1
|
Lee J, Murad S, Nikolov A. Ballpoint/Rollerball Pens: Writing Performance and Evaluation. COLLOIDS AND INTERFACES 2023. [DOI: 10.3390/colloids7020029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/07/2023]
Abstract
Here, a brief history of the development of the ballpoint/rollerball pen and the fountain pen is presented. Their principle of operation is analogous that of multipart microfluidics-type devices, where capillarity–gravity drives the ink, a complex fluid, to flow in the confinement of a micrometer-sized canal or to lubricate a ball rotating in a socket. The differences in the operational writing principles of the fountain pen versus the ballpoint/rollerball pen are discussed. The ballpoint/rollerball pen’s manner of writing was monitored using lens end fiber optics and was digitally recorded. The ball rotation rate per unit length was monitored using a piezoelectric disk oscilloscope technique. The role of ink (a complex fluid) chemistry in the wetting phenomenon is elucidated. We also discuss methods for studying and evaluating ink–film–ball–paper surface wetting. The goal of the proposed research is to optimize and improve the writing performance of the ballpoint/rollerball pen.
Collapse
Affiliation(s)
- Jongju Lee
- Department of Chemical and Biological Engineering, Illinois Institute of Technology, Chicago, IL 60616, USA
| | - Sohail Murad
- Department of Chemical and Biological Engineering, Illinois Institute of Technology, Chicago, IL 60616, USA
| | - Alex Nikolov
- Department of Chemical and Biological Engineering, Illinois Institute of Technology, Chicago, IL 60616, USA
| |
Collapse
|
2
|
López D, Chamat NM, Galeano-Caro D, Páramo L, Ramirez D, Jaramillo D, Cortés FB, Franco CA. Use of Nanoparticles in Completion Fluids as Dual Effect Treatments for Well Stimulation and Clay Swelling Damage Inhibition: An Assessment of the Effect of Nanoparticle Chemical Nature. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:388. [PMID: 36770349 PMCID: PMC9921731 DOI: 10.3390/nano13030388] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 12/28/2022] [Accepted: 01/13/2023] [Indexed: 06/18/2023]
Abstract
The objective of this study is to evaluate the role of nanoparticles with different chemical structures in completion fluids (CF) in providing a positive dual effect for well stimulation and clay swelling damage inhibition. Six types of commercial (C) or synthesized (S) nanoparticles have been incorporated into a commercial completion fluid. Doses varied between 100 and 500 mg·L-1. CF-nanoparticles were evaluated by fluid-fluid, fluid-nanoparticle, and fluid-rock interactions. The adsorption isotherms show different degrees of affinity, which impacts on the reduction of the interfacial tension between the CF and the reservoir fluids. Fluid-fluid interactions based on interfacial tension (IFT) measurements suggest that positively charged nanoparticles exhibit high IFT reductions. Based on contact angle measurements, fluid-rock interactions suggest that ZnO-S, SiO2-C, SiO2-S, and ZrO2 can adequately promote water-wet rock surfaces compared with other nanomaterials. According to the capillary number, ZnO-S and MgO-S have a higher capacity to reduce both interfacial and surface restrictions for crude oil production, suggesting that completion fluid with nanoparticles (NanoCF) can function as a stimulation agent. The clay swelling inhibition test in the presence of ZnO-S-CTAB and MgO-S-CTAB nanoparticles showed a 28.6% decrease in plastic viscosity (PV), indicating a reduction in clay swelling. The results indicate that a high-clay environment can meet the completion fluid's requirements. They also indicate that the degree of clay swelling inhibition of the nanoparticles depends on their chemical nature and dosage. Finally, displacement tests revealed that CF with nanoparticles increased the oil linear displacement efficiency.
