1
|
Farkas E, Dóra Kovács K, Szekacs I, Peter B, Lagzi I, Kitahata H, Suematsu NJ, Horvath R. Kinetic monitoring of molecular interactions during surfactant-driven self-propelled droplet motion by high spatial resolution waveguide sensing. J Colloid Interface Sci 2025; 677:352-364. [PMID: 39151228 DOI: 10.1016/j.jcis.2024.07.236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 07/29/2024] [Accepted: 07/30/2024] [Indexed: 08/19/2024]
Abstract
HYPOTHESIS Self-driven actions, like motion, are fundamental characteristics of life. Today, intense research focuses on the kinetics of droplet motion. Quantifying macroscopic motion and exploring the underlying mechanisms are crucial in self-structuring and self-healing materials, advancements in soft robotics, innovations in self-cleaning environmental processes, and progress within the pharmaceutical industry. Usually, the driving forces inducing macroscopic motion act at the molecular scale, making their real-time and high-resolution investigation challenging. Label-free surface sensitive measurements with high lateral resolution could in situ measure both molecular-scale interactions and microscopic motion. EXPERIMENTS We employ surface-sensitive label-free sensors to investigate the kinetic changes in a self-assembled monolayer of the trimethyl(octadecyl)azanium chloride surfactant on a substrate surface during the self-propelled motion of nitrobenzene droplets. The adsorption-desorption of the surfactant at various concentrations, its removal due to the moving organic droplet, and rebuilding mechanisms at droplet-visited areas are all investigated with excellent time, spatial, and surface mass density resolution. FINDINGS We discovered concentration dependent velocity fluctuations, estimated the adsorbed amount of surfactant molecules, and revealed multilayer coverage at high concentrations. The desorption rate of surfactant (18.4 s-1) during the microscopic motion of oil droplets was determined by in situ differentiating between droplet visited and non-visited areas.
Collapse
Affiliation(s)
- Eniko Farkas
- Nanobiosensorics Laboratory, Institute of Technical Physics and Materials Science, HUN-REN Centre for Energy Research, 1121 Budapest, Hungary
| | - Kinga Dóra Kovács
- Nanobiosensorics Laboratory, Institute of Technical Physics and Materials Science, HUN-REN Centre for Energy Research, 1121 Budapest, Hungary; Department of Biological Physics, Eötvös Loránd University, 1117 Budapest, Hungary
| | - Inna Szekacs
- Nanobiosensorics Laboratory, Institute of Technical Physics and Materials Science, HUN-REN Centre for Energy Research, 1121 Budapest, Hungary
| | - Beatrix Peter
- Nanobiosensorics Laboratory, Institute of Technical Physics and Materials Science, HUN-REN Centre for Energy Research, 1121 Budapest, Hungary
| | - István Lagzi
- Department of Physics, Institute of Physics, Budapest University of Technology and Economics, Muegyetem rkp. 3, 1111 Budapest, Hungary; HUN-REN-BME Condensed Matter Physics Research Group, Budapest University of Technology and Economics, Muegyetem rkp. 3, 1111 Budapest, Hungary
| | - Hiroyuki Kitahata
- Graduate School of Science, Chiba University, Yayoi-cho 1-33, Inage-ku, Chiba 263-8522, Japan
| | - Nobuhiko J Suematsu
- Meiji Institute of Advanced Study of Mathematical Sciences (MIMS), Meiji University, 4-21-1 Nakano, Tokyo 164-8525, Japan; Graduate School of Advanced Mathematical Sciences, Meiji University, 4-21-1 Nakano, Tokyo 164-8525, Japan.
| | - Robert Horvath
- Nanobiosensorics Laboratory, Institute of Technical Physics and Materials Science, HUN-REN Centre for Energy Research, 1121 Budapest, Hungary; Nanobiosensorics Laboratory, Institute of Biophysics, HUN-REN Biological Research Centre, Szeged, Hungary.
| |
Collapse
|
2
|
Ji S, Chiniforooshan Esfahani I, Yang R, Sun H. Adsorption and Morphology Analysis of Bovine Serum Albumin on a Micropillar-Enhanced Quartz Crystal Microbalance. J Phys Chem B 2024; 128:10247-10257. [PMID: 39380463 PMCID: PMC11492313 DOI: 10.1021/acs.jpcb.4c03393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 08/19/2024] [Accepted: 09/27/2024] [Indexed: 10/10/2024]
Abstract
The adsorption of bovine serum albumin (BSA), a widely used blood plasma protein, onto poly(methyl methacrylate) (PMMA) surface is a fundamental phenomenon attracting increasing interests in molecular biology, cell culture, immunology, diagnostics, and vaccinology. The nanostructured PMMA surfaces have shown a considerable effect on the BSA adsorption process. However, the effect of microstructures (e.g., micropillars) on BSA adsorption has seldom been studied. This research reports on the development of an acoustic resonance based method to explore the adsorption of BSA proteins on PMMA micropillars in terms of surface coverage, apparent binding constants, and pH-induced morphology variation. A theoretical model is developed to understand the frequency changes of QCM induced by BSA adsorption by taking into consideration the effects of the hydrodynamic force and an equivalent BSA/liquid layer formed on the micropillar surface. In addition, it was found that the resonance of micropillars with a quartz crystal microbalance (QCM) substrate significantly influenced BSA adsorption on micropillar surfaces.
Collapse
Affiliation(s)
- Siqi Ji
- Department of Mechanical
and Industrial Engineering, Northeastern
University, Boston, Massachusetts 02115, United States
| | - Ilia Chiniforooshan Esfahani
- Department of Mechanical
and Industrial Engineering, Northeastern
University, Boston, Massachusetts 02115, United States
| | - Ruibo Yang
- Department of Mechanical
and Industrial Engineering, Northeastern
University, Boston, Massachusetts 02115, United States
| | - Hongwei Sun
- Department of Mechanical
and Industrial Engineering, Northeastern
University, Boston, Massachusetts 02115, United States
| |
Collapse
|
3
|
Chen Y, Zhang H, Li R, Fan H, Huang J, Zhou R, Yin S, Liu GL, Huang L. Novel Multifunctional Meta-Surface Plasmon Resonance Chip Microplate for High-Throughput Molecular Screening. Adv Healthc Mater 2024; 13:e2401097. [PMID: 38800937 DOI: 10.1002/adhm.202401097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 05/23/2024] [Indexed: 05/29/2024]
Abstract
The utilization of surface plasmon resonance (SPR) sensors for real-time label-free molecular interaction analysis is already being employed in the fields of in vitro diagnostics and biomedicine. However, the widespread application of SPR technology is hindered by its limited detection throughput and high cost. To address this issue, this study introduces a novel multifunctional MetaSPR high-throughput microplate biosensor featuring 3D nanocups array structure, aiming to achieve high-throughput screening with a reduced cost and enhanced speed. Different types of MetaSPR sensors and analytical detection methods have been developed for accurate antibody subtype identification, epitope binding, affinity determination, antibody collocation, and quantitative detection, greatly promoting the screening and analysis of early-stage antibody drugs. The MetaSPR platform combined with nano-enhanced particles amplifies the detection signal and improves the detection sensitivity, making it more convenient, sensitive, and efficient than traditional ELISA. The findings demonstrate that the MetaSPR biosensor is a new practical technology detection platform that can improve the efficiency of biomolecular interaction studies with unlimited potential for new drug development.
Collapse
Affiliation(s)
- Youqian Chen
- College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Huazhi Zhang
- Biosensor R&D Department, Liangzhun (Wuhan) Life Technology Co., Ltd., Wuhan, 430070, China
| | - Rui Li
- College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Hongli Fan
- College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Junjie Huang
- College of Life Science and Technology, Wuhan University of Bioengineering, Wuhan, 430400, China
| | - Rui Zhou
- Biosensor R&D Department, Liangzhun (Wuhan) Life Technology Co., Ltd., Wuhan, 430070, China
| | - Shaoping Yin
- School of Pharmacy, Jiangsu Provincial Engineering Research Center of Traditional Chinese Medicine External Medication Development and Application, Nanjing University of Chinese Medicine, Nanjing, 210023, P. R. China
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, China Pharmaceutical University, Nanjing, 210009, P. R. China
| | - Gang L Liu
- College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
- Biosensor R&D Department, Liangzhun (Wuhan) Life Technology Co., Ltd., Wuhan, 430070, China
| | - Liping Huang
- College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
- Biosensor R&D Department, Liangzhun (Wuhan) Life Technology Co., Ltd., Wuhan, 430070, China
| |
Collapse
|
4
|
Chen M, Fan H, Li W, Ruan J, Yang Y, Mao C, Li R, Liu GL, Hu W. Nanoplasmonic Affinity Analysis System for Molecular Screening Based on Bright‐Field Imaging. ADVANCED FUNCTIONAL MATERIALS 2024; 34. [DOI: 10.1002/adfm.202314481] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Indexed: 01/06/2025]
Abstract
AbstractConsidering the improved detection of biological analytes for affinity analysis is highly desirable, a metasurface plasmon resonance (Meta‐SPR)‐based imaging system, incorporating a localized SPR sensing platform with different microfluidic systems and employing simple bright‐field imaging, is established in this study. This system enables low‐level analyte concentration analysis, ranging from 100 pm to 100 nm, with the real‐time removal of nonspecific binding signals within the same device field of view. Combined with microfluidic systems and microdroplet spotting, it is possible to automatically measure the kinetic curves of a sample at ten concentration gradients or detect the specific responses of multiple samples in a single experiment simultaneously. This system can inexpensively and conveniently achieve complex detection functions, demonstrating an innovative breakthrough in sensor detection.
