1
|
Yin Y, Huang M, Liu L, Zhou G, Shen L, Wang G, Zeng Z, Ma F. A Fe 3+-Doped TiO 2 Superhydrophilic Coating with Transparent and Long-Lasting Antifogging Properties Constructed Based on Nanostructured Antireflective and Capillary Anchoring Effects. ACS APPLIED MATERIALS & INTERFACES 2024. [PMID: 39496306 DOI: 10.1021/acsami.4c12831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2024]
Abstract
Superhydrophilic surfaces have attracted great interest in antifogging applications. However, balancing long-lasting superhydrophilicity and high transparency on antifogging surfaces remains a serious problem to be solved. The objective of this work is to prepare superhydrophilic coatings with transparent and long-lasting antifogging properties. In the design, a three-step method was used to obtain the target coatings: (1) magnetron sputtering deposition of a TiN film to provide high intensity, (2) anodic oxidation of the TiN film to obtain TiO2 nanoparticles intended for nanostructured antireflective and capillary structures, and (3) the sol-gel method for the preparation of Fe3+-doped TiO2 coatings using spin-coating in order to achieve superhydrophilicity. The nanostructures, due to their subwavelength dimensions, not only provide high transparency but also recoverable superhydrophilicity owing to the presence of a capillary anchoring effect that prevents the coating from dissolving and peeling off after soaking. The doping of Fe3+ broadened the photoresponse range and maintained the long-lasting superhydrophilicity. Tests showed that the 2 mol % Fe3+-doped TiO2 coating with nanostructures exhibited the highest transparency, longest-lasting superhydrophilicity, and antifogging properties. Furthermore, the coating provided excellent self-cleaning properties, as well as mechanical and chemical stability.
Collapse
Affiliation(s)
- Yuying Yin
- School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang 315211, China
- Key Laboratory of Advanced Marine Materials, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
| | - Meiru Huang
- School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang 315211, China
- Key Laboratory of Advanced Marine Materials, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
| | - Luqi Liu
- Key Laboratory of Advanced Marine Materials, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
| | - Guiping Zhou
- School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang 315211, China
- Key Laboratory of Advanced Marine Materials, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
| | - Luli Shen
- Key Laboratory of Advanced Marine Materials, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
| | - Gang Wang
- Key Laboratory of Advanced Marine Materials, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
| | - Zhixiang Zeng
- Key Laboratory of Advanced Marine Materials, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
| | - Fuliang Ma
- Key Laboratory of Advanced Marine Materials, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
| |
Collapse
|
2
|
Pan K, Wei X, Zhu Z, Liu C, Yang B. Si-doped carbonized polymer dot as robust hydrophilic coating using for high efficiency antifogging. J Colloid Interface Sci 2024; 672:477-485. [PMID: 38852350 DOI: 10.1016/j.jcis.2024.06.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 05/20/2024] [Accepted: 06/02/2024] [Indexed: 06/11/2024]
Abstract
Hydrophilic coating can prevent surface from fogging but its application is limited by low mechanical performance. In this study, a hydrophilic coating was prepared by crosslinking the Si-doped carbonized polymer dot (Si-CPD) with 3-glycidyloxypropyltrimethoxysilane (GPTMS) and ethylene oxide (EO). The hydrophilic coating can be used as robust hydrophilic anti-fogging coating. The Si-CPD derived from ethylene diamine tetraacetic acid (EDTA) and aminopropyl oligosiloxanes (APOS) was successfully prepared via one-step hydrothermal method. Then, a resin solution was prepared by mixing Si-CPD, GPTMS and EO. Epoxy group of GPTMS and EO can react with amino group of Si-CPD. Finally, a composite coating with antifogging function can be obtained by simple heating curing. Due to the introduction of hydroxyl which derived from EO, the coating shows excellent antifogging performance. Meanwhile, the presence of inorganic component endows the coating with outstanding mechanical performance. The coating has great potential in related applications, such as optical lenses, mirrors and other transparency substrates.
Collapse
Affiliation(s)
- Kaibo Pan
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, People's Republic of China
| | - Xiaoyu Wei
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, People's Republic of China
| | - Zhicheng Zhu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, People's Republic of China
| | - Chongming Liu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, People's Republic of China
| | - Bai Yang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, People's Republic of China.
| |
Collapse
|
3
|
Mossayebi Z, Shabani S, Easton CD, Gurr PA, Simons R, Qiao GG. Amphiphilic Nanoscale Antifog Coatings: Improved Chemical Robustness by Continuous Assembly of Polymers. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2402114. [PMID: 38989698 DOI: 10.1002/smll.202402114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 06/20/2024] [Indexed: 07/12/2024]
Abstract
Designing effective antifog coatings poses challenges in resisting physical and chemical damage, with persistent susceptibility to decomposition in aggressive environments. As their robustness is dictated by physicochemical structural features, precise control through unique fabrication strategies is crucial. To address this challenge, a novel method for crafting nanoscale antifog films with simultaneous directional growth and cross-linking is presented, utilizing solid-state continuous assembly of polymers via ring-opening metathesis polymerization (ssCAPROMP). A new amphiphilic copolymer (specified as macrocross-linker) is designed by incorporating polydimethylsiloxane, poly(2-(methacryloyloxy)ethyl) trimethylammonium chloride (PMETAC), and polymerizable norbornene (NB) pendant groups, allowing ssCAPROMP to produce antifog films under ambient conditions. This novel approach results in distinctive surface and molecular characteristics. Adjusting water-absorption and nanoscale assembly parameters produced ultra-thin (≤100 nm) antifog films with enhanced durability, particularly against strong acidic and alkaline environments, surpassing commercial antifog glasses. Thickness loss analysis against external disturbances further validated the stable surface-tethered chemistries introduced through ssCAPROMP, even with the incorporation of minimal content of cross-linkable NB moieties (5 mol%). Additionally, a potential zwitter-wettability mechanism elucidates antifog observations. This work establishes a unique avenue for exploring nanoengineered antifog coatings through facile and robust surface chemistries.
Collapse
Affiliation(s)
- Zahra Mossayebi
- Department of Chemical Engineering, The University of Melbourne, Melbourne, Victoria, 3010, Australia
- CSIRO Manufacturing, Melbourne, Victoria, 3169, Australia
| | - Sadegh Shabani
- Department of Chemical Engineering, The University of Melbourne, Melbourne, Victoria, 3010, Australia
| | | | - Paul A Gurr
- Department of Chemical Engineering, The University of Melbourne, Melbourne, Victoria, 3010, Australia
| | - Ranya Simons
- CSIRO Manufacturing, Melbourne, Victoria, 3169, Australia
| | - Greg G Qiao
- Department of Chemical Engineering, The University of Melbourne, Melbourne, Victoria, 3010, Australia
| |
Collapse
|
4
|
Mounayer N, Margel S. Engineering of Silane-Pyrrolidone Nano/Microparticles and Anti-Fogging Thin Coatings. Polymers (Basel) 2024; 16:2013. [PMID: 39065330 PMCID: PMC11281034 DOI: 10.3390/polym16142013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 07/05/2024] [Accepted: 07/12/2024] [Indexed: 07/28/2024] Open
Abstract
Polyvinylpyrrolidone (PVP) exhibits remarkable qualities; owing to the strong affinity for water of its pyrrolidone group, which enhances compatibility with aqueous systems, it is effective for stabilizing, binding, or carrying food, drugs, and cosmetics. However, coating the surface of polymeric films with PVP is not practical, as the coatings dissolve easily in water and ethanol. Poly(silane-pyrrolidone) nano/microparticles were prepared by combining addition polymerization of methacryloxypropyltriethoxysilane and N-vinylpyrrolidone, followed by step-growth Stöber polymerization of the formed silane-pyrrolidone monomer. The silane-pyrrolidone monomeric solution was spread on oxidized polyethylene films with a Mayer rod and polymerized to form siloxane (Si-O-Si) self-cross-linked durable anti-fog thin coatings with pyrrolidone groups exposed on the outer surface. The coatings exhibited similar wetting properties to PVP with significantly greater stability. The particles and coatings were characterized by microscopy, contact angle measurements, and spectroscopy, and tested using hot fog. Excellent anti-fogging activity was found.
