1
|
Hong X, Fan L, Li J. Edible nonaqueous foams: Recent advances in the formation, stabilization, characterization, and applications. Food Chem 2025; 466:142152. [PMID: 39608114 DOI: 10.1016/j.foodchem.2024.142152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 11/11/2024] [Accepted: 11/17/2024] [Indexed: 11/30/2024]
Abstract
Edible nonaqueous foam has emerged as a novel direction for the development of fat-reducing products in recent years. This review critically summarizes the current progress of research on this foam mainly over the past decade. Initially, destabilization mechanisms that hinder its rational design are highlighted. Then, the preparation of nonaqueous foam is discussed, focusing on the types of stabilizers and foam properties. Additionally, the characterization methods of this foam and its applications are discussed. Finally, the gaps in the current research on edible nonaqueous foam and future perspectives are pointed out. Edible nonaqueous foam offers a novel avenue for developing fat replacers while preserving desirable sensory attributes. Moreover, this foam has demonstrated its potential in encapsulating flavor ingredients as well as developing responsive systems, thereby contributing to future advancements in personalized nutrition. This review has the potential to inspire innovative ideas for future research endeavors within the field of foam.
Collapse
Affiliation(s)
- Xin Hong
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China
| | - Liuping Fan
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China
| | - Jinwei Li
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China.
| |
Collapse
|
2
|
Calhoun SGK, Chandran Suja V, Fowler R, Agiral A, Salem K, Fuller GG. Antifoams in non-aqueous diesel fuels: Thin liquid film dynamics and antifoam mechanisms. J Colloid Interface Sci 2024; 675:1059-1068. [PMID: 39013302 DOI: 10.1016/j.jcis.2024.07.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 07/01/2024] [Accepted: 07/02/2024] [Indexed: 07/18/2024]
Abstract
HypothesisFoaming in diesel fuels is not well understood and leads to operational challenges. To combat deleterious effects of foaming, diesel formulations can include additives called antifoams. Existing antifoams, unfortunately, are inherently ash-generating when combusted, with unknown environmental impacts. They are prohibited in certain countries, so identifying effective alternative ash-free antifoam chemistries is needed. ExperimentsWe conduct systematic characterization of foam stabilization and antifoaming mechanisms in diesel for two different antifoams (silicone-containing & ashless chemistries). Employing a custom technique combining single-bubble/single-antifoam-droplet manipulation with white light interferometry, we also obtain mechanistic insights into foam stability and antifoam dynamics. ResultsCoalescence times from both bulk foam and single bubble experiments confirm ashless antifoams are effective at reducing foaming, demonstrating the potential of ashless antifoams. Further, we perform single-antifoam-droplet experiments and obtain direct experimental evidence revealing the elusive antifoaming mechanisms. Interestingly, the silicone-containing and ashless antifoams seemingly function via two different mechanisms: spreading and dewetting respectively. This surprising finding refutes conventional wisdom that spreading is likely the only antifoam mechanism in diesels. These results and the reported experimental framework significantly enhance the scientific understanding of non-aqueous foams and will accelerate the engineering of alternative antifoam chemistries for non-aqueous systems.
Collapse
Affiliation(s)
- S G K Calhoun
- Department of Chemical Engineering, Stanford University, Stanford, CA 94305, USA.
| | - V Chandran Suja
- Department of Chemical Engineering, Stanford University, Stanford, CA 94305, USA; School of Engineering and Applied Sciences, Harvard University, MA - 02134, USA.
| | - R Fowler
- The Lubrizol Corporation, Wickliffe, OH, 44092, USA
| | - A Agiral
- The Lubrizol Corporation, Wickliffe, OH, 44092, USA
| | - K Salem
- The Lubrizol Corporation, Wickliffe, OH, 44092, USA
| | - G G Fuller
- Department of Chemical Engineering, Stanford University, Stanford, CA 94305, USA.
| |
Collapse
|
3
|
Xiao Y, Chen G, Shi B, Chang Q, Zhang L, Wu H. Multi-Interface Electromagnetic Wave Absorbing Material Based on Liquid Marble Microstructures Anchored to SEBS. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2400756. [PMID: 38709225 DOI: 10.1002/smll.202400756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 03/18/2024] [Indexed: 05/07/2024]
Abstract
The direct application of liquid marbles in electromagnetic wave (EMW) absorption is challenging due to their poor stability, susceptibility to gravitational collapse, and shaping difficulties. To address this issue, a novel strategy is proposed to incorporate liquid marble microstructures (NaCl/nano-SiO2) encapsulated in organic phases (Octadecane) into the rubber-matrix (SEBS) using the ultrasound-assisted emulsion blending method. The resulting NaCl/SiO2/Octadecane microstructures anchored to SEBS offer a substantial solid-liquid interface consisting of NaCl solution and SiO2. When subjected to an alternating electromagnetic (EM) field, the water molecules and polysorbate within SiO2 exhibit heightened responsiveness to the EM field, and the movement of Na+ and Cl- within these microstructures leads to their accumulation at the solid-liquid interface, creating an asymmetric ion distribution. This phenomenon facilitates enhanced interfacial polarization, thereby contributing to the material's EMW absorption properties. Notably, the latex with 16 wt% SEBS (E-3), exhibiting a surface morphology similar to human cell tissues, achieves complete absorption of X-band (fE = 4.20 GHz, RLmin = -33.87 dB). Moreover, the latex demonstrates light density (0.78 g cm-3) and environmental stability. This study not only highlights the predominant loss mechanism in rubber-based wave-absorbing materials but also provides valuable insights into the design of multifunctional wave-absorbing materials.
Collapse
Affiliation(s)
- Yuting Xiao
- MOE Key Laboratory of Material Physics and Chemistry under Extraordinary Conditions, School of Physical Science and Technology, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Geng Chen
- MOE Key Laboratory of Material Physics and Chemistry under Extraordinary Conditions, School of Physical Science and Technology, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Bin Shi
- MOE Key Laboratory of Material Physics and Chemistry under Extraordinary Conditions, School of Physical Science and Technology, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Qing Chang
- MOE Key Laboratory of Material Physics and Chemistry under Extraordinary Conditions, School of Physical Science and Technology, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Limin Zhang
- MOE Key Laboratory of Material Physics and Chemistry under Extraordinary Conditions, School of Physical Science and Technology, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Hongjing Wu
- MOE Key Laboratory of Material Physics and Chemistry under Extraordinary Conditions, School of Physical Science and Technology, Northwestern Polytechnical University, Xi'an, 710072, China
| |
Collapse
|
4
|
Wang K, Davies-Jones J, Graf A, Carravetta M, Davies PR, Pera-Titus M. Amphiphilic Janus Particles for Aerobic Alcohol Oxidation in Oil Foams. ACS Catal 2024; 14:11545-11553. [PMID: 39114089 PMCID: PMC11301628 DOI: 10.1021/acscatal.4c00909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 07/10/2024] [Accepted: 07/11/2024] [Indexed: 08/10/2024]
Abstract
Amphiphilic Janus silica particles, tunable with oleophobic-oleophilic properties and low fluorine content (8 wt % F), exhibited prominent foamability for a variety of aromatic alcohols at low particle concentrations (<1 wt %) compared to randomly functionalized silica particles. When selectively loaded with Pd nanoparticles on the oleophilic hemisphere, the particles displayed more than a 2-fold increase in catalytic activity for the aerobic oxidation of benzyl alcohol compared to nonfoam bulk catalysis under ambient O2 pressure. The particles were conveniently recycled with high foamability and catalytic activity maintained for at least five consecutive runs.
Collapse
Affiliation(s)
- Kang Wang
- Cardiff
Catalysis Institute, School of Chemistry, Cardiff University, Main Building, Park Place, Cardiff CF10 3AT, U.K.
| | - Josh Davies-Jones
- Cardiff
Catalysis Institute, School of Chemistry, Cardiff University, Main Building, Park Place, Cardiff CF10 3AT, U.K.
| | - Arthur Graf
- Cardiff
Catalysis Institute, School of Chemistry, Cardiff University, Main Building, Park Place, Cardiff CF10 3AT, U.K.
| | - Marina Carravetta
- School
of Chemistry, University of Southampton, Highfield, Southampton SO17 1BJ, U.K.
| | - Philip R. Davies
- Cardiff
Catalysis Institute, School of Chemistry, Cardiff University, Main Building, Park Place, Cardiff CF10 3AT, U.K.
| | - Marc Pera-Titus
- Cardiff
Catalysis Institute, School of Chemistry, Cardiff University, Main Building, Park Place, Cardiff CF10 3AT, U.K.
| |
Collapse
|
5
|
Alhasan FH, Tehrani MM, Varidi M. Producing superior oleofoams: Unraveling the impact of oil type, surfactant concentration, and production temperature on foam stability and functional characteristics. Food Chem X 2024; 21:101033. [PMID: 38205159 PMCID: PMC10776775 DOI: 10.1016/j.fochx.2023.101033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 11/06/2023] [Accepted: 11/22/2023] [Indexed: 01/12/2024] Open
Abstract
This study explores the impact of oil type, surfactant concentration, and production temperature on oleofoam properties. Oleofoams were prepared using different concentrations (5, 8, and 10 % w/w) of monoglyceride (MG) in olive, soybean, and sunflower oils at temperatures of 25 °C and 5 °C. The results indicate that higher surfactant concentrations and lower production temperatures enhance the stability, foamability, melting behavior, and hardness of the oleofoams, while minimizing oil drainage. Microscopic analysis reveals that lower production temperatures result in smaller bubble sizes in all oil blends which reduces oil loss and increases the hardness of the oleofoam. Also, oleofoams derived from different oils exhibit solid-like behavior. Among the oils studied, the oleofoam prepared with sunflower oil, at a concentration of 10 % MG and a production temperature of 5 °C, demonstrates superior properties. These findings provide valuable insights into optimizing oleofoam properties by controlling the oil type, surfactant concentration, and production temperature.