Collapse
Affiliation(s)
- Daniel López
- Grupo de Investigación en Fenómenos de Superficie-Michael Polanyi, Departamento de Procesos y Energía, Facultad de Minas, Universidad Nacional de Colombia—Sede Medellín, Medellin 050034, Colombia
| | - Nicolas M. Chamat
- Grupo de Investigación en Fenómenos de Superficie-Michael Polanyi, Departamento de Procesos y Energía, Facultad de Minas, Universidad Nacional de Colombia—Sede Medellín, Medellin 050034, Colombia
| | - Dahiana Galeano-Caro
- Grupo de Investigación en Fenómenos de Superficie-Michael Polanyi, Departamento de Procesos y Energía, Facultad de Minas, Universidad Nacional de Colombia—Sede Medellín, Medellin 050034, Colombia
| | | | - Diego Ramirez
- Parex Resources Colombia Ltd., Bogota 110111, Colombia
| | | | - Farid B. Cortés
- Grupo de Investigación en Fenómenos de Superficie-Michael Polanyi, Departamento de Procesos y Energía, Facultad de Minas, Universidad Nacional de Colombia—Sede Medellín, Medellin 050034, Colombia
| | - Camilo A. Franco
- Grupo de Investigación en Fenómenos de Superficie-Michael Polanyi, Departamento de Procesos y Energía, Facultad de Minas, Universidad Nacional de Colombia—Sede Medellín, Medellin 050034, Colombia
| |
Collapse
|
3
|
Lei W, Lu X, Wang M. Multiphase displacement manipulated by micro/nanoparticle suspensions in porous media via microfluidic experiments: From interface science to multiphase flow patterns. Adv Colloid Interface Sci 2023; 311:102826. [PMID: 36528919 DOI: 10.1016/j.cis.2022.102826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 12/04/2022] [Accepted: 12/09/2022] [Indexed: 12/15/2022]
Abstract
Multiphase displacement in porous media can be adjusted by micro/nanoparticle suspensions, which is widespread in many scientific and industrial contexts. Direct visualization of suspension flow dynamics and corresponding multiphase patterns is crucial to understanding displacement mechanisms and eventually optimizing these processes in geological, biological, chemical, and other engineering systems. However, suspension flow inside the opaque realistic porous media makes direct observation challenging. The advances in microfluidic experiments have provided us with alternative methods to observe suspension influence on the interface and multiphase flow behaviors at high temporal and spatial resolutions. Macroscale processes are controlled by microscale interfacial behaviors, which are affected by multiple physical factors, such as particle adsorption, capillarity, and hydrodynamics. These properties exerted on the suspension flow in porous media may lead to interesting interfacial phenomena and new displacement consequences. As an underpinning science, understanding and controlling the suspension transport process from interface to flow patterns in porous media is critical for a lower operating cost to improve resource production while reducing harmful emissions and other environmental impacts. This review summarizes the basic properties of different micro/nanoparticle suspensions and the state-of-the-art microfluidic techniques for displacement research activities in porous media. Various suspension transport behaviors and displacement mechanisms explored by microfluidic experiments are comprehensively reviewed. This review is expected to boost both experimental and theoretical understanding of suspension transport and interfacial interaction processes in porous media. It also brings forward the challenges and opportunities for future research in controlling complex fluid flow in porous media for diverse applications.
Collapse
Affiliation(s)
- Wenhai Lei
- Department of Engineering Mechanics, Tsinghua University, Beijing 100084, China
| | - Xukang Lu
- Department of Engineering Mechanics, Tsinghua University, Beijing 100084, China
| | - Moran Wang
- Department of Engineering Mechanics, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
4
|
Xiang B, Liu Q, Sun Q, Gong J, Mu P, Li J. Recent advances in eco-friendly fabrics with special wettability for oil/water separation. Chem Commun (Camb) 2022; 58:13413-13438. [PMID: 36398621 DOI: 10.1039/d2cc05780h] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Considering the serious damage to aquatic ecosystems and marine life caused by oil spills and oily wastewater discharge, efficient, environment-friendly and sustainable oil/water separation technology has become an inevitable trend for current development. Herein, fabrics are recognized as eco-friendly materials for water treatment due to their good degradability and low cost. Particularly, fabrics with rough structures and natural hydrophilicity/oleophilicity enable the construction of superwetting surfaces for the selective separation of oil/water mixtures and even complex emulsions. Therefore, superwetting fabrics for efficiently solving oil spills and purifying oily wastewater have received extensive attention. Especially, Janus and smart fabrics are highly anticipated to enable the on-demand and sustainable treatment of oil spills and oily wastewater due to their changeable wettability. Moreover, the fabrication of superwetting fabrics with multifunctional performances for oily wastewater purification can further promote their practical industrial applications, such as photocatalytic, self-cleaning, and self-healing characteristics. However, some potential challenges still exist, which urgently need to be systematically summarized to guide the future development of this research field. In this review, firstly, the fundamental theories of wettability and the separation mechanisms based on special wettability are discussed. Then, superwetting fabrics for efficient oil/water separation are systematically reviewed, such as superhydrophobic/superoleophilic (SHB/SOL), superhydrophilic/superoleophobic (SHL/SOB), SHL/underwater superoleophobic (SHL/UWSOB), and UWSOB/underoil superoleophobic (UWSOB/UOSHB) fabrics. Most importantly, we highlight Janus, smart, and multifunctional fabrics based on their superwetting property. Correspondingly, the advantages and disadvantages of each superwetting fabric are comprehensively analyzed. Besides, super-antiwetting fabrics with superhydrophobic/superoleophobic (SHB/SOB) property are also introduced. Finally, the challenges and future research directions are explained.