Collapse
Affiliation(s)
| | - Shlomo Margel
- Department of Chemistry, Bar-Ilan Institute of Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat-Gan 5290002, Israel;
| |
Collapse
|
5
|
Ghasemlou M, Oladzadabbasabadi N, Ivanova EP, Adhikari B, Barrow CJ. Engineered Sustainable Omniphobic Coatings to Control Liquid Spreading on Food-Contact Materials. ACS APPLIED MATERIALS & INTERFACES 2024; 16:15657-15686. [PMID: 38518221 DOI: 10.1021/acsami.4c01329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/24/2024]
Abstract
The adhesion of sticky liquid foods to a contacting surface can cause many technical challenges. The food manufacturing sector is confronted with many critical issues that can be overcome with long-lasting and highly nonwettable coatings. Nanoengineered biomimetic surfaces with distinct wettability and tunable interfaces have elicited increasing interest for their potential use in addressing a broad variety of scientific and technological applications, such as antifogging, anti-icing, antifouling, antiadhesion, and anticorrosion. Although a large number of nature-inspired surfaces have emerged, food-safe nonwetted surfaces are still in their infancy, and numerous structural design aspects remain unexplored. This Review summarizes the latest scientific research regarding the key principles, fabrication methods, and applications of three important categories of nonwettable surfaces: superhydrophobic, liquid-infused slippery, and re-entrant structured surfaces. The Review is particularly focused on new insights into the antiwetting mechanisms of these nanopatterned structures and discovering efficient platform methodologies to guide their rational design when in contact with food materials. A detailed description of the current opportunities, challenges, and future scale-up possibilities of these nanoengineered surfaces in the food industry is also provided.
Collapse
Affiliation(s)
- Mehran Ghasemlou
- School of Science, STEM College, RMIT University, Melbourne, Victoria 3001, Australia
- Centre for Sustainable Bioproducts, Deakin University, Waurn Ponds, Victoria 3216, Australia
| | | | - Elena P Ivanova
- School of Science, STEM College, RMIT University, Melbourne, Victoria 3001, Australia
| | - Benu Adhikari
- School of Science, STEM College, RMIT University, Melbourne, Victoria 3001, Australia
- Centre for Advanced Materials and Industrial Chemistry (CAMIC), School of Science, RMIT University, Melbourne, Victoria 3001, Australia
| | - Colin J Barrow
- Centre for Sustainable Bioproducts, Deakin University, Waurn Ponds, Victoria 3216, Australia
| |
Collapse
|
6
|
Kaczmarek M, Przybylska A, Szymańska A, Dutkiewicz A, Maciejewski H. Thiol-ene click reaction as an effective tool for the synthesis of PEG-functionalized alkoxysilanes-precursors of anti-fog coatings. Sci Rep 2023; 13:21025. [PMID: 38030712 PMCID: PMC10687060 DOI: 10.1038/s41598-023-48192-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 11/23/2023] [Indexed: 12/01/2023] Open
Abstract
The article presents a very simple method of glass modification to obtain the anti-fog effect. Silanes containing two types of functional groups, namely a hydrophilic and polar polyether group and an alkoxysilyl group (to bond with the surface of the modified material) were synthesized in thiol-ene reactions. The hydrothiolation reactions of polyethers containing a C=C terminal bond with mercaptoalkoxysilane proceeded efficiently, yielding quantitatively appropriate products under mild reaction conditions. This method enabled the synthesis of a series of alkoxysilanes functionalized with polyethers, differing in structure. The group of obtained derivatives was characterized by 1H, 13C, 29Si NMR, and FT-IR analyses, and then used to prepare coatings on glass using the sol-gel method. The coated glass surfaces exhibited transparency, superhydrophilic or hydrophilic properties, anti-fog and anti-frost performance.
Collapse
Affiliation(s)
- Marta Kaczmarek
- Faculty of Chemistry, Adam Mickiewicz University, Uniwersytetu Poznańskiego 8, 61-614, Poznań, Poland
| | - Agnieszka Przybylska
- Faculty of Chemistry, Adam Mickiewicz University, Uniwersytetu Poznańskiego 8, 61-614, Poznań, Poland
| | - Anna Szymańska
- Poznań Science and Technology Park, Adam Mickiewicz University Foundation, Rubież 46, 61-612, Poznań, Poland.
| | - Agnieszka Dutkiewicz
- Poznań Science and Technology Park, Adam Mickiewicz University Foundation, Rubież 46, 61-612, Poznań, Poland
| | - Hieronim Maciejewski
- Faculty of Chemistry, Adam Mickiewicz University, Uniwersytetu Poznańskiego 8, 61-614, Poznań, Poland
- Poznań Science and Technology Park, Adam Mickiewicz University Foundation, Rubież 46, 61-612, Poznań, Poland
| |
Collapse
|
7
|
Antonov DV, Islamova AG, Strizhak PA. Hydrophilic and Hydrophobic Surfaces: Features of Interaction with Liquid Drops. MATERIALS (BASEL, SWITZERLAND) 2023; 16:5932. [PMID: 37687631 PMCID: PMC10488358 DOI: 10.3390/ma16175932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 08/22/2023] [Accepted: 08/28/2023] [Indexed: 09/10/2023]
Abstract
The processes of interaction of liquid droplets with solid surfaces have become of interest to many researchers. The achievements of world science should be used for the development of technologies for spray cooling, metal hardening, inkjet printing, anti-icing surfaces, fire extinguishing, fuel spraying, etc. Collisions of drops with surfaces significantly affect the conditions and characteristics of heat transfer. One of the main areas of research into the interaction of drops with solid surfaces is the modification of the latter. Changes in the hydrophilic and hydrophobic properties of surfaces give the materials various functional properties-increased heat transfer, resistance to corrosion and biofouling, anti-icing, etc. This review paper describes methods for obtaining hydrophilic and hydrophobic surfaces. The features of the interaction of liquid droplets with such surfaces are considered. The existing and possible applications of modified surfaces are discussed, as well as topical areas of research.
Collapse
Affiliation(s)
- Dmitrii V. Antonov
- Heat and Mass Transfer Laboratory, National Research Tomsk Polytechnic University, 30 Lenin Avenue, Tomsk 634050, Russia; (D.V.A.); (A.G.I.)
- A. N. Frumkin Institute of Physical Chemistry and Electrochemistry RAS, Moscow 119071, Russia
| | - Anastasya G. Islamova
- Heat and Mass Transfer Laboratory, National Research Tomsk Polytechnic University, 30 Lenin Avenue, Tomsk 634050, Russia; (D.V.A.); (A.G.I.)
| | - Pavel A. Strizhak
- Heat and Mass Transfer Laboratory, National Research Tomsk Polytechnic University, 30 Lenin Avenue, Tomsk 634050, Russia; (D.V.A.); (A.G.I.)
- A. N. Frumkin Institute of Physical Chemistry and Electrochemistry RAS, Moscow 119071, Russia
| |
Collapse
|
8
|
Abbas A, Wells GG, McHale G, Sefiane K, Orejon D. Silicone Oil-Grafted Low-Hysteresis Water-Repellent Surfaces. ACS APPLIED MATERIALS & INTERFACES 2023; 15:11281-11295. [PMID: 36790315 PMCID: PMC9982814 DOI: 10.1021/acsami.2c20718] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 02/02/2023] [Indexed: 06/18/2023]
Abstract
Wetting plays a major role in the close interactions between liquids and solid surfaces, which can be tailored by modifying the chemistry as well as the structures of the surfaces' outermost layer. Several methodologies, such as chemical vapor deposition, physical vapor deposition, electroplating, and chemical reactions, among others, have been adopted for the alteration/modification of such interactions suitable for various applications. However, the fabrication of low-contact line-pinning hydrophobic surfaces via simple and easy methods remains an open challenge. In this work, we exploit one-step and multiple-step silicone oil (5-100 cSt) grafting on smooth silicon substrates (although the technique is suitable for other substrates), looking closely at the effect of viscosity as well as the volume and layers (one to five) of oil grafted as a function of the deposition method. Remarkably, the optimization of grafting of silicone oil fabrication results in non-wetting surfaces with extremely low contact angle hysteresis (CAH) below 1° and high contact angles (CAs) of ∼108° after a single grafting step, which is an order of magnitude smaller than the reported values of previous works on silicone oil-grafted surfaces. Moreover, the different droplet-surface interactions and pinning behavior can additionally be tailored to the specific application with CAH ranging from 1 to 20° and sliding angles between 1.5 and 60° (for droplet volumes of 3 μL), depending on the fabrication parameters adopted. In terms of roughness, all the samples (independent of the grafting parameters) showed small changes in the root-mean-square roughness below 20 nm. Lastly, stability analysis of the grafting method reported here under various conditions shows that the coating is quite stable under mechanical vibrations (bath ultrasonication) and in a chemical environment (ultrasonication in a bath of ethanol) but loses its low-pinning characteristics when exposed to saturated steam at T ∼ 99 °C. The findings presented here provide a basis for selecting the most appropriate and suitable method and parameters for silicone oil grafting aimed at low pinning and low hysteresis surfaces for specific applications.