Collapse
Affiliation(s)
- Fayza Hussein Alhasan
- Department of Food Science and Technology, Ferdowsi University of Mashhad, Mashhad, Iran
| | | | - Mehdi Varidi
- Department of Food Science and Technology, Ferdowsi University of Mashhad, Mashhad, Iran
| |
Collapse
|
6
|
Matthews L, Schmetterer M. Unusual Structural Insights Revealed by Rheo-SAXS Studies of Nonaqueous Crystalline Gels. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:4207-4217. [PMID: 38354093 DOI: 10.1021/acs.langmuir.3c03271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/16/2024]
Abstract
Glycerol is a nonaqueous polar solvent and is of interest in many industrial areas due to its beneficial properties, such as green production and biocompatibility. Our previous works have shown the presence of a fibrillar phase on the microscale that consists of lamellar sodium dodecyl sulfate (SDS) crystals containing interstitial glycerol on the nanoscale. The phase is gel-like at room temperature and demonstrates shear-thinning behavior upon application of a shear. Initially, small-angle X-ray scattering coupled with rheology (rheo-SAXS) measurements were performed to elucidate the structural transition of the gel phase under an applied shear, but it became clear that the aging process of the gel has a profound impact on both the gel nanostructure and also the mechanical properties. For younger gels, both the dissolution of SDS crystallites and the alignment of the fibrillar phase were seen. However, in the aged gels, an unexpected foam was formed at shear rates γ ˙ > 700 s-1. The microscopic structure of the foam phase was imaged using polarizing light microscopy and brightfield and darkfield optical microscopy. The nanostructure of the foam phase was investigated using rheo-SAXS. The foam phase was shown to be stabilized by the presence of SDS crystallites at the air-liquid interface, and the stability of the foam is high with foam persisting even t = 3 months after formation. These results highlight the importance of investigating green nonaqueous media and the gel aging process, both of which are interesting not only on a fundamental level but also for a range of industrial applications, from personal care products and cosmetics to food science.
Collapse
Affiliation(s)
- Lauren Matthews
- ESRF, The European Synchrotron, 71 Avenue des Martyrs, Grenoble 38043, France
- School of Chemistry, University of Bristol, Cantock's Close, Bristol BS8 1TS, U.K
| | - Maria Schmetterer
- ESRF, The European Synchrotron, 71 Avenue des Martyrs, Grenoble 38043, France
- Institut Polytechnique de Paris, Route de Saclay, Palaiseau 91120, France
| |
Collapse
|
7
|
Hashemi B, Assadpour E, Zhang F, Jafari SM. Oleo-foams and emulsion-foams as lipid-based foam systems: a review of their formulation, characterization, and applications. Crit Rev Food Sci Nutr 2023; 65:787-810. [PMID: 38095599 DOI: 10.1080/10408398.2023.2281622] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2025]
Abstract
Lipid-based foam systems (LBFs) have grown in popularity recently because of their effectiveness and potential uses. As a result, in order to stabilize them, considerable work has been put into developing more biodegradable and environmentally friendly materials. However, the use of natural stabilizing agents has been constrained due to a lack of thorough knowledge of them. This review offers insightful data that will encourage more studies into the development and use of LBFs. Emulsifiers or gelling agents, as well as new preparation and characterization methods, can be used to increase or prolong the functional performance of LBFs. Special emphasis has been given on the connections between their structures and properties and expanding the range of industries in which they can be applied. In conclusion, it is crucial to gain a deeper understanding of the preparation mechanisms and influencing factors in order to improve the quality of foam products and create novel LBFs.
Collapse
Affiliation(s)
- Behnaz Hashemi
- Department of Food Science and Technology, Faculty of Agriculture, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Elham Assadpour
- Food Industry Research Co, Gorgan, Iran
- Food and Bio-Nanotech International Research Center (Fabiano), Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
| | - Fuyuan Zhang
- College of Food Science and Technology, Hebei Agricultural University, Baoding, China
| | - Seid Mahdi Jafari
- Department of Food Materials and Process Design Engineering, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
- Halal Research Center of IRI, Iran Food and Drug Administration, Ministry of Health and Medical Education, Tehran, Iran
| |
Collapse
|
8
|
Matsuo K, Fujii Y, Ueno S. Fabrication and Characterization of Oleofoams Composed of Tribehenoyl-glycerol: Toward a Stable and Higher Air-content Colloidal System. J Oleo Sci 2023; 72:819-829. [PMID: 37574284 DOI: 10.5650/jos.ess23068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/15/2023] Open
Abstract
Oleofoams have garnered significant attention in many personal care applications because of their favorable physicochemical properties, including texture and detergency. To explore the potential use of mixtures of high-melting-point fat crystals (tribehenoyl-glycerol [BBB]) and edible oils as low-cost and stable aeration systems, we created oleofoams composed of olive oil and BBB. By whipping the BBB/olive oil oleogels after rapid cooling and subsequent heating, we successfully prepared oleofoams without emulsifier additives. Mixtures of the BBB/olive oil formed oleofoams at BBB concentrations of 4.0-20.0 wt.%. The resultant oleofoams maintained their overrun rates and did not coalesce, even with additional whipping after the overrun rate was maximized. More closely packed bubbles, concentrated bubble size distributions, and stronger interfacial elasticity were attributed to the increasing BBB concentrations, and the thermal results revealed that further heating was required to damage the foam structure. The characteristics of these new oleofoams are closely related to their BBB concentrations, and the observed effects are attributed to the network structure of the thickened crystal layer and enhanced gelling in the oil phase.
Collapse
Affiliation(s)
| | - Yoko Fujii
- Graduate School of Integrated Sciences for Life, Hiroshima University
| | - Satoru Ueno
- Graduate School of Integrated Sciences for Life, Hiroshima University
| |
Collapse
|
9
|
Li Z, Ying Lee Y, Wang Y, Qiu C. Interfacial behavior, gelation and foaming properties of diacylglycerols with different acyl chain lengths and isomer ratios. Food Chem 2023; 427:136696. [PMID: 37392626 DOI: 10.1016/j.foodchem.2023.136696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 06/16/2023] [Accepted: 06/19/2023] [Indexed: 07/03/2023]
Abstract
Diacylglycerols (DAG) of varying chain lengths were synthesized and the acyl migrated samples with different 1,3-DAG/1,2-DAG ratios were obtained. The crystallization profile and surface adsorption differed depending on DAG structure. C12 and C14 DAGs formed small platelet- and needle-like crystals at the oil-air interface which can better reduce surface tension and pack in an ordered lamellar structure in oil. The acyl migrated DAGs with higher ratios of 1,2-DAG showed reduced crystal size and lower oil-air interfacial activity. C14 and C12 DAG oleogels exhibited higher elasticity and whipping ability with crystal shells surrounding bubbles, whereas C16 and C18 DAG oleogels had low elasticity and limited whipping ability due to the formation of aggregated needle-like crystals and loose gel network. Thus, acyl chain length dramatically influences the gelation and foaming behaviors of DAGs whereas the isomers exert little influence. This study provides basis for applying DAG of different structures in food products.
Collapse
Affiliation(s)
- Ziwei Li
- JNU-UPM International Joint Laboratory on Plant Oil Processing and Safety, Department of Food Science and Engineering, Jinan University, Guangzhou, Guangdong 510632, China; National R&D Center for Freshwater Fish Processing, Jiangxi Normal University, Nanchang, Jiangxi 330022, China
| | - Yee Ying Lee
- School of Science, Monash University Malaysia, 47500 Bandar Sunway, Selangor, Malaysia
| | - Yong Wang
- JNU-UPM International Joint Laboratory on Plant Oil Processing and Safety, Department of Food Science and Engineering, Jinan University, Guangzhou, Guangdong 510632, China.
| | - Chaoying Qiu
- JNU-UPM International Joint Laboratory on Plant Oil Processing and Safety, Department of Food Science and Engineering, Jinan University, Guangzhou, Guangdong 510632, China.
| |
Collapse
|
10
|
Tirgarian B, Farmani J. A novel approach for the development of edible oleofoams using double network oleogelation systems. Food Chem 2023; 426:136634. [PMID: 37348400 DOI: 10.1016/j.foodchem.2023.136634] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 06/09/2023] [Accepted: 06/13/2023] [Indexed: 06/24/2023]
Abstract
Whipped oleogels (oleofoams) are commonly stabilized by crystalline particles. Still, external factors like temperature fluctuations could change the state of the crystals (phase transitions), leading to the destabilization and disruption of oleofoams. Herein, a double network oleogelation system comprised of a primary crystalline network (using glycerol monostearate) and a secondary colloidal network (stabilized by soy protein isolate-anionic polysaccharides Mailard conjugates) is proposed as a novel strategy to overcome these challenges. It was observed that the incorporation of the secondary network resulted in a lower over-run, but a higher melting point, elasticity, foam stability, and more uniform bubble size distribution. This was explained by the strong interfacial stabilization provided by the colloidal network that can protect the crystalline particle against coarsening and oil drainage. These double network oleofoams, which could retain 41-48 % air (oleogel-based), display great potential for utilization in low-calorie lipid-based products.
