartan, and metformin hydrochloride were assessed for partitioning coefficient values. Errors in Benesi-Hildebrand plots may arise from considering surfactant concentrations above the CMC, while mistakes in Kawamura plots may stem from neglecting to determine the CMC in the presence of drug molecules, which can alter the surfactant's behavior.
Collapse
Affiliation(s)
- Zita Farkaš Agatić
- Department of Pharmacy, Faculty of Medicine, University of Novi Sad, Hajduk Veljkova 3, 21000 Novi Sad, Serbia
| | - Vesna Tepavčević
- Department of Pharmacy, Faculty of Medicine, University of Novi Sad, Hajduk Veljkova 3, 21000 Novi Sad, Serbia.
| | - Gorana Puača
- Department of Pharmacy, Faculty of Medicine, University of Novi Sad, Hajduk Veljkova 3, 21000 Novi Sad, Serbia
| | - Mihalj Poša
- Department of Pharmacy, Faculty of Medicine, University of Novi Sad, Hajduk Veljkova 3, 21000 Novi Sad, Serbia
| |
Collapse
|
2
|
Rajan A, Vishnu J, Shankar B. Tear-Based Ocular Wearable Biosensors for Human Health Monitoring. BIOSENSORS 2024; 14:483. [PMID: 39451696 PMCID: PMC11506517 DOI: 10.3390/bios14100483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 09/30/2024] [Accepted: 10/05/2024] [Indexed: 10/26/2024]
Abstract
Wearable tear-based biosensors have garnered substantial interest for real time monitoring with an emphasis on personalized health care. These biosensors utilize major tear biomarkers such as proteins, lipids, metabolites, and electrolytes for the detection and recording of stable biological signals in a non-invasive manner. The present comprehensive review delves deep into the tear composition along with potential biomarkers that can identify, monitor, and predict certain ocular diseases such as dry eye disease, conjunctivitis, eye-related infections, as well as diabetes mellitus. Recent technologies in tear-based wearable point-of-care medical devices, specifically the state-of-the-art and prospects of glucose, pH, lactate, protein, lipid, and electrolyte sensing from tear are discussed. Finally, the review addresses the existing challenges associated with the widespread application of tear-based sensors, which will pave the way for advanced scientific research and development of such non-invasive health monitoring devices.
Collapse
Affiliation(s)
- Arunima Rajan
- Centre for Flexible Electronics and Advanced Materials, Amrita Vishwa Vidyapeetham, Amritapuri 690525, India or (A.R.); or (J.V.)
| | - Jithin Vishnu
- Centre for Flexible Electronics and Advanced Materials, Amrita Vishwa Vidyapeetham, Amritapuri 690525, India or (A.R.); or (J.V.)
- Department of Mechanical Engineering, Amrita Vishwa Vidyapeetham, Amritapuri 690525, India
| | - Balakrishnan Shankar
- Centre for Flexible Electronics and Advanced Materials, Amrita Vishwa Vidyapeetham, Amritapuri 690525, India or (A.R.); or (J.V.)
- Department of Mechanical Engineering, Amrita Vishwa Vidyapeetham, Amritapuri 690525, India
| |
Collapse
|
3
|
Maia KCB, Densy Dos Santos Francisco A, Moreira MP, Nascimento RSV, Grasseschi D. Advancements in Surfactant Carriers for Enhanced Oil Recovery: Mechanisms, Challenges, and Opportunities. ACS OMEGA 2024; 9:36874-36903. [PMID: 39246502 PMCID: PMC11375729 DOI: 10.1021/acsomega.4c04058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 07/04/2024] [Accepted: 07/09/2024] [Indexed: 09/10/2024]
Abstract
Enhanced oil recovery (EOR) techniques are crucial for maximizing the extraction of residual oil from mature reservoirs. This review explores the latest advancements in surfactant carriers for EOR, focusing on their mechanisms, challenges, and opportunities. We delve into the role of inorganic nanoparticles, carbon materials, polymers and polymeric surfactants, and supramolecular systems, highlighting their interactions with reservoir rocks and their potential to improve oil recovery rates. The discussion includes the formulation and behavior of nanofluids, the impact of surfactant adsorption on different rock types, and innovative approaches using environmentally friendly materials. Notably, the use of metal oxide nanoparticles, carbon nanotubes, graphene derivatives, and polymeric surfacants and the development of supramolecular complexes for managing surfacant delivery are examined. We address the need for further research to optimize these technologies and overcome current limitations, emphasizing the importance of sustainable and economically viable EOR methods. This review aims to provide a comprehensive understanding of the emerging trends and future directions in surfactant carriers for EOR.
Collapse
Affiliation(s)
- Kelly C B Maia
- Instituto de Química, Universidade Federal do Rio de Janeiro (UFRJ), 21941-909 Rio de Janeiro, Brazil
| | | | - Mateus Perissé Moreira
- Instituto de Química, Universidade Federal do Rio de Janeiro (UFRJ), 21941-909 Rio de Janeiro, Brazil
| | - Regina S V Nascimento
- Instituto de Química, Universidade Federal do Rio de Janeiro (UFRJ), 21941-909 Rio de Janeiro, Brazil
| | - Daniel Grasseschi
- Instituto de Química, Universidade Federal do Rio de Janeiro (UFRJ), 21941-909 Rio de Janeiro, Brazil
| |
Collapse
|
4
|
Wu M, Li B, Ruan L, Tang Y, Li Z. Study on the Control of Steam Front Mobility in High-Temperature and High-Salinity Conditions Using Polymer-Enhanced Foam. Polymers (Basel) 2024; 16:2478. [PMID: 39274110 PMCID: PMC11397925 DOI: 10.3390/polym16172478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Revised: 08/27/2024] [Accepted: 08/29/2024] [Indexed: 09/16/2024] Open
Abstract
This study investigated the enhancing effects of the temperature-resistant polymer Poly(ethylene-co-N-methylbutenoyl carboxylate-co-styrenesulfonate-co-pyrrolidone) (hereinafter referred to as Z364) on the performance of cocamidopropyl hydroxy sulfobetaine (CHSB) foam under high-temperature and high-salinity conditions. The potential of this enhanced foam system for mobility control during heavy oil thermal recovery processes was also evaluated. Through a series of experiments, including foam stability tests, surface tension measurements, rheological assessments, and parallel core flooding experiments, we systematically analyzed the interaction between the Z364 polymer and CHSB surfactant on foam performance. The results indicated that the addition of Z364 significantly improved the strength, thermal resistance, and salt tolerance of CHSB foam. Furthermore, the adsorption of CHSB on the polymer chains enhanced the salt resistance of the polymer itself, particularly demonstrating stronger blocking effects in high-permeability cores. The experimental findings showed that Z364 increased the viscosity of the liquid film, slowed down liquid drainage, and reduced gas diffusion, effectively extending the half-life of CHSB foam and improving its stability under high-temperature conditions. Additionally, in parallel core flooding experiments, the polymer-enhanced foam exhibited significant flow diversion effects in both high-permeability and low-permeability cores, effectively directing more fluid into low-permeability channels and improving fluid distribution in heterogeneous reservoirs. Overall, Z364 polymer-enhanced CHSB foam demonstrated superior mobility control during heavy oil thermal recovery, offering new technical insights for improving the development efficiency of high-temperature, high-salinity reservoirs.
Collapse
Affiliation(s)
- Mingxuan Wu
- Key Laboratory of Unconventional Oil & Gas Development, China University of Petroleum (East China), Ministry of Education, Qingdao 266580, China
- School of Petroleum Engineering, China University of Petroleum (East China), Qingdao 266580, China
| | - Binfei Li
- Key Laboratory of Unconventional Oil & Gas Development, China University of Petroleum (East China), Ministry of Education, Qingdao 266580, China
- School of Petroleum Engineering, China University of Petroleum (East China), Qingdao 266580, China
| | - Liwei Ruan
- Key Laboratory of Unconventional Oil & Gas Development, China University of Petroleum (East China), Ministry of Education, Qingdao 266580, China
- School of Petroleum Engineering, China University of Petroleum (East China), Qingdao 266580, China
| | - Yongqiang Tang
- Sinopec Petroleum Exploration & Production Research Institute, Beijing 100083, China
| | - Zhaomin Li
- Key Laboratory of Unconventional Oil & Gas Development, China University of Petroleum (East China), Ministry of Education, Qingdao 266580, China
- School of Petroleum Engineering, China University of Petroleum (East China), Qingdao 266580, China
| |
Collapse
|
5
|
Penfold J, Thomas RK. The Gibbs and Butler Equations and the Surface Activity of Dilute Aqueous Solutions of Strong and Weak Linear Polyelectrolyte-Surfactant Mixtures: The Roles of Surface Composition and Polydispersity. J Phys Chem B 2024; 128:8084-8102. [PMID: 39140373 PMCID: PMC11345831 DOI: 10.1021/acs.jpcb.4c03541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 08/01/2024] [Accepted: 08/02/2024] [Indexed: 08/15/2024]
Abstract
In a previous paper, we applied a combination of direct measurements of both surface tension and surface excess in conjunction with the Gibbs equation to explain features of the adsorption and surface tension of mixtures of surfactants and strong linear polyelectrolytes at the air-water interface. This paper extends that model by including (i) the restrictions of the Butler equation for the behavior of the surface tension of mixed systems and (ii) the surface behavior of surfactant and linear weak polyelectrolyte mixtures, for which the inclusion of measurements of the surface excess and composition is shown to be particularly important. In addition, a closer examination of earlier data at higher concentrations provides evidence that the surface layering that is often observed in polyelectrolyte-surfactant systems is also an average equilibrium phenomenon and is driven by particular aggregation patterns that occur in some systems and not in others. Although the successful application of the Gibbs and Butler equations indicates that strong polyelectrolyte-surfactant systems can be described in terms of an average equilibrium over wide ranges of concentration, we have identified two concentration ranges where polydispersity in either polyelectrolyte molecular weight or composition results in significant time dependence of the surface behavior.
Collapse
Affiliation(s)
- Jeffrey Penfold
- Rutherford-Appleton
Laboratory, Chilton, Didcot, Oxfordshire OX11 0RA, U.K.
| | - Robert K. Thomas
- Physical
and Theoretical Chemistry Laboratory, South Parks Road, Oxford OX1 3QZ, U.K.
| |
Collapse
|
6
|
Škrbić J, Spasojević L, Sharipova A, Aidarova S, Babayev A, Sarsembekova R, Popović L, Bučko S, Milinković Budinčić J, Fraj J, Petrović L, Katona J. Investigation of Silk Fibroin/Poly(Acrylic Acid) Interactions in Aqueous Solution. Polymers (Basel) 2024; 16:936. [PMID: 38611194 PMCID: PMC11013473 DOI: 10.3390/polym16070936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 03/19/2024] [Accepted: 03/20/2024] [Indexed: 04/14/2024] Open
Abstract
Silk fibroin (SF) is a protein with many outstanding properties (superior biocompatibility, mechanical strength, etc.) and is often used in many advanced applications (epidermal sensors, tissue engineering, etc.). The properties of SF-based biomaterials may additionally be tuned by SF interactions with other (bio)polymers. Being a weak amphoteric polyelectrolyte, SF may form polyelectrolyte complexes (PECs) with other polyelectrolytes of opposite charge, such as poly(acrylic acid) (PAA). PAA is a widely used, biocompatible, synthetic polyanion. Here, we investigate PEC formation between SF and PAA of two different molecular weights (MWs), low and high, using various techniques (turbidimetry, zeta potential measurements, capillary viscometry, and tensiometry). The colloidal properties of SF isolated from Bombyx mori and of PAAs (MW, overlap concentration, the influence of pH on zeta potential, adsorption at air/water interface) were determined to identify conditions for the SF-PAA electrostatic interaction. It was shown that SF-PAA PEC formation takes place at different SF:PAA ratios, at pH 3, for both high and low MW PAA. SF-PAA PEC's properties (phase separation, charge, and surface activity) are influenced by the SF:PAA mass ratio and/or the MW of PAA. The findings on the interactions contribute to the future development of SP-PAA PEC-based films and bioadhesives with tailored properties.