Collapse
Affiliation(s)
- Anam Abbas
- Institute
for Multiscale Thermofluids, School of Engineering, The University of Edinburgh, Edinburgh EH9 3FD, Scotland, U.K.
- Department
of Mechanical Engineering, University of
Engineering and Technology, Lahore 39161, Pakistan
| | - Gary G. Wells
- Institute
for Multiscale Thermofluids, School of Engineering, The University of Edinburgh, Edinburgh EH9 3FD, Scotland, U.K.
| | - Glen McHale
- Institute
for Multiscale Thermofluids, School of Engineering, The University of Edinburgh, Edinburgh EH9 3FD, Scotland, U.K.
| | - Khellil Sefiane
- Institute
for Multiscale Thermofluids, School of Engineering, The University of Edinburgh, Edinburgh EH9 3FD, Scotland, U.K.
| | - Daniel Orejon
- Institute
for Multiscale Thermofluids, School of Engineering, The University of Edinburgh, Edinburgh EH9 3FD, Scotland, U.K.
- International
Institute for Carbon-Neutral Energy Research (WPI-I2CNER), Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| |
Collapse
|
9
|
Kong R, Ren J, Mo M, Zhang L, Zhu J. Multifunctional antifogging, self-cleaning, antibacterial, and self-healing coatings based on polyelectrolyte complexes. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.130484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
10
|
Recent progress in the mechanisms, preparations and applications of polymeric antifogging coatings. Adv Colloid Interface Sci 2022; 309:102794. [DOI: 10.1016/j.cis.2022.102794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 09/19/2022] [Accepted: 09/29/2022] [Indexed: 11/21/2022]
|
11
|
Zhu K, Chen L, Chen C, Xie J. Preparation and characterization of polyethylene antifogging film and its application in lettuce packaging. Food Control 2022. [DOI: 10.1016/j.foodcont.2022.109075] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
12
|
Sato T, Amano A, Dunderdale GJ, Hozumi A. Transparent Composite Films Showing Durable Antifogging and Repeatable Self-Healing Properties Based on an Integral Blend Method. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:9874-9883. [PMID: 35920887 DOI: 10.1021/acs.langmuir.2c01085] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Antifogging coatings for infrastructures and transparent objects have attracted much attention lately from the perspective of safety and visibility. We have developed a one-pot process to fabricate transparent composite films showing long-lasting antifogging and fast repeatable self-healing properties based on an integral blend (IB) method. This method does not require any specific pretreatments of inorganic fillers/particles. Thus, the precursor solutions could be prepared in a single step by simply mixing raw materials, e.g., poly(vinylpyrrolidone) (PVP) having different molecular weights (MWs: 55, 360, and 1300 k), nano-clay particles (NCPs), and amino-terminated organosilane (AOS). In this study, to control the degree of cross-linking between the PVP matrices and NCPs, addition of AOS as a cross-linker to the PVP matrices (weight percentage of AOS to the PVP matrices, α = 0.01-300%) was carefully controlled. Transparency and self-healing abilities/kinetics of the resulting samples were found to be strongly influenced by both the MWs of PVP and α values. Samples spin-coated with the lowest MW of PVP (55 k) and α values of 0.01-1% gave highly transparent and durable antifogging performance. For example, no fogging was observed for 7 days under >80% relative humidity, and scratches about 30 μm in width could be completely self-healed within a few hours. However, samples with α > 10% gave opaque/grayish films that did not show any self-healing abilities because of an increase in cross-linking of the matrices. The optimized precursor solution was also deposited directly onto the glass slides covered with a transparent porous silica nano-framework (SNF) by a spray-coating method. Due to the formation of the hard and superhydrophilic/hygroscopic SNF with a large surface area, durability of antifogging and self-healing properties of the composite films were moderately improved, compared to those on the flat glass slides.
Collapse
Affiliation(s)
- Tomoya Sato
- National Institute of Advanced Industrial Science and Technology (AIST), 2266-98, Anagahora, Shimoshidami, Moriyama, Nagoya 463-8560, Japan
| | - Asei Amano
- National Institute of Advanced Industrial Science and Technology (AIST), 2266-98, Anagahora, Shimoshidami, Moriyama, Nagoya 463-8560, Japan
- Graduate School of Engineering, Aichi Institute of Technology (AIT), 1247 Yachigusa, Yakusa, Toyoya 470-0392, Japan
| | - Gary J Dunderdale
- Department of Chemical and Biological Engineering, University of Sheffield, Sheffield S1 3JD, U.K
| | - Atsushi Hozumi
- National Institute of Advanced Industrial Science and Technology (AIST), 2266-98, Anagahora, Shimoshidami, Moriyama, Nagoya 463-8560, Japan
- Graduate School of Engineering, Aichi Institute of Technology (AIT), 1247 Yachigusa, Yakusa, Toyoya 470-0392, Japan
| |
Collapse
|
13
|
Meng F, Xu Y, Wu Z, Chen H. Transparent and superhydrophilic antifogging coatings constructed by poly(N-hydroxyethyl acrylamide) composites. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.128724] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
14
|
Yan K, Chen D, Wang L, Yang W. A Facile Method for Delaying the Migration of Antifogging Agents in Polyethylene Films. Ind Eng Chem Res 2022. [DOI: 10.1021/acs.iecr.2c00492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Ke Yan
- College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Dong Chen
- College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Li Wang
- College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Wantai Yang
- College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| |
Collapse
|
15
|
Hamada T, Sugimoto T, Maeda T, Katsura D, Mineoi S, Ohshita J. Robust and Transparent Antifogging Polysilsesquioxane Film Containing a Hydroxy Group. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:5829-5837. [PMID: 35451850 DOI: 10.1021/acs.langmuir.2c00438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Poly(glycidyloxypropyl)silsesquioxane (PGPS) was successfully synthesized by hydrolysis and polycondensation using the nitrogen flow method. A poly(3-(2,3-dihydroxypropoxypropyl)silsesquioxane) (PSQ-OH) film was prepared via two routes. In route A, PSQ-OH was prepared by the hydrolysis of the epoxy group of PGPS in an aqueous hydrochloric acid (HCl)/tetrahydrofuran solution, affording a diol group; then, PSQ-OH was coated on a glass substrate and heated. The antifogging performance of the PSQ-OH film was evaluated in terms of water uptake (WU) and scratch resistance. The obtained PSQ-OH film exhibited a low WU of 5% and a scratch resistance of 1.6. In route B, PGPS was coated on a glass substrate and immersed in a 0.5 mol/L aqueous sulfuric acid solution for 1-15 h at room temperature, producing a diol group. The solid-state 13C nuclear magnetic resonance spectrum indicated that the epoxy group was completely hydrolyzed after immersion for 15 h. The WU of the PSQ-OH film prepared via route B increased from 5 to 19% with the increase in the immersion time and was higher than that of the PSQ-OH film prepared via route A. The PSQ-OH film on a glass substrate retained transparency under water vapor exposure at 60 °C. The PSQ-OH film prepared via route B exhibited a high scratch resistance of 2.7-3.6, similar to that of a poly(3-(2-aminoethylaminopropyl)silsesquioxane) film. The scratch resistance of the PSQ-OH film was 5-7 times higher than that of the poly(vinyl alcohol) film. The PSQ-OH film was uniform with no pinholes and cracks. The PSQ-OH film was transparent and colorless and exhibited a high transmittance of >90% in the wavelength range of 400-800 nm. Overall, the prepared PSQ-OH film exhibits good antifogging, transparency, and mechanical properties.