Collapse
Affiliation(s)
- Behraad Tirgarian
- Department of Food Science and Technology, Faculty of Agricultural Engineering, Sari Agricultural Sciences and Natural Resources University, Km 9 Farah Abad Road, Sari, Iran
| | - Jamshid Farmani
- Department of Food Science and Technology, Faculty of Agricultural Engineering, Sari Agricultural Sciences and Natural Resources University, Km 9 Farah Abad Road, Sari, Iran.
| |
Collapse
|
11
|
Sakurai Y, Kakiuchi R, Hirai T, Nakamura Y, Fujii S. Aqueous Bubbles Stabilized with Millimeter-Sized Polymer Plates. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:3800-3809. [PMID: 36853615 DOI: 10.1021/acs.langmuir.3c00149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
(Sub)millimeter-sized hexagonal polymer plates that were monodisperse in shape and size were utilized as stabilizers for aqueous bubbles, and the effects of the hydrophilic-hydrophobic property, size, and solid concentration of the plates on the formability, stability, and shape and structure of aqueous bubbles were investigated. The formability and stability of the bubbles were improved by increasing the hydrophobicity of the plate surface, decreasing the plate size, and increasing the solid concentration of the plates. For plates with suitable water wettability, three-dimensional bubbles with nearly spherical and polyhedral shapes were formed by the adsorption of plates to the bare air bubbles introduced into the continuous water phase by air-water mixing. On the contrary, two-dimensional bubbles with accordion-type structures consisting of alternating layers of plates and entrapped air bubbles were formed by the transfer of multiple plates with poor wettability from the air phase to the water phase by air-water mixing. Furthermore, a correlation was found between the bubble/stabilizer size ratio and bubble shape for plates with the suitable wettability: bubbles with nearly spherical shapes were formed when the bubble/plate size ratios were >2, bubbles with hexahedral, pentahedral, and tetrahedral shapes were formed when the size ratios were approximately 1, and bubbles with triangular and sandwich shapes were formed when the size ratios were <0.8. Additionally, bubbles with similar shapes were formed when the bubble/plate size ratios were close, even when the sizes of the plates and bubbles were different.
Collapse
Affiliation(s)
- Yuri Sakurai
- Division of Applied Chemistry, Environmental and Biomedical Engineering, Graduate School of Engineering, Osaka Institute of Technology, 5-16-1, Omiya, Asahi-ku, Osaka 535-8585, Japan
| | - Rina Kakiuchi
- Division of Applied Chemistry, Environmental and Biomedical Engineering, Graduate School of Engineering, Osaka Institute of Technology, 5-16-1, Omiya, Asahi-ku, Osaka 535-8585, Japan
| | - Tomoyasu Hirai
- Department of Applied Chemistry, Faculty of Engineering, Osaka Institute of Technology, 5-16-1 Omiya, Asahi-ku, Osaka 535-8585, Japan
- Nanomaterials Microdevices Research Center, Osaka Institute of Technology, 5-16-1 Omiya, Asahi-ku, Osaka 535-8585, Japan
| | - Yoshinobu Nakamura
- Department of Applied Chemistry, Faculty of Engineering, Osaka Institute of Technology, 5-16-1 Omiya, Asahi-ku, Osaka 535-8585, Japan
- Nanomaterials Microdevices Research Center, Osaka Institute of Technology, 5-16-1 Omiya, Asahi-ku, Osaka 535-8585, Japan
| | - Syuji Fujii
- Department of Applied Chemistry, Faculty of Engineering, Osaka Institute of Technology, 5-16-1 Omiya, Asahi-ku, Osaka 535-8585, Japan
- Nanomaterials Microdevices Research Center, Osaka Institute of Technology, 5-16-1 Omiya, Asahi-ku, Osaka 535-8585, Japan
| |
Collapse
|
12
|
Pugh RJ, Hamlett CAE, Fairhurst DJ. A short overview of bubbles in foods and chocolate. Adv Colloid Interface Sci 2023; 314:102835. [PMID: 36958180 DOI: 10.1016/j.cis.2023.102835] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 01/05/2023] [Accepted: 01/06/2023] [Indexed: 02/22/2023]
Abstract
The incorporation of bubbles in foods has created a positive market response from consumers since their first introduction over 70 years ago and has resulted in an expanding market over this period. However, although the physics and chemistry of most ingredients in commercial food products are reasonably well understood, the behaviour of bubbles in foods are much less established and their behaviour not fully appreciated. In fact, bubbles are perhaps the least studied of all food ingredients even though aeration is still one of the fastest growing unit operations in processing. Although many of these manufactured aerated food products are perceived as lighter with lower calorific values, problems in manufacturing remain even today and it is generally difficult to optimize the size, the size distribution, the deviation the from spherical shapes and the stability of the bubbles during the different stages of the processing. In this review, we discuss the dispersion of the various food ingredients and the different processes involved in introducing bubbles into the melt, producing well dispersed multiphase systems. The second part of this review focusses on aerated chocolate and the above aspects are particularly important and are discussed in some detail since it has been well established that the bubble size and size distribution can influence the texture, the mouthfeel, the crispness, the melting temperature, and the brittleness of the product. Understanding the science involved in the transformation from the liquid state containing dispersed bubbles to a solid chocolate foam, stabilization of the bubbles and the control of the bubble size are highlighted. Although CO2 is usually used to generate bubbles in chocolate, several different gases including N2O, Ar and N2 have also been evaluated. One of the research aims of food companies is to improve control over the stability of the systems. This has been investigated with respect to drainage, by carrying out experiments under zero gravity conditions.
Collapse
Affiliation(s)
- R J Pugh
- School of Science and Technology, Nottingham Trent University, Clifton Lane, NG11 8NS, UK.
| | - C A E Hamlett
- School of Metallurgy and Materials, University of Birmingham, Birmingham B15 2TT, UK
| | - D J Fairhurst
- School of Science and Technology, Nottingham Trent University, Clifton Lane, NG11 8NS, UK
| |
Collapse
|
13
|
Gu X, Du L, Meng Z. Thermal-reversible lacquer wax-based oleofoams in dual stabilization with high ambient stability. Food Res Int 2023; 167:112650. [PMID: 37087239 DOI: 10.1016/j.foodres.2023.112650] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 02/18/2023] [Accepted: 02/25/2023] [Indexed: 03/04/2023]
Abstract
In this study, the effect of the content of the lacquer wax and whipping time on the overrun was explored. It was found that an appropriate amount of wax content and whipping time could promote crystal dual stabilization through the Pickering mechanism and the close packing in the bulk phase. Otherwise, it would result in low overrun caused by high viscous and crystal bridging. The addition of polyglycerol polyricinoleate (PGPR) could effectively enhance the overrun by apace absorbing. At the same time, adding PGPR also improved the contact angle, which was beneficial to the adsorption at the A-O interface. The 8 wt% oleogel was partially substituted by high-melting fat palm stearin (POs) and oleofoams were prepared based on blended fat. POs increased the melting point, structural strength, and β'-form crystal of oleofoams, thus improving the storage and temperature stability. The oleofoam has a maximum overrun of 189% and could maintain the shape of the decorating over 15 d at the ambient temperature, showing great potential in low-fat food applications and other delivery systems.
Collapse
Affiliation(s)
- Xinya Gu
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, Jiangsu, PR China
| | - Liyang Du
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, Jiangsu, PR China
| | - Zong Meng
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, Jiangsu, PR China.
| |
Collapse
|
14
|
Effects of the Surfactant, Polymer, and Crude Oil Properties on the Formation and Stabilization of Oil-Based Foam Liquid Films: Insights from the Microscale. J Mol Liq 2023. [DOI: 10.1016/j.molliq.2022.121194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
15
|
Liu Y, Binks BP. Fabrication of Stable Oleofoams with Sorbitan Ester Surfactants. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:14779-14788. [PMID: 36410861 PMCID: PMC9730906 DOI: 10.1021/acs.langmuir.2c02413] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 11/09/2022] [Indexed: 06/16/2023]
Abstract
Sorbitan esters have been extensively used as surfactants to stabilize emulsions in many fields. However, the preparation of an oleofoam with sorbitan ester alone has not been reported. Here, we apply a novel protocol to fabricate stable oleofoams of high air volume fraction from mixtures of vegetable oil and sorbitan ester. To incorporate more air bubbles into the oil matrix, aeration is first carried out in the one-phase region at high temperatures, during which the highest over-run can reach 280%. Due to foam instability at high temperatures, the foam is then submitted to rapid cooling, followed by storage at low temperatures. For high-melting sorbitan monostearate, the resulting foams containing many crystal-encased air bubbles are ultrastable to drainage, coarsening, and coalescence for several months. On the contrary, the cooled foams with low-melting sorbitan monooleate go through a gradual decay lasting for more than 1 month. We highlight the importance of hydrogen bond formation between surfactant and oil in enhancing foam stability. The generic nature of the above findings is demonstrated by preparing oil foams with various vegetable oils and sorbitan monooleate.