Collapse
Affiliation(s)
- Jelena Škrbić
- Faculty of Technology Novi Sad, University of Novi Sad, Bulevar cara Lazara 1, 21000 Novi Sad, Serbia; (L.S.); (L.P.); (J.M.B.); (J.F.); (L.P.); (J.K.)
| | - Ljiljana Spasojević
- Faculty of Technology Novi Sad, University of Novi Sad, Bulevar cara Lazara 1, 21000 Novi Sad, Serbia; (L.S.); (L.P.); (J.M.B.); (J.F.); (L.P.); (J.K.)
| | - Altynay Sharipova
- Mining and Metallurgical Institute, Satbayev University, Satbayev str. 22a, 050013 Almaty, Kazakhstan;
| | - Saule Aidarova
- Petroleum Engineering Institute “One Belt, One Road”, Kazakh–British Technical University, Tole bi str. 59, 050000 Almaty, Kazakhstan; (S.A.); (A.B.); (R.S.)
| | - Alpamys Babayev
- Petroleum Engineering Institute “One Belt, One Road”, Kazakh–British Technical University, Tole bi str. 59, 050000 Almaty, Kazakhstan; (S.A.); (A.B.); (R.S.)
| | - Raziya Sarsembekova
- Petroleum Engineering Institute “One Belt, One Road”, Kazakh–British Technical University, Tole bi str. 59, 050000 Almaty, Kazakhstan; (S.A.); (A.B.); (R.S.)
| | - Ljiljana Popović
- Faculty of Technology Novi Sad, University of Novi Sad, Bulevar cara Lazara 1, 21000 Novi Sad, Serbia; (L.S.); (L.P.); (J.M.B.); (J.F.); (L.P.); (J.K.)
| | - Sandra Bučko
- Faculty of Technology Novi Sad, University of Novi Sad, Bulevar cara Lazara 1, 21000 Novi Sad, Serbia; (L.S.); (L.P.); (J.M.B.); (J.F.); (L.P.); (J.K.)
| | - Jelena Milinković Budinčić
- Faculty of Technology Novi Sad, University of Novi Sad, Bulevar cara Lazara 1, 21000 Novi Sad, Serbia; (L.S.); (L.P.); (J.M.B.); (J.F.); (L.P.); (J.K.)
| | - Jadranka Fraj
- Faculty of Technology Novi Sad, University of Novi Sad, Bulevar cara Lazara 1, 21000 Novi Sad, Serbia; (L.S.); (L.P.); (J.M.B.); (J.F.); (L.P.); (J.K.)
| | - Lidija Petrović
- Faculty of Technology Novi Sad, University of Novi Sad, Bulevar cara Lazara 1, 21000 Novi Sad, Serbia; (L.S.); (L.P.); (J.M.B.); (J.F.); (L.P.); (J.K.)
| | - Jaroslav Katona
- Faculty of Technology Novi Sad, University of Novi Sad, Bulevar cara Lazara 1, 21000 Novi Sad, Serbia; (L.S.); (L.P.); (J.M.B.); (J.F.); (L.P.); (J.K.)
| |
Collapse
|
7
|
Su X, Wan Z, Lu Y, Rojas O. Control of the Colloidal and Adsorption Behaviors of Chitin Nanocrystals and an Oppositely Charged Surfactant at Solid, Liquid, and Gas Interfaces. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:4881-4892. [PMID: 38386001 DOI: 10.1021/acs.langmuir.3c03787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/23/2024]
Abstract
Chitin has a unique hierarchical structure, spanning the macro- and nanoscales, and presents chemical characteristics that make it a suitable component of multiphase systems. Herein, we elucidate the colloidal interactions between partially deacetylated chitin nanocrystals (cationic ChNC) and an anionic surfactant, sodium dodecyl sulfate (SDS). We investigate charge neutralization and association (electrophoretic mobility, surface tensiometry, and quartz crystal microgravimetry) and their role in the stabilization of Pickering emulsions. We find SDS adsorption and association with ChNC under distinctive regimes: At low SDS concentration, submonolayer assemblies form on ChNC, driven by the hydrophobic effect and electrostatic interactions. With the increased SDS concentration, bilayers or patchy bilayers form, followed by adsorbed hemimicelles and micelles. We further suggested the role of hydrophobic effects in the observed colloidal transitions and complex conformations. At the highest SDS concentration tested, charge neutralization and SDS/ChNC flocculation take place. Remarkably, at given concentrations, adsorbed SDS endows the chitin nanoparticles with an effective hydrophobicity that opens the opportunity to achieve tailorable Pickering stabilization. Hence, a facile route is proposed by in situ modification by SDS physisorption, which extends the potential of renewable nanoparticles in the formulation of complex fluids, for instance, those relevant to household and healthcare products.
Collapse
Affiliation(s)
- Xiaoya Su
- Bioproducts Institute, Department of Chemical and Biological Engineering, University of British Columbia, 2360 E Mall, Vancouver, British Columbia V6T 1Z3, Canada
| | - Zhangmin Wan
- Bioproducts Institute, Department of Chemical and Biological Engineering, University of British Columbia, 2360 E Mall, Vancouver, British Columbia V6T 1Z3, Canada
| | - Yi Lu
- Bioproducts Institute, Department of Chemical and Biological Engineering, University of British Columbia, 2360 E Mall, Vancouver, British Columbia V6T 1Z3, Canada
| | - Orlando Rojas
- Bioproducts Institute, Department of Chemical and Biological Engineering, University of British Columbia, 2360 E Mall, Vancouver, British Columbia V6T 1Z3, Canada
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, British Columbia V6T 1Z1, Canada
- Department of Wood Science, University of British Columbia, Vancouver, 2424 Main Mall 2900, Vancouver, British Columbia V6T 1Z4, Canada
| |
Collapse
|
8
|
Kaga H, Orita M, Endo K, Akamatsu M, Sakai K, Sakai H. Interaction between Sophorolipids and β-glucan in Aqueous Solutions. J Oleo Sci 2024; 73:169-176. [PMID: 38311407 DOI: 10.5650/jos.ess23189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2024] Open
Abstract
Skin disorders, including acne vulgaris, atopic dermatitis, and rosacea, are characterized by the presence of biofilms, which are communities of microorganisms. The mechanical stability of biofilms is attributed to one of their constituents-polysaccharides-which are secreted by microorganisms. Sophorolipids are biosurfactants with biofilm disruption and removal abilities and are expected to become alternatives for classical petrochemical-based surfactants in cosmetics. In this study, we investigated the influence of sophorolipids on β-glucan such as dispersion status, interaction mechanism, and configuration change as a model polysaccharide of biofilm in aqueous solution. Dynamic light scattering measurements showed that sophorolipids interfere with the aggregation of β- glucan in aqueous solutions. In contrast, sodium dodecyl sulfate (SDS), which is used as a typical surfactant reference, promotes the aggregation of β-glucan. The interaction between sophorolipids and β-glucan were investigated using surface tension measurements and isothermal titration calorimetry (ITC). Surface tension increased only near critical micelle concentration (CMC) region of sophorolipids in the presence of β-glucan. This suggests that the interaction occurred in the solution rather than at the air-liquid interface. Moreover, the results of ITC indicate that hydrophobic interactions were involved in this interaction. In addition, the results of optical rotation measurements indicate that sophorolipids did not unfold the triple helical structure of β-glucan. β-glucan dispersion was expected to be caused steric hindrance and electrostatic repulsion when sophorolipids interacted with β-glucan via hydrophobic interactions owing to the unique molecular structure of sophorolipids attributed by a bulky sugar moiety and a carboxyl functional group. These results demonstrated unique performances of sophorolipids on β-glucan and provided more insights on the efficacy of sophorolipids as good anti-biofilms.
Collapse
Affiliation(s)
- Hiroaki Kaga
- Department of Pure and Applied Chemistry, Faculty of Science and Technology, Tokyo University of Science
- Research & Innovation Center, Nihon L'Oréal K.K
| | | | - Koji Endo
- Research & Innovation Center, Nihon L'Oréal K.K
| | - Masaaki Akamatsu
- Department of Chemistry and Biotechnology, Faculty of Engineering, Tottori University
| | - Kenichi Sakai
- Department of Pure and Applied Chemistry, Faculty of Science and Technology, Tokyo University of Science
- Research Institute for Science and Technology, Tokyo University of Science
| | - Hideki Sakai
- Department of Pure and Applied Chemistry, Faculty of Science and Technology, Tokyo University of Science
- Research Institute for Science and Technology, Tokyo University of Science
| |
Collapse
|
9
|
İnan-Çınkır N, Ağçam E, Altay F, Akyıldız A. Emulsion electrospinning of zein nanofibers with carotenoid microemulsion: Optimization, characterization and fortification. Food Chem 2024; 430:137005. [PMID: 37527575 DOI: 10.1016/j.foodchem.2023.137005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 07/13/2023] [Accepted: 07/24/2023] [Indexed: 08/03/2023]
Abstract
In this study, carotenoid microemulsion was encapsulated in zein nanofibers via emulsion electrospinning. Optimization study was applied to determine optimum parameters by response surface methodology. The voltage, flow rate and distance as optimum conditions were determined as 23 kV, 1.7 mL/h and 12.75 cm, respectively. Lycopene, β-carotene, encapsulation efficiency, encapsulation yield and zeta potential of zein nanofibers in optimum conditions were estimated as 4.054 mg/kg, 0.649 mg/kg, 77.78%, 41.76% and -29.73 mV, respectively. The addition of microemulsion affected nanofibers diameter and morphologies. Diffusion coefficient of zein nanofibers decreased with addition of microemulsion under optimum conditions. The electrospinning improved thermal stability of microemulsion. The carotenoid microemulsion could be entrapped into the zein fibers according to ATR-FTIR spectrum. Model foods were fortificated with zein nanofibers. The addition of nanofibers changed color of the foods during the storage. Carotenoid compounds were more stable in nanofibers followed by olive oil, milk and water.
Collapse
Affiliation(s)
- Nuray İnan-Çınkır
- Department of Food Technology, Faculty of Kadirli Applied Science, Osmaniye Korkut Ata University, Osmaniye, Turkey.
| | - Erdal Ağçam
- Department of Food Engineering, Faculty of Agriculture, Cukurova University, Adana, Turkey
| | - Filiz Altay
- Department of Food Engineering, Faculty of Chemical and Metallurgical Engineering, Istanbul Technical University, 34469 Maslak, Istanbul, Turkey
| | - Asiye Akyıldız
- Department of Food Engineering, Faculty of Agriculture, Cukurova University, Adana, Turkey
| |
Collapse
|
10
|
Al Amin Hossain M, Islam T, Khan JM, Joy MTR, Mahbub S, Khan SA, Ahmad A, Rahman MM, Anamul Hoque M, Kabir SE. Physicochemical parameters and modes of interaction associated with the micelle formation of a mixture of tetradecyltrimethylammonium bromide and cefixime trihydrate: effects of hydrotropes and temperature. RSC Adv 2023; 13:30429-30442. [PMID: 37854490 PMCID: PMC10580262 DOI: 10.1039/d3ra04748b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Accepted: 10/06/2023] [Indexed: 10/20/2023] Open
Abstract
The interaction between an antibiotic drug (cefixime trihydrate (CMT)) and a cationic surfactant (tetradecyltrimethylammonium bromide (TTAB)) was examined in the presence of both ionic and non-ionic hydrotropes (HTs) over the temperature range of 300.55 to 320.55 K. The values of the critical micelle concentration (CMC) of the TTAB + CMT mixture were experienced to have dwindled with an enhancement of the concentrations of resorcinol (ReSC), sodium benzoate (NaBz), sodium salicylate (NaS), while for the same system, a monotonically augmentation of CMC was observed in aq. 4-aminobenzoic acid (PABA) solution. A gradual increase in CMC, as a function of temperature, was also observed. The values of the degree of counterion binding (β) for the TTAB + CMT mixture were experienced to be influenced by the concentrations of ReSC/NaBz/NaS/PABA and a change in temperature. The micellization process of TTAB + CMT was observed to be spontaneous (negative standard Gibbs free energy change (ΔG0m)) at all conditions studied. Also, the values of standard enthalpy change (ΔH0m) and entropy change (ΔS0m) were found negative and positive, respectively (with a few exceptions), for the test cases indicating an exothermic and enthalpy-entropy directed micellization process. The recommended interaction forces between the components in the micellar system are electrostatic and hydrophobic interactions. In this study, the values of ΔC0m were negative in aqueous NaBz, ReSC, and PABA media, and positive in case of NaS. An excellent compensation scenario between the enthalpy and entropy for the CMT + TTAB mixed system in the investigated HTs solutions is well defined in the current work.