Collapse
Affiliation(s)
- Takashi Hamada
- Collaborative Research Laboratory, Graduate School of Advanced Science and Engineering, Hiroshima University, 1-4-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8527, Japan
| | - Tetsuya Sugimoto
- Smart Innovation Program, Graduate School of Advanced Science and Engineering, Hiroshima University, 1-4-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8527, Japan
| | - Tetsuya Maeda
- Collaborative Research Laboratory, Graduate School of Advanced Science and Engineering, Hiroshima University, 1-4-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8527, Japan
- Applied Chemistry Program, Graduate School of Advanced Science and Engineering, Hiroshima University, 1-4-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8527, Japan
- Technical Research Center, Mazda Motor Corporation, 3-1 Shinchi, Fuchu-cho, Aki-gun, Hiroshima 730-8670, Japan
| | - Daiji Katsura
- Collaborative Research Laboratory, Graduate School of Advanced Science and Engineering, Hiroshima University, 1-4-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8527, Japan
- Applied Chemistry Program, Graduate School of Advanced Science and Engineering, Hiroshima University, 1-4-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8527, Japan
- Technical Research Center, Mazda Motor Corporation, 3-1 Shinchi, Fuchu-cho, Aki-gun, Hiroshima 730-8670, Japan
- Division of Materials Model-Based Research, Digital Monozukuri (Manufacturing) Education and Research Center, Hiroshima University, Higashi-Hiroshima, Hiroshima 739-0046, Japan
| | - Susumu Mineoi
- Collaborative Research Laboratory, Graduate School of Advanced Science and Engineering, Hiroshima University, 1-4-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8527, Japan
- Technical Research Center, Mazda Motor Corporation, 3-1 Shinchi, Fuchu-cho, Aki-gun, Hiroshima 730-8670, Japan
| | - Joji Ohshita
- Collaborative Research Laboratory, Graduate School of Advanced Science and Engineering, Hiroshima University, 1-4-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8527, Japan
- Smart Innovation Program, Graduate School of Advanced Science and Engineering, Hiroshima University, 1-4-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8527, Japan
- Division of Materials Model-Based Research, Digital Monozukuri (Manufacturing) Education and Research Center, Hiroshima University, Higashi-Hiroshima, Hiroshima 739-0046, Japan
| |
Collapse
|
16
|
Shi J, Xu L, Qiu D. Effective Antifogging Coating from Hydrophilic/Hydrophobic Polymer Heteronetwork. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2200072. [PMID: 35285176 PMCID: PMC9109053 DOI: 10.1002/advs.202200072] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 02/21/2022] [Indexed: 05/20/2023]
Abstract
Fogging on optical devices may severely impair vision, resulting in unacceptable adverse consequences. Hydrophilic coatings can prevent surface fogging by instantly facilitating pseudo-film water condensation but suffer from short antifogging duration due to water film thickening with further condensation. Here, an innovative strategy is reported to achieve longer antifogging duration via thickening the robust bonded hydrophilic/hydrophobic polymer heteronetwork coating to enhance its water absorption capacity. The combination of strong interfacial adhesion and hydrophilic/hydrophobic heteronetwork structure is key to this approach, which avoids interfacial failure and swelling-induced wrinkles under typical fogging conditions. The developed antifogging coating exhibits prolonged antifogging durations over a wide temperature range for repetitious usages. Eyeglasses coated with this coating successfully maintained fog-free vision in two typical scenarios. Besides, the coating recipes developed in this study also have potential as underwater glues as they demonstrate strong adhesions to both glass and polymer substrates in wet conditions.
Collapse
Affiliation(s)
- Junhe Shi
- Beijing National Laboratory for Molecular SciencesCAS Research/Education Center for Excellence in Molecular SciencesInstitute of ChemistryChinese Academy of SciencesBeijing100190China
- University of Chinese Academy of SciencesBeijing100049China
| | - Liju Xu
- Beijing National Laboratory for Molecular SciencesCAS Research/Education Center for Excellence in Molecular SciencesInstitute of ChemistryChinese Academy of SciencesBeijing100190China
| | - Dong Qiu
- Beijing National Laboratory for Molecular SciencesCAS Research/Education Center for Excellence in Molecular SciencesInstitute of ChemistryChinese Academy of SciencesBeijing100190China
- University of Chinese Academy of SciencesBeijing100049China
| |
Collapse
|
17
|
Affiliation(s)
- Qianhui Liu
- Department of Materials Science and Engineering, Center for Optical Materials Science and Technologies (COMSET), Clemson University, Clemson, SC, USA
| | - Marek W. Urban
- Department of Materials Science and Engineering, Center for Optical Materials Science and Technologies (COMSET), Clemson University, Clemson, SC, USA
| |
Collapse
|
18
|
Zhou X, Hao Y, Li Y, Peng J, Wang G, Ong W, Li N. MXenes: An emergent materials for packaging platforms and looking beyond. NANO SELECT 2022. [DOI: 10.1002/nano.202200023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Affiliation(s)
- Xing Zhou
- Faculty of Printing Packaging Engineering and Digital Media Technology Xi'an University of Technology Xi'an P. R. China
| | - Yaya Hao
- Faculty of Printing Packaging Engineering and Digital Media Technology Xi'an University of Technology Xi'an P. R. China
| | - Yaxin Li
- Faculty of Printing Packaging Engineering and Digital Media Technology Xi'an University of Technology Xi'an P. R. China
| | - Jiahe Peng
- Key Laboratory of Silicate Materials for Architectures & Research Center for Materials Genome Engineering Wuhan University of Technology Hubei P. R. China
| | - Guosheng Wang
- Faculty of Printing Packaging Engineering and Digital Media Technology Xi'an University of Technology Xi'an P. R. China
| | - Wee‐Jun Ong
- School of Energy and Chemical Engineering Xiamen University Malaysia Selangor Darul Ehsan Malaysia
| | - Neng Li
- Key Laboratory of Silicate Materials for Architectures & Research Center for Materials Genome Engineering Wuhan University of Technology Hubei P. R. China
- Shenzhen Research Institute of Wuhan University of Technology Shenzhen China
- School of Materials Science and Engineering Zhengzhou University Zhengzhou China
| |
Collapse
|
19
|
Self-Cleaning Biomimetic Surfaces-The Effect of Microstructure and Hydrophobicity on Conidia Repellence. MATERIALS 2022; 15:ma15072526. [PMID: 35407860 PMCID: PMC9000080 DOI: 10.3390/ma15072526] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 03/21/2022] [Accepted: 03/24/2022] [Indexed: 01/11/2023]
Abstract
Modification of surface structure for the promotion of food safety and health protection is a technology of interest among many industries. With this study, we aimed specifically to develop a tenable solution for the fabrication of self-cleaning biomimetic surface structures for agricultural applications such as post-harvest packing materials and greenhouse cover screens. Phytopathogenic fungi such as Botrytiscinerea are a major concern for agricultural systems. These molds are spread by airborne conidia that contaminate surfaces and infect plants and fresh produce, causing significant losses. The research examined the adhesive role of microstructures of natural and synthetic surfaces and assessed the feasibility of structured biomimetic surfaces to easily wash off fungal conidia. Soft lithography was used to create polydimethylsiloxane (PDMS) replications of Solanum lycopersicum (tomato) and Colocasia esculenta (elephant ear) leaves. Conidia of B. cinerea were applied to natural surfaces for a washing procedure and the ratios between applied and remaining conidia were compared using microscopy imaging. The obtained results confirmed the hypothesis that the dust-repellent C. esculenta leaves have a higher conidia-repellency compared to tomato leaves which are known for their high sensitivities to phytopathogenic molds. This study found that microstructure replication does not mimic conidia repellency found in nature and that conidia repellency is affected by a mix of parameters, including microstructure and hydrophobicity. To examine the effect of hydrophobicity, the study included measurements and analyses of apparent contact angles of natural and synthetic surfaces including activated (hydrophilic) surfaces. No correlation was found between the surface apparent contact angle and conidia repellency ability, demonstrating variation in washing capability correlated to microstructure and hydrophobicity. It was also found that a microscale sub-surface (tomato trichromes) had a high conidia-repelling capability, demonstrating an important role of non-superhydrophobic microstructures.
Collapse
|
20
|
Wu H, Sun C, Huang Y, Zheng X, Zhao M, Gray S, Dong Y. Treatment of oily wastewaters by highly porous whisker-constructed ceramic membranes: Separation performance and fouling models. WATER RESEARCH 2022; 211:118042. [PMID: 35032875 DOI: 10.1016/j.watres.2022.118042] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 11/26/2021] [Accepted: 01/04/2022] [Indexed: 06/14/2023]
Abstract
Efficient treatment of challenging oily emulsion wastewater can alleviate water pollution to provide more chances for water reuse and resource recovery. Despite their promising application potential, conventional porous ceramic membranes have challenging bottleneck issues such as high cost and insufficient permeance. This study presents a new strategy for highly efficient treatment of not only synthetic but real oily emulsions via unexpensive whisker-constructed ceramic membranes, exhibiting exceptional permeance and less energy input. Compared with common ceramic membranes, such lower-cost mullite membranes with a novel whisker-constructed structure show higher porosity and water permeance, and better surface oleophobicity in water. Treatment performance such as permeate flux and oil rejection was explored for the oily emulsions with different properties under key operating parameters. Furthermore, classical Hermia models were used to reveal membrane fouling mechanism to well understand the microscopic interactions between emulsion droplets and membrane interface. Even for real acidic oily wastewater, such membranes also exhibit high permeance and less energy consumption, outperforming most state-of-the-art ceramic membranes. This work provides a new structure concept of highly permeably whisker-constructed porous ceramic membranes that can efficiently enable more water separation applications.