Collapse
|
16
|
Arnaudova T, Mitrinova Z, Denkov N, Growney D, Brenda R, Tcholakova S. Foamability and foam stability of oily mixtures. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.129987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
17
|
Qiu C, Wang S, Wang Y, Lee WJ, Fu J, Binks BP, Wang Y. Stabilisation of oleofoams by lauric acid and its glycerol esters. Food Chem 2022; 386:132776. [PMID: 35509162 DOI: 10.1016/j.foodchem.2022.132776] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 03/16/2022] [Accepted: 03/21/2022] [Indexed: 11/19/2022]
Abstract
Four types of pure lipid, namely lauric acid (LA), glycerol monolaurate (MAG), diglycerol laurate (DAG) and triglyceride laurate (TAG) were used to prepare oleofoams. The relationship between crystal profiles and their performance in oleofoams was established. DAG formed small needle-like crystals while MAG formed large flake-like crystals in oleogels, and crystal shells around air bubbles were observed in LA-, MAG- and DAG-based oleofoams. LA and DAG displayed higher over-run whereas DAG-stabilised foam possessed smaller bubbles and higher physical stability due to the presence of small β and β' crystals. Upon heating, DAG and TAG-based foams showed varying extents of oil drainage indicating the crystals were distributed in a different manner. Therefore, DAG was shown to be an excellent gelator in the fabrication of ultra-stable oleofoams. This work extends the lipid varieties with nutritional features and allows a better understanding on the stabilization mechanisms of lauric acid lipids in oleofoams.
Collapse
Affiliation(s)
- Chaoying Qiu
- JNU-UPM International Joint Laboratory on Plant Oil Processing and Safety (POPS), Department of Food Science and Engineering, Jinan University, Guangzhou 510632, China; Guangdong Engineering Technology Research Center for Cereal and Oil Byproduct Biorefinery, Guangzhou 510632, China
| | - Shaolin Wang
- JNU-UPM International Joint Laboratory on Plant Oil Processing and Safety (POPS), Department of Food Science and Engineering, Jinan University, Guangzhou 510632, China; Guangdong Engineering Technology Research Center for Cereal and Oil Byproduct Biorefinery, Guangzhou 510632, China; National R&D Center for Freshwater Fish Processing, Jiangxi Normal University, Nanchang, Jiangxi 330022, China
| | - Ying Wang
- JNU-UPM International Joint Laboratory on Plant Oil Processing and Safety (POPS), Department of Food Science and Engineering, Jinan University, Guangzhou 510632, China; Guangdong Engineering Technology Research Center for Cereal and Oil Byproduct Biorefinery, Guangzhou 510632, China
| | - Wan Jun Lee
- JNU-UPM International Joint Laboratory on Plant Oil Processing and Safety (POPS), Department of Food Science and Engineering, Jinan University, Guangzhou 510632, China; Guangdong Engineering Technology Research Center for Cereal and Oil Byproduct Biorefinery, Guangzhou 510632, China
| | - Junning Fu
- JNU-UPM International Joint Laboratory on Plant Oil Processing and Safety (POPS), Department of Food Science and Engineering, Jinan University, Guangzhou 510632, China; Guangdong Engineering Technology Research Center for Cereal and Oil Byproduct Biorefinery, Guangzhou 510632, China
| | - Bernard P Binks
- Department of Chemistry, University of Hull, Hull HU6 7RX, UK.
| | - Yong Wang
- JNU-UPM International Joint Laboratory on Plant Oil Processing and Safety (POPS), Department of Food Science and Engineering, Jinan University, Guangzhou 510632, China; Guangdong Engineering Technology Research Center for Cereal and Oil Byproduct Biorefinery, Guangzhou 510632, China.
| |
Collapse
|
18
|
Fameau A, Marangoni AG. Back to the future: Fatty acids, the green genie to design smart soft materials. J AM OIL CHEM SOC 2022. [DOI: 10.1002/aocs.12615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Anne‐Laure Fameau
- Université Lille, CNRS, Centrale Lille, UMET INRAe Villeneuve d'Ascq France
| | | |
Collapse
|
19
|
Zheng R, Zheng Q, Hu B, Cao Y, Lan Y. Gelation and foaming properties of fatty acid mixtures in sunflower oil. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2022; 102:3513-3521. [PMID: 34841529 DOI: 10.1002/jsfa.11695] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Revised: 09/09/2021] [Accepted: 11/29/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND The development of lipid-lowering products has become the focus of the food industry due to increasing consumer awareness of the relationship between diet and health. Recently, edible oleofoams have drawn attention due to their enormous potential in reformulating food products with reduced fat content and unique mouth feel. RESULTS We have developed an edible oleofoam system by whipping oleogel composed of fatty acid mixtures in sunflower oil. The crystal morphology, gelation properties, and foaming properties of these oleogels could be tailored by changing the ratio of stearic acid (SA) and myristic acid (MA). Specifically, SA/MA = 2:8 (2S8M) was demonstrated to have superior foaming capability and foam stability, likely due to the densely packed and uniformly distributed crystals formed at this fatty acid ratio. Small lipid crystals in 2S8M absorbed to the air-oil interface more efficiently, and together with the strengthened network established in the bulk phase, helped stabilize the foam structure. As a result, the 2S8M oleofoam showed excellent foaming properties: strong plasticity, significantly increased overrun (up to 63.56 ± 2.58%), and significantly improved foam stability. The X-ray diffraction (XRD) results indicated that the diffraction pattern observed for 2S8M samples at d-spacing of 4.20 and 3.79 Å was related to the characteristic peak of β' type crystals, which were responsible for the enhanced foaming capability of 2S8M oleogels. Oleophobic property of 2S8M increased, as indicated by wettability in oil phase, which could possibly drive crystals to the air-oil interface. CONCLUSIONS These results highlighted the importance of lipid crystal morphology in determining the whippability of oleogels. © 2021 Society of Chemical Industry.
Collapse
Affiliation(s)
- Ruting Zheng
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Food, College of Food Sciences, South China Agricultural University, Guangzhou, P. R. China
| | - Qianwang Zheng
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Food, College of Food Sciences, South China Agricultural University, Guangzhou, P. R. China
| | - Bingjie Hu
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Food, College of Food Sciences, South China Agricultural University, Guangzhou, P. R. China
| | - Yong Cao
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Food, College of Food Sciences, South China Agricultural University, Guangzhou, P. R. China
| | - Yaqi Lan
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Food, College of Food Sciences, South China Agricultural University, Guangzhou, P. R. China
| |
Collapse
|
20
|
Feng A, Dedovets D, Gu Y, Zhang S, Sha J, Han X, Pera-Titus M. Organic foams stabilized by Biphenyl-bridged organosilica particles. J Colloid Interface Sci 2022; 617:171-181. [DOI: 10.1016/j.jcis.2022.02.034] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 02/05/2022] [Accepted: 02/08/2022] [Indexed: 12/27/2022]
|
21
|
Challenges in Mitigating Lubricant Foaming. LUBRICANTS 2022. [DOI: 10.3390/lubricants10060108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
Lubricant foaming and its mitigation is an active area of research driven by demands from modern machinery that require foam-free lubricant operation over extended periods and under adverse conditions. Tackling lubricant foaming has proven to be challenging due to interdependent foam stabilization mechanisms and a multitude of antifoam inactivation routes. This perspective briefly outlines the key challenges faced by researchers in this field. Overcoming these challenges to create lubricants with superior foaming characteristics requires the development of new lubricant and antifoam chemistry as well as a shift from the existing trial-and-error methods to mechanistic-insight-driven lubricant formulation and antifoam design.