Collapse
Affiliation(s)
- Bin Xiang
- Key Laboratory of Eco-functional Polymer Materials of the Ministry of Education, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, P. R. China.
| | - Qiuqiu Liu
- Key Laboratory of Eco-functional Polymer Materials of the Ministry of Education, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, P. R. China.
| | - Qing Sun
- Key Laboratory of Eco-functional Polymer Materials of the Ministry of Education, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, P. R. China.
| | - Jingling Gong
- Key Laboratory of Eco-functional Polymer Materials of the Ministry of Education, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, P. R. China.
| | - Peng Mu
- Key Laboratory of Eco-functional Polymer Materials of the Ministry of Education, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, P. R. China.
| | - Jian Li
- Key Laboratory of Eco-functional Polymer Materials of the Ministry of Education, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, P. R. China.
| |
Collapse
|
5
|
Son HA, Jang Y, Lee T. The effect of concentration of silica nanoparticles surface-modified by zwitterionic surfactants for enhanced oil recovery (EOR). KOREAN J CHEM ENG 2022. [DOI: 10.1007/s11814-022-1216-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
|
6
|
Nanofluid Structural Forces Alter Solid Wetting, Enhancing Oil Recovery. COLLOIDS AND INTERFACES 2022. [DOI: 10.3390/colloids6020033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Nanofluids have attracted significant research interest for their promising application in enhanced oil recovery. One striking feature leading to the outstanding efficiency of nanofluids in enhanced oil recovery is the structure of nanoparticles, which induces oscillatory structural forces in the confined space between fluid–fluid interfaces or air–liquid and liquid–solid interfaces. To promote the understanding of the oscillatory structural forces and their application in enhanced oil recovery, we reviewed the origin and theory of the oscillatory structural forces, factors affecting their magnitude, and the experimental techniques demonstrating their impacts on enhanced oil recovery. We also reviewed the methods, where the benefits of nanofluids in enhanced oil recovery provided by the oscillatory structural forces are directly manifested. The oscillatory structural forces promote the wetting and spreading of nanofluids on solid surfaces, which ultimately enhances the separation of oil from the reservoir. Some imbibition tests demonstrated as much as 50% increased oil recovery, compared to the cases where the oscillatory structural forces were absent.
Collapse
|
7
|
Wang Y, Yuan J, Dong S, Hao J. Multilayer-Stabilized Water-in-Water Emulsions. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:4713-4721. [PMID: 35384674 DOI: 10.1021/acs.langmuir.2c00271] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Water-in-water (W/W) emulsions are of interest for various applications due to their inherent biocompatibility, ultralow interfacial tensions, and large interface thickness. However, it is still challenging to prepare stable W/W emulsions with tailored phase architectures compared to oil-in-water (O/W) and water-in-oil (W/O) emulsions. Here, we report a multilayer-stabilized W/W emulsion composed of poly(ethylene glycol)/dextran in the presence of DNA strands. The W/W emulsions present onion-ring-like structures, which are interpreted by a nanofluid film model. Emulsion behavior, e.g., stability, interface tension, etc., can be controlled by the type of DNA (single or double strands), DNA concentration, and volume fraction of dispersed phase. Our findings could broaden the preparation of novel emulsions for potential applications in emulsion polymerization, new media of homogeneous catalysis, and DNA transportation of water-in-water media.