Collapse
Affiliation(s)
- Hui Wu
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education, MOE), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Chunyi Sun
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education, MOE), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Yuzhu Huang
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education, MOE), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Xiangyong Zheng
- College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China
| | - Min Zhao
- College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China
| | - Stephen Gray
- Institute for Sustainable Industries & Liveable Cities, Victoria University, PO Box 14428, Melbourne, Australia
| | - Yingchao Dong
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education, MOE), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China.
| |
Collapse
|
21
|
Kim Y, Thuy LT, Kim Y, Seong M, Cho WK, Choi JS, Kang SM. Coordination-Driven Surface Zwitteration for Antibacterial and Antifog Applications. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:1550-1559. [PMID: 35057617 DOI: 10.1021/acs.langmuir.1c03009] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The enhancement of surface wettability by hydrophilic polymer coatings has been of great interest because it has been used to address several technical challenges such as biofouling and surface fogging. Among the hydrophilic polymers, zwitterionic polymers have been extensively utilized to coat solid surfaces due to their excellent capability to bind water molecules, thereby forming dense hydration layers on the solid surfaces. For these zwitterionic polymers to function appropriately on the solid surfaces, techniques for fixing polymers onto the solid surface with high efficiency are required. Herein, we report a new approach to graft zwitterionic polymers onto solid substrates. The approach is based on the mussel-inspired surface chemistry and metal coordination. It consists of polydopamine coating and the coordination-driven grafting of the zwitterionic polymers. Polydopamine coating enables the versatile surface immobilization of catechols. Zwitterionic polymers are then easily fixed onto the catechol-immobilized surface by metal-mediated crosslinking reactions. Using this approach, nanometer-thick zwitterionic polymer layers that are highly resistant to bacterial adhesion and fog generation could be successfully fabricated on solid substrates in a substrate-independent manner.
Collapse
Affiliation(s)
- Yohan Kim
- Department of Chemistry, Chungbuk National University, Cheongju, Chungbuk 28644, Republic of Korea
| | - Le Thi Thuy
- Department of Biochemistry, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Yejin Kim
- Department of Chemistry, Chungbuk National University, Cheongju, Chungbuk 28644, Republic of Korea
| | - Minjin Seong
- Department of Chemistry, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Woo Kyung Cho
- Department of Chemistry, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Joon Sig Choi
- Department of Biochemistry, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Sung Min Kang
- Department of Chemistry, Chungbuk National University, Cheongju, Chungbuk 28644, Republic of Korea
| |
Collapse
|
22
|
Xiang J, Liu X, Liu Y, Wang L, He Y, Luo L, Yang G, Zhang X, Huang C, Zhang Y. Synthesis of a novel anti-fog and high-transparent coating with high wear resistance inspired by dry rice fields. Chem Eng Sci 2021; 242:116749. [DOI: 10.1016/j.ces.2021.116749] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 04/30/2021] [Accepted: 05/05/2021] [Indexed: 12/17/2022]
|
23
|
Wen L, Liang Y, Lin Z, Xie D, Zheng Z, Xu C, Lin B. Design of multifunctional food packaging films based on carboxymethyl chitosan/polyvinyl alcohol crosslinked network by using citric acid as crosslinker. POLYMER 2021. [DOI: 10.1016/j.polymer.2021.124048] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
24
|
Ren J, Kong R, Gao Y, Zhang L, Zhu J. Bioinspired adhesive coatings from polyethylenimine and tannic acid complexes exhibiting antifogging, self-cleaning, and antibacterial capabilities. J Colloid Interface Sci 2021; 602:406-414. [PMID: 34139538 DOI: 10.1016/j.jcis.2021.06.032] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 06/01/2021] [Accepted: 06/06/2021] [Indexed: 10/21/2022]
Abstract
In this work, we develop a simple yet robust method to fabricate a bioinspired adhesive coating based on polyethyleneimine (PEI) and tannic acid (TA) complexes, exhibiting excellent antifogging, self-cleaning, and antibacterial properties. The polyethyleneimine-tannic acid (PEI-TA) complexes coating combined with the bioinspired adhesive property from TA can be effectively and stably coated onto various substrates through a one-step deposition process, and the hydrophilicity of the coated substrates can be significantly enhanced with their water contact angle less than 10°. The bioinspired adhesive coating endows the coated substrates with outstanding antifogging and self-cleaning performance. Moreover, it is found that the PEI-TA coated safety goggles display excellent durability and antifogging capability compared to the commercial antifogging safety goggles and commercial antifogging agents coated safety goggles under 65 ℃ vapor condition for 2 h. Furthermore, the PEI-TA coatings show superior antibacterial activities for Gram-negative Escherichiak coli and Gram-positive Staphylococcus aureus. The antifogging, self-cleaning, and antibacterial coating provides widely potential application prospects in optical and medical devices.
Collapse
Affiliation(s)
- Jingli Ren
- Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, School of Chemistry & Chemical Engineering, Huazhong University of Science and Technology (HUST), Wuhan 430074, China
| | - Ruixia Kong
- Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, School of Chemistry & Chemical Engineering, Huazhong University of Science and Technology (HUST), Wuhan 430074, China
| | - Yujie Gao
- Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, School of Chemistry & Chemical Engineering, Huazhong University of Science and Technology (HUST), Wuhan 430074, China
| | - Lianbin Zhang
- Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, School of Chemistry & Chemical Engineering, Huazhong University of Science and Technology (HUST), Wuhan 430074, China.
| | - Jintao Zhu
- Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, School of Chemistry & Chemical Engineering, Huazhong University of Science and Technology (HUST), Wuhan 430074, China
| |
Collapse
|
25
|
Biomimetic Slippery PDMS Film with Papillae-Like Microstructures for Antifogging and Self-Cleaning. COATINGS 2021. [DOI: 10.3390/coatings11020238] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Transparent materials with antifogging and self-cleaning ability are of extreme significance for utilization in outdoor solar cell devices to alleviate the performance loss and maintenance costs. Herein, with inspiration from the anti-wetting surfaces in nature, regular papillae-like microstructure arrays (PMAs) inspired by lotus leaves were designed via a common UV lithography combined with a soft replication. Subsequently, the biomimetic slippery polydimethylsiloxane (PDMS) film (BSPF) inspired by the pitcher plant was fabricated successfully by infusing with hydrophobic liquid lubricant. The resultant surface has hydrophobic surface chemistry, a slippery interface, PMAs structure. The wettability, optical characteristic, antifogging property and self-cleaning ability of the PMAs-based BSPF were characterized experimentally. The film displays excellent optical transmittance, antireflection, antifogging, and self-cleaning properties, which is superior to the flat PDMS film (FPF). Remarkably, an average reflection of ∼11.3% in the FPF was reduced to ∼8.9% of the BSPF. In addition, after gradient spray test for 120 s, the antifogging efficiency was close to 100% for the BSPF surface in comparison with the flat PDMS film (FPF), biomimetic PDMS film (BPF) and flat slippery PDMS film (FSPF) (35%, 70% and 85%). Furthermore, we also discovered that the BSPF surface exhibited a better self-cleaning performance toward a variety of liquids than solid dust.
Collapse
|
26
|
Jeon Y, Nagappan S, Li XH, Lee JH, Shi L, Yuan S, Lee WK, Ha CS. Highly Transparent, Robust Hydrophobic, and Amphiphilic Organic-Inorganic Hybrid Coatings for Antifogging and Antibacterial Applications. ACS APPLIED MATERIALS & INTERFACES 2021; 13:6615-6630. [PMID: 33507059 DOI: 10.1021/acsami.0c20401] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The control of surface wettability through a combination of surface roughness, chemical composition, and structural modification has attracted significant attention for antifogging and antibacterial applications. Herein, a two-step spin-coating method for amphiphilic organic-inorganic hybrid materials with incorporated transition metal ions is presented. The coating solution was prepared via photochemical thiol-ene click reaction between the mercapto functional group in trimethylolpropane tris(3-mercaptopropionate) and the vinyl functionalized silica precursor 3-(trimethoxysilyl)propyl methacrylate. In the first step of coating, a glass substrate was coated using a solution of metal nitrate hydrates and subsequently showed hydrophobic properties. As the second step, the spin-coated glass substrate was further coated with silica nanoparticles (SiO2 NPs) and polycaprolactone triol (PCT) suspension, where the contents of SiO2 NPs were fixed at 0.1 wt %, unless otherwise noted. The coated substrate exhibited hydrophilic properties. For comparison, the coating was also formulated with the SiO2 NPs/PCT suspension without SiO2 NPs and with 0.5 wt % SiO2 NPs as well as by adjusting different coating layer thicknesses. The surface morphology and chemical compositions of the obtained coating materials were analyzed by field emission scanning electron microscopy with energy-dispersive X-ray spectroscopy and X-ray photoelectron spectroscopy. The transparency and static contact angle of coated samples were measured by UV-visible spectrophotometry and drop shape analysis, respectively. It was concluded that our novel hybrid coating materials exhibited excellent antibacterial and antifogging properties with extremely high scratch resistance and transparency.
