1
|
Ma X, Kong S, Li Z, Zhen S, Sun F, Yang N. Effect of cross-linking density on the rheological behavior of ultra-soft chitosan microgels at the oil-water interface. J Colloid Interface Sci 2024; 672:574-588. [PMID: 38852358 DOI: 10.1016/j.jcis.2024.06.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 06/02/2024] [Accepted: 06/03/2024] [Indexed: 06/11/2024]
Abstract
In this paper, microgels with uniform particle size were prepared by physically cross-linking the hydrophobically modified chitosan (h-CS) with sodium phytate (SP). The effects of cross-linking density on the interfacial adsorption kinetics, viscoelasticity, stress relaxation, and micorheological properties of the hydrophobically modified chitosan microgels (h-CSMs) at the oil-water interface were extensively investigated by the dilatational rheology, compressional rheology, and particle tracing microrheology. The results were correlated with the particle size, morphology, and elasticity of the microgels characterized by dynamic light scattering and atomic force microscopy. It was found that with the increase of cross-linking density, the h-CSMs changed from a polymer-like state to ultra-soft fussy spheres with higher elastic modulus. The compression isotherms demonstrated multi-stage increase caused by the interaction between the shells and that between the cores of the microgels successively. As the increase of cross-linking density, the h-CSMs diffused slower to the oil-water interface, but demonstrating faster permeation adsorption and rearrangement at the oil-water interface, finally forming interfacial layers of higher viscoelastic modulus due to the core-core interaction. Both the initial tension relaxation and the microgel rearrangement after interface expansion became faster as the microgel elasticity increased. The interfacial microrheology demonstrated dynamic caging effect caused by neighboring microgels. This article provides a more comprehensive understanding of the behaviors of polysaccharide microgels at the oil-water interface.
Collapse
Affiliation(s)
- Xuxi Ma
- Glyn O. Phillips Hydrocolloid Research Centre, National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Key Laboratory of Industrial Microbiology in Hubei, Department of Bioengineering and Food Science, Hubei University of Technology, Wuhan 430068, China
| | - Songmei Kong
- Glyn O. Phillips Hydrocolloid Research Centre, National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Key Laboratory of Industrial Microbiology in Hubei, Department of Bioengineering and Food Science, Hubei University of Technology, Wuhan 430068, China
| | - Zhenzhen Li
- Glyn O. Phillips Hydrocolloid Research Centre, National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Key Laboratory of Industrial Microbiology in Hubei, Department of Bioengineering and Food Science, Hubei University of Technology, Wuhan 430068, China
| | - Shiyu Zhen
- Glyn O. Phillips Hydrocolloid Research Centre, National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Key Laboratory of Industrial Microbiology in Hubei, Department of Bioengineering and Food Science, Hubei University of Technology, Wuhan 430068, China
| | - Fusheng Sun
- Glyn O. Phillips Hydrocolloid Research Centre, National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Key Laboratory of Industrial Microbiology in Hubei, Department of Bioengineering and Food Science, Hubei University of Technology, Wuhan 430068, China; Food Hydrocolloid International Science and Technology Cooperation Base of Hubei Province, Hubei University of Technology, Wuhan 430068, China
| | - Nan Yang
- Glyn O. Phillips Hydrocolloid Research Centre, National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Key Laboratory of Industrial Microbiology in Hubei, Department of Bioengineering and Food Science, Hubei University of Technology, Wuhan 430068, China; Food Hydrocolloid International Science and Technology Cooperation Base of Hubei Province, Hubei University of Technology, Wuhan 430068, China.
| |
Collapse
|
2
|
Daddi-Moussa-Ider A, Tjhung E, Pradas M, Richter T, Menzel AM. Rotational dynamics of a disk in a thin film of weakly nematic fluid subject to linear friction. THE EUROPEAN PHYSICAL JOURNAL. E, SOFT MATTER 2024; 47:58. [PMID: 39322774 PMCID: PMC11424714 DOI: 10.1140/epje/s10189-024-00452-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 09/09/2024] [Indexed: 09/27/2024]
Abstract
Dynamics at low Reynolds numbers experiences recent revival in the fields of biophysics and active matter. While in bulk isotropic fluids it is exhaustively studied, this is less so in anisotropic fluids and in confined situations. Here, we combine the latter two by studying the rotation of a disk-like inclusion in a uniaxially anisotropic, globally oriented, incompressible two-dimensional fluid film. In terms of a perturbative expansion in parameters that quantify anisotropies in viscosity and in additional linear friction with a supporting substrate or other type of confinement, we derive analytical expressions for the resulting hydrodynamic flow and pressure fields as well as for the resistance and mobility coefficients of the rotating disk. It turns out that, in contrast to translational motion, the solutions remain well-behaved also in the absence of the additional linear friction. Comparison with results from finite-element simulations shows very good agreement with those from our analytical calculations. Besides applications to describe technological systems, for instance, in the area of microfluidics and thin cells of aligned nematic liquid crystals, our solutions are important for quantitative theoretical approaches to fluid membranes and thin films in general featuring a preferred direction.
Collapse
Affiliation(s)
| | - Elsen Tjhung
- School of Mathematics and Statistics, The Open University, Walton Hall, Milton Keynes, MK7 6AA, UK
| | - Marc Pradas
- School of Mathematics and Statistics, The Open University, Walton Hall, Milton Keynes, MK7 6AA, UK
| | - Thomas Richter
- Institut für Analysis und Numerik, Otto-von-Guericke-Universität Magdeburg, Universitätsplatz 2, Magdeburg, 39106, Germany
| | - Andreas M Menzel
- Institut für Physik, Otto-von-Guericke-Universität Magdeburg, Universitätsplatz 2, Magdeburg, 39106, Germany
| |
Collapse
|
3
|
Mancebo N, Rubio RG, Ortega F, Carbone C, Guzmán E, Martínez-Pedrero F, Rubio MA. Diffusion Wave Spectroscopy Microrheological Characterization of Gelling Agarose Solutions. Polymers (Basel) 2024; 16:2618. [PMID: 39339082 PMCID: PMC11435981 DOI: 10.3390/polym16182618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 09/10/2024] [Accepted: 09/14/2024] [Indexed: 09/30/2024] Open
Abstract
This work investigated the gelation kinetics and mechanical properties of agarose hydrogels studied at different concentrations (in the range 1-5 g/L) and temperatures. Rheological measurements were performed by diffusing wave spectroscopy (DWS) using polystyrene and titanium dioxide particles as probes. The study emphasized the influence of gelation kinetics on the mechanical behavior of the hydrogels. The results showed that the gel properties were closely related to the thermal history and aging time of the samples. The insights gained from this study are critical for optimizing the performance of agarose hydrogels in specific applications and highlight the importance of controlling the concentration and thermal conditions during hydrogel preparation.
Collapse
Affiliation(s)
- Nuria Mancebo
- Departamento de Química Física, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, Ciudad Universitaria s/n, 28040 Madrid, Spain
| | - Ramon G Rubio
- Departamento de Química Física, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, Ciudad Universitaria s/n, 28040 Madrid, Spain
- Instituto Pluridisciplinar, Universidad Complutense de Madrid, Paseo Juan XXIII 1, 28040 Madrid, Spain
| | - Francisco Ortega
- Departamento de Química Física, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, Ciudad Universitaria s/n, 28040 Madrid, Spain
- Instituto Pluridisciplinar, Universidad Complutense de Madrid, Paseo Juan XXIII 1, 28040 Madrid, Spain
| | - Carlo Carbone
- Departamento de Química Física, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, Ciudad Universitaria s/n, 28040 Madrid, Spain
| | - Eduardo Guzmán
- Departamento de Química Física, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, Ciudad Universitaria s/n, 28040 Madrid, Spain
- Instituto Pluridisciplinar, Universidad Complutense de Madrid, Paseo Juan XXIII 1, 28040 Madrid, Spain
| | - Fernando Martínez-Pedrero
- Departamento de Química Física, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, Ciudad Universitaria s/n, 28040 Madrid, Spain
| | - Miguel A Rubio
- Departamento de Física Fundamental, Facultad de Ciencias, Universidad Nacional de Educación a Distancia (UNED), Paso Senda del Rey 9, 28040 Madrid, Spain
| |
Collapse
|
4
|
Kumar C, Bhattacharjee S, Srivastava S. Shape anisotropy induced jamming of nanoparticles at liquid interfaces: a tensiometric study. NANOSCALE ADVANCES 2024; 6:4683-4692. [PMID: 39263396 PMCID: PMC11386127 DOI: 10.1039/d4na00280f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 08/14/2024] [Accepted: 07/15/2024] [Indexed: 09/13/2024]
Abstract
The intersection of nanotechnology and interfacial science has opened up new avenues for understanding complex phenomena occurring at liquid interfaces. The assembly of nanoparticles at liquid/liquid interfaces provides valuable insights into their interactions with fluid interfaces, essential for various applications, including drug delivery. In this study, we focus on the shape and concentration effects of nanoscale particles on interfacial affinity. Using pendant drop tensiometry, we monitor the real-time interfacial tension between an oil droplet and an aqueous solution containing nanoparticles. We measure two different types of nanoparticles: spherical gold nanoparticles (AuNPs) and anisotropic gold nanorods (AuNRs), each functionalized with surfactants to facilitate interaction at the interface. We observe that the interface equilibrium behaviour is mediated by kinetic processes, namely, diffusion, adsorption and rearrangement of particles. For anisotropic AuNRs, we observe shape-induced jamming of particles at the interface, as evidenced by their slower diffusivity and invariant rearrangement rate. In contrast, the adsorption of spherical AuNPs is dynamic and requires more time to reach equilibrium, indicating weaker interface affinity. By detailed analysis of the interfacial tension data and interaction energy calculations, we show that the anisotropic particle shape achieves stable equilibrium inter-particle separation compared to the isotropic particles. Our findings demonstrate that anisotropic particles are a better design choice for drug delivery applications as they provide better affinity for fluid interface attachment, a crucial requirement for efficient drug transport across cell membranes. Additionally, anisotropic shapes can stabilize interfaces at low particle concentrations compared to isotropic particles, thus minimizing side effects associated with biocompatibility and toxicity.
Collapse
Affiliation(s)
- Chandan Kumar
- Soft Matter and Nanomaterials Laboratory, Department of Physics, Indian Institute of Technology Bombay Mumbai 400 076 India +91-22-2576-7572
| | - Suman Bhattacharjee
- Centre for Research in Nanotechnology & Science (CRNTS), Indian Institute of Technology Bombay Mumbai 400 076 India
| | - Sunita Srivastava
- Soft Matter and Nanomaterials Laboratory, Department of Physics, Indian Institute of Technology Bombay Mumbai 400 076 India +91-22-2576-7572
| |
Collapse
|
5
|
Kaushik D, Hitaishi P, Kumar A, Sen D, Kamil SM, Ghosh SK. Modulating a model membrane of sphingomyelin by a tricyclic antidepressant drug. Chem Phys Lipids 2024; 263:105419. [PMID: 38964567 DOI: 10.1016/j.chemphyslip.2024.105419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Revised: 06/15/2024] [Accepted: 06/28/2024] [Indexed: 07/06/2024]
Abstract
Tricyclic medicine such as amitriptyline (AMT) hydrochloride, initially developed to treat depression, is also used to treat neuropathic pain, anxiety disorder, and migraines. The mechanism of functioning of this type of drugs is ambiguous. Understanding the mechanism is important for designing new drug molecules with higher pharmacological efficiency. Hence, in the present study, biophysical approaches have been taken to shed light on their interactions with a model cellular membrane of brain sphingomyelin in the form of monolayer and multi-lamellar vesicles. The surface pressure-area isotherm infers the partitioning of a drug molecule into the lipid monolayer at the air water interface, providing a higher surface area per molecule and reducing the in-plane elasticity. Further, the surface electrostatic potential of the lipid monolayer is found to increase due to the insertion of drug molecule. The interfacial rheology revealed a reduction of the in-plane viscoelasticity of the lipid film, which, depends on the adsorption of the drug molecule onto the film. Small-angle X-ray scattering (SAXS) measurements on multilamellar vesicles (MLVs) have revealed that the AMT molecules partition into the hydrophobic core of the lipid membrane, modifying the organization of lipids in the membrane. The modified physical state of less rigid membrane and the transformed electrostatics of the membrane could influence its interaction with synaptic vesicles and neurotransmitters making higher availability of the neurotransmitters in the synaptic cleft.