Collapse
Affiliation(s)
- Yitong Wang
- Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, Shandong University, Jinan 250100, China
| | - Jin Yuan
- Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, Shandong University, Jinan 250100, China
| | - Shuli Dong
- Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, Shandong University, Jinan 250100, China
| | - Jingcheng Hao
- Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, Shandong University, Jinan 250100, China
| |
Collapse
|
8
|
Nikolov AD, Wasan DT, Wu P. Solvation forces versus the nano-colloidal structural forces under the film confinement: Layer to in-layer structural transition in wetting solids. Curr Opin Colloid Interface Sci 2022. [DOI: 10.1016/j.cocis.2021.101539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
9
|
Yu X, He L, Liu R, Guan H, Ge C, Zhang X. Preparation and Photothermal Conversion of h‐BN/CuO Nanofluids. ChemistrySelect 2021. [DOI: 10.1002/slct.202103025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Xiaohan Yu
- College of Chemistry Liaoning University Chongshan Road No. 66 Shenyang 110036 P. R. China
| | - Lili He
- College of Chemistry Liaoning University Chongshan Road No. 66 Shenyang 110036 P. R. China
| | - Rui Liu
- College of Chemistry Liaoning University Chongshan Road No. 66 Shenyang 110036 P. R. China
| | - Hongyu Guan
- College of Chemistry Liaoning University Chongshan Road No. 66 Shenyang 110036 P. R. China
| | - Chunhua Ge
- College of Chemistry Liaoning University Chongshan Road No. 66 Shenyang 110036 P. R. China
| | - Xiangdong Zhang
- College of Chemistry Liaoning University Chongshan Road No. 66 Shenyang 110036 P. R. China
| |
Collapse
|
10
|
Nikolov A, Wasan D. Methods to monitor water-in-oil film thinning and stability: An application to bitumen demulsification. J Colloid Interface Sci 2021; 598:147-154. [PMID: 33895536 DOI: 10.1016/j.jcis.2021.03.166] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 03/28/2021] [Accepted: 03/29/2021] [Indexed: 11/30/2022]
Abstract
Understanding what governs the water-in-oil emulsion film stability and demulsification is important for science and technology. The demulsification of the tar sands' water-in-bitumen emulsion and proposing methods for demulsification with an efficient demulsifier (emulsion breaker) are important but challenging tasks. Despite the long period of time researchers have been examining the factors governing bitumen emulsion stability and demulsification, these concepts are still not well understood and require more study. Due to the lack of suitable robust methods to reveal what governs bitumen emulsion thinning and stability, additional study is needed. The goal of this research is to provide an understanding of the role of the asphaltene-resin nanoparticles on the bitumen film and emulsion stability and to propose a possible solution to the challenges presented. The techniques were developed and applied to monitor the curved and flat bitumen emulsion films' thinning in transmitted and reflected light. The observed plane bitumen emulsion film stepwise thinning in reflected light interferometry reveals the role of the layered-lattice film structural stabilization. The role of the asphaltene-resin structure formation on film stability is discussed and a model is proposed. The data obtained by the techniques help to propose a methodology to optimize the performance of the demulsifier.
Collapse
Affiliation(s)
- Alex Nikolov
- Department of Chemical and Biological Engineering, Illinois Institute of Technology, Chicago, IL 60616, USA.
| | - Darsh Wasan
- Department of Chemical and Biological Engineering, Illinois Institute of Technology, Chicago, IL 60616, USA.