Collapse
Affiliation(s)
- Mingqian Chen
- College of Life Science and Technology State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases Huazhong University of Science and Technology 1037 Luo Yu Road Wuhan 430070 P. R. China
| | - Hongli Fan
- College of Life Science and Technology State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases Huazhong University of Science and Technology 1037 Luo Yu Road Wuhan 430070 P. R. China
| | - Wen Li
- College of Life Science and Technology State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases Huazhong University of Science and Technology 1037 Luo Yu Road Wuhan 430070 P. R. China
| | - Jingyan Ruan
- College of Life Science and Technology State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases Huazhong University of Science and Technology 1037 Luo Yu Road Wuhan 430070 P. R. China
| | - Yihui Yang
- College of Life Science and Technology State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases Huazhong University of Science and Technology 1037 Luo Yu Road Wuhan 430070 P. R. China
| | - Cuixuan Mao
- College of Life Science and Technology State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases Huazhong University of Science and Technology 1037 Luo Yu Road Wuhan 430070 P. R. China
| | - Rui Li
- College of Life Science and Technology State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases Huazhong University of Science and Technology 1037 Luo Yu Road Wuhan 430070 P. R. China
| | - Gang L. Liu
- College of Life Science and Technology State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases Huazhong University of Science and Technology 1037 Luo Yu Road Wuhan 430070 P. R. China
| | - Wenjun Hu
- College of Life Science and Technology State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases Huazhong University of Science and Technology 1037 Luo Yu Road Wuhan 430070 P. R. China
| |
Collapse
|
5
|
Kovacs KD, Beres B, Kanyo N, Szabó B, Peter B, Bősze S, Szekacs I, Horvath R. Single-cell classification based on label-free high-resolution optical data of cell adhesion kinetics. Sci Rep 2024; 14:11231. [PMID: 38755203 PMCID: PMC11099063 DOI: 10.1038/s41598-024-61257-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Accepted: 05/03/2024] [Indexed: 05/18/2024] Open
Abstract
Selecting and isolating various cell types is a critical procedure in many applications, including immune therapy, regenerative medicine, and cancer research. Usually, these selection processes involve some labeling or another invasive step potentially affecting cellular functionality or damaging the cell. In the current proof of principle study, we first introduce an optical biosensor-based method capable of classification between healthy and numerous cancerous cell types in a label-free setup. We present high classification accuracy based on the monitored single-cell adhesion kinetic signals. We developed a high-throughput data processing pipeline to build a benchmark database of ~ 4500 single-cell adhesion measurements of a normal preosteoblast (MC3T3-E1) and various cancer (HeLa, LCLC-103H, MDA-MB-231, MCF-7) cell types. Several datasets were used with different cell-type selections to test the performance of deep learning-based classification models, reaching above 70-80% depending on the classification task. Beyond testing these models, we aimed to draw interpretable biological insights from their results; thus, we applied a deep neural network visualization method (grad-CAM) to reveal the basis on which these complex models made their decisions. Our proof-of-concept work demonstrated the success of a deep neural network using merely label-free adhesion kinetic data to classify single mammalian cells into different cell types. We propose our method for label-free single-cell profiling and in vitro cancer research involving adhesion. The employed label-free measurement is noninvasive and does not affect cellular functionality. Therefore, it could also be adapted for applications where the selected cells need further processing, such as immune therapy and regenerative medicine.
Collapse
Affiliation(s)
- Kinga Dora Kovacs
- Nanobiosensorics Laboratory, Institute of Technical Physics and Materials Science MFA, HUN-REN Centre for Energy Research, Konkoly-Thege út 29-33, 1121, Budapest, Hungary
- Department of Biological Physics, Eötvös University, Budapest, Hungary
| | - Balint Beres
- Nanobiosensorics Laboratory, Institute of Technical Physics and Materials Science MFA, HUN-REN Centre for Energy Research, Konkoly-Thege út 29-33, 1121, Budapest, Hungary
- Department of Automation and Applied Informatics, Faculty of Electrical Engineering and Informatics, Budapest University of Technology and Economics, Műegyetem Rkp. 3., 1111, Budapest, Hungary
| | - Nicolett Kanyo
- Nanobiosensorics Laboratory, Institute of Technical Physics and Materials Science MFA, HUN-REN Centre for Energy Research, Konkoly-Thege út 29-33, 1121, Budapest, Hungary
| | - Balint Szabó
- Department of Biological Physics, Eötvös University, Budapest, Hungary
- Cellsorter Kft., Budapest, Hungary
| | - Beatrix Peter
- Nanobiosensorics Laboratory, Institute of Technical Physics and Materials Science MFA, HUN-REN Centre for Energy Research, Konkoly-Thege út 29-33, 1121, Budapest, Hungary
| | - Szilvia Bősze
- HUN-REN-ELTE Research Group of Peptide Chemistry, Hungarian Research Network, Eötvös Loránd University, 1117, Budapest, Hungary
| | - Inna Szekacs
- Nanobiosensorics Laboratory, Institute of Technical Physics and Materials Science MFA, HUN-REN Centre for Energy Research, Konkoly-Thege út 29-33, 1121, Budapest, Hungary
| | - Robert Horvath
- Nanobiosensorics Laboratory, Institute of Technical Physics and Materials Science MFA, HUN-REN Centre for Energy Research, Konkoly-Thege út 29-33, 1121, Budapest, Hungary.
| |
Collapse
|
6
|
Péter B, Szekacs I, Horvath R. Label-free biomolecular and cellular methods in small molecule epigallocatechin-gallate research. Heliyon 2024; 10:e25603. [PMID: 38371993 PMCID: PMC10873674 DOI: 10.1016/j.heliyon.2024.e25603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 01/30/2024] [Accepted: 01/30/2024] [Indexed: 02/20/2024] Open
Abstract
Small molecule natural compounds are gaining popularity in biomedicine due to their easy access to wide structural diversity and their proven health benefits in several case studies. Affinity measurements of small molecules below 100 Da molecular weight in a label-free and automatized manner using small amounts of samples have now become a possibility and reviewed in the present work. We also highlight novel label-free setups with excellent time resolution, which is important for kinetic measurements of biomolecules and living cells. We summarize how molecular-scale affinity data can be obtained from the in-depth analysis of cellular kinetic signals. Unlike traditional measurements, label-free biosensors have made such measurements possible, even without the isolation of specific cellular receptors of interest. Throughout this review, we consider epigallocatechin gallate (EGCG) as an exemplary compound. EGCG, a catechin found in green tea, is a well-established anti-inflammatory and anti-cancer agent. It has undergone extensive examination in numerous studies, which typically rely on fluorescent-based methods to explore its effects on both healthy and tumor cells. The summarized research topics range from molecular interactions with proteins and biological films to the kinetics of cellular adhesion and movement on novel biomimetic interfaces in the presence of EGCG. While the direct impact of small molecules on living cells and biomolecules is relatively well investigated in the literature using traditional biological measurements, this review also highlights the indirect influence of these molecules on the cells by modifying their nano-environment. Moreover, we underscore the significance of novel high-throughput label-free techniques in small molecular measurements, facilitating the investigation of both molecular-scale interactions and cellular processes in one single experiment. This advancement opens the door to exploring more complex multicomponent models that were previously beyond the reach of traditional assays.