Collapse
Affiliation(s)
- Md Al Amin Hossain
- Department of Chemistry, Jashore University of Science and Technology Jashore 7408 Bangladesh
| | - Tamanna Islam
- Department of Chemistry, Jashore University of Science and Technology Jashore 7408 Bangladesh
| | - Javed Masood Khan
- Department of Food Science and Nutrition, College of Food and Agricultural Sciences, King Saud University Riyadh 11451 Saudi Arabia
| | - Md Tuhinur R Joy
- Department of Chemistry, Jashore University of Science and Technology Jashore 7408 Bangladesh
| | - Shamim Mahbub
- Nuclear Safety, Security & Safeguards Division, Bangladesh Atomic Energy Regulatory Authority Agargaon Dhaka 1207 Bangladesh
| | - Salman A Khan
- Physical Sciences Section (Chemistry), School of Sciences, Maulana Azad National Urdu University Hyderabad 500032 Telangana India
| | - Anis Ahmad
- Sylvester Comprehensive Cancer Center, University of Miami, Miller School of Medicine Miami FL USA
| | | | - Md Anamul Hoque
- Department of Chemistry, Jahangirnagar University Savar Dhaka 1342 Bangladesh
| | - Shariff E Kabir
- Department of Chemistry, Jagannath University Dhaka 1100 Bangladesh
| |
Collapse
|
11
|
Noskov B, Loglio G, Miller R, Milyaeva O, Panaeva M, Bykov A. Dynamic Surface Properties of α-Lactalbumin Fibril Dispersions. Polymers (Basel) 2023; 15:3970. [PMID: 37836019 PMCID: PMC10574873 DOI: 10.3390/polym15193970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 09/19/2023] [Accepted: 09/27/2023] [Indexed: 10/15/2023] Open
Abstract
The dynamic surface properties of aqueous dispersions of α-lactalbumin (ALA) amyloid fibrils differ noticeably from the properties of the fibril dispersions of other globular proteins. As a result, the protocol of the application of ALA fibrils to form stable foams and emulsions has to be deviate from that of other protein fibrils. Unlike the fibrils of β-lactoglobulin and lysozyme, ALA fibrils can be easily purified from hydrolyzed peptides and native protein molecules. The application of the oscillating barrier method shows that the dynamic surface elasticity of ALA fibril dispersions exceeds the surface elasticity of native protein solutions at pH 2. ALA fibrils proved to be stable at this pH, but the stability breaks at higher pH levels when the fibrils start to release small peptides of high surface activity. As a result, the dynamic surface properties of ALA coincide with those of native protein solutions. The ionic strength strongly influences the adsorption kinetics of both fibril dispersions and native protein solutions but have almost no impact on the structure of the adsorption layers.
Collapse
Affiliation(s)
- Boris Noskov
- Institute of Chemistry, St. Petersburg State University, Universitetsky pr. 26, St. Petersburg 198504, Russia; (B.N.)
| | - Giuseppe Loglio
- Institute of Condensed Matter Chemistry and Technologies for Energy, 16149 Genoa, Italy
| | - Reinhard Miller
- Department of Physics, Technical University of Darmstadt, 64289 Darmstadt, Germany
| | - Olga Milyaeva
- Institute of Chemistry, St. Petersburg State University, Universitetsky pr. 26, St. Petersburg 198504, Russia; (B.N.)
| | - Maria Panaeva
- Institute of Chemistry, St. Petersburg State University, Universitetsky pr. 26, St. Petersburg 198504, Russia; (B.N.)
| | - Alexey Bykov
- Institute of Chemistry, St. Petersburg State University, Universitetsky pr. 26, St. Petersburg 198504, Russia; (B.N.)
| |
Collapse
|
12
|
Chen C, Zhang H, Zhang X. Synergism of Surfactant Mixture in Lowering Vapor-Liquid Interfacial Tension. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:11828-11838. [PMID: 37556484 DOI: 10.1021/acs.langmuir.3c01565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/11/2023]
Abstract
Through employing molecular dynamics, in this work, we study how a two-component surfactant mixture cooperatively reduces the interfacial tension of a flat vapor-liquid interface. Our simulation results show that in the presence of a given insoluble surfactant, adding a secondary surfactant would either further reduce interfacial tension, indicating a positive synergistic effect, or increase the interfacial tension instead, indicating a negative synergistic effect. The synergism of the surfactant mixture in lowering surface tension is found to depend strongly on the structure complementary effect between different surfactant components. The synergistic mechanisms are then interpreted with minimization of the bending free energy of the composite surfactant monolayer via cooperatively changing the monolayer spontaneous curvature. By roughly describing the monolayer spontaneous curvature with the balanced distribution of surfactant heads and tails, we confirm that the positive synergistic effect in lowering surface tension is featured with the increasingly symmetric head-tail distributions, while the negative synergistic effect is featured with the increasingly asymmetric head-tail distributions. Furthermore, our simulation results indicate that minimal interfacial tension can only be observed when the spontaneous curvature is nearly zero.
Collapse
Affiliation(s)
- Changsheng Chen
- State Key Laboratory of Organic-inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China
| | - Hongguang Zhang
- State Key Laboratory of Organic-inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China
| | - Xianren Zhang
- State Key Laboratory of Organic-inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China
| |
Collapse
|
13
|
Furikado I, Habe T, Inoue S, Tanaka M. Thermodynamics and Viscoelastic Property of Interface Unravel Combined Functions of Cationic Surfactant and Aromatic Alcohol against Gram-Negative Bacteria. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023. [PMID: 37289662 DOI: 10.1021/acs.langmuir.3c00862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Lipopolysaccharides (LPSs), the major constituents of the outer membranes of Gram-negative bacteria, play a key role in protecting bacteria against antibiotics and antibacterial agents. In this study, we investigated how a mixture of cationic surfactants and aromatic alcohols, the base materials of widely used sanitizers, synergistically act on LPSs purified from Escherichia coli using isothermal titration calorimetry (ITC), surface tension measurements, and quartz crystal microbalance with dissipation (QCM-D). ITC data measured in the absence of Ca2+ ions showed the coexistence of exothermic and endothermic processes. The exotherm can be interpreted as the electrostatic binding of the cationic surfactant to the negatively charged LPS membrane surface, whereas the endotherm indicates the hydrophobic interaction between the hydrocarbon chains of the surfactants and LPSs. In the presence of Ca2+ ions, only an exothermic reaction was observed by ITC, and no entropically driven endotherm could be detected. Surface tension experiments further revealed that the co-adsorption of surfactants and LPS was synergistic, while that of surfactants and alcohol was negatively synergistic. Moreover, the QCM-D data indicated that the LPS membrane remained intact when the alcohol alone was added to the system. Intriguingly, the LPS membrane became highly susceptible to the combination of cationic surfactants and aromatic alcohols in the absence of Ca2+ ions. The obtained data provide thermodynamic and mechanical insights into the synergistic function of surfactants and alcohols in sanitation, which will enable the identification of the optimal combination of small molecules for a high hygiene level for the post-pandemic society.
Collapse
Affiliation(s)
- Ippei Furikado
- Analytical Science Research Laboratories, Kao Corporation, 1334, Minato, Wakayama-shi, Wakayama 640-8580, Japan
| | - Taichi Habe
- Analytical Science Research Laboratories, Kao Corporation, 1334, Minato, Wakayama-shi, Wakayama 640-8580, Japan
| | - Shigeto Inoue
- Analytical Science Research Laboratories, Kao Corporation, 1334, Minato, Wakayama-shi, Wakayama 640-8580, Japan
| | - Motomu Tanaka
- Physical Chemistry of Biosystems, Institute of Physical Chemistry, Heidelberg University, Heidelberg 69120, Germany
- Center for Integrative Medicine and Physics, Institute for Advanced Study, Kyoto University, Kyoto 606-8501, Japan
| |
Collapse
|
14
|
Samanta S, Sarkar S, Singha NK. Multifunctional Layer-by-Layer Coating Based on a New Amphiphilic Block Copolymer via RAFT-Mediated Polymerization-Induced Self-Assembly Process. ACS APPLIED MATERIALS & INTERFACES 2023; 15:24812-24826. [PMID: 37161275 DOI: 10.1021/acsami.3c00527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
In this hi-tech world, the "smart coatings" have sparked significant attention among materials scientists because of their versatile applications. Various strategies have been developed to generate smart coatings in the past 2 decades. The layer-by-layer (LbL) technique is the most commonly employed strategy to produce a smart coating for suitable applications. Here, we present a smart coating with healing, antifogging, and fluorescence properties fabricated by the LbL assembly of an anionic amphiphilic block copolymer latex and cationic inorganic POSS (polyhedral-oligomeric-silsesquioxane) nanoparticles. In this case, a new anionic block copolymer (BCP), {poly(sodium styrene sulfonate)-block-poly[2-(acetoacetoxy)ethyl methacrylate]}, (PSS-b-PAAEMA) was synthesized via surfactant-free RAFT-mediated emulsion polymerization using the PISA technique. The PSS-b-PAAEMA was characterized by 1H NMR, dynamic light scattering, scanning electron microscopy, and transmission electron microscopy analyses as well as by UV-vis and photoluminescence spectroscopy. For LbL coating fabrication, an amine-modified glass was successively dipped in the anionic latex and cationic POSS solution. The transparent coating exhibited good fluorescence properties under UV light (blue color). The antifogging performance of the coating was also investigated using both cold-warm and hot-vapor techniques. Additionally, the coating surface showed a significant healing activity with a healing efficiency of >75% through ionic interaction. Thus, this finding provides a simple low volatile organic compound (VOC) water-based LbL coating with multifunctional properties that can be a potential material for versatile applications.