| |
Collapse
|
11
|
Amani M, Amani P, Bahiraei M, Ghalambaz M, Ahmadi G, Wang LP, Wongwises S, Mahian O. Latest developments in nanofluid flow and heat transfer between parallel surfaces: A critical review. Adv Colloid Interface Sci 2021; 294:102450. [PMID: 34091219 DOI: 10.1016/j.cis.2021.102450] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2021] [Revised: 05/17/2021] [Accepted: 05/20/2021] [Indexed: 01/10/2023]
Abstract
The enhancement of heat transfer between parallel surfaces, including parallel plates, parallel disks, and two concentric pipes, is vital because of their wide applications ranging from lubrication systems to water purification processes. Various techniques can be utilized to enhance heat transfer in such systems. Adding nanoparticles to the conventional working fluids is an effective solution that could remarkably enhance the heat transfer rate. No published review article focuses on the recent advances in nanofluid flow between parallel surfaces; therefore, the present paper aims to review the latest experimental and numerical studies on the flow and heat transfer of nanofluids (mixtures of nanoparticles and conventional working fluids) in such configurations. For the performance analysis of thermal systems composed of parallel surfaces and operating with nanofluids, it is necessary to know the physical phenomena and parameters that influence the flow and heat transfer characteristics in these systems. Significant results obtained from this review indicate that, in most cases, the heat transfer rate between parallel surfaces is enhanced with an increase in the Rayleigh number, the Reynolds number, the magnetic number, and Brownian motion. On the other hand, an increase in thermophoresis parameter, as well as flow parameters, including the Eckert number, buoyancy ratio, Hartmann number, and Lewis number, leads to heat transfer rate reduction.
Collapse
|
12
|
Neves MAR, Santos RGD. Phase behavior of surface films of SARA fractions extracted from heavy oil. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2021.126423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
13
|
Duan S, Peng J, Cheng H, Li W, Jia R, Liu J, He X, Wang K. A label-free and homogenous electrochemical assay for matrix metalloproteinase 2 activity monitoring in complex samples based on electrodes modified with orderly distributed mesoporous silica films. Talanta 2021; 231:122418. [PMID: 33965055 DOI: 10.1016/j.talanta.2021.122418] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 03/28/2021] [Accepted: 04/07/2021] [Indexed: 11/29/2022]
Abstract
Herein, a label-free and homogeneous electrochemical strategy for monitoring of matrix metalloproteinase 2 (MMP-2) activity was proposed based on electrodes modified with orderly distributed mesoporous silica films (MSFs). In the absence of target MMP-2, an artificially substrate peptide with positive charge was absorbed on the surface of MSFs by electrostatic interaction, which could prevent electrochemical molecules [Ru(NH3)6]Cl3 from approaching the electrode surface. When the substrate peptide was hydrolyzed by target MMP-2, [Ru(NH3)6]Cl3 could arrive to the electrode surface and lead to the increase of electrochemical signal. This assay showed considerable sensitivity to target MMP-2, which could measure it down to 0.98 ng. mL-1. Meanwhile, a satisfied response to the inhibitor of MMP-2 was also achieved (IC-50 value = 1.68 μM). Significantly, it displayed satisfactory performances in the complicated biological samples including cell lysates and human serum. Taking advantages of the anti-fouling ability in biological complex samples of MSFs and the high efficiency of homogeneous sensing, this assay realized the electrochemical detection of MMP-2 with accuracy and sensitivity, which exhibited significant potential in clinical biomedicine and biological analysis of cancer-related protease.
Collapse
Affiliation(s)
- Shuangdi Duan
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, College of Chemistry and Chemical Engineering, Hunan University, Key Laboratory for Bio-Nanotechnology and Molecule Engineering of Hunan Province, Changsha, 410082, China
| | - Jiaxin Peng
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, College of Chemistry and Chemical Engineering, Hunan University, Key Laboratory for Bio-Nanotechnology and Molecule Engineering of Hunan Province, Changsha, 410082, China
| | - Hong Cheng
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, College of Chemistry and Chemical Engineering, Hunan University, Key Laboratory for Bio-Nanotechnology and Molecule Engineering of Hunan Province, Changsha, 410082, China
| | - Wei Li
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, College of Chemistry and Chemical Engineering, Hunan University, Key Laboratory for Bio-Nanotechnology and Molecule Engineering of Hunan Province, Changsha, 410082, China
| | - Ruichen Jia
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, College of Chemistry and Chemical Engineering, Hunan University, Key Laboratory for Bio-Nanotechnology and Molecule Engineering of Hunan Province, Changsha, 410082, China
| | - Jinquan Liu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, College of Chemistry and Chemical Engineering, Hunan University, Key Laboratory for Bio-Nanotechnology and Molecule Engineering of Hunan Province, Changsha, 410082, China
| | - Xiaoxiao He
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, College of Chemistry and Chemical Engineering, Hunan University, Key Laboratory for Bio-Nanotechnology and Molecule Engineering of Hunan Province, Changsha, 410082, China.