Collapse
Affiliation(s)
- Devansh Kaushik
- Department of Physics, School of Natural Sciences, Shiv Nadar Institution of Eminence, NH 91, Tehsil Dadri, Uttar Pradesh 201214, India
| | - Prashant Hitaishi
- Department of Physics, School of Natural Sciences, Shiv Nadar Institution of Eminence, NH 91, Tehsil Dadri, Uttar Pradesh 201214, India
| | - Ashwani Kumar
- Solid State Physics Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085, India
| | - Debasis Sen
- Solid State Physics Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085, India; Homi Bhabha National Institute, Anushaktinagar, Mumbai 400094, India
| | - Syed M Kamil
- Department of Physics, School of Natural Sciences, Shiv Nadar Institution of Eminence, NH 91, Tehsil Dadri, Uttar Pradesh 201214, India
| | - Sajal K Ghosh
- Department of Physics, School of Natural Sciences, Shiv Nadar Institution of Eminence, NH 91, Tehsil Dadri, Uttar Pradesh 201214, India.
| |
Collapse
|
6
|
Chang SY, Vora SR, Young CD, Shetty A, Ma AWK. Viscoelasticity of a carbon nanotube-laden air-water interface. THE EUROPEAN PHYSICAL JOURNAL. E, SOFT MATTER 2024; 47:18. [PMID: 38457022 DOI: 10.1140/epje/s10189-024-00411-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 02/19/2024] [Indexed: 03/09/2024]
Abstract
The viscoelasticity of a carbon nanotube (CNT)-laden air-water interface was characterized using two different experimental methods. The first experimental method used a Langmuir-Pockels (LP) trough coupled with a pair of oscillating barriers. The second method is termed the Bicone-Trough (BT) method, where a LP trough was custom-built and fit onto a rheometer equipped with a bicone fixture to standardize the preparation and conditioning of a particle-laden interface especially at high particle coverages. The performance of both methods was evaluated by performing Fast Fourier Transform (FFT) analysis to calculate the signal-to-noise ratios (SNR). Overall, the rheometer-based BT method offered better strain control and considerably higher SNRs compared to the Oscillatory Barriers (OB) method that oscillated barriers with relatively limited positional and speed control. For a CNT surface coverage of 165 mg/m2 and a frequency of 100 mHz, the interfacial shear modulus obtained from the OB method increased from 39 to 57 mN/m as the normal strain amplitude increased from 1 to 3%. No linear viscoelastic regime was experimentally observed for a normal strain as small as 0.5%. In the BT method, a linear regime was observed below a shear strain of 0.1%. The interfacial shear modulus decreased significantly from 96 to 2 mN/m as the shear strain amplitude increased from 0.025 to 10%.
Collapse
Affiliation(s)
- Shing-Yun Chang
- Department of Chemical and Biomolecular Engineering, University of Connecticut, Storrs, CT, 06269, USA
| | - Sahil R Vora
- Department of Chemical and Biomolecular Engineering, University of Connecticut, Storrs, CT, 06269, USA
| | - Charles D Young
- Department of Chemical and Biomolecular Engineering, University of Connecticut, Storrs, CT, 06269, USA
| | - Abhishek Shetty
- Rheology Division, Anton Paar USA, 10215 Timber Ridge Dr, Ashland, VA, 23005, USA
| | - Anson W K Ma
- Department of Chemical and Biomolecular Engineering, University of Connecticut, Storrs, CT, 06269, USA.
- Polymer Program, Institute of Materials Science, University of Connecticut, Storrs, CT, 06269, USA.
| |
Collapse
|
7
|
Mahmoudvand M, Vatanparast H, Javadi A, Kantzas A, Burns S, Dolgos M, Miller R, Bahramian A. Evaluation of Interfacial Structure of Self-Assembled Nanoparticle Layers: Use of Standard Deviation between Calculated and Experimental Drop Profiles as a Novel Method. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:2130-2145. [PMID: 38214546 DOI: 10.1021/acs.langmuir.3c03081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2024]
Abstract
The self-assembly of nanoparticles (NPs) at interfaces is currently a topic of increasing interest due to numerous applications in food technology, pharmaceuticals, cosmetology, and oil recovery. It is possible to create tunable interfacial structures with desired characteristics using tailored nanoparticles that can be precisely controlled with respect to shape, size, and surface chemistry. To address these functionalities, it is essential to develop techniques to study the properties of the underlying structure. In this work, we propose an experimental approach utilizing the standard deviation of drop profiles calculated by the Laplace equation from experimental drop profiles (STD), as an alternative to the Langmuir trough or precise microscopic methods, to detect the initiation of closely packed conditions and the collapse of the adsorbed layers of CTAB-nanosilica complexes. The experiments consist of dynamic surface/interfacial tension measurements using drop profile analysis tensiometry (PAT) and large-amplitude drop surface area compression/expansion cycles. The results demonstrate significant changes in STD values at the onset of the closely packed state of nanoparticle-surfactant complexes and the monolayer collapse. The STD trend was explained in detail and shown to be a powerful tool for analyzing the adsorption and interfacial structuring of nanoparticles. Different collapse mechanisms were reported for NP monolayers at the liquid/liquid and air/liquid interfaces. We show that the interfacial tension (IFT) is solely dependent on the extent of interfacial coverage by nanoparticles, while the surfactants regulate only the hydrophobicity of the self-assembled complexes. Also, the irreversible adsorption of nanoparticles and the increasing number of adsorbed complexes after the collapse were observed by performing consecutive drop surface compression/expansion cycles. In addition to a qualitative characterization of adsorption layers, the potential of a quantitative calculation of the parameter STD such as the number of adsorbed nanoparticles at the interface and the distance between them at different states of the interfacial layer was discussed.
Collapse
Affiliation(s)
- Mohsen Mahmoudvand
- Department of Chemical and Petroleum Engineering, University of Calgary, T2N 1N4 Calgary, Alberta, Canada
| | - Hamid Vatanparast
- Chemical Engineering Department, College of Engineering, University of Tehran, 1417614411 Tehran, Iran
| | - Aliyar Javadi
- Chemical Engineering Department, College of Engineering, University of Tehran, 1417614411 Tehran, Iran
- Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Institute of Fluid Dynamics, Bautzner Landstrasse 400, 01328 Dresden, Germany
| | - Apostolos Kantzas
- Department of Chemical and Petroleum Engineering, University of Calgary, T2N 1N4 Calgary, Alberta, Canada
| | - Stuart Burns
- Department of Chemistry, University of Calgary, 2500 University Drive NW, T2N 1N4 Calgary, Alberta, Canada
| | - Michelle Dolgos
- Department of Chemistry, University of Calgary, 2500 University Drive NW, T2N 1N4 Calgary, Alberta, Canada
| | - Reinhard Miller
- Technical University Darmstadt, Institute of Condensed Matter Physics, Hochschulstraße 8, D-64289 Darmstadt, Germany
| | - Alireza Bahramian
- Chemical Engineering Department, College of Engineering, University of Tehran, 1417614411 Tehran, Iran
| |
Collapse
|
8
|
Fink Z, Kim PY, Srivastava S, Ribbe AE, Hoagland DA, Russell TP. Evidence for Enhanced Tracer Diffusion in Densely Packed Interfacial Assemblies of Hairy Nanoparticles. NANO LETTERS 2023; 23:10383-10390. [PMID: 37955362 DOI: 10.1021/acs.nanolett.3c02989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/14/2023]
Abstract
Nearly monodisperse nanoparticle (NP) spheres attached to a nonvolatile ionic liquid surface were tracked by in situ scanning electron microscopy to obtain the tracer diffusion coefficient Dtr as a function of the areal fraction ϕ. The in situ technique resolved both tracer (gold) and background (silica) particles for ∼1-2 min, highlighting their mechanisms of diffusion, which were strongly dependent on ϕ. Structure and dynamics at low and moderate ϕ paralleled those reported for larger colloidal spheres, showing an increase in order and a decrease in Dtr by over 4 orders of magnitude. However, ligand interactions were more important near jamming, leading to different caging and jamming dynamics for smaller NPs. The normalized Dtr at ultrahigh ϕ depended on particle diameter and ligand molecular weight. Increasing the PEG molecular weight by a factor of 4 increased Dtr by 2 orders of magnitude at ultrahigh ϕ, indicating stronger ligand lubrication for smaller particles.
Collapse
Affiliation(s)
- Zachary Fink
- Polymer Science and Engineering Department, University of Massachusetts Amherst, Amherst, Massachusetts 01003, United States
| | - Paul Y Kim
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Satyam Srivastava
- Polymer Science and Engineering Department, University of Massachusetts Amherst, Amherst, Massachusetts 01003, United States
| | - Alexander E Ribbe
- Polymer Science and Engineering Department, University of Massachusetts Amherst, Amherst, Massachusetts 01003, United States
| | - David A Hoagland
- Polymer Science and Engineering Department, University of Massachusetts Amherst, Amherst, Massachusetts 01003, United States
| | - Thomas P Russell
- Polymer Science and Engineering Department, University of Massachusetts Amherst, Amherst, Massachusetts 01003, United States
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
- Advanced Institute for Materials Research (WPI-AIMR), Tohoku University, 2-1-1 Katahira, Aoba, Sendai 980-8577, Japan
| |
Collapse
|
9
|
Sharma G, Seth A, Giri RP, Hayen N, Murphy BM, Ghosh SK. Ionic Liquid-Induced Assembly of DNA at Air-Water Interface. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:16079-16089. [PMID: 37922422 DOI: 10.1021/acs.langmuir.3c02212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/05/2023]
Abstract
DNA nanotechnology is the future of many products in the pharmaceutical and cosmetic industries. Self-assembly of this negatively charged biopolymer at surfaces and interfaces is an essential step to elaborate its field of applications. In this study, the ionic liquid (IL) monolayer-assisted self-assembly of DNA macromolecules at the air-water interface has been closely monitored by employing various quantitative techniques, namely, surface pressure-area (π-A) isotherms, surface potential, interfacial rheology, and X-ray reflectivity (XRR). The π-A isotherms reveal that the IL 1,3-didecyl 3-methyl imidazolium chloride induces DNA self-assembly at the interface, leading to a thick viscoelastic film. The interfacial rheology exhibits a notable rise in the viscoelastic modulus as the surface pressure increases. The values of storage and loss moduli measured as a function of strain frequency suggest a relaxation frequency that depends on the length of the macromolecule. The XRR measurements indicate a considerable increase in DNA layer thickness at the elevated surface pressures depending on the number of base pairs of the DNA. The results are considered in terms of the electrostatic and hydrophobic interactions, allowing a quantitative conclusion about the arrangement of DNA strands underneath the monolayer of the ILs at the air-water interface.