Collapse
Affiliation(s)
- Yubin Jeon
- Department of Polymer Science and Engineering, Pusan National University, Busan 46241, Korea
| | - Saravanan Nagappan
- Department of Polymer Science and Engineering, Pusan National University, Busan 46241, Korea
| | - Xi-Hui Li
- Department of Pharmacy, College of Pharmacy, Pusan National University, Busan 46241, Korea
| | - Joon-Hee Lee
- Department of Pharmacy, College of Pharmacy, Pusan National University, Busan 46241, Korea
| | - Liyi Shi
- Research Center of Nanoscience and Nanotechnology, Shanghai University, Shanghai 200444, China
- Emerging Industries Institute, Shanghai University, Jiaxing, Zhejiang 314006, China
| | - Shuai Yuan
- Research Center of Nanoscience and Nanotechnology, Shanghai University, Shanghai 200444, China
- Emerging Industries Institute, Shanghai University, Jiaxing, Zhejiang 314006, China
| | - Won-Ki Lee
- Department of Polymer Engineering, Pukyong National University, Busan 48547, Korea
| | - Chang-Sik Ha
- Department of Polymer Science and Engineering, Pusan National University, Busan 46241, Korea
| |
Collapse
|
27
|
Recent Progresses of Superhydrophobic Coatings in Different Application Fields: An Overview. COATINGS 2021. [DOI: 10.3390/coatings11020116] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
With the development of material engineering and coating industries, superhydrophobic coatings with exceptional water repellence have increasingly come into researchers’ horizons. The superhydrophobic coatings with corrosion resistance, self-cleaning, anti-fogging, drag-reduction, anti-icing properties, etc., meet the featured requirements from different application fields. In addition, endowing superhydrophobic coatings with essential performance conformities, such as transparency, UV resistance, anti-reflection, water-penetration resistance, thermal insulation, flame retardancy, etc. plays a remarkable role in broadening their application scope. Various superhydrophobic coatings were fabricated by diverse technologies resulting from the fundamental demands of different fields. Most past reviews, however, provided only limited information, and lacked detailed classification and presentation on the application of superhydrophobic coatings in different sectors. In the current review, we will highlight the recent progresses on superhydrophobic coatings in automobile, marine, aircraft, solar energy and architecture-buildings fields, and discuss the requirement of prominent functionalities and performance conformities in these vital fields. Poor durability of superhydrophobic coating remains a practical challenge that needs to be addressed through real-world application. This review serves as a good reference source and provides insight into the design and optimization of superhydrophobic coatings for different applications.
Collapse
|
28
|
A Feasible and Holistic Characterization of an Affordable Anti-Fog Coating Enhancing Readability. Macromol Res 2021. [DOI: 10.1007/s13233-020-8160-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
29
|
Yang S, Zhu D, Yang F, Li W, Yao Z, Liu B. An effective method for delayed migration of dripping agent from linear low‐density polyethylene films. POLYM ADVAN TECHNOL 2020. [DOI: 10.1002/pat.5192] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Siqi Yang
- School of Chemistry and Environmental Engineering Changchun University of Science and Technology Changchun China
- State Key Laboratory of Polymer Physics and Chemistry Changchun Institute of Applied Chemistry, Chinese Academy of Sciences Changchun China
| | - Dantong Zhu
- School of Chemistry and Environmental Engineering Changchun University of Science and Technology Changchun China
- State Key Laboratory of Polymer Physics and Chemistry Changchun Institute of Applied Chemistry, Chinese Academy of Sciences Changchun China
| | - Fanghong Yang
- State Key Laboratory of Polymer Physics and Chemistry Changchun Institute of Applied Chemistry, Chinese Academy of Sciences Changchun China
| | - Wenfei Li
- School of Chemistry and Environmental Engineering Changchun University of Science and Technology Changchun China
| | - Zhanhai Yao
- State Key Laboratory of Polymer Physics and Chemistry Changchun Institute of Applied Chemistry, Chinese Academy of Sciences Changchun China
| | - Bingwei Liu
- Huadun Snowflake Plastic (Gu'an) Co., Ltd Langfang China
| |
Collapse
|
30
|
Raula M, Kar S, Ansari F, Das S, Ghosh SK. Zwitter‐wettable acrylic polymeric coating on glasses for anti‐fog applications. J Appl Polym Sci 2020. [DOI: 10.1002/app.49303] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Manoj Raula
- Department of Applied Chemistry, Amity Institute of Applied Sciences (AIAS)Amity University Noida Uttar Pradesh India
| | - Sumit Kar
- Harind Chemicals and Pharmaceuticals Pvt. Ltd. Vikhroli, Mumbai India
| | - Faisal Ansari
- Harind Chemicals and Pharmaceuticals Pvt. Ltd. Vikhroli, Mumbai India
| | - Sandip Das
- Harind Chemicals and Pharmaceuticals Pvt. Ltd. Vikhroli, Mumbai India
| | - Swapan K. Ghosh
- Harind Chemicals and Pharmaceuticals Pvt. Ltd. Vikhroli, Mumbai India
| |
Collapse
|
31
|
Kim S, Park JH. Chemically Robust Antifog Nanocoating through Multilayer Deposition of Silica Composite Nanofilms. ACS APPLIED MATERIALS & INTERFACES 2020; 12:42109-42118. [PMID: 32809787 DOI: 10.1021/acsami.0c11746] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
A coating must remain intact to perform its inherent functions on a surface, and often functional organic coatings fail due to deterioration because of their intrinsic vulnerabilities. In this work, we present a biomimetic material based on a glass sponge to provide a robust silica composite nanocoating with an antifog effect. The silica composite nanocoating was constructed with a binary film structure consisting of (1) a Fe(III)-tannic acid (TA) nanofilm for adhesion to coat the substrates and (2) a SiO2 layer to enhance the durability of the coating. Due to the universal coating property of Fe(III)-TA nanofilms, we demonstrated that the silica composite nanocoating was effective regardless of the substrate. By layer-by-layer assembly of the silica composite, it is possible to precisely control the nanocoating thickness. The superhydrophilic nature of the SiO2 layer showed an exceptional antifog effect that remained intact against multiple deteriorative conditions, including acid treatment, peroxide degradation, sudden temperature change, severe heat conduction, and oil contamination. In addition, the silica composite nanocoating is scalable for surfaces of different shapes and sizes with the aid of a spray-assisted deposition technique. The bioinspired, multicomposite nanocoating strategy herein contributes to the improvement of organic coatings for uses in applications to tackle current technological problems.
Collapse
Affiliation(s)
- Seulbi Kim
- Department of Science Education, Ewha Womans University, Seoul 03760, Korea
| | - Ji Hun Park
- Department of Science Education, Ewha Womans University, Seoul 03760, Korea
| |
Collapse
|
32
|
Plasma-immersion ion implantation surface oxidation on a cobalt-chromium alloy for biomedical applications. Biointerphases 2020; 15:041004. [PMID: 32689805 DOI: 10.1116/6.0000278] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Co-Cr alloys such as L605 are widely applied for the manufacture of medical devices, including tiny cardiovascular stents. The presence of potentially toxic and allergenic release of Ni, Co, and Cr ions from these devices remains an unsolved concern. Surface modification by oxygen plasma immersion implantation (PIII) could be an excellent technique to create a dense and thin passive oxide layer on a relatively complex shape of a tiny device, such as a stent, thus reducing the potential release of metallic ions. The effect of oxygen PIII was investigated on L605 alloy specimens, from 5 to 50 mTorr gas pressures, and under pulsed bias voltages from -0.1 to -10 kV. The surface chemistry was investigated by x-ray photoelectron spectroscopy, while its morphology and surface energy were evaluated, respectively, by atomic force microscopy and scanning electron microscopy and by a sessile drop static contact angle. Electrochemical characterization was performed by potentiodynamic tests in the saline solution. Mechanical properties of the modified surface layer, specifically film adhesion and hardness (H), were assessed by scratch and nanoindentation tests. Results shown that the oxidized layers were composed of a mixture of Co and Cr oxides and hydroxides and were rich in Co. The corrosion rate was considerably reduced after O PIII, even for treatments using low bias voltage (-0.1 kV) and with consequent low oxygen implantation depth. Moreover, O PIII also improved surface hardness. The oxidized layers were found to have good adhesion and to be scratch resistant.