Collapse
Affiliation(s)
- Beatrix Péter
- Nanobiosensorics Laboratory, Institute of Technical Physics and Materials Science, HUN-REN Centre for Energy Research, Konkoly-Thege M. út 29-33., 1121 Budapest, Hungary
| | - Inna Szekacs
- Nanobiosensorics Laboratory, Institute of Technical Physics and Materials Science, HUN-REN Centre for Energy Research, Konkoly-Thege M. út 29-33., 1121 Budapest, Hungary
| | - Robert Horvath
- Nanobiosensorics Laboratory, Institute of Technical Physics and Materials Science, HUN-REN Centre for Energy Research, Konkoly-Thege M. út 29-33., 1121 Budapest, Hungary
| |
Collapse
|
7
|
Gagliardi M, Tori G, Sanmartin C, Cecchini M. The effect of probe density coverage on the detection of oenological tannins in quartz crystal microbalance with dissipation monitoring (QCM-D) experiments. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024. [PMID: 38308593 DOI: 10.1002/jsfa.13351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 01/05/2024] [Accepted: 01/26/2024] [Indexed: 02/05/2024]
Abstract
BACKGROUND Polyphenols are a group of compounds found in grapes, musts, and wines. Their levels are crucial for grape ripening, proper must fermentation, and final wine characteristics. Standard chemical analysis is commonly used to detect these compounds, but it is costly, time consuming, and requires specialized laboratories and operators. To address this, this study explores a functionalized acoustic sensor for detecting oenological polyphenols. RESULTS The method involves utilizing a quartz crystal microbalance with dissipation monitoring (QCM-D) to detect the target analyte by using a gelatin-based probe layer. The sensor is functionalized by optimizing the probe coverage density to maximize its performance. This is achieved by using 12-mercaptododecanoic acid (12-MCA) to immobilize the probe onto the gold sensor surface, and dithiothreitol (DTT) as a reducing and competitive binding agent. The concentration of 12-MCA and DTT in the solutions is varied to control the probe density. QCM-D measurements demonstrate that the probe density can be effectively adjusted using this approach, ranging from 0.2 × 1013 to 2 × 1013 molecules cm-2 . This study also investigates the interaction between the probe and tannins, confirming the ability of the sensor to detect them. Interestingly, the lower probe coverage achieves higher detection signals when normalized to probe immobilization signals. Moreover, significant changes in mechanical properties of the functionalization layer are observed after the interaction with samples. CONCLUSION The combination of QCM-D with gelatin functionalization holds great promise for future applications in the wine industry. It offers real-time monitoring capabilities, requires minimal sample preparation, and provides high sensitivity for quality control purposes. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
| | - Giorgia Tori
- NEST, Istituto Nanoscienze - CNR and Scuola Normale Superiore, Pisa, Italy
| | - Chiara Sanmartin
- Department of Agriculture Food Environment, University of Pisa, Pisa, Italy
| | - Marco Cecchini
- NEST, Istituto Nanoscienze - CNR and Scuola Normale Superiore, Pisa, Italy
| |
Collapse
|
8
|
Saffari Z, Cohan RA, Sepahi M, Sadeqi M, Khoobi M, Fard MH, Ghavidel A, Amiri FB, Aghasadeghi MR, Norouzian D. Signal amplification of a quartz crystal microbalance immunosensor by gold nanoparticles-polyethyleneimine for hepatitis B biomarker detection. Sci Rep 2023; 13:21851. [PMID: 38071203 PMCID: PMC10710426 DOI: 10.1038/s41598-023-48766-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 11/30/2023] [Indexed: 12/18/2023] Open
Abstract
The procedures currently used for hepatitis B (HB) detection are not suitable for screening, clinical diagnosis, and point-of-care testing (POCT). Therefore, we developed and tested a QCM-based immunosensor by surface modification with AuNP-PEIs to amplify the signal and provide an oriented-immobilization surface. The AuNP-PEIs were characterized by ICP-Mass, UV/Vis, DLS, FE-SEM, and ATR-FTIR. After coating AuNP-PEIs on the gold electrode surface, anti-HBsAg antibodies were immobilized using NHS/EDC chemistry based on response surface methodology (RSM) optimization. The efficiency of the immunosensor was assessed by human sera and data were compared to gold-standard ELISA using receiver-operating-characteristic (ROC) analysis. FE-SEM, AFM, EDS, and EDS mapping confirmed AuNP-PEIs are homogeneously distributed on the surface with a high density and purity. After antibody immobilization, the immunosensor exhibited good recognition of HBsAg with a calibration curve of ∆F = - 6.910e-7x + 10(R2 = 0.9905), a LOD of 1.49 ng/mL, and a LOQ of 4.52 ng/mL. The immunosensor yielded reliable and accurate results with a specificity of 100% (95% CI 47.8-100.0) and sensitivity of 100% (95% CI 96.2-100.0). In conclusion, the fabricated immunosensor has the potential as an analytic tool with high sensitivity and specificity. However, further investigations are needed to convert it to a tiny lab-on-chip for HB diagnosis in clinical samples.
Collapse
Affiliation(s)
- Zahra Saffari
- Nanobiotechnology Department, New Technologies Research Group, Pasteur Institute of Iran, Tehran, 1316943551, Iran
| | - Reza Ahangari Cohan
- Nanobiotechnology Department, New Technologies Research Group, Pasteur Institute of Iran, Tehran, 1316943551, Iran
| | - Mina Sepahi
- Nanobiotechnology Department, New Technologies Research Group, Pasteur Institute of Iran, Tehran, 1316943551, Iran
| | - Mahdi Sadeqi
- Applied Biotechnology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Mehdi Khoobi
- Department of Radiopharmacy, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
- Pharmaceutical Quality Assurance Research Center, The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran, Iran
| | | | - Amir Ghavidel
- Physics Department, Sharif University of Technology, Tehran, Iran
| | - Fahimeh Bagheri Amiri
- Department of Epidemiology and Biostatistics, Research Centre for Emerging and Reemerging Infectious Diseases, Pasteur Institute of Iran, Tehran, Iran
| | | | - Dariush Norouzian
- Nanobiotechnology Department, New Technologies Research Group, Pasteur Institute of Iran, Tehran, 1316943551, Iran.
| |
Collapse
|
9
|
Wasilewska M, Michna A, Pomorska A, Wolski K, Zapotoczny S, Farkas E, Szittner Z, Szekacs I, Horvath R. Polysaccharide-based nano-engineered multilayers for controlled cellular adhesion in label-free biosensors. Int J Biol Macromol 2023; 247:125701. [PMID: 37429346 DOI: 10.1016/j.ijbiomac.2023.125701] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 06/22/2023] [Accepted: 07/03/2023] [Indexed: 07/12/2023]
Abstract
Controlling cellular adhesion is a critical step in the development of biomaterials, and in cell- based biosensing assays. Usually, the adhesivity of cells is tuned by an appropriate biocompatible layer. Here, synthetic poly(diallyldimethylammonium chloride) (PDADMAC), natural chitosan, and heparin (existing in an extracellular matrix) were selected to assembly PDADMAC/heparin and chitosan/heparin films. The physicochemical properties of macroion multilayers were determined by streaming potential measurements (SPM), quartz crystal microbalance (QCM-D), and optical waveguide lightmode spectroscopy (OWLS). The topography of the wet films was imaged using atomic force microscopy (AFM). The adhesion of preosteoblastic cell line MC3T3-E1 on those well-characterized polysaccharide-based multilayers was evaluated using a resonant waveguide grating (RWG) based optical biosensor and digital holographic microscopy. The latter method was engaged to investigate long-term cellular behavior on the fabricated multilayers. (PDADMAC/heparin) films were proved to be the most effective in inducing cellular adhesion. The cell attachment to chitosan/heparin-based multilayers was negligible. It was found that efficient adhesion of the cells occurs onto homogeneous and rigid multilayers (PDADMAC/heparin), whereas the macroion films forming "sponge-like" structures (chitosan/heparin) are less effective, and could be employed when reduced adhesion is needed. Polysaccharide-based multilayers can be considered versatile systems for medical applications. One can postulate that the presented results are relevant not only for modeling studies but also for applied research.