Collapse
Affiliation(s)
- Gunjan Sharma
- Department of Physics, School of Natural Sciences, Shiv Nadar Institution of Eminence, NH 91, Tehsil Dadri, G. B. Nagar, Uttar Pradesh, 201314, India
| | - Ajit Seth
- Department of Physics, School of Natural Sciences, Shiv Nadar Institution of Eminence, NH 91, Tehsil Dadri, G. B. Nagar, Uttar Pradesh, 201314, India
| | - Rajendra P Giri
- Institut für Experimentelle und Angewandte Physik, Christian-Albrechts-Universität Zu Kiel, 24098 Kiel, Germany
| | - Nicolas Hayen
- Institut für Experimentelle und Angewandte Physik, Christian-Albrechts-Universität Zu Kiel, 24098 Kiel, Germany
| | - Bridget M Murphy
- Institut für Experimentelle und Angewandte Physik, Christian-Albrechts-Universität Zu Kiel, 24098 Kiel, Germany
| | - Sajal K Ghosh
- Department of Physics, School of Natural Sciences, Shiv Nadar Institution of Eminence, NH 91, Tehsil Dadri, G. B. Nagar, Uttar Pradesh, 201314, India
| |
Collapse
|
10
|
Dopierała K, Knitter M, Dobrzyńska-Mizera M, Andrzejewski J, Bartkowska A, Prochaska K. Surface Functionalization of Poly(lactic acid) via Deposition of Hydroxyapatite Monolayers for Biomedical Applications. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:15610-15619. [PMID: 37882695 PMCID: PMC10634356 DOI: 10.1021/acs.langmuir.3c01914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 10/16/2023] [Accepted: 10/16/2023] [Indexed: 10/27/2023]
Abstract
The surface modification of poly(lactic acid) (PLA) using hydroxyapatite (HAP) particles via Langmuir-Blodgett (LB) and Langmuir-Schaefer (LS) approaches has been reported. The HAP monolayer was characterized at the air/water interface and deposited on three-dimensional (3D) printed poly(lactic acid). The deposition of HAP particles using the LS approach led to a larger surface coverage in comparison to the LB method, which produces a less uniform coating because of the aggregation of the particles. After the transfer of HAP on the PLA surface, the wettability values remained within the desired range. The presence of HAP on the surface of the polymer altered the topography and roughness in the nanoscale, as evidenced by the atomic force microscopy (AFM) images. This effect can be beneficial for the osteointegration of polymeric implants at an early stage, as well as for the reduction of the adherence of the microbial biofilm. Overall, the results suggest that the LS technique could be a promising approach for surface modification of PLA by hydroxyapatite with respective advantages in the biomedical field.
Collapse
Affiliation(s)
- Katarzyna Dopierała
- Institute
of Chemical Technology and Engineering, Poznan University of Technology, Berdychowo 4, 60-965 Poznań, Poland
| | - Monika Knitter
- Institute
of Material Technology, Poznan University
of Technology, Piotrowo
3, 61-138 Poznań, Poland
| | - Monika Dobrzyńska-Mizera
- Institute
of Material Technology, Poznan University
of Technology, Piotrowo
3, 61-138 Poznań, Poland
| | - Jacek Andrzejewski
- Institute
of Material Technology, Poznan University
of Technology, Piotrowo
3, 61-138 Poznań, Poland
| | - Aneta Bartkowska
- Poznan
University of Technology, Faculty of Materials Engineering and Technical
Physics, Institute of Material Science and
Engineering, Jana Pawła
II 24, 61-138 Poznań, Poland
| | - Krystyna Prochaska
- Institute
of Chemical Technology and Engineering, Poznan University of Technology, Berdychowo 4, 60-965 Poznań, Poland
| |
Collapse
|
11
|
Londero VS, Rosa ME, Baitello JB, Costa-Silva TA, Cruz LMS, Tempone AG, Caseli L, Lago JHG. Barbellatanic acid, a new antitrypanosomal pseudo-disesquiterpenoid isolated from Nectandra barbellata, displayed interaction with protozoan cell membrane. BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2023; 1865:184184. [PMID: 37301246 DOI: 10.1016/j.bbamem.2023.184184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Revised: 06/01/2023] [Accepted: 06/02/2023] [Indexed: 06/12/2023]
Abstract
As part of our ongoing studies involving the discovery of new natural prototypes with antiprotozoal activity against Trypanosoma cruzi from Brazilian plant species, the chromatographic fractionation of hexane extract from leaves of Nectandra barbellata afforded one new pseudo-disesquiterpenoid, barbellatanic acid. The structure of this compound was elucidated by NMR and HR-ESIMS data analysis. Barbellatanic acid displayed a trypanocidal effect with IC50 of 13.2 μM to trypomastigotes and no toxicity against NCTC cells (CC50 > 200 μM), resulting in an SI value higher than 15.1. The investigation of the lethal mechanism of barbellatanic acid in trypomastigotes, using both fluorescence microscopy and spectrofluorimetric analysis, revealed a time-dependent permeation of the plasma membrane. Based on these results, this compound was incorporated in cellular membrane models built with lipid Langmuir monolayers. The interaction of barbellatanic acid with the models was inferred by tensiometric, rheological, spectroscopical, and morphological techniques, which showed that this compound altered the thermodynamic, viscoelastic, structural, and morphological properties of the film. Taking together, these results could be employed when this prodrug interacts with lipidic interfaces, such as protozoa membranes or liposomes for drug delivery systems.
Collapse
Affiliation(s)
- Vinicius S Londero
- Institute of Environmental, Chemical and Pharmaceutical Sciences, Federal University of São Paulo, 09972-270 São Paulo, Brazil
| | - Matheus E Rosa
- Institute of Environmental, Chemical and Pharmaceutical Sciences, Federal University of São Paulo, 09972-270 São Paulo, Brazil
| | - João B Baitello
- Division of Dasonomy, Forestry Institute, 02377-000 São Paulo, Brazil
| | - Thais A Costa-Silva
- Center for Natural and Human Sciences, Federal University of ABC, 09210-180 São Paulo, Brazil
| | - Lucas Monteiro S Cruz
- Organic Contaminants Nucleus - Contaminants Center, Adolfo Lutz Institute, 01246-902 São Paulo, Brazil
| | - Andre G Tempone
- Center for Parasitology and Mycology, Adolfo Lutz Institute, 01246-902 São Paulo, Brazil
| | - Luciano Caseli
- Institute of Environmental, Chemical and Pharmaceutical Sciences, Federal University of São Paulo, 09972-270 São Paulo, Brazil.
| | - João Henrique G Lago
- Center for Natural and Human Sciences, Federal University of ABC, 09210-180 São Paulo, Brazil.
| |
Collapse
|
12
|
Ji B, Yang Z, Wang Z, Ewoldt RH, Feng J. Secondary Bubble Entrainment via Primary Bubble Bursting at a Viscoelastic Surface. PHYSICAL REVIEW LETTERS 2023; 131:104002. [PMID: 37739356 DOI: 10.1103/physrevlett.131.104002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 06/12/2023] [Accepted: 07/24/2023] [Indexed: 09/24/2023]
Abstract
Bubble bursting at liquid surfaces is ubiquitous and plays a key role for the mass transfer across interfaces, impacting global climate and human health. Here, we document an unexpected phenomenon that when a bubble bursts at a viscoelastic surface of a bovine serum albumin solution, a secondary (daughter) bubble is entrapped with no subsequent jet drop ejection, contrary to the counterpart experimentally observed at a Newtonian surface. We show that the strong surface dilatational elastic stress from the viscoelastic surface retards the cavity collapse and efficiently damps out the precursor waves, thus facilitating the dominant wave focusing above the cavity nadir. The onset of daughter bubble entrainment is well predicted by an interfacial elastocapillary number comparing the effects of surface dilatational elasticity and surface tension. Our Letter highlights the important role of surface rheology on free surface flows and may find important implications in bubble dynamics with a contaminated interface exhibiting complex surface rheology.
Collapse
Affiliation(s)
- Bingqiang Ji
- Mechanical Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | - Zhengyu Yang
- Mechanical Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | - Zirui Wang
- Mechanical Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | - Randy H Ewoldt
- Mechanical Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
- Materials Research Laboratory, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | - Jie Feng
- Mechanical Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
- Materials Research Laboratory, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| |
Collapse
|
13
|
Gogoi D, Chauhan A, Puri S, Singh A. Segregation of fluids with polymer additives at domain interfaces: a dissipative particle dynamics study. SOFT MATTER 2023; 19:6433-6445. [PMID: 37403605 DOI: 10.1039/d3sm00504f] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/06/2023]
Abstract
This paper investigates the phase separation kinetics of ternary fluid mixtures composed of a polymeric component (C) and two simple fluids (A and B) using dissipative particle dynamics simulations with a system dimensionality of d = 3. We model the affinities between the components to enable the settling of the polymeric component at the interface of fluids A and B. Thus, the system evolves to form polymer coated morphologies, enabling alteration of the fluids' interfacial properties. This manipulation can be utilized across various disciplines, such as the stabilization of emulsions and foams, rheological control, biomimetic design, and surface modification. We probe the effects of various parameters, such as the polymeric concentration, chain stiffness, and length, on the phase separation kinetics of the system. The simulation results show that changes in the concentration of flexible polymers exhibit perfect dynamic scaling for coated morphologies. The growth rate decreases as the polymeric composition is increased due to reduced surface tension and restricted connectivity between A- and B-rich clusters. Variations in the polymer chain rigidity at fixed composition ratios and degrees of polymerization slow the evolution kinetics of AB fluids marginally, although the effect is more pronounced for perfectly rigid chains. Whereas flexible polymer chain lengths at fixed composition ratios slow down the segregation kinetics of AB fluids slightly, varying the chain lengths of perfectly rigid polymers leads to a significant deviation in the length scale and dynamic scaling for the evolved coated morphologies. The characteristic length scale follows a power-law growth with a growth exponent ϕ that shows a crossover from the viscous to the inertial hydrodynamic regime, where the values of ϕ depend on the constraints imposed on the system.
Collapse
Affiliation(s)
- Dorothy Gogoi
- School of Physical Sciences, Jawaharlal Nehru University, New Delhi-110067, India
| | - Avinash Chauhan
- Department of Physics, Indian Institute of Technology (BHU), Varanasi, Uttar Pradesh-221005, India.
| | - Sanjay Puri
- School of Physical Sciences, Jawaharlal Nehru University, New Delhi-110067, India
| | - Awaneesh Singh
- Department of Physics, Indian Institute of Technology (BHU), Varanasi, Uttar Pradesh-221005, India.
| |
Collapse
|
14
|
Abbasi Moud A, Abbasi Moud A. Flow and assembly of cellulose nanocrystals (CNC): A bottom-up perspective - A review. Int J Biol Macromol 2023; 232:123391. [PMID: 36716841 DOI: 10.1016/j.ijbiomac.2023.123391] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 01/17/2023] [Accepted: 01/19/2023] [Indexed: 01/28/2023]
Abstract
Cellulosic sources, such as lignocellulose-rich biomass, can be mechanically or acid degraded to produce inclusions called cellulose nanocrystals (CNCs). They have several uses in the sectors of biomedicine, photonics, and material engineering because of their biodegradability, renewability, sustainability, and mechanical qualities. The processing and design of CNC-based products are inextricably linked to the rheological behaviour of CNC suspension or in combination with other chemicals, such as surfactants or polymers; in this context, rheology offers a significant link between microstructure and macro scale flow behaviour that is intricately linked to material response in applications. The flow behaviour of CNC items must be properly specified in order to produce goods with value-added characteristics. In this review article, we provide new research on the shear rheology of CNC dispersion and CNC-based hydrogels in the linear and nonlinear regime, with storage modulus values reported to range from ~10-3 to 103 Pa. Applications in technology and material science are also covered simultaneously. We carefully examined the effects of charge density, aspect ratio, concentration, persistence length, alignment, liquid crystal formation, the cause of chirality in CNCs, interfacial behaviour and interfacial rheology, linear and nonlinear viscoelasticity of CNC suspension in bulk and at the interface using the currently available literature.