Collapse
|
33
|
Sato T, Dunderdale GJ, Hozumi A. Large-Scale Formation of Fluorosurfactant-Doped Transparent Nanocomposite Films Showing Durable Antifogging, Oil-Repellent, and Self-healing Properties. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:7439-7446. [PMID: 32513010 DOI: 10.1021/acs.langmuir.0c00990] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Transparent nanocomposite films with multiple functionalities, such as durable antifogging, dynamic oleophobic, self-healing properties, were successfully prepared by a simple spin- or spray-coating method using aqueous solutions of poly(vinylpyrrolidone) (PVP) and aminopropyl-functionalized nanoclay (AMP-clay) platelets. In this study, anionic/waterborne perfluorooctanesulfonic acid potassium salt (PFOS) was premixed with the aqueous PVP solution to achieve a homogeneous dispersion of PFOS. Due to the addition of PFOS, the resulting nanocomposite film surfaces displayed statically hydrophobic (static water contact angle over 90°) and dynamically oleophobic (5 μL of oil droplets could slide off of the surface at low sliding/substrate tilt angles of less than 10°) behaviors. In spite of our nanocomposite film surface exhibiting a statically hydrophobic nature, the antifogging properties remained unchanged even after being left under high-humidity conditions (over 80% relative humidity) for 3 days. Thanks to both exceptional water-absorbing properties of PVP/AMP-clay matrices and good mobility of PFOS driven by moisture, our oil-repellent nanocomposite films could be repeatedly self-healed even after both severe physical (cutting, scratching, or falling sand abrasion) and chemical (vacuum UV oxidation) damages. Large-scale fabrication of this multifunctional nanocomposite film (30 cm × 30 cm) could also be successfully demonstrated by a spray-coating method based on in situ gel formation.
Collapse
Affiliation(s)
- Tomoya Sato
- National Institute of Advanced Industrial Science and Technology (AIST), 2266-98, Anagahora, Shimo-shidami, Moriyama, Nagoya 463-8560, Japan
| | - Gary J Dunderdale
- Department of Chemical and Biological Engineering, University of Sheffield, Sheffield S1 3JD, U.K
| | - Atsushi Hozumi
- National Institute of Advanced Industrial Science and Technology (AIST), 2266-98, Anagahora, Shimo-shidami, Moriyama, Nagoya 463-8560, Japan
| |
Collapse
|
34
|
Wang H, Yang S, Li X, Yang F, Sun X, Li W, Yao Z. Improving light converting properties with wettability of polyethylene film by rare earth complex Eu(GI) 3Phen. POLYM-PLAST TECH MAT 2020. [DOI: 10.1080/25740881.2020.1765379] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Haoyuan Wang
- School of Chemistry and Environmental Engineering, Changchun University of Science and Technology, Changchun, People’s Republic of China
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, People’s Republic of China
| | - Siqi Yang
- School of Chemistry and Environmental Engineering, Changchun University of Science and Technology, Changchun, People’s Republic of China
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, People’s Republic of China
| | - Xiaotian Li
- School of Chemistry and Environmental Engineering, Changchun University of Science and Technology, Changchun, People’s Republic of China
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, People’s Republic of China
| | - Fanghong Yang
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, People’s Republic of China
| | - Xiaopeng Sun
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, People’s Republic of China
| | - Wenfei Li
- School of Chemistry and Environmental Engineering, Changchun University of Science and Technology, Changchun, People’s Republic of China
| | - Zhanhai Yao
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, People’s Republic of China
| |
Collapse
|
35
|
Chang C, Lin Z, Cheng L. Preparation of organic–inorganic hybridized dual‐functional antifog/antireflection coatings on plastic substrates. J Appl Polym Sci 2020. [DOI: 10.1002/app.48822] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Chao‐Ching Chang
- Department of Chemical and Materials EngineeringTamkang University Taipei 25137 Taiwan
- Energy and Opto‐Electronic Materials Research CenterTamkang University Taipei 25137 Taiwan
| | - Zi‐Min Lin
- Department of Chemical and Materials EngineeringTamkang University Taipei 25137 Taiwan
| | - Liao‐Ping Cheng
- Department of Chemical and Materials EngineeringTamkang University Taipei 25137 Taiwan
- Energy and Opto‐Electronic Materials Research CenterTamkang University Taipei 25137 Taiwan
| |
Collapse
|
36
|
Seidi F, Zhao W, Xiao H, Jin Y, Zhao C. Layer‐by‐Layer Assembly for Surface Tethering of Thin‐Hydrogel Films: Design Strategies and Applications. CHEM REC 2020; 20:857-881. [DOI: 10.1002/tcr.202000007] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2020] [Revised: 03/20/2020] [Accepted: 03/23/2020] [Indexed: 01/12/2023]
Affiliation(s)
- Farzad Seidi
- Provincial Key Lab of Pulp & Paper Sci and Tech, and Joint International Research Lab of Lignocellulosic Functional MaterialsNanjing Forestry University Nanjing 210037 China
| | - Weifeng Zhao
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials EngineeringSichuan University Chengdu 610065 China
| | - Huining Xiao
- Department of Chemical EngineeringUniversity of New Brunswick Fredericton NB E3B 5 A3 Canada
| | - Yongcan Jin
- Provincial Key Lab of Pulp & Paper Sci and Tech, and Joint International Research Lab of Lignocellulosic Functional MaterialsNanjing Forestry University Nanjing 210037 China
| | - Changsheng Zhao
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials EngineeringSichuan University Chengdu 610065 China
| |
Collapse
|
37
|
Bai S, Li X, Zhao Y, Ren L, Yuan X. Antifogging/Antibacterial Coatings Constructed by N-Hydroxyethylacrylamide and Quaternary Ammonium-Containing Copolymers. ACS APPLIED MATERIALS & INTERFACES 2020; 12:12305-12316. [PMID: 32068389 DOI: 10.1021/acsami.9b21871] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Endoscopic surgery has gained widespread applications in various clinical departments, and endoscope surfaces with antifogging and antibacterial properties are essential for elaborate procedures. In this work, novel antifogging/antibacterial coatings were developed from a cationic copolymer and a hydrophilic copolymer, polyhedral oligomeric silsesquioxane-poly(quaternary ammonium compound-co-2-aminoethyl methacrylate hydrochloride) [POSS-P(QAC-co-AEMA)] and poly(N-hydroxyethylacrylamide-co-glycidyl methacrylate) [P(HEAA-co-GMA)] via a facile and green blending method. Such transparent coatings showed excellent antifogging performance under both in vitro and in vivo fogging conditions, mainly attributed to the high water-absorbing capability of HEAA and QAC. Antibacterial assays proved that the blending coatings had a superior antibacterial property, which could be improved with the proportion of POSS-P(QAC-co-AEMA) because of the bactericidal efficiency of cationic QAC. Meanwhile, owing to the high hydratability of HEAA, the blending coatings exhibited a bacteria-repelling property. By simply tuning the blending ratio of POSS-P(QAC-co-AEMA) and P(HEAA-co-GMA), the comprehensive bacteria-killing and bacteria-repelling properties of the coatings were achieved. Moreover, after incubating with red blood cells, the prepared blending coatings presented a lower hemolytic rate of less than 5%. The findings provided a potential means for addressing the challenge of fogging and bacterial contamination occurring in endoscopic lenses and other medical devices.
Collapse
Affiliation(s)
- Shan Bai
- School of Materials Science and Engineering, and Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin 300350, China
| | - Xiaohui Li
- School of Materials Science and Engineering, and Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin 300350, China
| | - Yunhui Zhao
- School of Materials Science and Engineering, and Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin 300350, China
| | - Lixia Ren
- School of Materials Science and Engineering, and Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin 300350, China
| | - Xiaoyan Yuan
- School of Materials Science and Engineering, and Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin 300350, China
| |
Collapse
|
38
|
Zuo Y, Zheng L, Zhao C, Liu H. Micro-/Nanostructured Interface for Liquid Manipulation and Its Applications. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e1903849. [PMID: 31482672 DOI: 10.1002/smll.201903849] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 08/12/2019] [Indexed: 05/09/2023]
Abstract
Understanding the relationship between liquid manipulation and micro-/nanostructured interfaces has gained much attention due to the wide potential applications in many fields, such as chemical and biomedical assays, environmental protection, industry, and even daily life. Much work has been done to construct various materials with interfacial liquid manipulation abilities, leading to a range of interesting applications. Herein, different fabrication methods from the top-down approach to the bottom-up approach and subsequent surface modifications of micro-/nanostructured interfaces are first introduced. Then, interactions between the surface and liquid, including liquid wetting, liquid transportation, and a number of corresponding models, together with the definition of hydrophilic/hydrophobic, oleophilic/olephobic, the definition and mechanism of superwetting, including superhydrophobicity, superhydrophilicity, and superoleophobicity, are presented. The micro-/nanostructured interface, with major applications in self-cleaning, antifogging, anti-icing, anticorrosion, drag-reduction, oil-water separation, water collection, droplet (micro)array, and surface-directed liquid transport, is summarized, and the mechanisms underlying each application are discussed. Finally, the remaining challenges and future perspectives in this area are included.