Collapse
|
22
|
Wang H, Chang Z, Luo W, Dong B, Zou X, Liu W, Ma S, Dang H. Stability and interfacial rheology of oil-based foam with polydimethylsiloxane and natural rubber. J DISPER SCI TECHNOL 2022. [DOI: 10.1080/01932691.2022.2059505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Huanxin Wang
- Department of Chemistry and Chemical Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, PR China
- State Key Laboratory of Enhanced Oil Recovery, Research Institute of Petroleum Exploration and Development (RIPED), CNPC, Beijing, P. R. China
| | - Zhidong Chang
- Department of Chemistry and Chemical Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, PR China
| | - Wenli Luo
- State Key Laboratory of Enhanced Oil Recovery, Research Institute of Petroleum Exploration and Development (RIPED), CNPC, Beijing, P. R. China
| | - Bin Dong
- Department of Chemistry and Chemical Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, PR China
| | - Xinyuan Zou
- State Key Laboratory of Enhanced Oil Recovery, Research Institute of Petroleum Exploration and Development (RIPED), CNPC, Beijing, P. R. China
| | - Wenjun Liu
- Department of Chemistry and Chemical Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, PR China
| | - Sihang Ma
- Department of Chemistry and Chemical Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, PR China
| | - Hui Dang
- Department of Chemistry and Chemical Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, PR China
| |
Collapse
|
23
|
Li L, Liu G, Bogojevic O, Pedersen JN, Guo Z. Edible oleogels as solid fat alternatives: Composition and oleogelation mechanism implications. Compr Rev Food Sci Food Saf 2022; 21:2077-2104. [DOI: 10.1111/1541-4337.12928] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Revised: 01/05/2022] [Accepted: 01/26/2022] [Indexed: 12/23/2022]
Affiliation(s)
- Linlin Li
- School of Food Science and Engineering South China University of Technology Guangzhou China
- Department of Biological and Chemical Engineering, Faculty of Technical Science Aarhus University Aarhus Denmark
| | - Guoqin Liu
- School of Food Science and Engineering South China University of Technology Guangzhou China
- Guangdong Province Key Laboratory for Green Processing of Natural Products and Products Safety South China University of Technology Guangzhou China
| | - Oliver Bogojevic
- Department of Biological and Chemical Engineering, Faculty of Technical Science Aarhus University Aarhus Denmark
| | - Jacob Nedergaard Pedersen
- Department of Biological and Chemical Engineering, Faculty of Technical Science Aarhus University Aarhus Denmark
| | - Zheng Guo
- Department of Biological and Chemical Engineering, Faculty of Technical Science Aarhus University Aarhus Denmark
| |
Collapse
|
24
|
Zhang S, Dedovets D, Feng A, Wang K, Pera-Titus M. Pickering Interfacial Catalysis for Aerobic Alcohol Oxidation in Oil Foams. J Am Chem Soc 2022; 144:1729-1738. [PMID: 35073074 PMCID: PMC8815424 DOI: 10.1021/jacs.1c11207] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Oil foams stabilized by surface-active catalytic particles bearing fluorinated chains and Pd nanoparticles allowed fast and efficient aerobic oxidation of a variety of aromatic and aliphatic alcohols compared to bulk catalytic systems at ambient O2 pressure. High foam stability was achieved at low particle concentration (<1 wt %) provided that the contact angle locates in the range 41°-73°. The catalytic performance was strongly affected by the foaming properties, with 7-10 times activity increase in pure O2 compared to nonfoam systems. Intermediate foam stability was required to achieve good catalytic activity, combining large interfacial area and high gas exchange rate. Particles were conveniently recycled with high foamability and catalytic efficiency maintained for at least seven consecutive runs.
Collapse
Affiliation(s)
- Shi Zhang
- UMI
3464 CNRS, Solvay, Eco-Efficient Products
and Processes Laboratory (E2P2L), 3966 Jin Du Road, Xin Zhuang Ind. Zone, 201108 Shanghai, China,Laboratoire
du Futur, UMR 5258 CNRS, Université
de Bordeaux, 178 Av.
Dr Albert Schweitzer, 33603 Cedex, Pessac, France
| | - Dmytro Dedovets
- Laboratoire
du Futur, UMR 5258 CNRS, Université
de Bordeaux, 178 Av.
Dr Albert Schweitzer, 33603 Cedex, Pessac, France
| | - Andong Feng
- UMI
3464 CNRS, Solvay, Eco-Efficient Products
and Processes Laboratory (E2P2L), 3966 Jin Du Road, Xin Zhuang Ind. Zone, 201108 Shanghai, China,Laboratoire
du Futur, UMR 5258 CNRS, Université
de Bordeaux, 178 Av.
Dr Albert Schweitzer, 33603 Cedex, Pessac, France
| | - Kang Wang
- Cardiff
Catalysis Institute, School of Chemistry, Cardiff University, Main Building, Park Place, Cardiff CF10 3AT, U.K.
| | - Marc Pera-Titus
- UMI
3464 CNRS, Solvay, Eco-Efficient Products
and Processes Laboratory (E2P2L), 3966 Jin Du Road, Xin Zhuang Ind. Zone, 201108 Shanghai, China,Cardiff
Catalysis Institute, School of Chemistry, Cardiff University, Main Building, Park Place, Cardiff CF10 3AT, U.K.,
| |
Collapse
|
25
|
Metilli L, Storm M, Marathe S, Lazidis A, Marty-Terrade S, Simone E. Application of X-ray Microcomputed Tomography for the Static and Dynamic Characterization of the Microstructure of Oleofoams. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:1638-1650. [PMID: 35050635 PMCID: PMC8812118 DOI: 10.1021/acs.langmuir.1c03318] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Revised: 01/06/2022] [Indexed: 06/14/2023]
Abstract
Oleofoams are a novel, versatile, and biocompatible soft material that finds application in drug, cosmetic or nutraceuticals delivery. However, due to their temperature-sensitive and opaque nature, the characterization of oleofoams' microstructure is challenging. Here, synchrotron X-ray microcomputed tomography and radiography are applied to study the microstructure of a triglyceride-based oleofoam. These techniques enable non-destructive, quantitative, 3D measurements of native samples to determine the thermodynamic and kinetic behavior of oleofoams at different stages of their life cycle. During processing, a constant bubble size distribution is reached after few minutes of shearing, while the number of bubbles incorporated keeps increasing until saturation of the continuous phase. Low amounts of solid triglycerides in oleofoams allow faster aeration and a more homogeneous microstructure but lower thermodynamic stability, with bubble disproportionation and shape relaxation over time. Radiography shows that heating causes Ostwald ripening and coalescence of bubbles, with an increase of their diameter and sphericity.
Collapse
Affiliation(s)
- Lorenzo Metilli
- School
of Food Science and Nutrition, Food Colloids and Bioprocessing group, University of Leeds, Woodhouse Lane, Leeds LS29JT, U.K.
| | - Malte Storm
- Diamond
Light Source Ltd., Harwell Science and Innovation
Campus, Didcot OX110DE, U.K.
- Helmholtz-Zentrum
hereon, Max-Planck-Str 1, 21502 Geesthacht, Germany
| | - Shashidhara Marathe
- Diamond
Light Source Ltd., Harwell Science and Innovation
Campus, Didcot OX110DE, U.K.
| | - Aris Lazidis
- Nestlé
Product Technology Centre Confectionery, Haxby Road, York YO31 8TA, U.K.
| | | | - Elena Simone
- School
of Food Science and Nutrition, Food Colloids and Bioprocessing group, University of Leeds, Woodhouse Lane, Leeds LS29JT, U.K.
- Department
of Applied Science and Technology (DISAT), Politecnico di Torino, Corso Duca degli Abruzzi 24, Torino 10129, Italy
| |
Collapse
|
26
|
|
27
|
Saha S, Pagaud F, Binks BP, Garbin V. Buckling versus Crystal Expulsion Controlled by Deformation Rate of Particle-Coated Air Bubbles in Oil. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:1259-1265. [PMID: 35023336 PMCID: PMC8793140 DOI: 10.1021/acs.langmuir.1c03171] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 01/04/2022] [Indexed: 06/14/2023]
Abstract
Oil foams stabilized by crystallizing agents exhibit outstanding stability and show promise for applications in consumer products. The stability and mechanics imparted by the interfacial layer of crystals underpin product shelf life, as well as optimal processing conditions and performance in applications. Shelf life is affected by the stability against bubble dissolution over a long time scale, which leads to slow compression of the interfacial layer. In processing flow conditions, the imposed deformation is characterized by much shorter time scales. In practical situations, the crystal layer is therefore subjected to deformation on extremely different time scales. Despite its importance, our understanding of the behavior of such interfacial layers at different time scales remains limited. To address this gap, here we investigate the dynamics of single, crystal-coated bubbles isolated from an oleofoam, at two extreme time scales: the diffusion-limited time scale characteristic of bubble dissolution, ∼104 s, and a fast time scale characteristic of processing flow conditions, ∼10-3 s. In our experiments, slow deformation is obtained by bubble dissolution, and fast deformation in controlled conditions with real-time imaging is obtained using ultrasound-induced bubble oscillations. The experiments reveal that the fate of the interfacial layer is dramatically affected by the dynamics of deformation: after complete bubble dissolution, a continuous solid layer remains; after fast, oscillatory deformation of the layer, small crystals are expelled from the layer. This observation shows promise toward developing stimuli-responsive systems, with sensitivity to deformation rate, in addition to the already known thermoresponsiveness and photoresponsiveness of oleofoams.