Collapse
Affiliation(s)
- Aref Abbasi Moud
- Department of Chemical and Biological Engineering, The University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada; Biomedical Engineering Department, AmirKabir University of Technology, P.O. Box 15875/4413, PC36+P45 District 6, Tehran, Tehran Province 1591634311, Iran.
| | - Aliyeh Abbasi Moud
- Biomedical Engineering Department, AmirKabir University of Technology, P.O. Box 15875/4413, PC36+P45 District 6, Tehran, Tehran Province 1591634311, Iran
| |
Collapse
|
15
|
Cai Z, Wei Y, Shi A, Zhong J, Rao P, Wang Q, Zhang H. Correlation between interfacial layer properties and physical stability of food emulsions: current trends, challenges, strategies, and further perspectives. Adv Colloid Interface Sci 2023; 313:102863. [PMID: 36868168 DOI: 10.1016/j.cis.2023.102863] [Citation(s) in RCA: 22] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 02/16/2023] [Accepted: 02/18/2023] [Indexed: 03/02/2023]
Abstract
Emulsions are thermodynamically unstable systems that tend to separate into two immiscible phases over time. The interfacial layer formed by the emulsifiers adsorbed at the oil-water interface plays an important role in the emulsion stability. The interfacial layer properties of emulsion droplets have been considered the cutting-in points that influence emulsion stability, a traditional motif of physical chemistry and colloid chemistry of particular significance in relation to the food science and technology sector. Although many attempts have shown that high interfacial viscoelasticity may contribute to long-term emulsion stability, a universal relationship for all cases between the interfacial layer features at the microscopic scale and the bulk physical stability of the emulsion at the macroscopic scale remains to be established. Not only that, but integrating the cognition from different scales of emulsions and establishing a unified single model to fill the gap in awareness between scales also remain challenging. In this review, we present a comprehensive overview of recent progress in the general science of emulsion stability with a peculiar focus on interfacial layer characteristics in relation to the formation and stabilization of food emulsions, where the natural origin and edible safety of emulsifiers and stabilizers are highly requested. This review begins with a general overview of the construction and destruction of interfacial layers in emulsions to highlight the most important physicochemical characteristics of interfacial layers (formation kinetics, surface load, interactions among adsorbed emulsifiers, thickness and structure, and shear and dilatational rheology), and their roles in controlling emulsion stability. Subsequently, the structural effects of a series of typically dietary emulsifiers (small-molecule surfactants,proteins, polysaccharides, protein-polysaccharide complexes, and particles) on oil-water interfaces in food emulsions are emphasized. Finally, the main protocols developed for modifying the structural characteristics of adsorbed emulsifiers at multiple scales and improving the stability of emulsions are highlighted. Overall, this paper aims to comprehensively study the literature findings in the past decade and find out the commonality of multi-scale structures of emulsifiers, so as to deeply understand the common characteristics and emulsification stability behaviour of adsorption emulsifiers with different interfacial layer structures. It is difficult to say that there has been significant progress in the underlying principles and technologies in the general science of emulsion stability over the last decade or two. However, the correlation between interfacial layer properties and physical stability of food emulsions promotes revealing the role of interfacial rheological properties in emulsion stability, providing guidance on controlling the bulk properties by tuning the interfacial layer functionality.
Collapse
Affiliation(s)
- Zhixiang Cai
- Advanced Rheology Institute, Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory of Electrical Insulation and Thermal Aging, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Yue Wei
- Advanced Rheology Institute, Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory of Electrical Insulation and Thermal Aging, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Aimin Shi
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, P.O. Box 5109, Beijing 100193, China
| | - Jian Zhong
- Xinhua Hospital, Shanghai Institute for Pediatric Research, Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| | - Pingfan Rao
- Food Nutrition Sciences Centre, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, China
| | - Qiang Wang
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, P.O. Box 5109, Beijing 100193, China.
| | - Hongbin Zhang
- Advanced Rheology Institute, Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory of Electrical Insulation and Thermal Aging, Shanghai Jiao Tong University, Shanghai, 200240, China..
| |
Collapse
|
16
|
Niu H, Wang W, Dou Z, Chen X, Chen X, Chen H, Fu X. Multiscale combined techniques for evaluating emulsion stability: A critical review. Adv Colloid Interface Sci 2023; 311:102813. [PMID: 36403408 DOI: 10.1016/j.cis.2022.102813] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 10/09/2022] [Accepted: 11/10/2022] [Indexed: 11/17/2022]
Abstract
Emulsions are multiscale and thermodynamically unstable systems which will undergo various unstable processes over time. The behavior of emulsifier molecules at the oil-water interface and the properties of the interfacial film are very important to the stability of the emulsion. In this paper, we mainly discussed the instability phenomena and mechanisms of emulsions, the effects of interfacial films on the long-term stability of emulsions and summarized a set of systematic multiscale combined methods for studying emulsion stability, including droplet size and distribution, zeta-potential, the continuous phase viscosity, adsorption mass and thickness of the interfacial film, interfacial dilatational rheology, interfacial shear rheology, particle tracking microrheology, visualization technologies of the interfacial film, molecular dynamics simulation and the quantitative evaluation methods of emulsion stability. This review provides the latest research progress and a set of systematic multiscale combined techniques and methods for researchers who are committed to the study of oil-water interface and emulsion stability. In addition, this review has important guiding significances for designing and customizing interfacial films with different properties, so as to obtain emulsion-based delivery systems with varying stability, oil digestibility and bioactive substance utilization.
Collapse
Affiliation(s)
- Hui Niu
- Hainan University-HSF/LWL Collaborative Innovation Laboratory, School of Food Science and Engineering, Hainan University, 58 People Road, Haikou 570228, PR China; SCUT-Zhuhai Institute of Modern Industrial Innovation, School of Food Science and Engineering, South China University of Technology, 381 Wushan Road, Guangzhou 510640, PR China
| | - Wenduo Wang
- School of Food Science and Technology, Guangdong Ocean University, Yangjiang 529500, Guangdong, PR China
| | - Zuman Dou
- Microbiome Medicine Center, Department of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, PR China
| | - Xianwei Chen
- SCUT-Zhuhai Institute of Modern Industrial Innovation, School of Food Science and Engineering, South China University of Technology, 381 Wushan Road, Guangzhou 510640, PR China
| | - Xianxiang Chen
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, PR China
| | - Haiming Chen
- Hainan University-HSF/LWL Collaborative Innovation Laboratory, School of Food Science and Engineering, Hainan University, 58 People Road, Haikou 570228, PR China; Maritime Academy, Hainan Vocational University of Science and Technology, 18 Qiongshan Road, Haikou 571126, PR China.
| | - Xiong Fu
- SCUT-Zhuhai Institute of Modern Industrial Innovation, School of Food Science and Engineering, South China University of Technology, 381 Wushan Road, Guangzhou 510640, PR China; Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, Guangzhou 510640, PR China; Overseas Expertise Introduction Center for Discipline Innovation of Food Nutrition and Human Health (111 Center), Guangzhou, PR China.
| |
Collapse
|
17
|
Chen X, Da C, Hatchell DC, Daigle H, Ordonez-Varela JR, Blondeau C, Johnston KP. Ultra-stable CO2-in-water foam by generating switchable Janus nanoparticles in-situ. J Colloid Interface Sci 2023; 630:828-843. [DOI: 10.1016/j.jcis.2022.10.102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Revised: 10/10/2022] [Accepted: 10/20/2022] [Indexed: 11/09/2022]
|
18
|
Tatry MC, Laurichesse E, Vermant J, Ravaine V, Schmitt V. Interfacial rheology of model water-air microgels laden interfaces: Effect of cross-linking. J Colloid Interface Sci 2023; 629:288-299. [PMID: 36155924 DOI: 10.1016/j.jcis.2022.08.157] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 08/22/2022] [Accepted: 08/25/2022] [Indexed: 11/20/2022]
Abstract
HYPOTHESIS The mechanical properties of model air/water interfaces covered by poly(N-isopropylacrylamide) microgels depend on the microgels deformability or in other words on the amount of cross-linker added during synthesis. EXPERIMENTS The study is carried out by measuring the apparent dilational, the compression and the shear moduli using three complementary methods: (1) the pendant drop method with perturbative areas, (2) the Langmuir trough compression, and (3) shear rheology using a double wall ring cell mounted onto a Langmuir through. FINDINGS In the range of surface coverages studied, the interfaces exhibit a solid-like behavior and elasticity goes through a maximum as a function of the surface pressure. This is observable whatever the investigation method. This maximum elasticity depends on the microgel deformability: the softer the microgels the higher the value of the moduli. The mechanical behavior of model interfaces is discussed, taking into account the core-shell structure of the particles and their packing at the interface.
Collapse
Affiliation(s)
- Marie-Charlotte Tatry
- Centre de Recherche Paul Pascal (CRPP), UMR 5031, Univ. Bordeaux, CNRS, 115 Avenue du Dr Albert Schweitzer, 33600 Pessac, France; Univ. Bordeaux, CNRS, Bordeaux INP, ISM, UMR 5255, 33400 Talence, France.
| | - Eric Laurichesse
- Centre de Recherche Paul Pascal (CRPP), UMR 5031, Univ. Bordeaux, CNRS, 115 Avenue du Dr Albert Schweitzer, 33600 Pessac, France.
| | - Jan Vermant
- Laboratory of Soft Materials, Department of Materials, ETH Zürich, Vladimir-Prelog-Weg 5, CH-8093 Zurich, Switzerland.
| | - Valérie Ravaine
- Univ. Bordeaux, CNRS, Bordeaux INP, ISM, UMR 5255, 33400 Talence, France.
| | - Véronique Schmitt
- Centre de Recherche Paul Pascal (CRPP), UMR 5031, Univ. Bordeaux, CNRS, 115 Avenue du Dr Albert Schweitzer, 33600 Pessac, France.
| |
Collapse
|
19
|
Chan DHH, Hunter SJ, Neal TJ, Lindsay C, Taylor P, Armes SP. Adsorption of sterically-stabilized diblock copolymer nanoparticles at the oil-water interface: effect of charged end-groups on interfacial rheology. SOFT MATTER 2022; 18:6757-6770. [PMID: 36040127 DOI: 10.1039/d2sm00835a] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The RAFT aqueous emulsion polymerization of either methyl methacrylate (MMA) or benzyl methacrylate (BzMA) is conducted at 70 °C using poly(glycerol monomethacrylate) (PGMA) as a water-soluble precursor to produce sterically-stabilized diblock copolymer nanoparticles of approximately 30 nm diameter. Carboxylic acid- or morpholine-functional RAFT agents are employed to confer anionic or cationic functionality at the ends of the PGMA stabilizer chains, with a neutral RAFT agent being used as a control. Thus the electrophoretic footprint of such minimally-charged model nanoparticles can be adjusted simply by varying the solution pH. Giant (mm-sized) aqueous droplets containing such nanoparticles are then grown within a continuous phase of n-dodecane and a series of interfacial rheology measurements are conducted. The interfacial tension between the aqueous phase and n-dodecane is strongly dependent on the charge of the terminal group on the stabilizer chains. More specifically, neutral nanoparticles produce a significantly lower interfacial tension than either cationic or anionic nanoparticles. Moreover, adsorption of neutral nanoparticles at the n-dodecane-water interface produces higher interfacial elastic moduli than that observed for charged nanoparticles. This is because neutral nanoparticles can adsorb at much higher surface packing densities owing to the absence of electrostatic repulsive forces in this case.