Collapse
Affiliation(s)
- Sarthik Samanta
- Rubber Technology Center, Indian Institute of Technology, Kharagpur 721302, West Bengal, India
| | - Shrabana Sarkar
- Rubber Technology Center, Indian Institute of Technology, Kharagpur 721302, West Bengal, India
| | - Nikhil K Singha
- Rubber Technology Center, Indian Institute of Technology, Kharagpur 721302, West Bengal, India
- School of Nanoscience and Technology, Indian Institute of Technology, Kharagpur 721302, West Bengal, India
| |
Collapse
|
15
|
Vasilieva EA, Kuznetsova DA, Valeeva FG, Kuznetsov DM, Zakharova LY. Role of Polyanions and Surfactant Head Group in the Formation of Polymer-Colloid Nanocontainers. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:1072. [PMID: 36985966 PMCID: PMC10056398 DOI: 10.3390/nano13061072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 03/04/2023] [Accepted: 03/14/2023] [Indexed: 06/18/2023]
Abstract
OBJECTIVES This study was aimed at the investigation of the supramolecular systems based on cationic surfactants bearing cyclic head groups (imidazolium and pyrrolidinium) and polyanions (polyacrylic acid (PAA) and human serum albumin (HSA)), and factors governing their structural behavior to create functional nanosystems with controlled properties. Research hypothesis. Mixed PE-surfactant complexes based on oppositely charged species are characterized by multifactor behavior strongly affected by the nature of both components. It was expected that the transition from a single surfactant solution to an admixture with PE might provide synergetic effects on structural characteristics and functional activity. To test this assumption, the concentration thresholds of aggregation, dimensional and charge characteristics, and solubilization capacity of amphiphiles in the presence of PEs have been determined by tensiometry, fluorescence and UV-visible spectroscopy, and dynamic and electrophoretic light scattering. RESULTS The formation of mixed surfactant-PAA aggregates with a hydrodynamic diameter of 100-180 nm has been shown. Polyanion additives led to a decrease in the critical micelle concentration of surfactants by two orders of magnitude (from 1 mM to 0.01 mM). A gradual increase in the zeta potential of HAS-surfactant systems from negative to positive value indicates that the electrostatic mechanism contributes to the binding of components. Additionally, 3D and conventional fluorescence spectroscopy showed that imidazolium surfactant had little effect on HSA conformation, and component binding occurs due to hydrogen bonding and Van der Waals interactions through the tryptophan amino acid residue of the protein. Surfactant-polyanion nanostructures improve the solubility of lipophilic medicines such as Warfarin, Amphotericin B, and Meloxicam. PERSPECTIVES Surfactant-PE composition demonstrated beneficial solubilization activity and can be recommended for the construction of nanocontainers for hydrophobic drugs, with their efficacy tuned by the variation in surfactant head group and the nature of polyanions.
Collapse
|
16
|
Pigliacelli C, Belton P, Wilde P, Bombelli FB, Kroon PA, Winterbone MS, Qi S. Interaction of polymers with bile salts - Impact on solubilisation and absorption of poorly water-soluble drugs. Colloids Surf B Biointerfaces 2023; 222:113044. [PMID: 36436403 DOI: 10.1016/j.colsurfb.2022.113044] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 11/01/2022] [Accepted: 11/18/2022] [Indexed: 11/21/2022]
Abstract
Formulating poorly soluble drugs with polymers in the form of solid dispersions has been widely used for improving drug dissolution. Endogenous surface-active species present in the gut, such as bile salts, lecithin and other phospholipids, have been shown to play a key role in facilitating lipids and poorly soluble drugs solubilisation in the gut. In this study, we examined the possible occurrence of interactions between a model bile salt, sodium taurocholate (NaTC), and model spray dried solid dispersions comprising piroxicam and Hydroxypropyl Methylcellulose (HPMC), a commonly used hydrophilic polymer for solid dispersion preparation. Solubility measurements revealed the good solubilisation effect of NaTC on the crystalline drug, which was enhanced by the addition of HPMC, and further boosted by the drug formulation into solid dispersion. The colloidal behaviour of the solid dispersions upon dissolution in biorelevant media, with and without NaTC, revealed the formation of NaTC-HPMC complexes and other mixed colloidal species. Cellular level drug absorption studies obtained using Caco-2 monolayers confirmed that the combination of drug being delivered by solid dispersion and the presence of bile salt and lecithin significantly contributed to the improved drug absorption. Together with the role of NaTC-HPMC complexes in assisting the drug solubilisation, our results also highlight the complex interplay between bile salts, excipients and drug absorption.
Collapse
Affiliation(s)
- Claudia Pigliacelli
- School of Pharmacy, University of East Anglia, Norwich, Norfolk NR4 7TJ, UK; Dipartimento di Chimica, Materiali ed Ingegneria Chimica "G. Natta", Politecnico di Milano, Via Mancinelli 7, 20131 Milan, Italy.
| | - Peter Belton
- School of Chemistry, University of East Anglia, Norwich, Norfolk NR4 7TJ, UK
| | - Peter Wilde
- Quadram Institute Bioscience, Norwich Research Park, Norwich, Norfolk NR4 7UQ, UK
| | - Francesca Baldelli Bombelli
- Dipartimento di Chimica, Materiali ed Ingegneria Chimica "G. Natta", Politecnico di Milano, Via Mancinelli 7, 20131 Milan, Italy
| | - Paul A Kroon
- Quadram Institute Bioscience, Norwich Research Park, Norwich, Norfolk NR4 7UQ, UK
| | - Mark S Winterbone
- Quadram Institute Bioscience, Norwich Research Park, Norwich, Norfolk NR4 7UQ, UK
| | - Sheng Qi
- School of Pharmacy, University of East Anglia, Norwich, Norfolk NR4 7TJ, UK.
| |
Collapse
|
17
|
Masrat R, Dar AA. Interaction of HPC with CTAB and Tween 40 at Water/Air and Water/Soya Oil Interfaces. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:1145-1158. [PMID: 36622144 DOI: 10.1021/acs.langmuir.2c02902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
The bulk and interfacial shear rheological behavior of aqueous solutions of biocompatible polymer HPC has been investigated in the presence of cationic CTAB and nonionic Tween 40 having the same chain length but different head groups. Steady-state bulk experiments depict two distinct regions in the rheogram (Newtonian followed by pseudoplastic). Dynamic experiments suggest that the stability of HPC hydrogels decreases with the increase in surfactant concentration. Interfacial steady shear tests of 2D monolayers of 1 wt % HPC and 1 wt % HPC with varying concentrations of Tween 40/CTAB show a non-Newtonian dilatant behavior at the solution-air interface. However, two distinct dilatant regions separated by a Newtonian region were observed for the same films at the solution-soya oil interface. The strength of films formed at the two interfaces decreases with the increase of surfactant concentration as observed from oscillatory interfacial tests. HPC interacts more strongly with CTAB than Tween 40 both in bulk as well as at the interfaces studied.
Collapse
Affiliation(s)
- Rohi Masrat
- Department of Chemistry, National Institute of Technology, Srinagar, Kashmir, 190006JK, India
| | - Aijaz Ahmad Dar
- Soft Matter Research Group, Physical Chemistry Section, Department of Chemistry, University of Kashmir, Srinagar190006JK, India
| |
Collapse
|
18
|
Ahamad Said M, Hasbullah NA, Rosdi MR, Musa MS, Rusli A, Ariffin A, Shafiq MD. Polymerization and Applications of Poly(methyl methacrylate)-Graphene Oxide Nanocomposites: A Review. ACS OMEGA 2022; 7:47490-47503. [PMID: 36591191 PMCID: PMC9798503 DOI: 10.1021/acsomega.2c04483] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 12/02/2022] [Indexed: 06/17/2023]
Abstract
Graphene oxide (GO)-incorporated poly(methyl methacrylate) (PMMA) nanocomposites (PMMA-GO) have demonstrated a wide range of outstanding mechanical, electrical, and physical characteristics. It is of interest to review the synthesis of PMMA-GO nanocomposites and their applications as multifunctional structural materials. The attention of this review is to focus on the radical polymerization techniques, mainly bulk and emulsion polymerization, to prepare PMMA-GO polymeric nanocomposite materials. This review also discusses the effect of solvent polarity on the polymerization process and the types of surfactants (anionic, cationic, nonionic) and initiator used in the polymerization. PMMA-GO nanocomposite synthesis using radical polymerization-based techniques is an active topic of study with several prospects for considerable future improvement and a variety of possible emerging applications. The concentration and dispersity of GO used in the polymerization play critical roles to ensure the functionality and performance of the PMMA-GO nanocomposites.
Collapse
|
19
|
Aono K, Shiba H, Suzuki F, Yomogida Y, Hasumi M, Kado S, Nakahara Y, Yajima S. Influencing foam properties of aqueous bis(2-ethylhexyl)sulfosuccinate solutions by addition of polypropylene-glycol-modified and amino-modified silica nanoparticles. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.130228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
20
|
Wang Y, Liu Y, He B, Huang J, Xu H. Study on the compounding of sodium N-lauroyl glutamate and cationic cellulose. TENSIDE SURFACT DET 2022. [DOI: 10.1515/tsd-2022-2433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Abstract
In this work, sodium N-lauroyl glutamate (SLG) was mixed with cationic cellulose JR30 M. The rapidly occurring change in surface tension and the mass action law of the mixed (compound) system were investigated using dynamic and equilibrium surface tension methods. The behaviour of the system during phase separation was investigated by turbidimetry. The results showed that in the presence of JR30 M, the surface tension of SLG was reduced to a lower level in the given time interval due to the strong interaction compared to that of a solution with the same concentration of SLG but without JR30 M. The largest decrease was obtained with a JR30 M concentration of 0.2 g L−1, which reduced the equilibrium surface tension of SLG from 38.4 mN m−1 to 31.7 mN m−1. The rate of decrease in surface tension increased from 37.61 mN m−1 s−1 to 74.7 mN m−1 s−1. An association complex formed between SLG and JR30 M, and the equilibrium surface tension curve showed a double platform. As the concentration of JR30 M increased, the first platform broadened and the CMC value increased. The phase separation behaviour of the compound system disappeared with the increase of SLG concentration, and the area became narrower with the decrease of JR30 M concentration.
Collapse
Affiliation(s)
- Yuling Wang
- Bloomage Biotechnology Co., Ltd. , Jinan , China
| | - Yue Liu
- School of Chemical & Material Engineering , Jiangnan University , Wuxi , P. R. China
| | - Binbin He
- School of Chemical & Material Engineering , Jiangnan University , Wuxi , P. R. China
| | - Jian Huang
- School of Chemical & Material Engineering , Jiangnan University , Wuxi , P. R. China
| | - Hujun Xu
- School of Chemical & Material Engineering , Jiangnan University , Wuxi , P. R. China
| |
Collapse
|
21
|
Generation of Fermat's spiral patterns by solutal Marangoni-driven coiling in an aqueous two-phase system. Nat Commun 2022; 13:7206. [PMID: 36418301 PMCID: PMC9684484 DOI: 10.1038/s41467-022-34368-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 10/24/2022] [Indexed: 11/27/2022] Open
Abstract
The solutal Marangoni effect is attracting increasing interest because of its fundamental role in many isothermal directional transport processes in fluids, including the Marangoni-driven spreading on liquid surfaces or Marangoni convection within a liquid. Here we report a type of continuous Marangoni transport process resulting from Marangoni-driven spreading and Marangoni convection in an aqueous two-phase system. The interaction between a salt (CaCl2) and an anionic surfactant (sodium dodecylbenzenesulfonate) generates surface tension gradients, which drive the transport process. This Marangoni transport consists of the upward transfer of a filament from a droplet located at the bottom of a bulk solution, coiling of the filament near the surface, and formation of Fermat's spiral patterns on the surface. The bottom-up coiling of the filament, driven by Marangoni convection, may inspire automatic fiber fabrication.
Collapse
|
22
|
Ritacco HA. Polyelectrolyte/Surfactant Mixtures: A Pathway to Smart Foams. ACS OMEGA 2022; 7:36117-36136. [PMID: 36278099 PMCID: PMC9583308 DOI: 10.1021/acsomega.2c05739] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Accepted: 09/26/2022] [Indexed: 05/10/2023]
Abstract
This review deals with liquid foams stabilized by polyelectrolyte/surfactant (PS) complexes in aqueous solution. It briefly reviews all the important aspects of foam physics at several scales, from interfaces to macroscopic foams, needed to understand the basics of these complex systems, focusing on those particular aspects of foams stabilized by PS mixtures. The final section includes a few examples of smart foams based on PS complexes that have been reported recently in the literature. These PS complexes open an opportunity to develop new intelligent dispersed materials with potential in many fields, such as oil industry, environmental remediation, and pharmaceutical industry, among others. However, there is much work to be done to understand the mechanism involved in the stabilization of foams with PS complexes. Understanding those underlying mechanisms is vital to successfully formulate smart systems. This review is written in the hope of stimulating further work in the physics of PS foams and, particularly, in the search for responsive foams based on polymer-surfactant mixtures.