Collapse
Affiliation(s)
- Saikat Saha
- Department
of Chemical Engineering, Delft University
of Technology, 2629 HZ Delft, The Netherlands
- Department
of Chemical Engineering, Imperial College
London, London SW7 2AZ, United Kingdom
| | - Francis Pagaud
- Department
of Chemical Engineering, Imperial College
London, London SW7 2AZ, United Kingdom
| | - Bernard P. Binks
- Department
of Chemistry, University of Hull, Hull HU6 7RX, United Kingdom
| | - Valeria Garbin
- Department
of Chemical Engineering, Delft University
of Technology, 2629 HZ Delft, The Netherlands
- Department
of Chemical Engineering, Imperial College
London, London SW7 2AZ, United Kingdom
| |
Collapse
|
28
|
Dedovets D, Li Q, Leclercq L, Nardello‐Rataj V, Leng J, Zhao S, Pera‐Titus M. Multiphase Microreactors Based on Liquid-Liquid and Gas-Liquid Dispersions Stabilized by Colloidal Catalytic Particles. Angew Chem Int Ed Engl 2022; 61:e202107537. [PMID: 34528366 PMCID: PMC9293096 DOI: 10.1002/anie.202107537] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Indexed: 01/08/2023]
Abstract
Pickering emulsions, foams, bubbles, and marbles are dispersions of two immiscible liquids or of a liquid and a gas stabilized by surface-active colloidal particles. These systems can be used for engineering liquid-liquid-solid and gas-liquid-solid microreactors for multiphase reactions. They constitute original platforms for reengineering multiphase reactors towards a higher degree of sustainability. This Review provides a systematic overview on the recent progress of liquid-liquid and gas-liquid dispersions stabilized by solid particles as microreactors for engineering eco-efficient reactions, with emphasis on biobased reagents. Physicochemical driving parameters, challenges, and strategies to (de)stabilize dispersions for product recovery/catalyst recycling are discussed. Advanced concepts such as cascade and continuous flow reactions, compartmentalization of incompatible reagents, and multiscale computational methods for accelerating particle discovery are also addressed.
Collapse
Affiliation(s)
- Dmytro Dedovets
- Eco-Efficient Products and Processes Laboratory (E2P2L)UMI 3464 CNRS-Solvay3966 Jin Du Road, Xin Zhuang Ind Zone201108ShanghaiChina
- Laboratoire du Futur (LOF)UMR 5258, CNRS-Solvay-Universite Bordeaux 1178 Av Dr Albert Schweitzer33608Pessac CedexFrance
| | - Qingyuan Li
- Eco-Efficient Products and Processes Laboratory (E2P2L)UMI 3464 CNRS-Solvay3966 Jin Du Road, Xin Zhuang Ind Zone201108ShanghaiChina
| | - Loïc Leclercq
- Univ LilleCNRSCentrale LilleUniv ArtoisUMR 8181 UCCSF-59000LilleFrance
| | | | - Jacques Leng
- Laboratoire du Futur (LOF)UMR 5258, CNRS-Solvay-Universite Bordeaux 1178 Av Dr Albert Schweitzer33608Pessac CedexFrance
| | - Shuangliang Zhao
- Guangxi Key Laboratory of Petrochemical Resource Processing and Process Intensification TechnologySchool of Chemistry and Chemical EngineeringGuangxi University530004NanningChina
| | - Marc Pera‐Titus
- Eco-Efficient Products and Processes Laboratory (E2P2L)UMI 3464 CNRS-Solvay3966 Jin Du Road, Xin Zhuang Ind Zone201108ShanghaiChina
- Cardiff Catalysis InstituteSchool of ChemistryCardiff UniversityMain Building, Park PlaceCardiffCF10 3ATUK
| |
Collapse
|
29
|
Dedovets D, Li Q, Leclercq L, Nardello‐Rataj V, Leng J, Zhao S, Pera‐Titus M. Multiphase Microreactors Based on Liquid–Liquid and Gas–Liquid Dispersions Stabilized by Colloidal Catalytic Particles. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202107537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Dmytro Dedovets
- Eco-Efficient Products and Processes Laboratory (E2P2L) UMI 3464 CNRS-Solvay 3966 Jin Du Road, Xin Zhuang Ind Zone 201108 Shanghai China
- Laboratoire du Futur (LOF) UMR 5258, CNRS-Solvay-Universite Bordeaux 1 178 Av Dr Albert Schweitzer 33608 Pessac Cedex France
| | - Qingyuan Li
- Eco-Efficient Products and Processes Laboratory (E2P2L) UMI 3464 CNRS-Solvay 3966 Jin Du Road, Xin Zhuang Ind Zone 201108 Shanghai China
| | - Loïc Leclercq
- Univ Lille CNRS Centrale Lille Univ Artois UMR 8181 UCCS F-59000 Lille France
| | | | - Jacques Leng
- Laboratoire du Futur (LOF) UMR 5258, CNRS-Solvay-Universite Bordeaux 1 178 Av Dr Albert Schweitzer 33608 Pessac Cedex France
| | - Shuangliang Zhao
- Guangxi Key Laboratory of Petrochemical Resource Processing and Process Intensification Technology School of Chemistry and Chemical Engineering Guangxi University 530004 Nanning China
| | - Marc Pera‐Titus
- Eco-Efficient Products and Processes Laboratory (E2P2L) UMI 3464 CNRS-Solvay 3966 Jin Du Road, Xin Zhuang Ind Zone 201108 Shanghai China
- Cardiff Catalysis Institute School of Chemistry Cardiff University Main Building, Park Place Cardiff CF10 3AT UK
| |
Collapse
|
30
|
Azeredo HM, Tonon RV, McClements DJ. Designing healthier foods: Reducing the content or digestibility of key nutrients. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.10.023] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
31
|
Liu Y, Binks BP. A novel strategy to fabricate stable oil foams with sucrose ester surfactant. J Colloid Interface Sci 2021; 594:204-216. [PMID: 33761395 DOI: 10.1016/j.jcis.2021.03.021] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 02/10/2021] [Accepted: 03/04/2021] [Indexed: 10/21/2022]
Abstract
HYPOTHESIS Can a mixture of sucrose ester surfactant in vegetable oil be aerated to yield stable oleofoams? Is foaming achievable from one-phase molecular solutions and/or two-phase crystal dispersions? Does cooling a foam after formation induce surfactant crystallisation and enhance foam stability? EXPERIMENTS Concentrating on extra virgin olive oil, we first study the effect of aeration temperature and surfactant concentration on foamability and foam stability of mixtures cooled from a one-phase oil solution. Based on this, we introduce a strategy to increase foam stability by rapidly cooling foam prepared at high temperature which induces surfactant crystallisation in situ. Differential scanning calorimetry, X-ray diffraction, infra-red spectroscopy, surface tension and rheology are used to elucidate the mechanisms. FINDINGS Unlike previous reports, both foamability and foam stability decrease upon decreasing the aeration temperature into the two-phase region containing surfactant crystals. At high temperature in the one-phase region, substantial foaming is achieved (over-run 170%) within minutes of whipping but foams ultimately collapse within a week. We show that surfactant molecules are surface-active at high temperature and that hydrogen bonds form between surfactant and oil molecules. Cooling these foams substantially increases foam stability due to both interfacial and bulk surfactant crystallisation. The generic nature of our findings is demonstrated for a range of vegetable oil foams with a maximum over-run of 330% and the absence of drainage, coalescence and disproportionation being achievable.
Collapse
Affiliation(s)
- Yu Liu
- Department of Chemistry, University of Hull, Hull HU6 7RX, UK
| | - Bernard P Binks
- Department of Chemistry, University of Hull, Hull HU6 7RX, UK.
| |
Collapse
|
32
|
Li G, Wang K, Lu C. Wet-etched asymmetric spherical nanoparticles with controllable pit structures and application in non-aqueous foams. SOFT MATTER 2021; 17:4848-4856. [PMID: 33890595 DOI: 10.1039/d0sm01964j] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The structure of colloidal particles is one of the factors that significantly affect their properties. Asymmetrical spherical particles with pit structures were prepared by using NH4F to perform wet chemical etching on the designated positions of the partially masked particles. The depth and effectiveness of the pits were adjusted by varying the etching time. By changing the properties of the oil mixture, the oil repellency and foaming ability of the etched particles were characterized and compared. By controlling the wet etching time, the effective pit structures were etched on the particles. Within 10 d of being etched, the particles with pit geometry showed better foam properties than the original unetched particles. The pit structure on the particles improves the oil repellency of the particles in a series of oil mixtures with relatively lower surface tension. No significant difference was observed between the under-etched (18 h) particles and the non-etched particles. The ineffective geometry of the over-etched (15 d) particles results in insufficient robustness of the Cassie-Baxter state of the particles and reduces the volume of the generated foam.
Collapse
Affiliation(s)
- Gen Li
- Department of Petroleum Engineering, Northeast Petroleum University, Daqing 163318, China.
| | | | | |
Collapse
|
33
|
|
34
|
Binks BP, Vishal B. Particle-stabilized oil foams. Adv Colloid Interface Sci 2021; 291:102404. [PMID: 33839623 DOI: 10.1016/j.cis.2021.102404] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 03/17/2021] [Accepted: 03/18/2021] [Indexed: 12/26/2022]
Abstract
The area of oil foams although important industrially has received little academic attention until the last decade. The early work using molecular surfactants for stabilisation was limited and as such it is difficult to obtain general rules of thumb. Recently however, interest has grown in the area partly fuelled by the understanding gained in the general area of colloidal particles at fluid interfaces. We review the use of solid particles as foaming agents for oil foams in cases where particles (inorganic or polymer) are prepared ex situ and in cases where crystals of surfactant or fat are prepared in situ. There is considerable activity in the latter area which is particularly relevant to the food industry. Discussion of crude oil/lubricating oil foams is excluded from this review.