Collapse
Affiliation(s)
- Derek H H Chan
- Dainton Building, Department of Chemistry, University of Sheffield, Brook Hill, Sheffield, South Yorkshire, S3 7HF, UK.
| | - Saul J Hunter
- Dainton Building, Department of Chemistry, University of Sheffield, Brook Hill, Sheffield, South Yorkshire, S3 7HF, UK.
| | - Thomas J Neal
- Dainton Building, Department of Chemistry, University of Sheffield, Brook Hill, Sheffield, South Yorkshire, S3 7HF, UK.
| | - Christopher Lindsay
- Syngenta, Jealott's Hill International Research Centre, Bracknell, Berkshire, RG42 6EY, UK.
| | - Philip Taylor
- Syngenta, Jealott's Hill International Research Centre, Bracknell, Berkshire, RG42 6EY, UK.
| | - Steven P Armes
- Dainton Building, Department of Chemistry, University of Sheffield, Brook Hill, Sheffield, South Yorkshire, S3 7HF, UK.
| |
Collapse
|
20
|
Jaber A, Roques-Carmes T, Marchal P, Hamieh T, Benyahia L. Interfacial viscoelastic moduli in a weak gel. J Colloid Interface Sci 2022; 622:126-134. [DOI: 10.1016/j.jcis.2022.04.047] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 04/06/2022] [Accepted: 04/07/2022] [Indexed: 11/26/2022]
|
21
|
Kumar C, Srivastava S. Structural and Dynamical Studies of a Lipid-Nanoclay Composite Layer at the Air-Water Interface. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:10400-10411. [PMID: 35973133 DOI: 10.1021/acs.langmuir.2c00987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
We modulate the adsorption affinities of nanoclay particles for the air-water interface by changing the cationic surface charge composition of the lipid monolayer and thereby tune the attractive electrostatic interaction between the positively charged lipid layer and the zwitterionic nanoclay particles in the water subphase. Our findings emphasize the significance of electrostatic interaction between lipids and the nanoclay, as well as its impact on the structural and viscoelastic features of the composite layer. We use surface pressure (Π)-mean molecular area (A) isotherms, atomic force microscope (AFM), Brewster angle microscopy (BAM), and energy dispersive X-ray spectrsocopy (EDXS) measurements to analyze the structure phases of lipid and lipid-nanoclay composite interfacial layer. The Π-A isotherm curve shows that the lipid-nanoclay composite layer has a larger lift-off area than the neat lipid layer, indicating that nanoparticles adsorb at the lipid layer via electrostatic interaction between lipid and nanoclay molecules. The surface density of the adsorbed nanoclay particles increases with an increase in the composition of the cationic lipid molecules. The stress relaxation response of the composite layer, measured using step compression measurements, exhibits exponential decay and ubiquitous dependence on the cationic dimyristoy-trimethylammonium propane (DMTAP) composition in the lipid layer with crossover to faster relaxation dynamics at DMTAP > 0.75. The power-law study of the frequency-dependent dynamic viscoelastic responses of the interfacial layer, measured using the barrier oscillation method, reveals a transition from glass-like response from neat lipid layer to gel-like dynamic response for the lipid-nanoclay composite layer. A solid-like behavior is evident for all the interface layers with dilation elastic modulus (E') > dilational viscous modulus (E″); however, the dynamic response of the neat layer is largely frequency-independent, whereas lipid-nanoclay composite layers with DMTAP > 0.75 reveal a frequency-dependent dynamic responses. The frequency-dependent power-law exponent of E', E″ increases on increasing the fractional composition of cationic DMTAP from 0.1 to 1.0, which forms a saturated interface of laponite particles and behaves as a viscoelastic gel in 2D.
Collapse
Affiliation(s)
- Chandan Kumar
- Soft Matter and Nanomaterials Laboratory, Department of Physics, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Sunita Srivastava
- Soft Matter and Nanomaterials Laboratory, Department of Physics, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| |
Collapse
|
22
|
Lechner BD, Smith P, McGill B, Marshall S, Trick JL, Chumakov AP, Winlove CP, Konovalov OV, Lorenz CD, Petrov PG. The Effects of Cholesterol Oxidation on Erythrocyte Plasma Membranes: A Monolayer Study. MEMBRANES 2022; 12:828. [PMID: 36135847 PMCID: PMC9506283 DOI: 10.3390/membranes12090828] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 08/17/2022] [Accepted: 08/18/2022] [Indexed: 06/16/2023]
Abstract
Cholesterol plays a key role in the molecular and mesoscopic organisation of lipid membranes and it is expected that changes in its molecular structure (e.g., through environmental factors such as oxidative stress) may affect adversely membrane properties and function. In this study, we present evidence that oxidation of cholesterol has significant effects on the mechanical properties, molecular and mesoscopic organisation and lipid-sterol interactions in condensed monolayers composed of the main species found in the inner leaflet of the erythrocyte membrane. Using a combination of experimental methods (static area compressibility, surface dilatational rheology, fluorescence microscopy, and surface sensitive X-ray techniques) and atomistic molecular dynamics simulations, we show that oxidation of cholesterol to 7-ketocholesterol leads to stiffening of the monolayer (under both static and dynamic conditions), significant changes in the monolayer microdomain organisation, disruption in the van der Waals, electrostatic and hydrophobic interactions between the sterol and the other lipid species, and the lipid membrane hydration. Surface sensitive X-ray techniques reveal that, whilst the molecular packing mode is not significantly affected by cholesterol oxidation in these condensed phases, there are subtle changes in membrane thickness and a significant decrease in the coherence length in monolayers containing 7-ketocholesterol.
Collapse
Affiliation(s)
- Bob-Dan Lechner
- Department of of Physics and Astronomy, University of Exeter, Stocker Road, Exeter EX4 4QL, UK
| | - Paul Smith
- Department of Physics, King’s College London, The Strand, London WC2R 2LS, UK
| | - Beth McGill
- Department of of Physics and Astronomy, University of Exeter, Stocker Road, Exeter EX4 4QL, UK
| | - Skye Marshall
- Department of of Physics and Astronomy, University of Exeter, Stocker Road, Exeter EX4 4QL, UK
| | - Jemma L. Trick
- Department of Physics, King’s College London, The Strand, London WC2R 2LS, UK
| | - Andrei P. Chumakov
- European Synchrotron Radiation Facility, 71 Avenue des Martyrs, 38000 Grenoble, France
| | - Charles Peter Winlove
- Department of of Physics and Astronomy, University of Exeter, Stocker Road, Exeter EX4 4QL, UK
| | - Oleg V. Konovalov
- European Synchrotron Radiation Facility, 71 Avenue des Martyrs, 38000 Grenoble, France
| | - Christian D. Lorenz
- Department of Physics, King’s College London, The Strand, London WC2R 2LS, UK
| | - Peter G. Petrov
- Department of of Physics and Astronomy, University of Exeter, Stocker Road, Exeter EX4 4QL, UK
| |
Collapse
|
23
|
Hydrodynamic interactions between charged and uncharged Brownian colloids at a fluid-fluid interface. J Colloid Interface Sci 2022; 628:931-945. [PMID: 36037716 DOI: 10.1016/j.jcis.2022.08.084] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 08/11/2022] [Accepted: 08/12/2022] [Indexed: 11/24/2022]
Abstract
HYPOTHESIS The cluster formation and self-assembly of floating colloids at a fluid/fluid interface is a delicate force balance involving deterministic lateral interaction forces, viscous resistance to relative colloid motion along the surface and thermal (Brownian) fluctuations. As the colloid dimensions get smaller, thermal forces and associated drag forces become important and can affect the self assembly into ordered patterns and crystal structures that are the starting point for various materials applications. NUMERICS Langevin dynamic simulations for particle pairs straddling a liquid-liquid interface with a high viscosity contrast are presented to describe the lateral interfacial assembly of particles in Brownian and non-Brownian dominated regimes. These simulations incorporate capillary attraction, electrostatic repulsion, thermal fluctuations and hydrodynamic interactions (HI) between particles (including the effect of the particle immersion depth). Simulation results are presented for neutrally wetted particles which form a contact angle θ=900 at the interface. FINDINGS The simulation results suggest that clustering, fractal growth and particle ordering become favorable outcomes at critically large values of the Pe numbers, while smaller Pe numbers exhibit higher probabilities of final configurations where particle motion remains uncorrelated in space and particle pairs are found to be more widely separated especially upon the introduction of HI.
Collapse
|
24
|
van der Haven DL, Tas RP, van der Hoorn P, van der Hofstad R, Voets IK. Parameterless detection of liquid–liquid interfaces with sub-micron resolution in single-molecule localization microscopy. J Colloid Interface Sci 2022; 620:356-364. [DOI: 10.1016/j.jcis.2022.03.116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 03/18/2022] [Accepted: 03/25/2022] [Indexed: 10/18/2022]
|
25
|
Thermodynamics and In-Plane Viscoelasticity of Anionic Phospholipid Membranes Modulated by an Ionic Liquid. Pharm Res 2022; 39:2447-2458. [PMID: 35902532 DOI: 10.1007/s11095-022-03348-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 07/20/2022] [Indexed: 11/27/2022]
Abstract
This article presents the effects of an imidazolium-based ionic liquid (IL) on the thermodynamics and in-plane viscoelastic properties of model membranes of anionic phospholipids. The negative Zeta potential of multilamellar vesicles of 14 carbon lipid 1,2-dimyristoyl-sn-glycero-3-phospho-(1'-rac-glycerol) (DMPG) is observed to reduce due to the presence of few mole % of an IL 1-butyl-3-methylimidazolium tetrafluoroborate ([BMIM][BF4]). The effect was found to be stronger on enhancing the chain length of the lipid. The surface pressure-area isotherms of lipid monolayer formed at air-water interface are modified by the IL reducing the effective area per molecule. Further, the equilibrium elasticity of the film is altered depending upon the thermodynamic phase of the lipids. While the presence of the IL in the DMPG lipid makes it ordered in the gel phase by reducing the entropy, the effect is opposite in the fluid phase. The in-plane viscoelastic parameters of the lipid film is quantified by dilation rheology using the oscillatory barriers of a Langmuir trough. Even though the low chain lipid DMPG does not show any effect of IL on its storage and loss moduli, the longer chain lipids exhibit a prominent effect in the liquid extended (LE) phase. Further, the dynamic response of the lipid film is found to be distinctly different in the liquid condensed (LC) phase from that of the LE phase.
