1
|
Abdollahi-Mousavi SE, Keyvanshokooh S, Torfi Mozanzadeh M, Ghasemi A. Efficacy of nutritional selenium nanoparticles on growth performance, immune response, antioxidant capacity, expression of growth and immune-related genes, and post-stress recovery in juvenile Sobaity seabream (Sparidentex hasta). FISH & SHELLFISH IMMUNOLOGY 2024; 147:109452. [PMID: 38360194 DOI: 10.1016/j.fsi.2024.109452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 02/12/2024] [Accepted: 02/13/2024] [Indexed: 02/17/2024]
Abstract
This study evaluated the impacts of nano-Se on the growth, immunity, antioxidant capacity, physiological parameters, gene expression, and stress resistance of fingerling Sobaity seabream (Sparidentex hasta). The fish with an average weight of 21.5 ± 0.1 g were divided into four treatment groups in triplicates that received one of the test diets supplemented with varying levels of nano-Se: 0 (control), 0.5 (Se-0.5), 1 (Se-1), and 2 (Se-2) mg/Kg for 60 days. The results showed that final weight, weight gain rate, specific growth rate, feed intake, and feed conversion ratio improved with significant linear and quadratic trends (P < 0.05) in response to nano-Se-supplemented diets, and the best values were measured in the Se-2 group. Superoxide dismutase activity level remained unaffected among the four groups (P > 0.05). Catalase activity increased in nano-Se-supplemented groups, with the highest level measured in fish fed the Se-0.5 diet. Glutathione peroxidase activity levels were not significantly different between the control and nano-Se groups, but the lowest malondialdehyde concentration was detected in the Se-2 group. Nano-Se had no marked effect on total plasma Ig levels; however, the highest lysozyme activity and alternative complement activity (ACH50) were observed in the Se-0.5 and Se-2 groups, respectively. No significant differences (P > 0.05) were observed in plasma total protein, albumin, globulin, triglyceride, and thyroid hormone (T3 and T4) contents among the groups. However, the lowest cholesterol and low-density lipoprotein values and the highest high-density lipoprotein concentration were measured in the Se-2 group. The Se-0.5 and Se-1 groups exhibited significantly lower levels of aspartate aminotransferase activity, and the lowest alkaline phosphatase activity level was detected in the Se-1 group. The expression level of insulin-like growth factor I gene in all nano-Se-fed groups was significantly higher than the control. Also, the expression of interleukin-1β and lysozyme genes was significantly upregulated in nano-Se-supplemented groups, with the highest values in the Se-2 group. Following acute crowding stress, plasma cortisol and lactate levels at all post-stress time intervals were not significantly different among the experimental groups. Fish fed the Se-0.5 and Se-2 diets tended to have lower plasma glucose concentrations than other groups. In conclusion, dietary nano-Se at 2 mg/kg is recommended to promote growth performance and enhance antioxidant and immune parameters in Sobaity juveniles.
Collapse
Affiliation(s)
- Seyed Eisa Abdollahi-Mousavi
- Department of Fisheries, Faculty of Marine Natural Resources, Khorramshahr University of Marine Science and Technology, Khorramshahr, Khouzestan, Iran
| | - Saeed Keyvanshokooh
- Department of Fisheries, Faculty of Marine Natural Resources, Khorramshahr University of Marine Science and Technology, Khorramshahr, Khouzestan, Iran.
| | - Mansour Torfi Mozanzadeh
- South Iran Aquaculture Research Centre, Iranian Fisheries Science Institute (IFSRI), Agricultural Research Education and Extension Organization (AREEO), Ahwaz, Iran.
| | - Ahmad Ghasemi
- Department of Biotechnology, Persian Gulf Research Institute, Persian Gulf University, Bushehr, Iran
| |
Collapse
|
2
|
Peng A, Zhang B, Wang S, Feng Y, Liu S, Liu C, Li S, Li F, Peng Y, Wan J. Comparison of the value of various complex indexes of blood cell types and lipid levels in coronary heart disease. Front Cardiovasc Med 2023; 10:1284491. [PMID: 38162141 PMCID: PMC10754977 DOI: 10.3389/fcvm.2023.1284491] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 11/29/2023] [Indexed: 01/03/2024] Open
Abstract
Background Inflammation and lipid infiltration play crucial roles in the development of atherosclerosis. This study aimed to investigate the association between various complex indexes of blood cell types and lipid levels with the severity of coronary artery stenosis and their predictive value in coronary heart disease (CHD). Methods The retrospective study was conducted on 3,201 patients who underwent coronary angiography at the Department of Zhongnan Hospital of Wuhan University. The patients were divided into two groups: CHD group and non-CHD group. The CHD group was further classified into three subgroups (mild, moderate, severe) based on the tertiles of their Gensini score or SYNTAX score I. Various complex indexes of blood cell types and lipid levels were compared between the groups. Results It revealed a positive correlation between all complex indexes and the severity of coronary artery stenosis. The systemic inflammation-response index/high-density lipoprotein cholesterol count (SIRI/HDL) exhibited the strongest correlation with both severity scores (Gensini score: r = 0.257, P < 0.001; SYNTAX score I: r = 0.171, P < 0.001). The monocyte to high-density lipoprotein cholesterol ratio (MHR) was identified as a stronger independent risk factor for CHD. However, SIRI/HDL had higher diagnostic efficacy for CHD (sensitivity 66.7%, specificity 60.4%, area under curve 0.680, 95% CI: 0.658-0.701). Notably, the pan-immune-inflammation value multiplied by low-density lipoprotein cholesterol count (PIV × LDL) exhibited the highest sensitivity of 85.2%. Conclusion All complex indexes which we investigated exhibited positive correlations with the severity of coronary artery stenosis. SIRI/HDL demonstrated higher diagnostic efficiency for CHD and a significant correlation with the severity of coronary artery stenosis.