Collapse
Affiliation(s)
- Monika Wasilewska
- Jerzy Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, Niezapominajek 8, PL-30239 Krakow, Poland.
| | - Aneta Michna
- Jerzy Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, Niezapominajek 8, PL-30239 Krakow, Poland.
| | - Agata Pomorska
- Jerzy Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, Niezapominajek 8, PL-30239 Krakow, Poland.
| | - Karol Wolski
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Krakow, Poland.
| | - Szczepan Zapotoczny
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Krakow, Poland.
| | - Enikő Farkas
- Nanobiosensorics Laboratory, Institute of Technical Physics and Materials Science, Centre for Energy Research, 1121 Budapest, Hungary.
| | - Zoltan Szittner
- Nanobiosensorics Laboratory, Institute of Technical Physics and Materials Science, Centre for Energy Research, 1121 Budapest, Hungary.
| | - Inna Szekacs
- Nanobiosensorics Laboratory, Institute of Technical Physics and Materials Science, Centre for Energy Research, 1121 Budapest, Hungary.
| | - Robert Horvath
- Nanobiosensorics Laboratory, Institute of Technical Physics and Materials Science, Centre for Energy Research, 1121 Budapest, Hungary.
| |
Collapse
|
10
|
Gagliardi M, Colagiorgio L, Cecchini M. A Fast and Reliable Method Based on QCM-D Instrumentation for the Screening of Nanoparticle/Blood Protein Interactions. BIOSENSORS 2023; 13:607. [PMID: 37366972 DOI: 10.3390/bios13060607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 05/24/2023] [Accepted: 05/31/2023] [Indexed: 06/28/2023]
Abstract
The interactions that nanoparticles have with blood proteins are crucial for their fate in vivo. Such interactions result in the formation of the protein corona around the nanoparticles, and studying them aids in nanoparticle optimization. Quartz crystal microbalance with dissipation monitoring (QCM-D) can be used for this study. The present work proposes a QCM-D method to study the interactions on polymeric nanoparticles with three different human blood proteins (albumin, fibrinogen and γ-globulin) by monitoring the frequency shifts of sensors immobilizing the selected proteins. Bare PEGylated and surfactant-coated poly-(D,L-lactide-co-glycolide) nanoparticles are tested. The QCM-D data are validated with DLS and UV-Vis experiments in which changes in the size and optical density of nanoparticle/protein blends are monitored. We find that the bare nanoparticles have a high affinity towards fibrinogen and γ-globulin, with measured frequency shifts around -210 Hz and -50 Hz, respectively. PEGylation greatly reduces these interactions (frequency shifts around -5 Hz and -10 Hz for fibrinogen and γ-globulin, respectively), while the surfactant appears to increase them (around -240 Hz and -100 Hz and -30 Hz for albumin). The QCM-D data are confirmed by the increase in the nanoparticle size over time (up to 3300% in surfactant-coated nanoparticles), measured by DLS in protein-incubated samples, and by the trends of the optical densities, measured by UV-Vis. The results indicate that the proposed approach is valid for studying the interactions between nanoparticles and blood proteins, and the study paves the way for a more comprehensive analysis of the whole protein corona.
Collapse
Affiliation(s)
- Mariacristina Gagliardi
- NEST, Istituto Nanoscienze-CNR and Scuola Normale Superiore, Piazza San Silvestro, 56127 Pisa, Italy
| | - Laura Colagiorgio
- NEST, Istituto Nanoscienze-CNR and Scuola Normale Superiore, Piazza San Silvestro, 56127 Pisa, Italy
| | - Marco Cecchini
- NEST, Istituto Nanoscienze-CNR and Scuola Normale Superiore, Piazza San Silvestro, 56127 Pisa, Italy
| |
Collapse
|
11
|
Label-free biosensing of lignans for therapeutics using engineered model surfaces. Int J Biol Macromol 2023; 233:123528. [PMID: 36736979 DOI: 10.1016/j.ijbiomac.2023.123528] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 01/24/2023] [Accepted: 01/30/2023] [Indexed: 02/04/2023]
Abstract
The label-free interaction analysis of macromolecules and small molecules has increasing importance nowadays, both in diagnostics and therapeutics. In the blood vascular system, human serum albumin (HSA) is a vital globular transport protein with potential multiple ligand binding sites. Characterizing the binding affinity of compounds to HSA is essential in pharmaceutics and in developing new compounds for clinical application. Aryltetralin lignans from the roots of Anthriscus sylvestris are potential antitumor therapeutic candidates, but their molecular scale interactions with specific biomolecules are unrevealed. Here, we applied the label-free grating-coupled interferometry (GCI) biosensing method with a polycarboxylate-based hydrogel layer with immobilized HSA on top of it. With this engineered model surface, we could determine the binding parameters of two novel aryltetralin lignans, deoxypodophyllotoxin (DPT), and angeloyl podophyllotoxin (APT) to HSA. Exploiting the multi-channel referencing ability, the unique surface sensitivity, and the throughput of GCI, we first revealed the specific biomolecular interactions. Traditional label-free kinetic measurements were also compared with a novel, fast way of measuring affinity kinetics using less sample material (repeated analyte pulses of increasing duration (RAPID)). Experiments with well-characterized molecular interactions (furosemide to carbonic-anhydrase (CAII) and warfarin, norfloxacin to HSA) were performed to prove the reliability of the RAPID method. In all investigated cases, the RAPID and traditional measurement gave similar affinity values. In the case of DPT, the measurements and relevant modeling suggested two binding sites on HSA, with dissociation constant values of Kd1 = 1.8 ± 0.01 μM, Kd2 = 3 ± 0.02 μM. In the case of APT, the experiments resulted in Kd1 = 9 ± 1.7 μM, Kd2 = 28 ± 0.3 μM. The obtained binding values might suggest the potential medical application of DPT and APT without further optimization of their binding affinity to HSA. These results could be also adapted to other biomolecules and applications where sample consumption and the rapidity of the measurements are critical.
Collapse
|
12
|
Montero-Jimenez M, Amante FL, Fenoy GE, Scotto J, Azzaroni O, Marmisolle WA. PEDOT-Polyamine-Based Organic Electrochemical Transistors for Monitoring Protein Binding. BIOSENSORS 2023; 13:288. [PMID: 36832054 PMCID: PMC9954629 DOI: 10.3390/bios13020288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 02/09/2023] [Accepted: 02/15/2023] [Indexed: 06/18/2023]
Abstract
The fabrication of efficient organic electrochemical transistors (OECTs)-based biosensors requires the design of biocompatible interfaces for the immobilization of biorecognition elements, as well as the development of robust channel materials to enable the transduction of the biochemical event into a reliable electrical signal. In this work, PEDOT-polyamine blends are shown as versatile organic films that can act as both highly conducting channels of the transistors and non-denaturing platforms for the construction of the biomolecular architectures that operate as sensing surfaces. To achieve this goal, we synthesized and characterized films of PEDOT and polyallylamine hydrochloride (PAH) and employed them as conducting channels in the construction of OECTs. Next, we studied the response of the obtained devices to protein adsorption, using glucose oxidase (GOx) as a model system, through two different strategies: The direct electrostatic adsorption of GOx on the PEDOT-PAH film and the specific recognition of the protein by a lectin attached to the surface. Firstly, we used surface plasmon resonance to monitor the adsorption of the proteins and the stability of the assemblies on PEDOT-PAH films. Then, we monitored the same processes with the OECT showing the capability of the device to perform the detection of the protein binding process in real time. In addition, the sensing mechanisms enabling the monitoring of the adsorption process with the OECTs for the two strategies are discussed.
Collapse
|
13
|
Orlov AV, Burenin AG, Skirda AM, Nikitin PI. Kinetic Analysis of Prostate-Specific Antigen Interaction with Monoclonal Antibodies for Development of a Magnetic Immunoassay Based on Nontransparent Fiber Structures. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27228077. [PMID: 36432177 PMCID: PMC9693269 DOI: 10.3390/molecules27228077] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 11/14/2022] [Accepted: 11/15/2022] [Indexed: 11/22/2022]
Abstract
Prostate cancer is the second most common cancer diagnosed in men worldwide. Measuring the prostate-specific antigen (PSA) is regarded as essential during prostate cancer screening. Early diagnosis of this disease relapse after radical prostatectomy requires extremely sensitive methods. This research presents an approach to development of an ultrasensitive magnetic sandwich immunoassay, which demonstrates the limit of PSA detection in human serum of 19 pg/mL at a dynamic range exceeding 3.5 orders of concentration. Such attractive performance stems, inter alia, from the kinetic analysis of monoclonal antibodies (mAbs) against free PSA to select the mAbs exhibiting best kinetic characteristics and specificity. The analysis is carried out with a label-free multiplex spectral-correlation interferometry compatible with inexpensive single-use glass sensor chips. The high sensitivity of developed PSA immunoassay is due to electronic quantification of magnetic nanolabels functionalized by the selected mAbs and three-dimension porous filters used as an extended solid phase. The assay is promising for PSA monitoring after radical prostatectomy. The proposed versatile approach can be applied for the rational design of highly sensitive tests for detection of other analytes in many fields, including in vitro diagnostics, veterinary, food safety, etc.