Collapse
|
26
|
Guzmán E, Santini E, Ferrari M, Liggieri L, Ravera F. Evaluating the Impact of Hydrophobic Silicon Dioxide in the Interfacial Properties of Lung Surfactant Films. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:7308-7318. [PMID: 35078318 PMCID: PMC9178919 DOI: 10.1021/acs.est.1c06885] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 01/13/2022] [Accepted: 01/14/2022] [Indexed: 06/14/2023]
Abstract
The interaction of hydrophobic silicon dioxide particles (fumed silicon dioxide), as model air pollutants, and Langmuir monolayers of a porcine lung surfactant extract has been studied in order to try to shed light on the physicochemical bases underlying the potential adverse effects associated with pollutant inhalation. The surface pressure-area isotherms of lung surfactant (LS) films including increasing amounts of particles revealed that particle incorporation into LS monolayers modifies the organization of the molecules at the water/vapor interface, which alters the mechanical resistance of the interfacial films, hindering the ability of LS layers for reducing the surface tension, and reestablishing the interface upon compression. This influences the normal physiological function of LS as is inferred from the analysis of the response of the Langmuir films upon the incorporation of particles against harmonic changes of the interfacial area (successive compression-expansion cycles). These experiments evidenced that particles alter the relaxation mechanisms of LS films, which may be correlated to a modification of the transport of material within the interface and between the interface and the adjacent fluid during the respiratory cycle.
Collapse
Affiliation(s)
- Eduardo Guzmán
- Departamento
de Química Física, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, Ciudad Universitaria s/n, 28040-Madrid, Spain
- Instituto
Pluridisciplinar, Universidad Complutense
de Madrid, Paseo de Juan XXIII 1, 28040 Madrid, Spain
| | - Eva Santini
- Istituto
di Chimica della Materia Condensata e di Tecnologia
per l’Energia, UOS Genova-Consiglio Nazionale delle Ricerche
(ICMATE-CNR), Via De
Marini 6, 16149 Genova, Italy
| | - Michele Ferrari
- Istituto
di Chimica della Materia Condensata e di Tecnologia
per l’Energia, UOS Genova-Consiglio Nazionale delle Ricerche
(ICMATE-CNR), Via De
Marini 6, 16149 Genova, Italy
| | - Libero Liggieri
- Istituto
di Chimica della Materia Condensata e di Tecnologia
per l’Energia, UOS Genova-Consiglio Nazionale delle Ricerche
(ICMATE-CNR), Via De
Marini 6, 16149 Genova, Italy
| | - Francesca Ravera
- Istituto
di Chimica della Materia Condensata e di Tecnologia
per l’Energia, UOS Genova-Consiglio Nazionale delle Ricerche
(ICMATE-CNR), Via De
Marini 6, 16149 Genova, Italy
| |
Collapse
|
27
|
Guzmán E, Martínez-Pedrero F, Calero C, Maestro A, Ortega F, Rubio RG. A broad perspective to particle-laden fluid interfaces systems: from chemically homogeneous particles to active colloids. Adv Colloid Interface Sci 2022; 302:102620. [PMID: 35259565 DOI: 10.1016/j.cis.2022.102620] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Revised: 02/22/2022] [Accepted: 02/23/2022] [Indexed: 01/12/2023]
Abstract
Particles adsorbed to fluid interfaces are ubiquitous in industry, nature or life. The wide range of properties arising from the assembly of particles at fluid interface has stimulated an intense research activity on shed light to the most fundamental physico-chemical aspects of these systems. These include the mechanisms driving the equilibration of the interfacial layers, trapping energy, specific inter-particle interactions and the response of the particle-laden interface to mechanical perturbations and flows. The understanding of the physico-chemistry of particle-laden interfaces becomes essential for taking advantage of the particle capacity to stabilize interfaces for the preparation of different dispersed systems (emulsions, foams or colloidosomes) and the fabrication of new reconfigurable interface-dominated devices. This review presents a detailed overview of the physico-chemical aspects that determine the behavior of particles trapped at fluid interfaces. This has been combined with some examples of real and potential applications of these systems in technological and industrial fields. It is expected that this information can provide a general perspective of the topic that can be exploited for researchers and technologist non-specialized in the study of particle-laden interfaces, or for experienced researcher seeking new questions to solve.
Collapse
Affiliation(s)
- Eduardo Guzmán
- Departamento de Química Física, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, Ciudad Universitaria s/n, 28040 Madrid, Spain; Unidad de Materia Condensada, Instituto Pluridisciplinar, Universidad Complutense de Madrid, Paseo Juan XXIII 1, 28040 Madrid, Spain.
| | - Fernando Martínez-Pedrero
- Departamento de Química Física, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, Ciudad Universitaria s/n, 28040 Madrid, Spain.
| | - Carles Calero
- Departament de Física de la Matèria Condensada, Facultat de Física, Universitat de Barcelona, Avenida Diagonal 647, 08028 Barcelona, Spain; Institut de Nanociència i Nanotecnologia, IN2UB, Universitat de Barcelona, Avenida, Diagonal 647, 08028 Barcelona, Spain
| | - Armando Maestro
- Centro de Fı́sica de Materiales (CSIC, UPV/EHU)-Materials Physics Center MPC, Paseo Manuel de Lardizabal 5, 20018 San Sebastián, Spain; IKERBASQUE-Basque Foundation for Science, Plaza Euskadi 5, 48009 Bilbao, Spain
| | - Francisco Ortega
- Departamento de Química Física, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, Ciudad Universitaria s/n, 28040 Madrid, Spain; Unidad de Materia Condensada, Instituto Pluridisciplinar, Universidad Complutense de Madrid, Paseo Juan XXIII 1, 28040 Madrid, Spain
| | - Ramón G Rubio
- Departamento de Química Física, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, Ciudad Universitaria s/n, 28040 Madrid, Spain; Unidad de Materia Condensada, Instituto Pluridisciplinar, Universidad Complutense de Madrid, Paseo Juan XXIII 1, 28040 Madrid, Spain.
| |
Collapse
|
28
|
Qiao Y, Ma X, Liu Z, Manno MA, Keim NC, Cheng X. Tuning the rheology and microstructure of particle-laden fluid interfaces with Janus particles. J Colloid Interface Sci 2022; 618:241-247. [PMID: 35339960 DOI: 10.1016/j.jcis.2022.03.041] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 03/07/2022] [Accepted: 03/09/2022] [Indexed: 12/21/2022]
Abstract
HYPOTHESIS Particle-laden fluid interfaces are the central component of many natural and engineering systems. Understanding the mechanical properties and improving the stability of such interfaces are of great practical importance. Janus particles, a special class of heterogeneous colloids, might be used as an effective surface-active agent to control the assembly and interfacial rheology of particle-laden fluid interfaces. EXPERIMENTS Using a custom-built interfacial stress rheometer, we explore the effect of Janus particle additives on the interfacial rheology and microscopic structure of particle-laden fluid interfaces. FINDINGS We find that the addition of a small amount of platinum-polystyrene (Pt-PS) Janus particles within a monolayer of PS colloids (1:40 number ratio) can lead to more than an order-of-magnitude increase in surface moduli with enhanced elasticity, which improves the stability of the interface. This drastic change in interfacial rheology is associated with the formation of local particle clusters surrounding each Janus particle. We further explain the origin of local particle clusters by considering the interparticle interactions at the interface. Our experiments reveal the effect of local particle structures on the macroscopic rheological behaviors of particle monolayers and demonstrate a new way to tune the microstructure and mechanical properties of particle-laden fluid interfaces.
Collapse
Affiliation(s)
- Yiming Qiao
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, MN 55455, USA
| | - Xiaolei Ma
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, MN 55455, USA
| | - Zhengyang Liu
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, MN 55455, USA
| | - Michael A Manno
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, MN 55455, USA
| | - Nathan C Keim
- Department of Physics, Pennsylvania State University, University Park, PA 16802, USA.
| | - Xiang Cheng
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, MN 55455, USA.
| |
Collapse
|
29
|
Guzmán E, Maestro A. Soft Colloidal Particles at Fluid Interfaces. Polymers (Basel) 2022; 14:polym14061133. [PMID: 35335463 PMCID: PMC8956102 DOI: 10.3390/polym14061133] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 03/08/2022] [Accepted: 03/10/2022] [Indexed: 02/01/2023] Open
Abstract
The assembly of soft colloidal particles at fluid interfaces is reviewed in the present paper, with emphasis on the particular case of microgels formed by cross-linked polymer networks. The dual polymer/colloid character as well as the stimulus responsiveness of microgel particles pose a challenge in their experimental characterization and theoretical description when adsorbed to fluid interfaces. This has led to a controversial and, in some cases, contradictory picture that cannot be rationalized by considering microgels as simple colloids. Therefore, it is necessary to take into consideration the microgel polymer/colloid duality for a physically reliable description of the behavior of the microgel-laden interface. In fact, different aspects related to the above-mentioned duality control the organization of microgels at the fluid interface, and the properties and responsiveness of the obtained microgel-laden interfaces. This works present a critical revision of different physicochemical aspects involving the behavior of individual microgels confined at fluid interfaces, as well as the collective behaviors emerging in dense microgel assemblies.
Collapse
Affiliation(s)
- Eduardo Guzmán
- Departamento de Química Física, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, Ciudad Universitaria s/n, 28040 Madrid, Spain
- Instituto Pluridisciplinar, Universidad Complutense de Madrid, Paseo de Juan XXIII, 28040 Madrid, Spain
- Correspondence: (E.G.); (A.M.)
| | - Armando Maestro
- Centro de Física de Materiales (CSIC, UPV/EHU), Paseo Manuel de Lardizabal 5, 20018 San Sebastian, Spain
- IKERBASQUE—Basque Foundation for Science, Plaza Euskadi 5, 48009 Bilbao, Spain
- Correspondence: (E.G.); (A.M.)
| |
Collapse
|
30
|
Fluid Films as Models for Understanding the Impact of Inhaled Particles in Lung Surfactant Layers. COATINGS 2022. [DOI: 10.3390/coatings12020277] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Pollution is currently a public health problem associated with different cardiovascular and respiratory diseases. These are commonly originated as a result of the pollutant transport to the alveolar cavity after their inhalation. Once pollutants enter the alveolar cavity, they are deposited on the lung surfactant (LS) film, altering their mechanical performance which increases the respiratory work and can induce a premature alveolar collapse. Furthermore, the interactions of pollutants with LS can induce the formation of an LS corona decorating the pollutant surface, favoring their penetration into the bloodstream and distribution along different organs. Therefore, it is necessary to understand the most fundamental aspects of the interaction of particulate pollutants with LS to mitigate their effects, and design therapeutic strategies. However, the use of animal models is often invasive, and requires a careful examination of different bioethics aspects. This makes it necessary to design in vitro models mimicking some physico-chemical aspects with relevance for LS performance, which can be done by exploiting the tools provided by the science and technology of interfaces to shed light on the most fundamental physico-chemical bases governing the interaction between LS and particulate matter. This review provides an updated perspective of the use of fluid films of LS models for shedding light on the potential impact of particulate matter in the performance of LS film. It should be noted that even though the used model systems cannot account for some physiological aspects, it is expected that the information contained in this review can contribute on the understanding of the potential toxicological effects of air pollution.