Collapse
Affiliation(s)
- Bernard P Binks
- Department of Chemistry, University of Hull, Hull HU6 7RX, UK.
| | - Badri Vishal
- Department of Chemistry, University of Hull, Hull HU6 7RX, UK
| |
Collapse
|
35
|
Fameau AL, Binks BP. Aqueous and Oil Foams Stabilized by Surfactant Crystals: New Concepts and Perspectives. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:4411-4418. [PMID: 33825479 DOI: 10.1021/acs.langmuir.1c00410] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Surfactant crystals can stabilize liquid foams. The crystals are adsorbed at bubble surfaces, slowing down coarsening and coalescence. Excess crystals in the liquid channels between bubbles arrest drainage, leading to ultrastable foams. The melting of crystals upon raising the temperature allows thermoresponsive foams to be designed. In the case of oil foams, the stabilization by crystals received substantial renewed interest in the last 5 years due to their potential applications, particularly in the food industry. For aqueous foams, several reports exist on foams stabilized by crystals. However, these two kinds of liquid foams possess similarities in terms of stabilization mechanisms and the design of surfactant crystal systems. This field will certainly grow in the coming years, and it will contribute to the engineering of new soft materials not only for food but also for cosmetics, pharmaceuticals, and biomedical applications.
Collapse
Affiliation(s)
- Anne-Laure Fameau
- L'Oréal Research and Innovation, 13 rue Dora Maar, 93400 Saint-Ouen, France
| | - Bernard P Binks
- Department of Chemistry, University of Hull, Hull HU6 7RX, U.K
| |
Collapse
|
36
|
Ewens H, Metilli L, Simone E. Analysis of the effect of recent reformulation strategies on the crystallization behaviour of cocoa butter and the structural properties of chocolate. Curr Res Food Sci 2021; 4:105-114. [PMID: 33748777 PMCID: PMC7957023 DOI: 10.1016/j.crfs.2021.02.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 02/19/2021] [Accepted: 02/22/2021] [Indexed: 11/28/2022] Open
Abstract
Chocolate is a complex soft material characterized by solid particles (cocoa powder, milk solid particles and sugar crystals) dispersed in a crystallized fat matrix mostly composed of cocoa butter (CB). Important chocolate properties such as snap, and visual appearance are strongly dependent on the internal molecular arrangement (polymorph), size and shape, as well as the spatial distribution of CB crystals within the chocolate mix. In recent years confectionary companies have put increasing effort in developing novel chocolate recipes to improve the nutritional profile of chocolate products (e.g., by reducing the amount of high saturated fat and sugar content) and to counteract the increasing price of cocoa butter as well as sustainability issues related to some chocolate ingredients. Different reformulation strategies can dramatically affect the crystallization thermodynamic and kinetic behaviour of cocoa butter; therefore, affecting the structural and sensorial properties of chocolate. In this review we analyse how different reformulation strategies affect the crystallization behaviour of cocoa butter and, hence, the structural and sensorial properties of chocolate. In particular, this work discusses the effect of: (1) CB replacement with emulsions, hydrogels, oleogels and oleofoams; (2) CB dilution with limonene or cocoa butter equivalents; (3) replacement or reduction of the amount of sugar and milk in chocolate. We found that there is certainly potential for successful novel alternative chocolate products with controlled crystalline properties; however, further research is still needed to ensure sensory acceptance and reasonable shelf-life of these novel products.
Collapse
Affiliation(s)
- H. Ewens
- School of Food Science and Nutrition, Food Colloids and Bioprocessing Group, University of Leeds, Leeds, United Kingdom
| | - L. Metilli
- School of Food Science and Nutrition, Food Colloids and Bioprocessing Group, University of Leeds, Leeds, United Kingdom
| | - E. Simone
- School of Food Science and Nutrition, Food Colloids and Bioprocessing Group, University of Leeds, Leeds, United Kingdom
| |
Collapse
|
37
|
Microstructure evolution and partial coalescence in the whipping process of oleofoams stabilized by monoglycerides. Food Hydrocoll 2021. [DOI: 10.1016/j.foodhyd.2020.106245] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
38
|
Qiu C, Lei M, Lee WJ, Zhang N, Wang Y. Fabrication and characterization of stable oleofoam based on medium-long chain diacylglycerol and β-sitosterol. Food Chem 2021; 350:129275. [PMID: 33601090 DOI: 10.1016/j.foodchem.2021.129275] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 01/08/2021] [Accepted: 01/29/2021] [Indexed: 10/22/2022]
Abstract
Oleofoams have emerged as attractive low-calorie aeration systems, but saturated lipids or large amount of surfactants are commonly required. Herein, an innovative strategy was proposed to create oleofoams using medium-long chain diacylglycerol (MLCD) and β-sitosterol (St). The oleofoams prepared using MLCD and St in ratios of 15:5 and 12:8 exhibited smaller bubble size and much higher stability. MLCD crystals formed rigid Pickering shell, whereby air bubbles acted as "active fillers" leading to enhanced rigidity. Both Pickering and network stabilization for the MLCD-St oleofoam provided a steric hindrance against coalescence. The gelators interacted via hydrogen bonding, causing a condensing effect in improving the gel elasticity. The oleofoams and foam-based emulsions exhibited a favorable capacity in controlling volatile release where the maximum headspace concentrations and partition coefficients showed a significantly decrease. Overall, the oleofoams have shown great potential for development of low-calorie foods and delivery systems with enhanced textural and nutritional features.
Collapse
Affiliation(s)
- Chaoying Qiu
- JNU-UPM International Joint Laboratory on Plant Oil Processing and Safety, Department of Food Science and Engineering, Jinan University, Guangzhou 510632, China; Guangdong International Joint Research Center for Oilseed Biorefinery, Nutrition and Safety, Guangzhou 510632, China
| | - Mengting Lei
- JNU-UPM International Joint Laboratory on Plant Oil Processing and Safety, Department of Food Science and Engineering, Jinan University, Guangzhou 510632, China; Guangdong International Joint Research Center for Oilseed Biorefinery, Nutrition and Safety, Guangzhou 510632, China
| | - Wan Jun Lee
- JNU-UPM International Joint Laboratory on Plant Oil Processing and Safety, Department of Food Science and Engineering, Jinan University, Guangzhou 510632, China; Guangdong International Joint Research Center for Oilseed Biorefinery, Nutrition and Safety, Guangzhou 510632, China
| | - Ning Zhang
- JNU-UPM International Joint Laboratory on Plant Oil Processing and Safety, Department of Food Science and Engineering, Jinan University, Guangzhou 510632, China; Guangdong International Joint Research Center for Oilseed Biorefinery, Nutrition and Safety, Guangzhou 510632, China.
| | - Yong Wang
- JNU-UPM International Joint Laboratory on Plant Oil Processing and Safety, Department of Food Science and Engineering, Jinan University, Guangzhou 510632, China; Guangdong International Joint Research Center for Oilseed Biorefinery, Nutrition and Safety, Guangzhou 510632, China.
| |
Collapse
|
39
|
Foams of vegetable oils containing long-chain triglycerides. J Colloid Interface Sci 2021; 583:522-534. [DOI: 10.1016/j.jcis.2020.09.043] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 09/11/2020] [Accepted: 09/12/2020] [Indexed: 01/09/2023]
|
40
|
Callau M, Sow-Kébé K, Jenkins N, Fameau AL. Effect of the ratio between fatty alcohol and fatty acid on foaming properties of whipped oleogels. Food Chem 2020; 333:127403. [DOI: 10.1016/j.foodchem.2020.127403] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 06/05/2020] [Accepted: 06/20/2020] [Indexed: 02/06/2023]
|
41
|
|
42
|
|
43
|
Chandran Suja V, Rodríguez-Hakim M, Tajuelo J, Fuller GG. Single bubble and drop techniques for characterizing foams and emulsions. Adv Colloid Interface Sci 2020; 286:102295. [PMID: 33161297 DOI: 10.1016/j.cis.2020.102295] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 10/04/2020] [Accepted: 10/05/2020] [Indexed: 12/17/2022]
Abstract
The physics of foams and emulsions has traditionally been studied using bulk foam/emulsion tests and single film platforms such as the Scheludko cell. Recently there has been a renewed interest in a third class of techniques that we term as single bubble/drop tests, which employ isolated whole bubbles and drops to probe the characteristics of foams and emulsions. Single bubble and drop techniques provide a convenient framework for investigating a number of important characteristics of foams and emulsions, including the rheology, stabilization mechanisms, and rupture dynamics. In this review we provide a comprehensive discussion of the various single bubble/drop platforms and the associated experimental measurement protocols including the construction of coalescence time distributions, visualization of the thin film profiles and characterization of the interfacial rheological properties. Subsequently, we summarize the recent developments in foam and emulsion science with a focus on the results obtained through single bubble/drop techniques. We conclude the review by presenting important venues for future research.