Collapse
Affiliation(s)
- Alexey V. Orlov
- Prokhorov General Physics Institute of the Russian Academy of Sciences, 38 Vavilov Street, 119991 Moscow, Russia
- Correspondence: (A.V.O.); (P.I.N.)
| | - Alexandr G. Burenin
- Prokhorov General Physics Institute of the Russian Academy of Sciences, 38 Vavilov Street, 119991 Moscow, Russia
| | - Artemiy M. Skirda
- Prokhorov General Physics Institute of the Russian Academy of Sciences, 38 Vavilov Street, 119991 Moscow, Russia
- National Research Nuclear University MEPhI (Moscow Engineering Physics Institute), 31 Kashirskoe Shosse, 115409 Moscow, Russia
| | - Petr I. Nikitin
- Prokhorov General Physics Institute of the Russian Academy of Sciences, 38 Vavilov Street, 119991 Moscow, Russia
- National Research Nuclear University MEPhI (Moscow Engineering Physics Institute), 31 Kashirskoe Shosse, 115409 Moscow, Russia
- Correspondence: (A.V.O.); (P.I.N.)
| |
Collapse
|
14
|
Gagliardi M, Agostini M, Lunardelli F, Miranda A, Luminare AG, Cervelli F, Gambineri F, Cecchini M. A Surface Acoustic Wave (SAW)-Based Lab-on-Chip for the Detection of Active α-Glycosidase. BIOSENSORS 2022; 12:1010. [PMID: 36421128 PMCID: PMC9688093 DOI: 10.3390/bios12111010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 11/03/2022] [Accepted: 11/07/2022] [Indexed: 06/16/2023]
Abstract
Enzyme detection in liquid samples is a complex laboratory procedure, based on assays that are generally time- and cost-consuming, and require specialized personnel. Surface acoustic wave sensors can be used for this application, overcoming the cited limitations. To give our contribution, in this work we present the bottom-up development of a surface acoustic wave biosensor to detect active α-glycosidase in aqueous solutions. Our device, optimized to work at an ultra-high frequency (around 740 MHz), is functionalized with a newly synthesized probe 7-mercapto-1-eptyl-D-maltoside, bringing one maltoside terminal moiety. The probe is designed ad hoc for this application and tested in-cuvette to analyze the enzymatic conversion kinetics at different times, temperatures and enzyme concentrations. Preliminary data are used to optimize the detection protocol with the SAW device. In around 60 min, the SAW device is able to detect the enzymatic conversion of the maltoside unit into glucose in the presence of the active enzyme. We obtained successful α-glycosidase detection in the concentration range 0.15-150 U/mL, with an increasing signal in the range up to 15 U/mL. We also checked the sensor performance in the presence of an enzyme inhibitor as a control test, with a signal decrease of 80% in the presence of the inhibitor. The results demonstrate the synergic effect of our SAW Lab-on-a-Chip and probe design as a valid alternative to conventional laboratory tests.
Collapse
Affiliation(s)
- Mariacristina Gagliardi
- NEST, Istituto Nanoscienze-CNR and Scuola Normale Superiore, Piazza San Silvestro, 56127 Pisa, Italy
| | - Matteo Agostini
- INTA S.R.L., Intelligent Acoustics Systems, Via Nino Pisano 14, 56122 Pisa, Italy
| | - Francesco Lunardelli
- NEST, Istituto Nanoscienze-CNR and Scuola Normale Superiore, Piazza San Silvestro, 56127 Pisa, Italy
- INTA S.R.L., Intelligent Acoustics Systems, Via Nino Pisano 14, 56122 Pisa, Italy
| | - Alessio Miranda
- NEST, Istituto Nanoscienze-CNR and Scuola Normale Superiore, Piazza San Silvestro, 56127 Pisa, Italy
| | | | | | | | - Marco Cecchini
- NEST, Istituto Nanoscienze-CNR and Scuola Normale Superiore, Piazza San Silvestro, 56127 Pisa, Italy
- INTA S.R.L., Intelligent Acoustics Systems, Via Nino Pisano 14, 56122 Pisa, Italy
| |
Collapse
|
15
|
Method of kinetic characterization of immunoreagents for development of express high-sensitive assays for detection of ochratoxin A and heart fatty acids binding protein. MethodsX 2022; 9:101911. [DOI: 10.1016/j.mex.2022.101911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 10/30/2022] [Indexed: 11/10/2022] Open
|
16
|
Żeliszewska P, Wasilewska M, Batys P, Pogoda K, Deptuła P, Bucki R, Adamczyk Z. SARS-CoV-2 Spike Protein (RBD) Subunit Adsorption at Abiotic Surfaces and Corona Formation at Polymer Particles. Int J Mol Sci 2022; 23:ijms232012374. [PMID: 36293231 PMCID: PMC9604293 DOI: 10.3390/ijms232012374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 10/07/2022] [Accepted: 10/11/2022] [Indexed: 12/29/2022] Open
Abstract
The adsorption kinetics of the SARS-CoV-2 spike protein subunit with the receptor binding domain at abiotic surfaces was investigated. A combination of sensitive methods was used such as atomic force microscopy yielding a molecular resolution, a quartz microbalance, and optical waveguide lightmode spectroscopy. The two latter methods yielded in situ information about the protein adsorption kinetics under flow conditions. It was established that at pH 3.5-4 the protein adsorbed on mica and silica surfaces in the form of compact quasi-spherical aggregates with an average size of 14 nm. The maximum coverage of the layers was equal to 3 and 1 mg m-2 at pH 4 and 7.4, respectively. The experimental data were successfully interpreted in terms of theoretical results derived from modeling. The experiments performed for flat substrates were complemented by investigations of the protein corona formation at polymer particles carried out using in situ laser Doppler velocimetry technique. In this way, the zeta potential of the protein layers was acquired as a function of the coverage. Applying the electrokinetic model, these primary data were converted to the dependence of the subunit zeta potential on pH. It was shown that a complete acid-base characteristic of the layer can be acquired only using nanomolar quantities of the protein.
Collapse
Affiliation(s)
- Paulina Żeliszewska
- J. Haber Institute of Catalysis and Surface Chemistry Polish Academy of Science, Niezapominajek 8, 30-239 Cracow, Poland
- Correspondence: (P.Ż.); (Z.A.)
| | - Monika Wasilewska
- J. Haber Institute of Catalysis and Surface Chemistry Polish Academy of Science, Niezapominajek 8, 30-239 Cracow, Poland
| | - Piotr Batys
- J. Haber Institute of Catalysis and Surface Chemistry Polish Academy of Science, Niezapominajek 8, 30-239 Cracow, Poland
| | - Katarzyna Pogoda
- Institute of Nuclear Physics, Polish Academy of Sciences, 31-342 Kraków, Poland
| | - Piotr Deptuła
- Department of Medical Microbiology and Nanobiomedical Engineering, Medical University of Białystok, 15-222 Białystok, Poland
| | - Robert Bucki
- Department of Medical Microbiology and Nanobiomedical Engineering, Medical University of Białystok, 15-222 Białystok, Poland
| | - Zbigniew Adamczyk
- J. Haber Institute of Catalysis and Surface Chemistry Polish Academy of Science, Niezapominajek 8, 30-239 Cracow, Poland
- Correspondence: (P.Ż.); (Z.A.)
| |
Collapse
|
17
|
Peter B, Kanyo N, Kovacs KD, Kovács V, Szekacs I, Pécz B, Molnár K, Nakanishi H, Lagzi I, Horvath R. Glycocalyx Components Detune the Cellular Uptake of Gold Nanoparticles in a Size- and Charge-Dependent Manner. ACS APPLIED BIO MATERIALS 2022; 6:64-73. [PMID: 36239448 PMCID: PMC9846697 DOI: 10.1021/acsabm.2c00595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Functionalized nanoparticles (NPs) are widely used in targeted drug delivery and biomedical imaging due to their penetration into living cells. The outer coating of most cells is a sugar-rich layer of the cellular glycocalyx, presumably playing an important part in any uptake processes. However, the exact role of the cellular glycocalyx in NP uptake is still uncovered. Here, we in situ monitored the cellular uptake of gold NPs─functionalized with positively charged alkaline thiol (TMA)─into adhered cancer cells with or without preliminary glycocalyx digestion. Proteoglycan (PG) components of the glycocalyx were treated by the chondroitinase ABC enzyme. It acts on chondroitin 4-sulfate, chondroitin 6-sulfate, and dermatan sulfate and slowly on hyaluronate. The uptake measurements of HeLa cells were performed by applying a high-throughput label-free optical biosensor based on resonant waveguide gratings. The positively charged gold NPs were used with different sizes [d = 2.6, 4.2, and 7.0 nm, small (S), medium (M), and large(L), respectively]. Negatively charged citrate-capped tannic acid (CTA, d = 5.5 nm) NPs were also used in control experiments. Real-time biosensor data confirmed the cellular uptake of the functionalized NPs, which was visually proved by transmission electron microscopy. It was found that the enzymatic digestion facilitated the entry of the positively charged S- and M-sized NPs, being more pronounced for the M-sized. Other enzymes digesting different components of the glycocalyx were also employed, and the results were compared. Glycosaminoglycan digesting heparinase III treatment also increased, while glycoprotein and glycolipid modifying neuraminidase decreased the NP uptake by HeLa cells. This suggests that the sialic acid residues increase, while heparan sulfate decreases the uptake of positively charged NPs. Our results raise the hypothesis that cellular uptake of 2-4 nm positively charged NPs is facilitated by glycoprotein and glycolipid components of the glycocalyx but inhibited by PGs.