| | - Kemin Wang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, College of Chemistry and Chemical Engineering, Hunan University, Key Laboratory for Bio-Nanotechnology and Molecule Engineering of Hunan Province, Changsha, 410082, China.
| |
Collapse
|
14
|
Application of conventional and hybrid nanofluids in different machining processes: A critical review. Adv Colloid Interface Sci 2020; 282:102199. [PMID: 32679398 DOI: 10.1016/j.cis.2020.102199] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 06/09/2020] [Accepted: 06/10/2020] [Indexed: 11/20/2022]
Abstract
This paper reviews the application of conventional and hybrid nano cutting fluids with different additives in various machining processes, namely turning, milling, drilling, and grinding ones. The literature states that using nanofluids, as cutting fluids, improves the lubrication and cooling in comparison with conventional cutting liquids, while the level of improvement depends on some parameters. In turning process, for each nanofluid, there is a specific pressure, flow rate, and nanoparticle volume fraction to reach optimum performance. Nanoparticle concentration in the range of 0.25%-0.5% (low and economical concentrations) is the most repetitive for optimal case in most of machining processes. Also, hybrid nanofluids show more positive effects compared with conventional nanofluids and base fluids. According to the reports, important parameters such as cutting temperature, cutting force, tool wear, and surface roughness experience 10%-40% and in some cases 50%-70% positive change after applying nanoparticles in turning processes. On the other hand, for the milling process, the SiO2, MoS2 and graphene nanoparticles are reported as most applied and effective ones in the literature. For the drilling process, the Cu and diamond nanoparticles are the most applied nanoparticles with positive effect. Moreover, the most utilized nanoparticles for grinding process are MoS2, Al2O3 and diamond families. The corresponding challenges in this field are also examined and directions for future research are recommended.
Collapse
|
15
|
Novel approach for calculating the equilibrium foam nanofilm-meniscus contact angle and the film free energy. J Colloid Interface Sci 2019; 557:591-597. [PMID: 31557579 DOI: 10.1016/j.jcis.2019.09.057] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 09/08/2019] [Accepted: 09/17/2019] [Indexed: 11/22/2022]
Abstract
The film meniscus is a capillary system that is part of everyday observed phenomena, such as in foams, emulsions, liquid suspensions of nanoparticles (nanofluids), and liquid-wetting solids. The capillarity of a microscopic free foam lamella with a meniscus is important for a fundamental understanding of the role of the surface forces vs. thickness and stability of dispersed systems. The film-meniscus transition region, known as the Gibbs-Plateau border, and macroscopic contact angle, defined by the extrapolated meniscus Laplace surfaces, are the characteristics of capillary systems that reveal how the surface forces contribute to the stability of the dispersed systems. The foam nanofilm formed from a nanofluid due to nanoparticle self-layering under the film surface confinement thins in a multiple regular stepwise manner (not like soap films) above the CMC. The equilibrium thickness of the nanofilm is governed by the film area rather than the capillary pressure, as was reported for common and Newtonian films. Our video clip shows that the nanofilm thins layer by layer as the film area decreases. Our observation reveals that the nanofilm with a small film area remains at the equilibrium thickness with several layers. An iterative method is proposed to locate the film meniscus contact line. The film-meniscus profile of the transition region is examined using the reflected light interferometry and by applying the two radii of curvature. The micro- and macroscopic contact angles between nanofilm and meniscuses are calculated. The foam nanofilm's structural free energy is calculated vs. the number of layers. The knowledge gained from this research will help to improve the understanding of the dispersion stability of foams, emulsions, and liquid suspensions of nanoparticles.
Collapse
|
16
|
Gbadamosi AO, Junin R, Manan MA, Agi A, Yusuff AS. An overview of chemical enhanced oil recovery: recent advances and prospects. INTERNATIONAL NANO LETTERS 2019. [DOI: 10.1007/s40089-019-0272-8] [Citation(s) in RCA: 194] [Impact Index Per Article: 38.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|