Collapse
Affiliation(s)
- Yinxiu Zuo
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| | - Liuzheng Zheng
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| | - Chao Zhao
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| | - Hong Liu
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| |
Collapse
|
39
|
Pakdel E, Wang J, Kashi S, Sun L, Wang X. Advances in photocatalytic self-cleaning, superhydrophobic and electromagnetic interference shielding textile treatments. Adv Colloid Interface Sci 2020; 277:102116. [PMID: 32036000 DOI: 10.1016/j.cis.2020.102116] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 01/07/2020] [Accepted: 01/27/2020] [Indexed: 11/25/2022]
Abstract
The use of nanomaterials in textiles provides many new opportunities and advantages for users and manufacturers; however, it comes with some of its downsides and challenges which need to be understood and overcome for enhancing the applicability of these products. This review article discusses the recent progress in developing self-cleaning and conductive textiles as two of the leading research fields of smart textiles. In particular, different aspects of fabricating nanocoatings for photocatalytic self-cleaning, superhydrophobic and electromagnetic interference (EMI) shielding effect will be brought to light. The theoretical concepts, mechanisms, latest fabrication methods along with their potential applications will be discussed. Moreover, the current drawbacks of these fields will be underlined and some recommendations for future research trajectories in terms of performance, current limitations, sustainability and safety will be proposed. This review article provides a comprehensive review on the state-of-the-art achievements in the field, which will be a valuable reference for researchers and decision makers.
Collapse
|
40
|
Yang S, Wang H, Sun X, Yang F, Li X, Li W, Yao Z. Synthesis of a dripping agent based on lauric acid diethanolamide and delaying its migration in LLDPE films. POLYM-PLAST TECH MAT 2020. [DOI: 10.1080/25740881.2020.1719145] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Affiliation(s)
- Siqi Yang
- School of Chemistry and Environmental Engineering, Changchun University of Science and Technology, Changchun, People’s Republic of China
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, People ’s Republic of China
| | - Haoyuan Wang
- School of Chemistry and Environmental Engineering, Changchun University of Science and Technology, Changchun, People’s Republic of China
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, People ’s Republic of China
| | - Xiaopeng Sun
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, People ’s Republic of China
| | - Fanghong Yang
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, People ’s Republic of China
| | - Xiaotian Li
- School of Chemistry and Environmental Engineering, Changchun University of Science and Technology, Changchun, People’s Republic of China
| | - Wenfei Li
- School of Chemistry and Environmental Engineering, Changchun University of Science and Technology, Changchun, People’s Republic of China
| | - Zhanhai Yao
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, People ’s Republic of China
| |
Collapse
|
41
|
Nishiyabu R, Takahashi Y, Yabuki T, Gommori S, Yamamoto Y, Kitagishi H, Kubo Y. Boronate sol-gel method for one-step fabrication of polyvinyl alcohol hydrogel coatings by simple cast- and dip-coating techniques. RSC Adv 2019; 10:86-94. [PMID: 35492531 PMCID: PMC9048246 DOI: 10.1039/c9ra08208e] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Accepted: 12/16/2019] [Indexed: 12/25/2022] Open
Abstract
The self-assembly of polyvinyl alcohol (PVA) and benzene-1,4-diboronic acid (DBA) is employed as a sol–gel method for one-step fabrication of hydrogel coatings with versatile functionalities. A mixture of PVA and DBA in aqueous ethanol is prepared as a coating agent. The long pot life of the mixture allows for the coating of a wide range of materials with hydrogel films by simple cast- and dip-coating techniques. The resultant films show negligible dissolution in water and the intrinsic hydrophilicity of PVA provides the films with functional properties, such as improved antifogging property and resistance to protein and cell fouling. The self-assembling process shows adaptive inclusion properties toward nanoscale materials, such as metal–organic coordination polymers and inorganic nanoparticles, affording composite films. Furthermore, the coating film exhibits a unique secondary functionalization reactivity toward boronic acid-appended fluorescent dyes, through which a variety of materials are converted into fluorescent materials. The self-assembly of polyvinyl alcohol (PVA) and benzene-1,4-diboronic acid (DBA) is employed as a sol–gel method for one-step fabrication of hydrogel coatings with versatile functionalities.![]()
Collapse
Affiliation(s)
- Ryuhei Nishiyabu
- Department of Applied Chemistry, Graduate School of Urban Environmental Sciences, Tokyo Metropolitan University 1-1 Minami-ohsawa Hachioji Tokyo 192-0397 Japan
| | - Yuki Takahashi
- Department of Applied Chemistry, Graduate School of Urban Environmental Sciences, Tokyo Metropolitan University 1-1 Minami-ohsawa Hachioji Tokyo 192-0397 Japan
| | - Taro Yabuki
- Department of Applied Chemistry, Graduate School of Urban Environmental Sciences, Tokyo Metropolitan University 1-1 Minami-ohsawa Hachioji Tokyo 192-0397 Japan
| | - Shoji Gommori
- Department of Applied Chemistry, Graduate School of Urban Environmental Sciences, Tokyo Metropolitan University 1-1 Minami-ohsawa Hachioji Tokyo 192-0397 Japan
| | - Yuki Yamamoto
- Department of Applied Chemistry, Graduate School of Urban Environmental Sciences, Tokyo Metropolitan University 1-1 Minami-ohsawa Hachioji Tokyo 192-0397 Japan
| | - Hiroaki Kitagishi
- Department of Molecular Chemistry and Biochemistry, Faculty of Science and Engineering, Doshisha University Kyotanabe Kyoto 610-0321 Japan
| | - Yuji Kubo
- Department of Applied Chemistry, Graduate School of Urban Environmental Sciences, Tokyo Metropolitan University 1-1 Minami-ohsawa Hachioji Tokyo 192-0397 Japan
| |
Collapse
|
42
|
Chang C, Lin Z, Cheng L. Preparation of superhydrophilic nanosilica/polyacrylate hard coatings on plastic substrate for antifogging and frost‐resistant applications. J Appl Polym Sci 2019. [DOI: 10.1002/app.48144] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Chao‐Ching Chang
- Department of Chemical and Materials EngineeringTamkang University 151, Yingzhuan Road, Tamsui District, New Taipei City 25137 Taiwan
- Energy and Opto‐Electronic Materials Research CenterTamkang University 151, Yingzhuan Road, Tamsui District, New Taipei City 25137 Taiwan
| | - Zi‐Min Lin
- Department of Chemical and Materials EngineeringTamkang University 151, Yingzhuan Road, Tamsui District, New Taipei City 25137 Taiwan
| | - Liao‐Ping Cheng
- Department of Chemical and Materials EngineeringTamkang University 151, Yingzhuan Road, Tamsui District, New Taipei City 25137 Taiwan
- Energy and Opto‐Electronic Materials Research CenterTamkang University 151, Yingzhuan Road, Tamsui District, New Taipei City 25137 Taiwan
| |
Collapse
|
43
|
Sason E, Kolitz-Domb M, Chill JH, Margel S. Engineering of Durable Antifog Thin Coatings on Plastic Films by UV-Curing of Proteinoid Prepolymers with PEG-Diacrylate Monomers. ACS OMEGA 2019; 4:9352-9360. [PMID: 31460024 PMCID: PMC6648281 DOI: 10.1021/acsomega.9b00336] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Accepted: 04/09/2019] [Indexed: 05/26/2023]
Abstract
Fog formation on transparent surfaces constitutes a major challenge in several optical applications, such as plastic packaging, lenses, mirrors, and windshields. To overcome this problem, we prepared and characterized durable antifog thin coatings on plastic films such as polyethylene terephthalate (PET). Proteinoids are biocompatible random polymers made of α-amino acids by thermal step-growth polymerization. Proteinoid prepolymers were prepared by adding activated double bonds to proteinoids via the Michael addition reaction. A series of thin antifog cross-linked coatings were prepared by spreading on PET films with a Mayer rod various mixtures of the proteinoid prepolymers, polyethylene glycol diacrylate, and a photoinitiator, followed by UV-curing of the dried coatings. The antifog properties of the coatings were determined by the contact angle, roughness, haze, and gloss measurements, as well as hot and cold fog tests, to examine the optical properties of the films under fog formation conditions. Mechanical properties such as adhesion, robustness, and abrasion resistance of the antifog coatings were examined by tape, knife-scratch, and sandpaper abrasion tests. The effect of coating composition, wettability, and roughness on the antifog properties of the coated PET films was elucidated. The formula was optimized, and the corresponding UV-cured antifog cross-linked thin coating exhibited transparency with good adhesion and excellent durable antifog performance.
Collapse
|