Collapse
|
31
|
|
32
|
Chae J, Choi SQ, Kim K. The role of excess attractive particles in the elasticity of high internal phase Pickering emulsions. SOFT MATTER 2021; 18:53-61. [PMID: 34843612 DOI: 10.1039/d1sm01338f] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
A high internal phase emulsion (HIPE), which has a volume fraction of dispersed phase of over 74%, shows a solid-like property because of concentrated polyhedral droplets. Although many studies have proposed theoretical and empirical models to explain the rheological properties of HIPEs, most of them are only limited to the emulsions stabilized by surfactants. In the case of high internal phase Pickering emulsions (HIPPEs), much greater values of elastic modulus have been reported, compared to those of surfactant-stabilized HIPEs, but so far, there have been no clear explanations for this. In this study, we investigate how colloidal particles attribute to the significantly high elasticity of HIPPEs, specifically considering two different contributions, namely, interfacial rheological properties and bulk rheological properties. Our results reveal that the flocculated structures of colloidal particles that possess a significant elasticity can be interconnected between dispersed droplets. Furthermore, this elastic structure is a crucial factor in the high elasticity of HIPPEs, which is also supported by a simple theoretical model.
Collapse
Affiliation(s)
- Junsu Chae
- Department of Chemical and Biomolecular Engineering, KAIST, Daejeon, 34141, Korea.
| | - Siyoung Q Choi
- Department of Chemical and Biomolecular Engineering, KAIST, Daejeon, 34141, Korea.
| | - KyuHan Kim
- Department of Chemical and Biomolecular Engineering, SeoulTech, Seoul, 01811, Korea.
| |
Collapse
|
33
|
Kirtil E, Kurtkaya E, Svitova T, Radke CJ, Oztop MH, Sahin S. Examination of interfacial properties of quince seed extract on a sunflower oil-water interface. Chem Eng Sci 2021. [DOI: 10.1016/j.ces.2021.116951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
34
|
Eugenol emulsions stabilized by a natural-derived nonionic palmitate surfactant/polyacrylic acid complex. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2021.127559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
35
|
Novel analytical expressions for determining van der Waals interaction between a particle and air-water interface: Unexpected stronger van der Waals force than capillary force. J Colloid Interface Sci 2021; 610:982-993. [PMID: 34876261 DOI: 10.1016/j.jcis.2021.11.157] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 11/18/2021] [Accepted: 11/24/2021] [Indexed: 01/05/2023]
Abstract
HYPOTHESIS Analytical expressions for calculating Hamaker constant (HC) and van der Waals (VDW) energy/force for interaction of a particle with a solid water interface has been reported for over eighty years. This work further developed novel analytical expressions and numerical approaches for determining HC and VDW interaction energy/force for the particle approaching and penetrating air-water interface (AWI), respectively. METHODS The expressions of HC and VDW interaction energy/force before penetrating were developed through analysis of the variation in free energy of the interaction system with bringing the particle from infinity to the vicinity of the AWI. The surface element integration (SEI) technique was modified to calculate VDW energy/force after penetrating. FINDINGS We explain why repulsive VDW energy exists inhibiting the particle from approaching the AWI. We found very significant VDW repulsion for a particle at a concave AWI after penetration, which can even exceed the capillary force and cause strong retention in water films on a solid surface and at air-water-solid interface line. The methods and findings of this work are critical to quantification and understanding of a variety of engineered processes such as particle manipulation (e.g., bubble flotation, Pickering emulsion, and particle laden interfaces).
Collapse
|
36
|
A Review of the Processes Associated with the Removal of Oil in Water Pollution. SUSTAINABILITY 2021. [DOI: 10.3390/su132212339] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Water plays an essential role in production and refining processes. Many industries that use petrochemicals also require water, especially for cleaning purposes. The wastewaters released by these processes are often rich in petroleum pollutants, which requires significant treatment prior to disposal. The presence of petroleum contaminants in rivers and oceans is a significant threat to human health, as well as to many animal species. A current challenge for most industries and conventional effluent treatment plants is compliance with accepted disposal standards for oil-polluted wastewater. Of particular importance is the processing of dispersed oil in water, as well as oil in water emulsion. Conventional oil and water separation methods for processing oil in water contamination have several technology gaps in terms of applicability and efficiency. The removal and effective processing of dispersed oil and emulsions from oily wastewater is a costly and significant problem. The objective of this paper is to provide a review of the principles associated with oil in water emulsion separation, with the aim of providing a more definitive understanding of the terminology, processes, and methodologies, which will assist the development of a more efficient, innovative and environmentally friendly process for the separation of oily wastewater.
Collapse
|
37
|
Velandia SF, Ramos D, Lebrun M, Marchal P, Lemaitre C, Sadtler V, Roques-Carmes T. Exploring the link between interfacial and bulk viscoelasticity in reverse Pickering emulsions. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2021.126785] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
38
|
Vishal B. Foaming and rheological properties of aqueous solutions: an interfacial study. REV CHEM ENG 2021. [DOI: 10.1515/revce-2020-0060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
Although aqueous foam is composed of simple fluids, air and water, it shows a complex rheological behavior. It exhibits solid-like behavior at low shear and fluid-like behavior at high shear rate. Therefore, understanding such behavior is important for many industrial applications in foods, pharmaceuticals, and cosmetics. Additionally, air–water interface of bubble surface plays an important role in the stabilizing mechanism of foams. Therefore, the rheological properties associated with the aqueous foam highly depend on its interfacial properties. In this review, a systematic study of aqueous foam are presented primarily from rheology point of view. Firstly, foaming agents, surfactants and particles are described; then foam structure was explained, followed by change in structure under applied shear. Finally, foam rheology was linked to interfacial rheology for the interface containing particles whose surface properties were altered by surfactants.
Collapse
Affiliation(s)
- Badri Vishal
- Department of Chemistry and Biochemistry , University of Hull , Hull , HU6 7RX , UK
| |
Collapse
|
39
|
Murray BS, Ettelaie R, Sarkar A, Mackie AR, Dickinson E. The perfect hydrocolloid stabilizer: Imagination versus reality. Food Hydrocoll 2021. [DOI: 10.1016/j.foodhyd.2021.106696] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
40
|
Guzmán E, Abelenda-Núñez I, Maestro A, Ortega F, Santamaria A, Rubio RG. Particle-laden fluid/fluid interfaces: physico-chemical foundations. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2021; 33:333001. [PMID: 34102618 DOI: 10.1088/1361-648x/ac0938] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 06/08/2021] [Indexed: 06/12/2023]
Abstract
Particle-laden fluid/fluid interfaces are ubiquitous in academia and industry, which has fostered extensive research efforts trying to disentangle the physico-chemical bases underlying the trapping of particles to fluid/fluid interfaces as well as the properties of the obtained layers. The understanding of such aspects is essential for exploiting the ability of particles on the stabilization of fluid/fluid interface for the fabrication of novel interface-dominated devices, ranging from traditional Pickering emulsions to more advanced reconfigurable devices. This review tries to provide a general perspective of the physico-chemical aspects associated with the stabilization of interfaces by colloidal particles, mainly chemical isotropic spherical colloids. Furthermore, some aspects related to the exploitation of particle-laden fluid/fluid interfaces on the stabilization of emulsions and foams will be also highlighted. It is expected that this review can be used for researchers and technologist as an initial approach to the study of particle-laden fluid layers.
Collapse
Affiliation(s)
- Eduardo Guzmán
- Departamento de Química Física, Universidad Complutense de Madrid, Madrid, Spain
- Instituto Pluridisciplinar, Universidad Complutense de Madrid, Madrid, Spain
| | - Irene Abelenda-Núñez
- Departamento de Química Física, Universidad Complutense de Madrid, Madrid, Spain
| | | | - Francisco Ortega
- Departamento de Química Física, Universidad Complutense de Madrid, Madrid, Spain
- Instituto Pluridisciplinar, Universidad Complutense de Madrid, Madrid, Spain
| | - Andreas Santamaria
- Instituto Pluridisciplinar, Universidad Complutense de Madrid, Madrid, Spain
- Institut Laue-Langevin, Grenoble, France
| | - Ramón G Rubio
- Departamento de Química Física, Universidad Complutense de Madrid, Madrid, Spain
- Instituto Pluridisciplinar, Universidad Complutense de Madrid, Madrid, Spain
| |
Collapse
|
41
|
Monolayers of Cholesterol and Cholesteryl Stearate at the Water/Vapor Interface: A Physico-Chemical Study of Components of the Meibum Layer. COLLOIDS AND INTERFACES 2021. [DOI: 10.3390/colloids5020030] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Langmuir monolayers containing different amounts of cholesterol and cholesteryl stearate were studied at two different temperatures (24 °C and 35 °C). The main goal was to contribute towards the understanding of how the variations in the chemical composition may affect the physico-chemical properties of these specific lipid monolayers. The model mixture was chosen considering that cholesteryl esters are present in cell membranes and some other biological systems, including human tear lipids. Therefore, an investigation into the effect of the lipid monolayer composition on their interfacial properties may elucidate some of the fundamental reasons for the deficiencies in cell membranes and tear film functioning in vivo. The experimental results have shown that the molar ratio of the mixture plays a crucial role in the modulation of the Langmuir film properties. The condensing effects of the cholesterol and the interactions between the lipids in the monolayer were the main factors altering the monolayer response to dilatational deformation. The modification of the mixture compositions leads to significant changes in the Langmuir films and the mechanical performance, altering the ability of the monolayer to reduce the surface tension and the viscoelastic properties of the monolayers. This suggests that subtle modifications of the biomembrane composition may significantly alter its physiological function.
Collapse
|
42
|
Alzobaidi S, Da C, Wu P, Zhang X, Rabat-Torki NJ, Harris JM, Hackbarth JE, Lu C, Hu D, Johnston KP. Tuning Nanoparticle Surface Chemistry and Interfacial Properties for Highly Stable Nitrogen-In-Brine Foams. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:5408-5423. [PMID: 33881323 DOI: 10.1021/acs.langmuir.1c00832] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The design of surface chemistries on nanoparticles (NPs) to stabilize gas/brine foams with concentrated electrolytes, especially with divalent ions, has been elusive. Herein, we tune the surface of 20 nm silica NPs by grafting a hydrophilic and a hydrophobic ligand to achieve two seemingly contradictory goals of colloidal stability in brine and high NP adsorption to yield a viscoelastic gas-brine interface. Highly stable nitrogen/water (N2/brine) foams are formed with CaCl2 concentrations up to 2% from 25 to 90 °C. The viscoelastic gas-brine interface retards drainage of the lamellae, and the high dilational elasticity arrests coarsening (Ostwald ripening) with no observable change in foam bubble size over 48 h. The ability to design NP-laden viscoelastic interfaces for highly stable foams, even with high divalent ion concentrations, is of fundamental mechanistic interest for a broad range of foam applications and in particular foams for CO2 sequestration and enhanced oil recovery.