Collapse
Affiliation(s)
- Aihong Peng
- Department of Cardiology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Bing Zhang
- Department of Cardiology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Siyin Wang
- Department of Cardiology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Yujia Feng
- Department of Cardiology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Shengnan Liu
- Department of Cardiology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Cuiyi Liu
- Department of Cardiology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Shu Li
- Department of Critical Medicine, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Fei Li
- Department of Cardiology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Yuanyuan Peng
- Department of Cardiology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Jing Wan
- Department of Cardiology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| |
Collapse
|
3
|
Yuan S, Huang X, Ma W, Yang R, Xu F, Han D, Huang T, Peng MI, Xu A, Lyu J. Associations of HDL-C/LDL-C with myocardial infarction, all-cause mortality, haemorrhagic stroke and ischaemic stroke: a longitudinal study based on 384 093 participants from the UK Biobank. Stroke Vasc Neurol 2022; 8:119-126. [PMID: 36150733 PMCID: PMC10176979 DOI: 10.1136/svn-2022-001668] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 09/13/2022] [Indexed: 11/04/2022] Open
Abstract
OBJECTIVE To explore the correlations of high-density lipoprotein cholesterol (HDL-C)/low-density lipoprotein cholesterol (LDL-C) with myocardial infarction (MI), all-cause mortality, haemorrhagic stroke and ischaemic stroke, as well as the joint association of genetic susceptibility and HDL-C/LDL-C with the MI risk. METHODS AND RESULTS This study selected 384 093 participants from the UK Biobank (UKB) database. First, restricted cubic splines indicated non-linear associations of HDL-C/LDL-C with MI, ischaemic stroke and all-cause mortality. Second, a Cox proportional-hazards model indicated that compared with HDL-C/LDL-C=0.4-0.6, HDL-C/LDL-C<0.4 and >0.6 were correlated with all-cause mortality (HR=0.97 for HDL-C/LDL-C<0.4, 95% CI=0.939 to 0.999, p<0.05; HR=1.21 for HDL-C/LDL-C>0.6, 95% CI=1.16 to 1.26, p<0.001) after full multivariable adjustment. HDL-C/LDL-C<0.4 was correlated with a higher MI risk (HR=1.36, 95% CI=1.28 to 1.44, p<0.05) and ischaemic stroke (HR=1.12, 95% CI=1.02 to 1.22, p<0.05) after full multivariable adjustment. HDL-C/LDL-C>0.6 was associated with higher risk haemorrhagic stroke risk after full multivariable adjustment (HR=1.25, 95% CI=1.03 to 1.52, p<0.05). Third, after calculating the coronary heart disease Genetic Risk Score (CHD-GRS) of each participant, the Cox proportional-hazards model indicated that compared with low CHD-GRS and HDL-C/LDL-C=0.4-0.6, participants with a combination of high CHD-GRS and HDL-C/LDL-C<0.4 were associated with the highest MI risk (HR=2.45, 95% CI=2.15 to 2.8, p<0.001). Participants with HDL-C/LDL-C<0.4 were correlated with a higher MI risk regardless of whether they had a high, intermediate or low CHD-GRS. CONCLUSION In UKB participants, HDL-C/LDL-C ratio of 0.4-0.6 was correlated with lower MI risk, all-cause mortality, haemorrhagic stroke and ischaemic stroke. Participants with HDL-C/LDL-C<0.4 were correlated with a higher MI risk regardless of whether they had a high, intermediate or low CHD-GRS. The clinical significance and impact of HDL-C/LDL-C need to be further verified in future studies.