Collapse
Affiliation(s)
- Beatrix Peter
- Nanobiosensorics
Laboratory, Institute of Technical Physics
and Materials Science, Centre for Energy Research, Konkoly-Thege út 29-33, BudapestH-1120, Hungary,
| | - Nicolett Kanyo
- Nanobiosensorics
Laboratory, Institute of Technical Physics
and Materials Science, Centre for Energy Research, Konkoly-Thege út 29-33, BudapestH-1120, Hungary
| | - Kinga Dora Kovacs
- Nanobiosensorics
Laboratory, Institute of Technical Physics
and Materials Science, Centre for Energy Research, Konkoly-Thege út 29-33, BudapestH-1120, Hungary,Department
of Biological Physics, Eötvös
University, BudapestH 1117, Hungary
| | - Viktor Kovács
- Nanobiosensorics
Laboratory, Institute of Technical Physics
and Materials Science, Centre for Energy Research, Konkoly-Thege út 29-33, BudapestH-1120, Hungary
| | - Inna Szekacs
- Nanobiosensorics
Laboratory, Institute of Technical Physics
and Materials Science, Centre for Energy Research, Konkoly-Thege út 29-33, BudapestH-1120, Hungary
| | - Béla Pécz
- Thin
Films Laboratory, Institute of Technical
Physics and Materials Science, Centre for Energy Research, Konkoly-Thege út 29-33, BudapestH-1120, Hungary
| | - Kinga Molnár
- Department
of Anatomy, Cell and Developmental Biology, ELTE, Eötvös Loránd University, Pázmány Péter Stny. 1/C, BudapestH-1117, Hungary
| | - Hideyuki Nakanishi
- Department
of Macromolecular Science and Engineering, Graduate School of Science
and Technology, Kyoto Institute of Technology, Matsugasaki, Kyoto606-8585, Japan
| | - Istvan Lagzi
- Department
of Physics, Institute of Physics, Budapest
University of Technology and Economics, Műegyetem Rkp. 3, BudapestH-1111, Hungary,ELKH-BME
Condensed Matter Research Group, Műegyetem Rkp. 3, BudapestH-1111, Hungary
| | - Robert Horvath
- Nanobiosensorics
Laboratory, Institute of Technical Physics
and Materials Science, Centre for Energy Research, Konkoly-Thege út 29-33, BudapestH-1120, Hungary
| |
Collapse
|
18
|
Akgönüllü S, Özgür E, Denizli A. Quartz Crystal Microbalance-Based Aptasensors for Medical Diagnosis. MICROMACHINES 2022; 13:1441. [PMID: 36144064 PMCID: PMC9503788 DOI: 10.3390/mi13091441] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 08/27/2022] [Accepted: 08/28/2022] [Indexed: 06/16/2023]
Abstract
Aptamers are important materials for the specific determination of different disease-related biomarkers. Several methods have been enhanced to transform selected target molecule-specific aptamer bindings into measurable signals. A number of specific aptamer-based biosensors have been designed for potential applications in clinical diagnostics. Various methods in combination with a wide variety of nano-scale materials have been employed to develop aptamer-based biosensors to further increase sensitivity and detection limit for related target molecules. In this critical review, we highlight the advantages of aptamers as biorecognition elements in biosensors for target biomolecules. In recent years, it has been demonstrated that electrode material plays an important role in obtaining quick, label-free, simple, stable, and sensitive detection in biological analysis using piezoelectric devices. For this reason, we review the recent progress in growth of aptamer-based QCM biosensors for medical diagnoses, including virus, bacteria, cell, protein, and disease biomarker detection.
Collapse
|
19
|
Szittner Z, Péter B, Kurunczi S, Székács I, Horváth R. Functional blood cell analysis by label-free biosensors and single-cell technologies. Adv Colloid Interface Sci 2022; 308:102727. [DOI: 10.1016/j.cis.2022.102727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 05/25/2022] [Accepted: 06/27/2022] [Indexed: 11/01/2022]
|
20
|
Cai N, Lai ACK, Liao K, Corridon PR, Graves DJ, Chan V. Recent Advances in Fluorescence Recovery after Photobleaching for Decoupling Transport and Kinetics of Biomacromolecules in Cellular Physiology. Polymers (Basel) 2022; 14:1913. [PMID: 35567083 PMCID: PMC9105003 DOI: 10.3390/polym14091913] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 04/27/2022] [Accepted: 04/29/2022] [Indexed: 12/16/2022] Open
Abstract
Among the new molecular tools available to scientists and engineers, some of the most useful include fluorescently tagged biomolecules. Tools, such as green fluorescence protein (GFP), have been applied to perform semi-quantitative studies on biological signal transduction and cellular structural dynamics involved in the physiology of healthy and disease states. Such studies focus on drug pharmacokinetics, receptor-mediated endocytosis, nuclear mechanobiology, viral infections, and cancer metastasis. In 1976, fluorescence recovery after photobleaching (FRAP), which involves the monitoring of fluorescence emission recovery within a photobleached spot, was developed. FRAP allowed investigators to probe two-dimensional (2D) diffusion of fluorescently-labelled biomolecules. Since then, FRAP has been refined through the advancements of optics, charged-coupled-device (CCD) cameras, confocal microscopes, and molecular probes. FRAP is now a highly quantitative tool used for transport and kinetic studies in the cytosol, organelles, and membrane of a cell. In this work, the authors intend to provide a review of recent advances in FRAP. The authors include epifluorescence spot FRAP, total internal reflection (TIR)/FRAP, and confocal microscope-based FRAP. The underlying mathematical models are also described. Finally, our understanding of coupled transport and kinetics as determined by FRAP will be discussed and the potential for future advances suggested.