Collapse
|
23
|
Behera SK, Mohapatra M. Exploring the interaction of dietary fiber hydroxypropyl methylcellulose and biosurfactant sodium deoxycholate. Colloid Polym Sci 2022. [DOI: 10.1007/s00396-022-05025-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
24
|
Masrat R, Majid K. Solubilization of pyrene by mixed polymer-cationic/nonionic surfactant systems: Effect of polymer concentration. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.129974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
25
|
Zueva OS, Makarova AO, Zvereva ER, Kh. Kurbanov R, Salnikov VV, Turanov AN, Zuev YF. Industrial block copolymer surfactants: Diversity of associative forms and interaction with carbon nanomaterial. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.119267] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
26
|
Kumar AK, Ghosh P. Removal and Recovery of an Anionic Surfactant in the Presence of Alcohol by Foam Fractionation. Ind Eng Chem Res 2022. [DOI: 10.1021/acs.iecr.2c00372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Awadh Kishor Kumar
- Department of Chemical Engineering, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India
| | - Pallab Ghosh
- Department of Chemical Engineering, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India
| |
Collapse
|
27
|
|
28
|
pH-dependent micellar properties of edible biosurfactant steviol glycosides and their oil-water interfacial interactions with soy proteins. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2021.107476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
29
|
Ramirez JC, Hernández‐Belmares PJ, Herrera‐Ordonez J. On the association between poly(vinyl alcohol) and sodium dodecyl sulfate and its effect on liquid–liquid interfacial tension: A mathematical model. J SURFACTANTS DETERG 2022. [DOI: 10.1002/jsde.12584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Jorge C. Ramirez
- Centro de Investigación en Química Aplicada (CIQA) Saltillo Coahuila Mexico
| | | | - Jorge Herrera‐Ordonez
- Centro de Física Aplicada y Tecnología Avanzada (CFATA), UNAM Campus Juriquilla Juriquilla Querétaro Mexico
| |
Collapse
|
30
|
Javadi A, Dowlati S, Shourni S, Miller R, Kraume M, Kopka K, Eckert K. Experimental techniques to study protein-surfactant interactions: New insights into competitive adsorptions via drop subphase and interface exchange. Adv Colloid Interface Sci 2022; 301:102601. [PMID: 35114446 DOI: 10.1016/j.cis.2022.102601] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Accepted: 01/10/2022] [Indexed: 01/05/2023]
Abstract
Protein surfactant (PS) interactions is an essential topic for many fundamental and technological applications such as life science, nanobiotechnology processes, food industry, biodiesel production and drug delivery systems. Several experimental techniques and data analysis approaches have been developed to characterize PS interactions in bulk and at interfaces. However, to evaluate the mechanisms and the level of interactions quantitatively, e.g., PS ratio in complexes, their stability in bulk, and reversibility of their interfacial adsorption, new experimental techniques and protocols are still needed, especially with relevance for in-situ biological conditions. The available standard techniques can provide us with the basic understanding of interactions mainly under static conditions and far from physiological criteria. However, detailed measurements at complex interfaces can be formidable due to the sophisticated tools required to carefully probe nanometric phenomena at interfaces without disturbing the adsorbed layer. Tensiometry-based techniques such as drop profile analysis tensiometry (PAT) have been among the most powerful methods for characterizing protein's and surfactant's adsorption layers at interfaces via measuring equilibrium and dynamic interfacial tension and dilational rheology analysis. PAT provides us with insightful data such as kinetics and isotherms of adsorption and related surface activity parameters. However, the data analysis and interpretation can be challenging for mixed protein-surfactant solutions via standard PAT experimental protocols. The combination of a coaxial double capillary (micro flow exchange system) with drop profile analysis tensiometry (CDC-PAT) is a promising tool to provide valuable results under different competitive adsorption/desorption conditions via novel experimental protocols. CDC-PAT provides unique experimental protocols to exchange the droplet subphase in a continuous dynamic mode during the in-situ analysis of the corresponding interfacial adsorbed layer. The contribution of diffusion/convection mechanisms on the kinetics of the adsorption/desorption processes can also be investigated using CDC-PAT. Here, firstly, we review the commonly available techniques for characterizing protein-surfactant interactions in the bulk phase and at interfaces. Secondly, we give an overview for applications of the coaxial double capillary PAT setup for investigations of mixed protein-surfactant adsorbed layers and address recently developed protocols and analysis procedures. Exploring the competitive sequential adsorption of proteins and surfactants and the reversibility of pre-adsorbed layers via the subphase exchange are the particular experiments we can perform using CDC-PAT. Also the sequential and simultaneous competitive adsorption/desorption processes of some ionic and nonionic surfactants (SDS, CTAB, DTAB, and Triton) and proteins (bovine serum albumin (BSA), lysozyme, and lipase) using CDC-PAT are discussed. Last but not least, the fabrication of micro-nanocomposite layers and membranes are additional applications of CDC-PAT discussed in this work.
Collapse
|
31
|
Petkov JT, Penfold J, Thomas RK. Surfactant self-assembly structures and multilayer formation at the solid-solution interface induces by electrolyte, polymers and proteins. Curr Opin Colloid Interface Sci 2022. [DOI: 10.1016/j.cocis.2021.101541] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
32
|
Slastanova A, Campbell RA, Islas L, Welbourn RJL, R P Webster J, Vaccaro M, Chen M, Robles E, Briscoe WH. Interfacial complexation of a neutral amphiphilic 'tardigrade' co-polymer with a cationic surfactant: Transition from synergy to competition. J Colloid Interface Sci 2022; 606:1064-1076. [PMID: 34487929 DOI: 10.1016/j.jcis.2021.08.014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Revised: 07/22/2021] [Accepted: 08/02/2021] [Indexed: 11/24/2022]
Abstract
HYPOTHESIS Neutral amphiphilic PEG-g-PVAc co-polymer (a "tardigrade" polymer consisting of a hydrophilic polyethylene glycol, PEG, backbone with hydrophobic polyvinyl acetate, PVAc, grafts) can form complexes at the air-water interface with cationic dodecyltrimethylammonium bromide (DTAB) via self-assembly. Compared to anionic SDS, cationic DTAB headgroups are expected to interact strongly with the negatively charged OH- groups from the partial dissociation of the PVAc grafts. We anticipate a transition from synergistic to competitive behaviour, which is expected to be dependent on the surfactant structural characteristics and concentration. EXPERIMENTS DTAB/PEG-g-PVAc mixtures were investigated using a combination of dynamic and equilibrium surface tension measurements, neutron reflectivity (NR) at the air-water interface, and foaming tests. We varied the concentrations of both the DTAB (0.05 to 5 critical micelle concentration, cmc) and that of PEG-g-PVAc (0.2 and 2 critical aggregation concentration, cac). FINDINGS Our results show that the interfacial interactions between DTAB and PEG-g-PVAc were both synergistic and antagonistic, depending sensitively on the surfactant concentration. At DTAB concentrations below its cmc, a pronounced cooperative adsorption behaviour was likely driven by the hydrophobic interactions between the DTAB tail and the PVAc grafts and the attraction between the DTAB headgroups and the partially dissociated -O- groups in the partially hydrolysed PVAc grafts, forming a mixed layer. This synergistic adsorption behaviour transitioned to a competitive adsorption behaviour at DTAB concentrations above its cmc, leading to polymer-surfactant partition, forming a "hanging" polymer layer underlying a surfactant monolayer at the interface. We postulate that DTAB/PEG-g-PVAc complexation in the bulk contributed to partial depletion of the mixture from the interface. We therefore consider this polymer/surfactant system to be a moderately interacting system at the air-water interface. No discernible differences in the foaming behaviour were observed between the DTAB/PEG-g-PVAc systems and the pure surfactant. Our results suggest that surfactant headgroup characteristics (particularly charges) were crucial in determining the structure and composition of polymer-surfactant complexes at the air-water interface, as well as the foamability and foam stability, whilst the coexistence of the synergistic and competitive adsorption behaviour is attributed to the unique architecture of the tardigrade polymer with amphiphilicity and partial charge, facilitating different surfactant-polymer interactions at different DTAB concentrations.
Collapse
Affiliation(s)
- Anna Slastanova
- School of Chemistry, University of Bristol, Cantock's Close, Bristol BS8 1TS, UK
| | - Richard A Campbell
- Division of Pharmacy and Optometry, Faculty of Biology, Medicine and Health, University of Manchester, Stopford Building, Oxford Road, Manchester M13 9PT, UK; Institut Laue-Langevin, 71 Avenue des Martyrs, CS20156, Grenoble 38042, France
| | - Luisa Islas
- School of Chemistry, University of Bristol, Cantock's Close, Bristol BS8 1TS, UK
| | - Rebecca J L Welbourn
- ISIS Facility, STFC, Rutherford Appleton Laboratory, Chilton, Didcot, Oxon OX11 0QX, UK
| | - John R P Webster
- ISIS Facility, STFC, Rutherford Appleton Laboratory, Chilton, Didcot, Oxon OX11 0QX, UK
| | - Mauro Vaccaro
- Procter & Gamble, Temselaan 100, 1853 Strombeek-Bever, Brussels, Belgium
| | - Meng Chen
- Procter & Gamble Beijing Innovation Centre, 35 Yu'an Rd, Shunyi District, Beijing, China
| | - Eric Robles
- Household Care Analytical, Procter & Gamble Newcastle Innovation Centre, Whitley Road, Longbenton, Newcastle NE12 9TS, UK
| | - Wuge H Briscoe
- School of Chemistry, University of Bristol, Cantock's Close, Bristol BS8 1TS, UK.
| |
Collapse
|
33
|
Tsuei M, Sun H, Kim YK, Wang X, Gianneschi NC, Abbott NL. Interfacial Polyelectrolyte-Surfactant Complexes Regulate Escape of Microdroplets Elastically Trapped in Thermotropic Liquid Crystals. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:332-342. [PMID: 34967209 DOI: 10.1021/acs.langmuir.1c02580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Polyelectrolytes adsorbed at soft interfaces are used in contexts such as materials synthesis, stabilization of emulsions, and control of rheology. Here, we explore how polyelectrolyte adsorption to aqueous interfaces of thermotropic liquid crystals (LCs) influences surfactant-stabilized aqueous microdroplets that are elastically trapped within the LCs. We find that adsorption of poly(diallyldimethylammonium chloride) (PDDA) to the interface of a nematic phase of 4-cyano-4'-pentylbiphenyl (5CB) triggers the ejection of microdroplets decorated with sodium dodecylsulfate (SDS), consistent with an attractive electrical double layer interaction between the microdroplets and LC interface. The concentration of PDDA that triggers release of the microdroplets (millimolar), however, is three orders of magnitude higher than that which saturates the LC interfacial charge (micromolar). Observation of a transient reorientation of the LC during escape of microdroplets leads us to conclude that complexes of PDDA and SDS form at the LC interface and thereby regulate interfacial charge and microdroplet escape. Poly(sodium 4-styrenesulfonate) (PSS) also triggers escape of dodecyltrimethylammonium bromide (DTAB)-decorated aqueous microdroplets from 5CB with dynamics consistent with the formation of interfacial polyelectrolyte-surfactant complexes. In contrast to PDDA-SDS, however, we do not observe a transient reorientation of the LC when using PSS-DTAB, reflecting weak association of DTAB and PSS and slow kinetics of formation of PSS-DTAB complexes. Our results reveal the central role of polyelectrolyte-surfactant dynamics in regulating the escape of the microdroplets and, more broadly, that LCs offer the basis of a novel probe of the structure and properties of polyelectrolyte-surfactant complexes at interfaces. We demonstrate the utility of these new insights by triggering the ejection of microdroplets from LCs using peptide-polymer amphiphiles that switch their net charge upon being processed by enzymes. Overall, our results provide fresh insight into the formation of polyelectrolyte-surfactant complexes at aqueous-LC interfaces and new principles for the design of responsive soft matter.