Collapse
Affiliation(s)
- Shehab Alzobaidi
- McKetta Department of Chemical Engineering and Texas Materials Institute, The University of Texas at Austin, 200 East Dean Keeton Street, Austin, Texas 78712-1139, United States
| | - Chang Da
- McKetta Department of Chemical Engineering and Texas Materials Institute, The University of Texas at Austin, 200 East Dean Keeton Street, Austin, Texas 78712-1139, United States
| | - Pingkeng Wu
- McKetta Department of Chemical Engineering and Texas Materials Institute, The University of Texas at Austin, 200 East Dean Keeton Street, Austin, Texas 78712-1139, United States
| | - Xuan Zhang
- McKetta Department of Chemical Engineering and Texas Materials Institute, The University of Texas at Austin, 200 East Dean Keeton Street, Austin, Texas 78712-1139, United States
| | - Nava J Rabat-Torki
- McKetta Department of Chemical Engineering and Texas Materials Institute, The University of Texas at Austin, 200 East Dean Keeton Street, Austin, Texas 78712-1139, United States
| | - Justin M Harris
- McKetta Department of Chemical Engineering and Texas Materials Institute, The University of Texas at Austin, 200 East Dean Keeton Street, Austin, Texas 78712-1139, United States
| | - Jamie E Hackbarth
- McKetta Department of Chemical Engineering and Texas Materials Institute, The University of Texas at Austin, 200 East Dean Keeton Street, Austin, Texas 78712-1139, United States
| | - Congwen Lu
- McKetta Department of Chemical Engineering and Texas Materials Institute, The University of Texas at Austin, 200 East Dean Keeton Street, Austin, Texas 78712-1139, United States
| | - Dongdong Hu
- McKetta Department of Chemical Engineering and Texas Materials Institute, The University of Texas at Austin, 200 East Dean Keeton Street, Austin, Texas 78712-1139, United States
| | - Keith P Johnston
- McKetta Department of Chemical Engineering and Texas Materials Institute, The University of Texas at Austin, 200 East Dean Keeton Street, Austin, Texas 78712-1139, United States
| |
Collapse
|
43
|
Correia EL, Brown N, Razavi S. Janus Particles at Fluid Interfaces: Stability and Interfacial Rheology. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:374. [PMID: 33540620 PMCID: PMC7913064 DOI: 10.3390/nano11020374] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/01/2021] [Revised: 01/26/2021] [Accepted: 01/29/2021] [Indexed: 02/08/2023]
Abstract
The use of the Janus motif in colloidal particles, i.e., anisotropic surface properties on opposite faces, has gained significant attention in the bottom-up assembly of novel functional structures, design of active nanomotors, biological sensing and imaging, and polymer blend compatibilization. This review is focused on the behavior of Janus particles in interfacial systems, such as particle-stabilized (i.e., Pickering) emulsions and foams, where stabilization is achieved through the binding of particles to fluid interfaces. In many such applications, the interface could be subjected to deformations, producing compression and shear stresses. Besides the physicochemical properties of the particle, their behavior under flow will also impact the performance of the resulting system. This review article provides a synopsis of interfacial stability and rheology in particle-laden interfaces to highlight the role of the Janus motif, and how particle anisotropy affects interfacial mechanics.
Collapse
Affiliation(s)
| | | | - Sepideh Razavi
- School of Chemical, Biological, and Materials Engineering, University of Oklahoma, 100 E. Boyd Street, Norman, OK 73019, USA; (E.L.C.); (N.B.)
| |
Collapse
|
44
|
Iqbal S, Ayyub A, Iqbal H, Chen XD. Protein microspheres as structuring agents in lipids: potential for reduction of total and saturated fat in food products. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2021; 101:820-830. [PMID: 32629545 DOI: 10.1002/jsfa.10645] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2020] [Revised: 06/20/2020] [Accepted: 07/06/2020] [Indexed: 06/11/2023]
Abstract
Excess consumption of total and saturated fats is linked to the development of chronic diseases, such as obesity, heart disease, diabetes, and cancer. There is therefore considerable interest in the development of foods containing lower levels of total and saturated fats, but that still have the same desirable physicochemical and sensory characteristics as the original foods. Solid fats normally contribute a number of key functional attributes to foods due to their ability to form crystalline networks that alter texture (such as elasticity, plasticity, and spreadability) and appearance (such as opacity and creaminess). The aim of this review is to provide an overview and to discuss the potential applications of food proteins as fat structuring agents that may be able to offer some of the desirable attributes normally supplied by saturated and trans fats. Previous studies have shown that globular proteins (such as whey proteins) trapped inside water-in-oil emulsions form protein microspheres when they are thermally denatured, which leads to the creation of highly viscous or solid-like lipid phases, having higher rheological properties. These protein microspheres may therefore be useful for the development of reduced fat margarines and spreads with reduced level of saturated/trans-fat contents. © 2020 Society of Chemical Industry.
Collapse
Affiliation(s)
- Shahid Iqbal
- Life Quality Engineering Interest Group, School of Chemical and Environmental Engineering, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, China
- Department of Food Science, University of Massachusetts, Amherst, MA, USA
- Institute of Chemical Sciences, Gomal University, Dera Ismail Khan, Pakistan
| | - Azhar Ayyub
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, China
| | - Haroon Iqbal
- Jiangsu Key Laboratory of Neuropsychiatric Diseases, and College of Pharmaceutical Sciences, Soochow University, Suzhou, China
| | - Xiao Dong Chen
- Life Quality Engineering Interest Group, School of Chemical and Environmental Engineering, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, China
| |
Collapse
|
45
|
Kale SK, Cope AJ, Goggin DM, Samaniuk JR. A miniaturized radial Langmuir trough for simultaneous dilatational deformation and interfacial microscopy. J Colloid Interface Sci 2021; 582:1085-1098. [PMID: 32932179 DOI: 10.1016/j.jcis.2020.08.053] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 08/12/2020] [Accepted: 08/13/2020] [Indexed: 12/29/2022]
Abstract
INNOVATION Interfacial rheological properties of complex fluid-fluid interfaces are strongly influenced by the film microstructure. Experimental investigations for correlating interfacial morphology and rheology are notoriously challenging. A miniaturized radial Langmuir trough was developed to study complex fluid-fluid interfaces under purely dilatational deformations that operates in tandem with a conventional inverted microscope for simultaneous interfacial visualization. EXPERIMENTS Two materials were investigated at an air-water interface: poly(tert-butyl methacrylate) (PtBMA) and dipalmitoylphosphatidylcholine (DPPC). Surface pressure measurements made in the radial Langmuir trough were compared with a commercial rectangular Langmuir trough. Interfacial in situ visualization for each material was performed during the compression cycle in the radial trough. Challenges associated with the small size of the radial Langmuir trough, such as the influence of capillary deformation on the measured surface pressure, are also quantified. FINDINGS Measured surface pressures between the newly developed radial trough and the rectangular Langmuir trough compare well. Micrographs obtained in the radial Langmuir trough were used to obtain film properties such as Young's modulus. The new advance in colloid and interface science is the ability to capture structure-property relationships of planar interfaces using microscopy and purely dilatational deformation. This will advance the development of constitutive modeling of complex fluid-fluid interfaces.
Collapse
Affiliation(s)
- Shalaka K Kale
- Department of Chemical and Biological Engineering, Colorado School of Mines, Golden, CO 80401, USA
| | - Andrew J Cope
- Department of Chemical and Biological Engineering, Colorado School of Mines, Golden, CO 80401, USA
| | - David M Goggin
- Department of Chemical and Biological Engineering, Colorado School of Mines, Golden, CO 80401, USA
| | - Joseph R Samaniuk
- Department of Chemical and Biological Engineering, Colorado School of Mines, Golden, CO 80401, USA
| |
Collapse
|
46
|
Liu Q, Sun Z, Santamarina JC. Self-assembled nanoparticle-coated interfaces: Capillary pressure, shell formation and buckling. J Colloid Interface Sci 2021; 581:251-261. [DOI: 10.1016/j.jcis.2020.07.110] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2020] [Revised: 07/22/2020] [Accepted: 07/22/2020] [Indexed: 11/30/2022]
|
47
|
Hsieh TL, Martinez MR, Garoff S, Matyjaszewski K, Tilton RD. Interfacial dilatational rheology as a bridge to connect amphiphilic heterografted bottlebrush copolymer architecture to emulsifying efficiency. J Colloid Interface Sci 2021; 581:135-147. [DOI: 10.1016/j.jcis.2020.07.063] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 07/12/2020] [Accepted: 07/13/2020] [Indexed: 11/29/2022]
|
48
|
Ji X, Wang X, Zhang Y, Zang D. Interfacial viscoelasticity and jamming of colloidal particles at fluid-fluid interfaces: a review. REPORTS ON PROGRESS IN PHYSICS. PHYSICAL SOCIETY (GREAT BRITAIN) 2020; 83:126601. [PMID: 32998118 DOI: 10.1088/1361-6633/abbcd8] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Colloidal particles can be adsorbed at fluid-fluid interfaces, a phenomenon frequently observed in particle-stabilized foams, Pickering emulsions, and bijels. Particles adsorbed at interfaces exhibit unique physical and chemical behaviors, which affect the mechanical properties of the interface. Therefore, interfacial colloidal particles are of interest in terms of both fundamental and applied research. In this paper, we review studies on the adsorption of colloidal particles at fluid-fluid interfaces, from both thermodynamic and mechanical points of view, and discuss the differences as compared with surfactants and polymers. The unique particle interactions induced by the interfaces as well as the particle dynamics including lateral diffusion and contact line relaxation will be presented. We focus on the rearrangement of the particles and the resultant interfacial viscoelasticity. Particular emphasis will be given to the effects of particle shape, size, and surface hydrophobicity on the interfacial particle assembly and the mechanical properties of the obtained particle layer. We will also summarize recent advances in interfacial jamming behavior caused by adsorption of particles at interfaces. The buckling and cracking behavior of particle layers will be discussed from a mechanical perspective. Finally, we suggest several potential directions for future research in this area.
Collapse
Affiliation(s)
- Xiaoliang Ji
- Soft Matter & Complex Fluids Group, School of Physical Science and Technology, Northwestern Polytechnical University, Xi'an, 710129, People's Republic of China
| | - Xiaolu Wang
- Institute of Welding and Surface Engineering Technology, Faculty of Materials and Manufacturing, Beijing University of Technology, Beijing, 100124, People's Republic of China
| | - Yongjian Zhang
- Shaanxi Key Laboratory of Surface Engineering and Remanufacturing, Xi'an University, Xi'an 710065, People's Republic of China
| | - Duyang Zang
- Soft Matter & Complex Fluids Group, School of Physical Science and Technology, Northwestern Polytechnical University, Xi'an, 710129, People's Republic of China
| |
Collapse
|
49
|
Zhu S, Zhao C, Lin J, Zhang W, Sheng Y, Chen X. Impact behavior of hydrophilic microparticles on the particle-laden interface. Chem Eng Sci 2020. [DOI: 10.1016/j.ces.2020.115913] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
50
|
Ritacco HA. Complexity and self-organized criticality in liquid foams. A short review. Adv Colloid Interface Sci 2020; 285:102282. [PMID: 33059304 PMCID: PMC7537653 DOI: 10.1016/j.cis.2020.102282] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 10/02/2020] [Accepted: 10/03/2020] [Indexed: 11/25/2022]
Abstract
This short review deals with the work done on liquid foams within the framework of the physics of complexity. It aims to stimulate new theoretical and experimental work on foam dynamics as complex dynamical systems. In particular, it examines these systems in relation to Self-Organized Criticality (SOC), for which foams could be used as an accessible experimental model system.
Collapse
Affiliation(s)
- Hernán A Ritacco
- Instituto de Física del Sur (IFISUR), Departamento de Física, Universidad Nacional del Sur (UNS), CONICET, Av. L. N. Alem 1253, B8000CPB Bahía Blanca, Argentina.
| |
Collapse
|