Collapse
Affiliation(s)
- V Chandran Suja
- Department of Chemical Engineering, Stanford University, Stanford, California 94305, USA.
| | - M Rodríguez-Hakim
- Department of Chemical Engineering, Stanford University, Stanford, California 94305, USA; Department of Materials, ETH Zurich, Vladimir-Prelog-Weg 5, Zurich 8093, Switzerland
| | - J Tajuelo
- Department of Chemical Engineering, Stanford University, Stanford, California 94305, USA; Departamento de Física Interdisciplinar, Universidad Nacional de Eduación a Distancia UNED, Madrid 28040, Spain
| | - G G Fuller
- Department of Chemical Engineering, Stanford University, Stanford, California 94305, USA.
| |
Collapse
|
44
|
Nano-scaled roughness effect on air bubble-hydrophilic surface adhesive strength. Colloids Surf A Physicochem Eng Asp 2020. [DOI: 10.1016/j.colsurfa.2020.125228] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
45
|
Fameau AL, Saint-Jalmes A. Recent Advances in Understanding and Use of Oleofoams. FRONTIERS IN SUSTAINABLE FOOD SYSTEMS 2020. [DOI: 10.3389/fsufs.2020.00110] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
|
46
|
Teng Y, Stewart SG, Hai YW, Li X, Banwell MG, Lan P. Sucrose fatty acid esters: synthesis, emulsifying capacities, biological activities and structure-property profiles. Crit Rev Food Sci Nutr 2020; 61:3297-3317. [PMID: 32746632 DOI: 10.1080/10408398.2020.1798346] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The notable physical and chemical properties of sucrose fatty acid esters have prompted their use in the chemical industry, especially as surfactants, since 1939. Recently, their now well-recognized value as nutraceuticals and as additives in cosmetics has significantly increased demand for ready access to them. As such a review of current methods for the preparation of sucrose fatty acid esters by both chemical and enzymatic means is warranted and is presented here together with an account of the historical development of these compounds as surfactants (emulsifiers). The somewhat belated recognition of the antimicrobial, anticancer and insecticidal activities of sucrose esters is also discussed along with a commentary on their structure-property profiles.
Collapse
Affiliation(s)
- Yinglai Teng
- Institute for Advanced and Applied Chemical Synthesis, Jinan University, Zhuhai, Guangdong, China.,College of Pharmacy, Jinan University, Guangzhou, Guangdong, China
| | - Scott G Stewart
- School of Molecular Sciences, The University of Western Australia (M310), Crawley, Western Australia, Australia.,Research Laboratories, Guangzhou Cardlo Biochemical Technology Co., Ltd, Guangzhou, Guangdong, China
| | - Yao-Wen Hai
- Institute for Advanced and Applied Chemical Synthesis, Jinan University, Zhuhai, Guangdong, China
| | - Xuan Li
- Institute for Advanced and Applied Chemical Synthesis, Jinan University, Zhuhai, Guangdong, China
| | - Martin G Banwell
- Institute for Advanced and Applied Chemical Synthesis, Jinan University, Zhuhai, Guangdong, China.,Research Laboratories, Guangzhou Cardlo Biochemical Technology Co., Ltd, Guangzhou, Guangdong, China.,Research School of Chemistry, Institute of Advanced Studies, The Australian National University, Canberra, Australian Capital Territory, Australia
| | - Ping Lan
- Institute for Advanced and Applied Chemical Synthesis, Jinan University, Zhuhai, Guangdong, China.,College of Pharmacy, Jinan University, Guangzhou, Guangdong, China.,Research Laboratories, Guangzhou Cardlo Biochemical Technology Co., Ltd, Guangzhou, Guangdong, China
| |
Collapse
|
47
|
Mishra K, Bergfreund J, Bertsch P, Fischer P, Windhab EJ. Crystallization-Induced Network Formation of Tri- and Monopalmitin at the Middle-Chain Triglyceride Oil/Air Interface. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:7566-7572. [PMID: 32520568 DOI: 10.1021/acs.langmuir.0c01195] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Crystalline glycerides play an important role in the formation of multiphase systems such as emulsions and foams. The stabilization of oil/water interfaces by glyceride crystals has been extensively studied compared to only few studies which have been dedicated to oil/air interfaces. This study investigates the crystallization and network formation of tripalmitin (TP) and monopalmitin (MP) at the middle-chain triglyceride (MCT) oil/air interface. TP crystals were found to crystallize in the bulk before aggregating as large rectangular crystal conglomerates at the MCT oil/air interface. This leads to the slow formation of a plastic deformable, macroscopic crystal layer with high interfacial rheological moduli. MP crystals form directly at the MCT oil/air interface resulting in a comparatively fast formation of an elastic deformable network. Crystals with tentacle-like morphology were found to be responsible for the network elasticity. In this work, we show how interfacial crystallization dynamics and mechanical strength can be linked to the molecular structure and crystallization behavior of glyceride crystals.
Collapse
Affiliation(s)
- Kim Mishra
- Institute of Food, Nutrition and Health, Swiss Federal Institute of Technology, Schmelzbergstrasse 9, 8092 Zürich, Switzerland
| | - Jotam Bergfreund
- Institute of Food, Nutrition and Health, Swiss Federal Institute of Technology, Schmelzbergstrasse 9, 8092 Zürich, Switzerland
| | - Pascal Bertsch
- Institute of Food, Nutrition and Health, Swiss Federal Institute of Technology, Schmelzbergstrasse 9, 8092 Zürich, Switzerland
| | - Peter Fischer
- Institute of Food, Nutrition and Health, Swiss Federal Institute of Technology, Schmelzbergstrasse 9, 8092 Zürich, Switzerland
| | - Erich J Windhab
- Institute of Food, Nutrition and Health, Swiss Federal Institute of Technology, Schmelzbergstrasse 9, 8092 Zürich, Switzerland
| |
Collapse
|
48
|
Non-aqueous foams formed by whipping diacylglycerol stabilized oleogel. Food Chem 2020; 312:126047. [DOI: 10.1016/j.foodchem.2019.126047] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Revised: 12/02/2019] [Accepted: 12/10/2019] [Indexed: 11/18/2022]
|
49
|
Zhang X, Zhou J, Chen J, Li B, Li Y, Liu S. Edible foam based on pickering effect of bacterial cellulose nanofibrils and soy protein isolates featuring interfacial network stabilization. Food Hydrocoll 2020. [DOI: 10.1016/j.foodhyd.2019.105440] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
50
|
Guo Y, Cai Z, Xie Y, Ma A, Zhang H, Rao P, Wang Q. Synthesis, physicochemical properties, and health aspects of structured lipids: A review. Compr Rev Food Sci Food Saf 2020; 19:759-800. [PMID: 33325163 DOI: 10.1111/1541-4337.12537] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2019] [Revised: 12/04/2019] [Accepted: 01/03/2020] [Indexed: 02/06/2023]
Abstract
Structured lipids (SLs) refer to a new type of functional lipids obtained by chemically, enzymatically, or genetically modifying the composition and/or distribution of fatty acids in the glycerol backbone. Due to the unique physicochemical characteristics and health benefits of SLs (for example, calorie reduction, immune function improvement, and reduction in serum triacylglycerols), there is increasing interest in the research and application of novel SLs in the food industry. The chemical structures and molecular architectures of SLs define mainly their physicochemical properties and nutritional values, which are also affected by the processing conditions. In this regard, this holistic review provides coverage of the latest developments and applications of SLs in terms of synthesis strategies, physicochemical properties, health aspects, and potential food applications. Enzymatic synthesis of SLs particularly with immobilized lipases is presented with a short introduction to the genetic engineering approach. Some physical features such as solid fat content, crystallization and melting behavior, rheology and interfacial properties, as well as oxidative stability are discussed as influenced by chemical structures and processing conditions. Health-related considerations of SLs including their metabolic characteristics, biopolymer-based lipid digestion modulation, and oleogelation of liquid oils are also explored. Finally, potential food applications of SLs are shortly introduced. Major challenges and future trends in the industrial production of SLs, physicochemical properties, and digestion behavior of SLs in complex food systems, as well as further exploration of SL-based oleogels and their food application are also discussed.
Collapse
Affiliation(s)
- Yalong Guo
- Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, Advanced Rheology Institute, Shanghai Key Laboratory of Electrical Insulation and Thermal Aging, Shanghai Jiao Tong University, Shanghai, P. R. China
| | - Zhixiang Cai
- Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, Advanced Rheology Institute, Shanghai Key Laboratory of Electrical Insulation and Thermal Aging, Shanghai Jiao Tong University, Shanghai, P. R. China
| | - Yanping Xie
- Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, Advanced Rheology Institute, Shanghai Key Laboratory of Electrical Insulation and Thermal Aging, Shanghai Jiao Tong University, Shanghai, P. R. China
| | - Aiqin Ma
- Shanghai Jiao Tong University Affiliated Sixth People's Hospital South Campus, Shanghai, P. R. China
| | - Hongbin Zhang
- Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, Advanced Rheology Institute, Shanghai Key Laboratory of Electrical Insulation and Thermal Aging, Shanghai Jiao Tong University, Shanghai, P. R. China
| | - Pingfan Rao
- Food Nutrition Sciences Centre, Zhejiang Gongshang University, Hangzhou, P. R. China
| | - Qiang Wang
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, P. R. China
| |
Collapse
|