Collapse
Affiliation(s)
- Michael Tsuei
- Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, New York 14853, United States
| | - Hao Sun
- Department of Chemistry, Materials Science & Engineering and Biomedical Engineering, Northwestern University, Evanston, Illinois 60208, United States
- Department of Chemistry and Chemical & Biomedical Engineering, University of New Haven, West Haven, Connecticut 06516, United States
| | - Young-Ki Kim
- Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, New York 14853, United States
- Department of Chemical Engineering, Pohang University of Science and Technology, Pohang, Gyengbuk 37673, Korea
| | - Xin Wang
- Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, New York 14853, United States
| | - Nathan C Gianneschi
- Department of Chemistry, Materials Science & Engineering and Biomedical Engineering, Northwestern University, Evanston, Illinois 60208, United States
| | - Nicholas L Abbott
- Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, New York 14853, United States
| |
Collapse
|
34
|
McCoy TM, Armstrong AJ, Moore JE, Holt SA, Tabor RF, Routh AF. Spontaneous surface adsorption of aqueous graphene oxide by synergy with surfactants. Phys Chem Chem Phys 2022; 24:797-806. [PMID: 34927644 DOI: 10.1039/d1cp04317j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The spontaneous adsorption of graphene oxide (GO) sheets at the air-water interface is explored using X-ray reflectivity (XRR) measurements. As a pure aqueous dispersion, GO sheets do not spontaneously adsorb at the air-water interface due to their high negative surface potential (-60 mV) and hydrophilic functionality. However, when incorporated with surfactant molecules at optimal ratios and loadings, GO sheets can spontaneously be driven to the surface. It is hypothesised that surfactant molecules experience favourable attractive interactions with the surfaces of GO sheets, resulting in co-assembly that serves to render the sheets surface active. The GO/surfactant composites then collectively adsorb at the air-water interface, with XRR analysis suggesting an interfacial structure comprising surfactant tailgroups in air and GO/surfactant headgroups in water for a combined thickness of 30-40 Å, depending on the surfactant used. Addition of too much surfactant appears to inhibit GO surface adsorption by saturating the interface, and low loadings of GO/surfactant composites (even at optimal ratios) do not show significant adsorption indicating a partitioning effect. Lastly, surfactant chemistry is also a key factor dictating adsorption capacity of GO. The zwitterionic surfactant oleyl amidopropyl betaine causes marked increases in GO surface activity even at very low concentrations (≤0.2 mM), whereas non-ionic surfactants such as Triton X-100 and hexaethyleneglycol monododecyl ether require higher concentrations (ca. 1 mM) in order to impart spontaneous adsorption of the sheets. Anionic surfactants do not enhance GO surface activity presumably due to like-charge repulsions that prevent co-assembly. This work provides useful insight into the synergy between GO sheets and molecular amphiphiles in aqueous systems for enhancing the surface activity of GO, and can be used to inform system formulation for developing water-friendly, surface active composites based around atomically thin materials.
Collapse
Affiliation(s)
- Thomas M McCoy
- Department of Chemical Engineering and Biotechnology and BP Institute, University of Cambridge, CB3 0EZ, UK. .,School of Chemistry, Monash University, Clayton 3800, VIC, Australia
| | - Alexander J Armstrong
- Department of Chemical Engineering and Biotechnology and BP Institute, University of Cambridge, CB3 0EZ, UK.
| | - Jackson E Moore
- School of Chemistry, Monash University, Clayton 3800, VIC, Australia
| | - Stephen A Holt
- Australian Centre for Neutron Scattering, ANSTO, Lucas, Heights 2234, NSW, Australia
| | - Rico F Tabor
- School of Chemistry, Monash University, Clayton 3800, VIC, Australia
| | - Alexander F Routh
- Department of Chemical Engineering and Biotechnology and BP Institute, University of Cambridge, CB3 0EZ, UK.
| |
Collapse
|
35
|
Ghosh S, Das S. A detailed assessment on the interaction of sodium alginate with a surface-active ionic liquid and a conventional surfactant: a multitechnique approach. Phys Chem Chem Phys 2022; 24:13738-13762. [DOI: 10.1039/d2cp00221c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Investigation has been made on the interaction of a biodegradable anionic polyelectrolyte, sodium alginate with two oppositely charged cationic surfactants, 1-hexadecyl-3-methyl imidazolium chloride and 1-hexadecyl triphenylphosphonium bromide, former is a...
Collapse
|
36
|
Adsorption of microgel aggregates formed by assembly of gliadin nanoparticles and a β-lactoglobulin fibril-peptide mixture at the air/water interface: Surface morphology and foaming behavior. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2021.107039] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
37
|
Impacts of polyols and temperature on the micellization, interaction and thermodynamics behavior of the mixture of tetradecyltrimethylammonium bromide and polyvinyl alcohol. Z PHYS CHEM 2021. [DOI: 10.1515/zpch-2021-3065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
Herein, the aggregation manner of the mixture of polyvinyl alcohol (PVA) and tetradecyltrimethylammonium bromide (TTAB) was performed in polyols (glucose, maltose and galactose) media over 300.55–320.55 K temperatures range with 5 K interval through conductivity measurement method. The micelle formation of TTAB + PVA mixture was identified by the assessment of critical micelle concentration (CMC) from the plots of specific conductivity (κ) versus TTAB concentration. The degree of micelle ionization (α), the extent of bound counter ions (β) as well as thermodynamic properties (
Δ
G
m
0
${\Delta}{G}_{m}^{0}$
,
Δ
H
m
0
${\Delta}{H}_{m}^{0}$
and
Δ
S
m
0
${\Delta}{S}_{m}^{0}$
) of TTAB + PVA systems have been estimated. The CMC values reveal that the micelle formation of TTAB + PVA mixture experience an enhancement in the manifestation of polyols. The values of free energy of micellization (
Δ
G
m
0
${\Delta}{G}_{m}^{0}$
) are negative for the TTAB + PVA system in aqueous polyols media, suggesting a spontaneous aggregation phenomenon. The
Δ
H
m
0
${\Delta}{H}_{m}^{0}$
and
Δ
S
m
0
${\Delta}{S}_{m}^{0}$
values of TTAB + PVA systems direct that the PVA molecule interacts with TTAB through the exothermic, ion-dipole, and hydrophobic interactions. The thermodynamic properties of transfer were also determined for the move of TTAB + PVA mixture from H2O to water + polyols mixed solvents. The values of compensation temperature (T
c) and intrinsic enthalpy gain (
Δ
H
m
0
,
∗
${\Delta}{H}_{m}^{0,\ast }$
) were evaluated and discussed for the studied system.
Collapse
|
38
|
Li H, Fauquignon M, Haddou M, Schatz C, Chapel JP. Interfacial Behavior of Solid- and Liquid-like Polyelectrolyte Complexes as a Function of Charge Stoichiometry. Polymers (Basel) 2021; 13:3848. [PMID: 34771403 PMCID: PMC8588307 DOI: 10.3390/polym13213848] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 10/27/2021] [Accepted: 11/01/2021] [Indexed: 11/29/2022] Open
Abstract
We systematically investigate in this work the surface activity of polyelectrolyte complex (PECs) suspensions as a function of the molar charge ratio Z (= [-]/[+]) from two model systems: the weakly and strongly interacting poly (diallyldimethylammonium chloride)/poly (acrylic acid sodium salt) (PDADMAC/PANa) and poly (diallyldimethylammonium chloride)/poly (sodium 4- styrenesulfonate) (PDADMAC/PSSNa) pairs, respectively. For both systems, the PEC surface tension decreases as the system approaches charge stoichiometry (Z = 1) whenever the complexation occurs in the presence of excess PDADMAC (Z < 1) or excess polyanion (Z > 1) consistent with an increased level of charge neutralization of PEs forming increasingly hydrophobic and neutral surface-active species. The behavior at stoichiometry (Z = 1) is also particularly informative about the physical nature of the complexes. The PDADMAC/PANa system undergoes a liquid-liquid phase transition through the formation of coacervate microdroplets in equilibrium with macroions remaining in solution. In the PDADMAC/PSSNa system, the surface tension of the supernatant was close to that of pure water, suggesting that the PSSNa-based complexes have completely sedimented, consistent with a complete liquid-solid phase separation of an out-of-equilibrium system. Besides, the high sensitivity of surface tension measurements, which can detect the presence of trace amounts of aggregates and other precursors in the supernatant, allows for very accurate determination of the exact charge stoichiometry of the complexes. Finally, the very low water/water interfacial tension that develops between the dilute phase and the denser coacervate phase in the PDADAMAC/PANa system was measured using the generalized Young-Laplace method to complete the full characterization of both systems. The overall study showed that simple surface tension measurements can be a very sensitive tool to characterize, discriminate, and better understand the formation mechanism of the different structures encountered during the formation of PECs.
Collapse
Affiliation(s)
- Hongwei Li
- Centre de Recherche Paul Pascal (CRPP), UMR CNRS 5031, University of Bordeaux, 33600 Pessac, France; (H.L.); (M.F.); (M.H.)
- Laboratoire de Chimie des Polymères Organiques (LCPO), University of Bordeaux, CNRS, Bordeaux INP, UMR 5629, 33600 Pessac, France
| | - Martin Fauquignon
- Centre de Recherche Paul Pascal (CRPP), UMR CNRS 5031, University of Bordeaux, 33600 Pessac, France; (H.L.); (M.F.); (M.H.)
- Laboratoire de Chimie des Polymères Organiques (LCPO), University of Bordeaux, CNRS, Bordeaux INP, UMR 5629, 33600 Pessac, France
| | - Marie Haddou
- Centre de Recherche Paul Pascal (CRPP), UMR CNRS 5031, University of Bordeaux, 33600 Pessac, France; (H.L.); (M.F.); (M.H.)
- Laboratoire de Chimie des Polymères Organiques (LCPO), University of Bordeaux, CNRS, Bordeaux INP, UMR 5629, 33600 Pessac, France
| | - Christophe Schatz
- Laboratoire de Chimie des Polymères Organiques (LCPO), University of Bordeaux, CNRS, Bordeaux INP, UMR 5629, 33600 Pessac, France
| | - Jean-Paul Chapel
- Centre de Recherche Paul Pascal (CRPP), UMR CNRS 5031, University of Bordeaux, 33600 Pessac, France; (H.L.); (M.F.); (M.H.)
| |
Collapse
|
39
|
Carrera Sánchez C, Rodríguez Patino JM. Contribution of the engineering of tailored interfaces to the formulation of novel food colloids. Food Hydrocoll 2021. [DOI: 10.1016/j.foodhyd.2021.106838] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
40
|
Yadav VK, Khan SH, Choudhary N, Tirth V, Kumar P, Ravi RK, Modi S, Khayal A, Shah MP, Sharma P, Godha M. Nanobioremediation: A sustainable approach towards the degradation of sodium dodecyl sulfate in the environment and simulated conditions. J Basic Microbiol 2021; 62:348-360. [PMID: 34528719 DOI: 10.1002/jobm.202100217] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 08/20/2021] [Accepted: 08/28/2021] [Indexed: 11/12/2022]
Abstract
Nanotechnology has gained huge importance in the field of environmental clean-up today. Due to their remarkable and unique properties, it has shown potential application for the remediation of several pesticides and textile dyes. Recently it has shown positive results for the remediation of sodium dodecyl sulfate (SDS). One of the highly exploited surfactants in detergent preparation is anionic surfactants. The SDS selected for the present study is an example of anionic linear alkyl sulfate. It is utilized extensively in industrial washing, which results in the high effluent level of this contaminant and ubiquitously toxic to the environment. The present review is based on the research depicting the adverse effects of SDS in general and possible strategies to minimizing its effects by bacterial degradation which are capable of exploiting the SDS as an only source of carbon. Moreover, it has also highlighted that how nanotechnology can play a role in the remediation of such recalcitrant pesticides.