Collapse
Affiliation(s)
- Ning Cai
- Wuhan Institute of Technology, School of Chemical Engineering and Pharmacy, Wuhan 430073, China;
| | - Alvin Chi-Keung Lai
- Department of Architecture and Civil Engineering, City University of Hong Kong, Tat Chee Avenue, Kowloon Tong, Hong Kong 999077, China;
| | - Kin Liao
- Department of Aerospace Engineering, Khalifa University of Science and Technology, Abu Dhabi P.O. Box 127788, United Arab Emirates;
| | - Peter R. Corridon
- Department of Physiology and Immunology, Khalifa University of Science and Technology, Abu Dhabi P.O. Box 127788, United Arab Emirates;
- Healthcare Engineering Innovation Center, Khalifa University of Science and Technology, Abu Dhabi P.O. Box 127788, United Arab Emirates
- Center for Biotechnology, Khalifa University of Science and Technology, Abu Dhabi P.O. Box 127788, United Arab Emirates
| | - David J. Graves
- Department of Chemical and Biomolecular Engineering, University of Pennsylvania, Philadelphia, PA 19104, USA;
| | - Vincent Chan
- Department of Biomedical Engineering, Khalifa University of Science and Technology, Abu Dhabi P.O. Box 127788, United Arab Emirates
| |
Collapse
|
21
|
Farkas E, Tarr R, Gerecsei T, Saftics A, Kovács KD, Stercz B, Domokos J, Peter B, Kurunczi S, Szekacs I, Bonyár A, Bányai A, Fürjes P, Ruszkai-Szaniszló S, Varga M, Szabó B, Ostorházi E, Szabó D, Horvath R. Development and In-Depth Characterization of Bacteria Repellent and Bacteria Adhesive Antibody-Coated Surfaces Using Optical Waveguide Biosensing. BIOSENSORS 2022; 12:bios12020056. [PMID: 35200317 PMCID: PMC8869200 DOI: 10.3390/bios12020056] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Revised: 01/07/2022] [Accepted: 01/13/2022] [Indexed: 05/10/2023]
Abstract
Bacteria repellent surfaces and antibody-based coatings for bacterial assays have shown a growing demand in the field of biosensors, and have crucial importance in the design of biomedical devices. However, in-depth investigations and comparisons of possible solutions are still missing. The optical waveguide lightmode spectroscopy (OWLS) technique offers label-free, non-invasive, in situ characterization of protein and bacterial adsorption. Moreover, it has excellent flexibility for testing various surface coatings. Here, we describe an OWLS-based method supporting the development of bacteria repellent surfaces and characterize the layer structures and affinities of different antibody-based coatings for bacterial assays. In order to test nonspecific binding blocking agents against bacteria, OWLS chips were coated with bovine serum albumin (BSA), I-block, PAcrAM-g-(PMOXA, NH2, Si), (PAcrAM-P) and PLL-g-PEG (PP) (with different coating temperatures), and subsequent Escherichia coli adhesion was monitored. We found that the best performing blocking agents could inhibit bacterial adhesion from samples with bacteria concentrations of up to 107 cells/mL. Various immobilization methods were applied to graft a wide range of selected antibodies onto the biosensor's surface. Simple physisorption, Mix&Go (AnteoBind) (MG) films, covalently immobilized protein A and avidin-biotin based surface chemistries were all fabricated and tested. The surface adsorbed mass densities of deposited antibodies were determined, and the biosensor;s kinetic data were evaluated to divine the possible orientations of the bacteria-capturing antibodies and determine the rate constants and footprints of the binding events. The development of affinity layers was supported by enzyme-linked immunosorbent assay (ELISA) measurements in order to test the bacteria binding capabilities of the antibodies. The best performance in the biosensor measurements was achieved by employing a polyclonal antibody in combination with protein A-based immobilization and PAcrAM-P blocking of nonspecific binding. Using this setting, a surface sensitivity of 70 cells/mm2 was demonstrated.
Collapse
Affiliation(s)
- Eniko Farkas
- Centre for Energy Research, Nanobiosensorics Laboratory, Institute of Technical Physics and Materials Science, 1121 Budapest, Hungary; (E.F.); (R.T.); (T.G.); (A.S.); (K.D.K.); (B.P.); (S.K.); (I.S.)
| | - Robert Tarr
- Centre for Energy Research, Nanobiosensorics Laboratory, Institute of Technical Physics and Materials Science, 1121 Budapest, Hungary; (E.F.); (R.T.); (T.G.); (A.S.); (K.D.K.); (B.P.); (S.K.); (I.S.)
- Department of Electronics Technology, Faculty of Electrical Engineering and Informatics, Budapest University of Technology and Economics, 1111 Budapest, Hungary;
| | - Tamás Gerecsei
- Centre for Energy Research, Nanobiosensorics Laboratory, Institute of Technical Physics and Materials Science, 1121 Budapest, Hungary; (E.F.); (R.T.); (T.G.); (A.S.); (K.D.K.); (B.P.); (S.K.); (I.S.)
- Department of Biological Physics, Eötvös Loránd University, 1117 Budapest, Hungary
| | - Andras Saftics
- Centre for Energy Research, Nanobiosensorics Laboratory, Institute of Technical Physics and Materials Science, 1121 Budapest, Hungary; (E.F.); (R.T.); (T.G.); (A.S.); (K.D.K.); (B.P.); (S.K.); (I.S.)
| | - Kinga Dóra Kovács
- Centre for Energy Research, Nanobiosensorics Laboratory, Institute of Technical Physics and Materials Science, 1121 Budapest, Hungary; (E.F.); (R.T.); (T.G.); (A.S.); (K.D.K.); (B.P.); (S.K.); (I.S.)
- Department of Biological Physics, Eötvös Loránd University, 1117 Budapest, Hungary
| | - Balazs Stercz
- Institute of Medical Microbiology, Semmelweis University, 1089 Budapest, Hungary; (B.S.); (J.D.); (E.O.); (D.S.)
| | - Judit Domokos
- Institute of Medical Microbiology, Semmelweis University, 1089 Budapest, Hungary; (B.S.); (J.D.); (E.O.); (D.S.)
| | - Beatrix Peter
- Centre for Energy Research, Nanobiosensorics Laboratory, Institute of Technical Physics and Materials Science, 1121 Budapest, Hungary; (E.F.); (R.T.); (T.G.); (A.S.); (K.D.K.); (B.P.); (S.K.); (I.S.)
| | - Sandor Kurunczi
- Centre for Energy Research, Nanobiosensorics Laboratory, Institute of Technical Physics and Materials Science, 1121 Budapest, Hungary; (E.F.); (R.T.); (T.G.); (A.S.); (K.D.K.); (B.P.); (S.K.); (I.S.)
| | - Inna Szekacs
- Centre for Energy Research, Nanobiosensorics Laboratory, Institute of Technical Physics and Materials Science, 1121 Budapest, Hungary; (E.F.); (R.T.); (T.G.); (A.S.); (K.D.K.); (B.P.); (S.K.); (I.S.)
| | - Attila Bonyár
- Department of Electronics Technology, Faculty of Electrical Engineering and Informatics, Budapest University of Technology and Economics, 1111 Budapest, Hungary;
| | - Anita Bányai
- Centre for Energy Research, Microsystems Lab, Institute of Technical Physics and Materials Science, 1121 Budapest, Hungary; (A.B.); (P.F.)
| | - Péter Fürjes
- Centre for Energy Research, Microsystems Lab, Institute of Technical Physics and Materials Science, 1121 Budapest, Hungary; (A.B.); (P.F.)
| | | | - Máté Varga
- 77 Elektronika Ltd., 1116 Budapest, Hungary; (S.R.-S.); (M.V.); (B.S.)
| | - Barnabás Szabó
- 77 Elektronika Ltd., 1116 Budapest, Hungary; (S.R.-S.); (M.V.); (B.S.)
| | - Eszter Ostorházi
- Institute of Medical Microbiology, Semmelweis University, 1089 Budapest, Hungary; (B.S.); (J.D.); (E.O.); (D.S.)
| | - Dóra Szabó
- Institute of Medical Microbiology, Semmelweis University, 1089 Budapest, Hungary; (B.S.); (J.D.); (E.O.); (D.S.)
| | - Robert Horvath
- Centre for Energy Research, Nanobiosensorics Laboratory, Institute of Technical Physics and Materials Science, 1121 Budapest, Hungary; (E.F.); (R.T.); (T.G.); (A.S.); (K.D.K.); (B.P.); (S.K.); (I.S.)
- Correspondence:
| |
Collapse
|
22
|
Detection of Oenological Polyphenols via QCM-D Measurements. NANOMATERIALS 2022; 12:nano12010166. [PMID: 35010116 PMCID: PMC8746829 DOI: 10.3390/nano12010166] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 12/20/2021] [Accepted: 12/29/2021] [Indexed: 02/04/2023]
Abstract
Polyphenols are a family of compounds present in grapes, musts, and wines. Their dosage is associated with the grape ripening, correct must fermentation, and final wine properties. Owing to their anti-inflammatory properties, they are also relevant for health applications. To date, such compounds are detected mainly via standard chemical analysis, which is costly for constant monitoring and requires a specialized laboratory. Cheap and portable sensors would be desirable to reduce costs and speed up measurements. This paper illustrates the development of strategies for sensor surface chemical functionalization for polyphenol detection. We perform measurements by using a commercial quartz crystal microbalance with dissipation monitoring apparatus. Chemical functionalizations are based on proteins (bovine serum albumin and gelatin type A) or customized peptides derived from istatine-5 and murine salivary protein-5. Commercial oenological additives containing pure gallic tannins or proanthocyanidins, dissolved in water or commercial wine, are used for the analysis. Results indicate that selected functionalizations enable the detection of the two different tannin families, suggesting a relationship between the recorded signal and concentration. Gelatin A also demonstrates the ability to discriminate gallic tannins from proanthocyanidins. Outcomes are promising and pave the way for the exploitation of such devices for precision oenology.