Collapse
Affiliation(s)
- Virendra K Yadav
- Department of Microbiology, School of Sciences, P P Savani University, Kosamba, Surat, Gujarat, India.,Environmental Nanotechnology, School of Nanosciences, Central University of Gujarat, Gandhinagar, Gujarat, India
| | - Samreen H Khan
- Environmental Nanotechnology, School of Nanosciences, Central University of Gujarat, Gandhinagar, Gujarat, India
| | - Nisha Choudhary
- Environmental Nanotechnology, School of Nanosciences, Central University of Gujarat, Gandhinagar, Gujarat, India
| | - Vineet Tirth
- Mechanical Engineering Department, College of Engineering, King Khalid University, Abha, Kingdom of Saudi Arabia.,Center for Advanced Materials Science (RCAMS), King Khalid University Guraiger, Abha, Asir, Kingdom of Saudi Arabia
| | - Pankaj Kumar
- Environmental Microbiology, School of Environment and Sustainable Development, Central University of Gujarat, Gandhinagar, Gujarat, India
| | - Raman K Ravi
- Environmental Microbiology, School of Environment and Sustainable Development, Central University of Gujarat, Gandhinagar, Gujarat, India
| | - Shreya Modi
- Environmental Nanotechnology, School of Nanosciences, Central University of Gujarat, Gandhinagar, Gujarat, India
| | - Areeba Khayal
- Department of Chemistry, Aligarh Muslim University, Aligarh, India
| | - Maulin P Shah
- Industrial Waste Water Research Laboratory, Division of Applied & Environmental Microbiology, Enviro Technology Limited, Ankleshwar, Gujarat, India
| | - Purva Sharma
- Department of Zoology, School of Life Sciences, Jaipur National University, Jaipur, Rajasthan, India
| | - Meena Godha
- Department of Zoology, School of Life Sciences, Jaipur National University, Jaipur, Rajasthan, India
| |
Collapse
|
41
|
Gore S, Rane K. Using Molecular Simulations to Understand the Effect of Dodecyl Sulfate on the Calcium-Binding Ability of Polystyrene Sulfonate. J Phys Chem B 2021; 125:7919-7931. [PMID: 34232049 DOI: 10.1021/acs.jpcb.1c04607] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We demonstrate the potential to tune the binding of calcium ions with polystyrene sulfonate (PSS) in the presence of dodecyl sulfate (DS). This can aid the design of surfactant-responsive water-softening agents for applications in detergency. We use molecular dynamics simulations to study the effect of the concentration of DS ions and the degree of sulfonation on the propensity of calcium ions toward PSS. We observe that the presence of DS ions increases the propensity of calcium ions toward 100% sulfonated PSS. The above phenomenon is due to the hydrophobic attraction between PSS and DS at low DS concentrations and the formation of calcium ion bridges between sulfonate and sulfate groups at moderate to high DS concentrations. We also observe the formation of calcium ion bridges between the sulfonate groups at high DS concentrations. The presence of DS ions also increases the propensity of calcium ions toward 20% sulfonated PSS. This is mainly due to the hydrophobic attraction between PSS and DS ions. The calcium ion bridges between sulfonate and sulfate groups are less prevalent than those of 100% sulfonated PSS. We do not observe calcium ion bridges between sulfonate groups of 20% sulfonated PSS. We use the above-mentioned insights to suggest potential strategies for designing an anionic polyelectrolyte having a suitable calcium-binding ability at a given concentration of the anionic surfactant. Finally, strong PSS-DS affinity is detrimental to the activity of surfactants because less surfactant ions are available for detergency. Our results also indicate the possibility of altering the PSS-DS affinity by changing the degree of sulfonation.
Collapse
Affiliation(s)
- Sonali Gore
- Chemical Engineering, IIT Gandhinagar, Palaj, Gujarat 382355, India
| | - Kaustubh Rane
- Chemical Engineering, IIT Gandhinagar, Palaj, Gujarat 382355, India
| |
Collapse
|
42
|
Vaillard AS, El Haitami A, Fontaine P, Cousin F, Gutfreund P, Goldmann M, Cantin S. Surface Pressure-Induced Interdiffused Structure Evidenced by Neutron Reflectometry in Cellulose Acetate/Polybutadiene Langmuir Films. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:5717-5730. [PMID: 33905653 DOI: 10.1021/acs.langmuir.1c00745] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Binary blends of water-insoluble polymers are a versatile strategy to obtain nanostructured films at the air-water interface. However, there are few reported structural studies of such systems in the literature. Depending on the compatibility of the polymers and the role of the air-water interface, one can expect various morphologies. In that context, we probed Langmuir monolayers of cellulose acetate (CA), of deuterated and postoxidized polybutadiene (PBd) and three mixtures of CA/PBd at various concentrations by coupling surface pressure-area isotherms, Brewster angle microscopy (BAM), and neutron reflectometry at the air-water interface to determine their thermodynamic and structural properties. The homogeneity of the films in the vertical direction, averaged laterally over the spatial coherence length of the neutron beam (∼5 μm), was assessed by neutron reflectometry measurements using D2O/H2O subphases contrast-matched to the mixed films. At 5 mN/m, the whole mixed films can be described by a single slightly hydrated thin layer. However, at 15 mN/m, the fit of the reflectivity curves requires a two-layer model consisting of a CA/PBd blend layer in contact with the water, interdiffused with a PBd layer at the interface with air. At intermediate surface pressure (10 mN/m), the determined structure was between those obtained at 5 and 15 mN/m depending on film composition. This PBd enrichment at the air-film interface at high surface pressure, which leads to the PBd depletion in the blend monolayer at the water surface, is attributed to the hydrophobic character of this polymer compared with the predominantly hydrophilic CA.
Collapse
Affiliation(s)
| | | | - Philippe Fontaine
- Synchrotron SOLEIL, L'Orme des Merisiers, Saint Aubin, BP48, 91192 Gif sur Yvette Cedex, France
| | - Fabrice Cousin
- Laboratoire Léon Brillouin, Université Paris-Saclay, CEA-CNRS UMR 12, F-91191 Gif-sur-Yvette, France
| | - Philipp Gutfreund
- Institut Laue-Langevin, 71 Avenue des Martyrs, 38000 Grenoble, France
| | - Michel Goldmann
- Synchrotron SOLEIL, L'Orme des Merisiers, Saint Aubin, BP48, 91192 Gif sur Yvette Cedex, France
- Institut des NanoSciences de Paris, Sorbonne Université, 4 Place Jussieu, 75252 Paris Cedex 05, France
- Faculté des Sciences Fondamentales et Biomédicales, Université de Paris, 45 rue des Sts-Pères, 75006 Paris, France
| | | |
Collapse
|
43
|
Wang T, Kang W, Yang H, Li Z, Zhu T, Sarsenbekuly B, Gabdullin M. An Advanced Material with Synergistic Viscoelasticity Enhancement of Hydrophobically Associated Water-Soluble Polymer and Surfactant. Macromol Rapid Commun 2021; 42:e2100033. [PMID: 33904224 DOI: 10.1002/marc.202100033] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 03/31/2021] [Indexed: 11/11/2022]
Abstract
In order to prepare materials with controllable properties, changeable microstructure, and high viscoelasticity solution with low polymer and surfactant concentration, a composite is constituted by adding surfactant (sodium dodecyl sulfate, SDS) to hydrophobically associated water-soluble polymer (abbreviated as PAAC) solution. The viscoelasticity, aggregate microstructure, and interaction mechanism of the composite are investigated by rheometery, Cryo-transmission electron microscopy (Cryo-TEM), and fluorescence spectrum. The results show that when the mass ratio of polymer to surfactant is 15:1, the viscosity of the composite reaches the maximum. The viscosity of the composite system increases hundredfold. The viscosity plateau under dynamic shear is generated. The composite has the properties of high viscoelasticity, strong shear thinning behavior, and good salt tolerance, and temperature resistance. The maximum viscosity of the composite is shown at the salinity of 20000 mg L-1 . In addition, there is no phase separation in the composite with the increase of polymer and surfactant concentration, which indicates the good stability of the system. It is proposed a method to obtain a high viscoelasticity solution by adding surfactants without wormlike micelles to a hydrophobically associated water-soluble polymer solution.
Collapse
Affiliation(s)
- Tongyu Wang
- Key Laboratory of Unconventional Oil & Gas Development, Ministry of Education, China University of Petroleum (East China), Qingdao, 266580, P. R. China.,School of Petroleum Engineering, China University of Petroleum (East China), Qingdao, 266580, P. R. China
| | - Wanli Kang
- Key Laboratory of Unconventional Oil & Gas Development, Ministry of Education, China University of Petroleum (East China), Qingdao, 266580, P. R. China.,School of Petroleum Engineering, China University of Petroleum (East China), Qingdao, 266580, P. R. China
| | - Hongbin Yang
- Key Laboratory of Unconventional Oil & Gas Development, Ministry of Education, China University of Petroleum (East China), Qingdao, 266580, P. R. China.,School of Petroleum Engineering, China University of Petroleum (East China), Qingdao, 266580, P. R. China
| | - Zhe Li
- Key Laboratory of Unconventional Oil & Gas Development, Ministry of Education, China University of Petroleum (East China), Qingdao, 266580, P. R. China.,School of Petroleum Engineering, China University of Petroleum (East China), Qingdao, 266580, P. R. China
| | - Tongyu Zhu
- Key Laboratory of Unconventional Oil & Gas Development, Ministry of Education, China University of Petroleum (East China), Qingdao, 266580, P. R. China.,School of Petroleum Engineering, China University of Petroleum (East China), Qingdao, 266580, P. R. China
| | - Bauyrzhan Sarsenbekuly
- Key Laboratory of Unconventional Oil & Gas Development, Ministry of Education, China University of Petroleum (East China), Qingdao, 266580, P. R. China.,School of Petroleum Engineering, China University of Petroleum (East China), Qingdao, 266580, P. R. China.,Kazakh-British Technical University, Almaty, 050000, Kazakhstan
| | - Maratbek Gabdullin
- Key Laboratory of Unconventional Oil & Gas Development, Ministry of Education, China University of Petroleum (East China), Qingdao, 266580, P. R. China.,School of Petroleum Engineering, China University of Petroleum (East China), Qingdao, 266580, P. R. China.,Kazakh-British Technical University, Almaty, 050000, Kazakhstan
| |
Collapse
|
44
|
Hafidi Z, El Achouri M, O Sousa FF, Pérez L. Antifungal activity of amino-alcohols based cationic surfactants and in silico, homology modeling, docking and molecular dynamics studies against lanosterol 14-α-demethylase enzyme. J Biomol Struct Dyn 2021; 40:7762-7778. [PMID: 33754947 DOI: 10.1080/07391102.2021.1902396] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Fungi are being responsible for causing serious infections in humans and animals. The opportunistic microorganisms provoke environmental contaminations in health and storage facilities to represent a serious concern to health security. The present work investigates the antifungal activity of two amino-alcohols based cationic surfactants such as CnEtOH, CnPrOH (with n = 14 and 16 are the carbon numbers of alkyl chain and EtOH = Ethanol and PrOH = Propanol) against a collection of different Candida species (Candida tropicalis, Candida albicans, Candida auris, Cyberlindnera jadinii, Candida parapsilosis, Candida glabrata and Candida rugosa) respectively. The amino-alcohols based cationic surfactants exhibited good antifungal activity against all Candida strains tested with minimum inhibitory concentrations (MIC) ranging from 0.002 to 0.30 mM. The MIC evaluation shows an increase as a function of the hydrophobicity of all inhibitors against the majority of the Candida strains tested. The different location of the alcoholic OH function in the polar head shows the influence on the availability of N+ responsible for electrostatic interactions with the candidate's cell walls, which remains a very important step in the mode of action of quaternary ammonium cationic surfactants. Hence, a 3D structure of lanosterol 14-α-demethylase enzyme from C. auris was constructed by homology modeling using an online SWISS-MODEL server. The predicted model was analyzed by serval servers. Furthermore, a molecular docking study was carried out to better understand the binding mechanism of lanosterol homologous protein with surfactant ligands. Then, the docked complexes lanosterol-surfactants were refined by the molecular dynamic simulation to analyze their interaction behavior during the simulation.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Zakaria Hafidi
- Laboratoire de Physico-Chimie des Matériaux Inorganiques et Organiques, Ecole Normale supérieure-Rabat, Mohammed V University in Rabat, Centre des Sciences des Matériaux, Rabat, Morocco.,Surfactants and Nanobiotechnology Department, IQAC, CSIC, Barcelona, Spain
| | - Mohammed El Achouri
- Laboratoire de Physico-Chimie des Matériaux Inorganiques et Organiques, Ecole Normale supérieure-Rabat, Mohammed V University in Rabat, Centre des Sciences des Matériaux, Rabat, Morocco
| | - Francisco F O Sousa
- Surfactants and Nanobiotechnology Department, IQAC, CSIC, Barcelona, Spain.,Graduate Program on Pharmaceutical Innovation, Department of Biological & Health Sciences, Federal University of Amapa, Rodovia Juscelino Kubitschek, Macapa, Amapá, Brazil
| | - Lourdes Pérez
- Surfactants and Nanobiotechnology Department, IQAC, CSIC, Barcelona, Spain
| |
Collapse
|
45
|
Dastyar P, Salehi MS, Firoozabadi B, Afshin H. Influences of Polymer-Surfactant Interaction on the Drop Formation Process: An Experimental Study. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:1025-1036. [PMID: 33433230 DOI: 10.1021/acs.langmuir.0c02487] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The interaction between polymer and surfactant molecules affects the physical properties of liquids, which could be of great importance in an abundance of processes related to drop formation. Polymer and surfactant concentration is a factor that dramatically impacts the shape of molecular networks formed in the fluid bulk and the characteristics of a forming drop. In this study, the deformation and detachment of aqueous carboxymethyl cellulose (CMC) solutions' drops containing different concentrations of sodium dodecyl sulfate (SDS) are studied experimentally. Our purpose is to determine the effects of CMC and SDS concentrations on the parameters related to the formation process, including drop length, minimum neck thickness, and formation time. Our results clearly show that the increment of the SDS amount at a constant low CMC concentration increases the drop detachment length and results in a slower thinning process. However, at higher CMC concentrations, the drop limiting length reaches a maximum, indicating the effects of disintegration of molecular structures as the SDS amount exceeds the critical concentration. Moreover, the drop formation time is found to decrease with the increment of the SDS concentration, which could be attributed to the reduction of dynamic interfacial tension.