Collapse
|
23
|
Péter B, Boldizsár I, Kovács GM, Erdei A, Bajtay Z, Vörös A, Ramsden JJ, Szabó I, Bősze S, Horvath R. Natural Compounds as Target Biomolecules in Cellular Adhesion and Migration: From Biomolecular Stimulation to Label-Free Discovery and Bioactivity-Based Isolation. Biomedicines 2021; 9:1781. [PMID: 34944597 PMCID: PMC8698624 DOI: 10.3390/biomedicines9121781] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 11/19/2021] [Accepted: 11/22/2021] [Indexed: 01/07/2023] Open
Abstract
Plants and fungi can be used for medical applications because of their accumulation of special bioactive metabolites. These substances might be beneficial to human health, exerting also anti-inflammatory and anticancer (antiproliferative) effects. We propose that they are mediated by influencing cellular adhesion and migration via various signaling pathways and by directly inactivating key cell adhesion surface receptor sites. The evidence for this proposition is reviewed (by summarizing the natural metabolites and their effects influencing cellular adhesion and migration), along with the classical measuring techniques used to gain such evidence. We systematize existing knowledge concerning the mechanisms of how natural metabolites affect adhesion and movement, and their role in gene expression as well. We conclude by highlighting the possibilities to screen natural compounds faster and more easily by applying new label-free methods, which also enable a far greater degree of quantification than the conventional methods used hitherto. We have systematically classified recent studies regarding the effects of natural compounds on cellular adhesion and movement, characterizing the active substances according to their organismal origin (plants, animals or fungi). Finally, we also summarize the results of recent studies and experiments on SARS-CoV-2 treatments by natural extracts affecting mainly the adhesion and entry of the virus.
Collapse
Affiliation(s)
- Beatrix Péter
- Nanobiosensorics Group, Research Centre for Energy Research, Institute for Technical Physics and Materials Science, Konkoly-Thege u 29-33, 1120 Budapest, Hungary; (A.V.); (R.H.)
| | - Imre Boldizsár
- Department of Plant Anatomy, Institute of Biology, Eötvös Loránd University, 1117 Budapest, Hungary; (I.B.); (G.M.K.)
- Department of Pharmacognosy, Semmelweis University, Üllői út 26, 1085 Budapest, Hungary
| | - Gábor M. Kovács
- Department of Plant Anatomy, Institute of Biology, Eötvös Loránd University, 1117 Budapest, Hungary; (I.B.); (G.M.K.)
- Plant Protection Institute, Centre for Agricultural Research, Hungarian Academy of Sciences, 1022 Budapest, Hungary
| | - Anna Erdei
- Department of Immunology, Eötvös Loránd University, 1117 Budapest, Hungary; (A.E.); (Z.B.)
- MTA-ELTE Immunology Research Group, Eötvös Loránd Research Network (ELKH), Eötvös Loránd University, 1117 Budapest, Hungary
| | - Zsuzsa Bajtay
- Department of Immunology, Eötvös Loránd University, 1117 Budapest, Hungary; (A.E.); (Z.B.)
- MTA-ELTE Immunology Research Group, Eötvös Loránd Research Network (ELKH), Eötvös Loránd University, 1117 Budapest, Hungary
| | - Alexandra Vörös
- Nanobiosensorics Group, Research Centre for Energy Research, Institute for Technical Physics and Materials Science, Konkoly-Thege u 29-33, 1120 Budapest, Hungary; (A.V.); (R.H.)
| | - Jeremy J. Ramsden
- Clore Laboratory, University of Buckingham, Buckingham MK18 1EG, UK;
| | - Ildikó Szabó
- MTA-ELTE Research Group of Peptide Chemistry, Eötvös Loránd Research Network (ELKH), Institute of Chemistry, Eötvös Loránd University, 1117 Budapest, Hungary; (I.S.); (S.B.)
- National Public Health Center, Albert Flórián út 2-6, 1097 Budapest, Hungary
| | - Szilvia Bősze
- MTA-ELTE Research Group of Peptide Chemistry, Eötvös Loránd Research Network (ELKH), Institute of Chemistry, Eötvös Loránd University, 1117 Budapest, Hungary; (I.S.); (S.B.)
- National Public Health Center, Albert Flórián út 2-6, 1097 Budapest, Hungary
| | - Robert Horvath
- Nanobiosensorics Group, Research Centre for Energy Research, Institute for Technical Physics and Materials Science, Konkoly-Thege u 29-33, 1120 Budapest, Hungary; (A.V.); (R.H.)
| |
Collapse
|
24
|
Kovacs B, Kraft FA, Szabo Z, Nazirizadeh Y, Gerken M, Horvath R. Near cut-off wavelength operation of resonant waveguide grating biosensors. Sci Rep 2021; 11:13091. [PMID: 34158570 PMCID: PMC8219702 DOI: 10.1038/s41598-021-92327-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 06/07/2021] [Indexed: 02/05/2023] Open
Abstract
Numerical simulations and analytical calculations are performed to support the design of grating-coupled planar optical waveguides for biological sensing. Near cut-off and far from cut-off modes are investigated, and their characteristics and suitability for sensing are compared. The numerical simulations reveal the high sensitivity of the guided mode intensity near the cut-off wavelength for any refractive index change along the waveguide. Consequently, it is sufficient to monitor the intensity change of the near cut-off sensing mode, which leads to a simpler sensor design compared to those setups where the resonant wavelength shift of the guided mode is monitored with high precision. The operating wavelength and the sensitivity of the proposed device can be tuned by varying the geometrical parameters of the corrugated waveguide. These results may lead to the development of highly sensitive integrated sensors, which have a simple design and therefore are cost-effective for a wide range of applications. These numerical findings are supported with experimental results, where the cut-off sensing mode was identified.
Collapse
Affiliation(s)
- Balint Kovacs
- Nanobiosensorics Laboratory, ELKH EK MFA, Budapest, Hungary.
- Division of Medical Image Computing (MIC), German Cancer Research Center (DKFZ), Heidelberg, Germany.
- Medical Faculty Heidelberg, Heidelberg University, Heidelberg, Germany.
| | - Fabio Aldo Kraft
- Institute of Electrical Engineering and Information Technology, Kiel University, Kiel, Germany
| | - Zsolt Szabo
- Faculty of Information Technology and Bionics, Pázmány Péter Catholic University, Budapest, Hungary
| | | | - Martina Gerken
- Institute of Electrical Engineering and Information Technology, Kiel University, Kiel, Germany
| | - Robert Horvath
- Nanobiosensorics Laboratory, ELKH EK MFA, Budapest, Hungary
| |
Collapse
|
25
|
Frutiger A, Tanno A, Hwu S, Tiefenauer RF, Vörös J, Nakatsuka N. Nonspecific Binding-Fundamental Concepts and Consequences for Biosensing Applications. Chem Rev 2021; 121:8095-8160. [PMID: 34105942 DOI: 10.1021/acs.chemrev.1c00044] [Citation(s) in RCA: 103] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Nature achieves differentiation of specific and nonspecific binding in molecular interactions through precise control of biomolecules in space and time. Artificial systems such as biosensors that rely on distinguishing specific molecular binding events in a sea of nonspecific interactions have struggled to overcome this issue. Despite the numerous technological advancements in biosensor technologies, nonspecific binding has remained a critical bottleneck due to the lack of a fundamental understanding of the phenomenon. To date, the identity, cause, and influence of nonspecific binding remain topics of debate within the scientific community. In this review, we discuss the evolution of the concept of nonspecific binding over the past five decades based upon the thermodynamic, intermolecular, and structural perspectives to provide classification frameworks for biomolecular interactions. Further, we introduce various theoretical models that predict the expected behavior of biosensors in physiologically relevant environments to calculate the theoretical detection limit and to optimize sensor performance. We conclude by discussing existing practical approaches to tackle the nonspecific binding challenge in vitro for biosensing platforms and how we can both address and harness nonspecific interactions for in vivo systems.
Collapse
Affiliation(s)
- Andreas Frutiger
- Laboratory of Biosensors and Bioelectronics, Institute for Biomedical Engineering, ETH Zürich, Zürich CH-8092, Switzerland
| | - Alexander Tanno
- Laboratory of Biosensors and Bioelectronics, Institute for Biomedical Engineering, ETH Zürich, Zürich CH-8092, Switzerland
| | - Stephanie Hwu
- Laboratory of Biosensors and Bioelectronics, Institute for Biomedical Engineering, ETH Zürich, Zürich CH-8092, Switzerland
| | - Raphael F Tiefenauer
- Laboratory of Biosensors and Bioelectronics, Institute for Biomedical Engineering, ETH Zürich, Zürich CH-8092, Switzerland
| | - János Vörös
- Laboratory of Biosensors and Bioelectronics, Institute for Biomedical Engineering, ETH Zürich, Zürich CH-8092, Switzerland
| | - Nako Nakatsuka
- Laboratory of Biosensors and Bioelectronics, Institute for Biomedical Engineering, ETH Zürich, Zürich CH-8092, Switzerland
| |
Collapse
|