Collapse
Affiliation(s)
- Peyman Dastyar
- Department of Mechanical Engineering, Sharif University of Technology, Tehran 009821, Iran
| | - Moloud Sadat Salehi
- Department of Mechanical Engineering, Sharif University of Technology, Tehran 009821, Iran
| | - Bahar Firoozabadi
- Department of Mechanical Engineering, Sharif University of Technology, Tehran 009821, Iran
| | - Hossein Afshin
- Department of Mechanical Engineering, Sharif University of Technology, Tehran 009821, Iran
| |
Collapse
|
46
|
Guckeisen T, Hosseinpour S, Peukert W. Effect of pH and urea on the proteins secondary structure at the water/air interface and in solution. J Colloid Interface Sci 2021; 590:38-49. [PMID: 33524719 DOI: 10.1016/j.jcis.2021.01.015] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 01/05/2021] [Accepted: 01/06/2021] [Indexed: 01/09/2023]
Abstract
HYPOTHESIS The secondary structure of proteins affects their functionality and performance in physiological environments or industrial applications. Change of the solution pH or the presence of protein denaturants are the main chemical means that can alter the secondary structure of proteins or lead to protein denaturation. Since proteins in the bulk solution and those residing at the solution/air interface experience different local environments, their response to chemical denaturation can be different. EXPERIMENTS We utilize circular dichroism and chiral/achiral sum frequency generation spectroscopy to study the secondary structure of selected proteins as a function of the solution pH or in the presence of 8 M urea in the bulk solution and at the solution/air interface, respectively. FINDINGS The liquid/air interface can enhance or decrease protein conformation stability. The change in the secondary structure of the surface adsorbed proteins in alkaline solutions occurs at pH values lower than those denaturing the studied proteins in the bulk solution. In contrast, while 8 M urea completely denatures the studied proteins in the bulk solution, the liquid/air interface prevents the urea-induced denaturation of the surface adsorbed proteins by limiting the access of urea to the hydrophobic side chains of proteins protruding to air.
Collapse
Affiliation(s)
- Tobias Guckeisen
- Institute of Particle Technology (LFG), Friedrich-Alexander-Universität-Erlangen-Nürnberg (FAU), Cauerstraße 4, 91058 Erlangen, Germany.
| | - Saman Hosseinpour
- Institute of Particle Technology (LFG), Friedrich-Alexander-Universität-Erlangen-Nürnberg (FAU), Cauerstraße 4, 91058 Erlangen, Germany.
| | - Wolfgang Peukert
- Institute of Particle Technology (LFG), Friedrich-Alexander-Universität-Erlangen-Nürnberg (FAU), Cauerstraße 4, 91058 Erlangen, Germany.
| |
Collapse
|
47
|
Nuorivaara T, Serna-Guerrero R. Amphiphilic cellulose and surfactant mixtures as green frothers in mineral flotation. 1. Characterization of interfacial and foam stabilization properties. Colloids Surf A Physicochem Eng Asp 2020. [DOI: 10.1016/j.colsurfa.2020.125297] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
48
|
Zhang J, Thomas RK, Penfold J. Collapsed Structure of Hydrophobically Modified Polyacrylamide Adsorbed at the Air-Water Interface: The Polymer Surface Excess and the Gibbs Equation. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:11661-11675. [PMID: 32926632 DOI: 10.1021/acs.langmuir.0c02534] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Neutron reflectometry has been used to measure the surface excesses and structures of hydrophobically modified polyacrylamide polymers (HMPAMs) at the air-water (A-W) interface. The HMPAMs were based on a range of commercially available PAM, which were modified by the N-alkylation of the amide group to give an N-CnD2n+1 hydrophobic group with n = 8, 12, and 16 at levels of 0.5, 1, 2, 4, and 6 mol %. A further HMPAM was synthesized in two isotopic forms with either N-CnD2n+1 or N-CnH2n+1 as hydrophobes. For moderate- and high MW species the near surface structure at the A-W interface consists of two layers. All the hydrophobic units are in these two layers as well as a large fraction of backbone units, often amounting to a total volume comparable to that of the hydrophobes. The outer layer next to air contains no water, but the residual volume in the inner layer is filled with water. A further large fraction of the backbone units also form a diffuse third layer extending a substantial distance into the solution. In a low MW HMPAMs there was preferential adsorption of species with higher mol % of hydrophobe and a tendency to form apparently nonequilibrium structures, which in some cases resulted in more complex structures than the simple one characteristic of the large MW polymers. With the exception of this polymer, the variation of the patterns of surface excess and structure with solution concentration suggested that systems containing hydrophobic units at a level of 0.5, 1, and 2 mol % formed equilibrium or near-equilibrium surface layers at bulk concentrations of 0.01-0.35 wt % for C8 to C16 units. However, higher levels of 4 and 6 mol % of the C12 hydrophobe led to much less regular patterns of adsorption, indicating that equilibration is more difficult once the molar fraction of hydrophobe exceeds 2 mol %. The behavior of the surface tension (ST) over the same concentration range as the NR experiments could be accounted for by the Gibbs equation using the directly measured surface excesses and the incorporation of a low charge on the polymers (about 1 charge per 100 backbone units). The presence of such a charge in PAM can arise from hydrolysis of some amide to carboxylate and was known to be present for one of the polymers. The extra structural information obtained by NR on these HMPAMs combined with more recent measurements of the state of ionization in polyacrylates (PAA) allowed us to reinterpret earlier ST and X-ray reflection results on hydrophobically modified HMPAANa containing a similar level of 1 and 2 mol % C12H25 hydrophobes. The Gibbs equation again accounted quantitatively for the ST behavior by using the correct state of ionization of the polymer. Although the adsorption of hydrophobic groups in HMPAANa is about one-tenth of that for the corresponding HMPAM, the ST drops more quickly to lower values for HMPAANa because of its higher level of dissociation, which increases the magnitude of the slope in the Gibbs plot.
Collapse
Affiliation(s)
- Jin Zhang
- Physical and Theoretical Chemistry Laboratory, South Parks Road, Oxford OX1 3QZ, U.K
| | - Robert K Thomas
- Physical and Theoretical Chemistry Laboratory, South Parks Road, Oxford OX1 3QZ, U.K
| | - Jeffrey Penfold
- Rutherford-Appleton Laboratory, Chilton, Didcot, Oxfordshire, U.K
- Physical and Theoretical Chemistry Laboratory, South Parks Road, Oxford OX1 3QZ, U.K
| |
Collapse
|
49
|
Aono K, Suzuki F, Yomogida Y, Hasumi M, Kado S, Nakahara Y, Yajima S. Effects of Polypropylene Glycol at Very Low Concentrations on Rheological Properties at the Air-Water Interface and Foam Stability of Sodium Bis(2-ethylhexyl)sulfosuccinate Aqueous Solutions. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:10043-10050. [PMID: 32787049 DOI: 10.1021/acs.langmuir.0c01109] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The present study investigates the effects of very low concentrations of polypropylene glycol (PPG) on the rheological properties of sodium bis(2-ethylhexyl)sulfosuccinate (AOT) aqueous solutions at the surface for the precise control of foam properties. Langmuir trough experiments and Brewster angle microscopy (BAM) of the AOT monolayer on the surfaces of PPG aqueous solutions indicated that a very low concentration of PPG increased the number of AOT molecules at the surface. Viscoelastic behaviors at the surface and surface tension isotherms in mixed aqueous solutions of AOT and PPG revealed that AOT interacted with PPG in the surface and bulk phase. A modified Ross-Miles method was performed to assess the foam stabilities of AOT aqueous solutions with and without PPG. The stabilization of foam by PPG was attributed to the rheological properties of AOT aqueous solutions at the surface.
Collapse
Affiliation(s)
- Keita Aono
- Department of Applied Chemistry, Faculty of Systems Engineering, Wakayama University, 930 Sakae-dani, Wakayama 640-8510, Japan
- Kao Corporation, 1334 Minato, Wakayama 640-8580, Japan
| | | | | | | | - Shinpei Kado
- Department of Applied Chemistry, Faculty of Systems Engineering, Wakayama University, 930 Sakae-dani, Wakayama 640-8510, Japan
| | - Yoshio Nakahara
- Department of Applied Chemistry, Faculty of Systems Engineering, Wakayama University, 930 Sakae-dani, Wakayama 640-8510, Japan
| | - Setsuko Yajima
- Department of Applied Chemistry, Faculty of Systems Engineering, Wakayama University, 930 Sakae-dani, Wakayama 640-8510, Japan
| |
Collapse
|
50
|
Guzmán E, Fernández-Peña L, Ortega F, Rubio RG. Equilibrium and kinetically trapped aggregates in polyelectrolyte–oppositely charged surfactant mixtures. Curr Opin Colloid Interface Sci 2020. [DOI: 10.1016/j.cocis.2020.04.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|