Collapse
Affiliation(s)
- Shiqi Yuan
- Department of Neurology, Jinan University First Affiliated Hospital, Guangzhou, Guangdong, China
| | - Xiaxuan Huang
- Department of Neurology, Jinan University First Affiliated Hospital, Guangzhou, Guangdong, China
| | - Wen Ma
- School of Public Health, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Rui Yang
- School of Public Health, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Fengshuo Xu
- School of Public Health, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Didi Han
- School of Public Health, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Tao Huang
- Department of Clinical Research, Jinan University First Affiliated Hospital, Guangzhou, Guangdong, China
| | - MIn Peng
- Department of Neurology, Jinan University First Affiliated Hospital, Guangzhou, Guangdong, China
| | - Anding Xu
- Department of Neurology, Jinan University First Affiliated Hospital, Guangzhou, Guangdong, China
| | - Jun Lyu
- Department of Clinical Research, Jinan University First Affiliated Hospital, Guangzhou, Guangdong, China .,Guangdong Provincial Key Laboratory of Traditional Chinese Medicine Informatization, Guangzhou, Guangdong, China
| |
Collapse
|
4
|
Crosstalk between neurological, cardiovascular, and lifestyle disorders: insulin and lipoproteins in the lead role. Pharmacol Rep 2022; 74:790-817. [PMID: 36149598 DOI: 10.1007/s43440-022-00417-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 09/03/2022] [Accepted: 09/08/2022] [Indexed: 10/14/2022]
Abstract
Insulin resistance and impaired lipoprotein metabolism contribute to a plethora of metabolic and cardiovascular disorders. These alterations have been extensively linked with poor lifestyle choices, such as consumption of a high-fat diet, smoking, stress, and a redundant lifestyle. Moreover, these are also known to increase the co-morbidity of diseases like Type 2 diabetes mellitus and atherosclerosis. Under normal physiological conditions, insulin and lipoproteins exert a neuroprotective role in the central nervous system. However, the tripping of balance between the periphery and center may alter the normal functioning of the brain and lead to neurological disorders such as Alzheimer's disease, Parkinson's disease, stroke, depression, and multiple sclerosis. These neurological disorders are further characterized by certain behavioral and molecular changes that show consistent overlap with alteration in insulin and lipoprotein signaling pathways. Therefore, targeting these two mechanisms not only reveals a way to manage the co-morbidities associated with the circle of the metabolic, central nervous system, and cardiovascular disorders but also exclusively work as a disease-modifying therapy for neurological disorders. In this review, we summarize the role of insulin resistance and lipoproteins in the progression of various neurological conditions and discuss the therapeutic options currently in the clinical pipeline targeting these two mechanisms; in addition, challenges faced in designing these therapeutic approaches have also been touched upon briefly.
Collapse
|
5
|
Effect of Low High-Density Lipoprotein Level on Endothelial Activation and Prothrombotic Processes in Coronary Artery Disease-A Pilot Study. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19148637. [PMID: 35886486 PMCID: PMC9316205 DOI: 10.3390/ijerph19148637] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 07/13/2022] [Accepted: 07/14/2022] [Indexed: 11/17/2022]
Abstract
High-density lipoproteins (HDL) play an important role in the prevention of atherosclerosis. The aim of the study was to assess the relationship between serum HDL-C concentration and proinflammatory/prothrombic activation in coronary artery disease (CAD) patients. The study group included 27 acute myocardial infarction (AMI) patients and 30 stable angina pectoris (SA) patients. The control group consisted of 23 people without cardiac symptoms. In the AMI and SA groups, a lower HDL-C and a higher LDL-C/HDL-C index were observed. The SA patients had lower total cholesterol, LDL-C, sE-selectin ligand, as well as higher triglycerides and CD40 concentration in comparison with both the control and AMI groups. A higher von Willebrand Factor and intercellular adhesion molecule-1 were found in both study groups. Low HDL-C concentration in the CAD patients may intensify pro-inflammatory endothelial activation and prothrombotic processes. A low concentration of HDL-C and a high value of the LDL-C/HDL-C index seem to be better indices of atherogenic processes than the LDL-C concentration alone.
Collapse
|
6
|
Schekatolina S, Lahovska V, Bekshaev A, Kontush S, Le Goff W, Kontush A. Mathematical Modelling of Material Transfer to High-Density Lipoprotein (HDL) upon Triglyceride Lipolysis by Lipoprotein Lipase: Relevance to Cardioprotective Role of HDL. Metabolites 2022; 12:metabo12070623. [PMID: 35888747 PMCID: PMC9317498 DOI: 10.3390/metabo12070623] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 06/14/2022] [Accepted: 07/01/2022] [Indexed: 02/06/2023] Open
Abstract
High-density lipoprotein (HDL) contributes to lipolysis of triglyceride-rich lipoprotein (TGRL) by lipoprotein lipase (LPL) via acquirement of surface lipids, including free cholesterol (FC), released upon lipolysis. According to the reverse remnant-cholesterol transport (RRT) hypothesis recently developed by us, acquirement of FC by HDL is reduced at both low and extremely high HDL concentrations, potentially underlying the U-shaped relationship between HDL-cholesterol and cardiovascular disease. Mechanisms underlying impaired FC transfer however remain indeterminate. We developed a mathematical model of material transfer to HDL upon TGRL lipolysis by LPL. Consistent with experimental observations, mathematical modelling showed that surface components of TGRL, including FC, were accumulated in HDL upon lipolysis. The modelling successfully reproduced major features of cholesterol accumulation in HDL observed experimentally, notably saturation of this process over time and appearance of a maximum as a function of HDL concentration. The calculations suggested that the both phenomena resulted from competitive fluxes of FC through the HDL pool, including primarily those driven by FC concentration gradient between TGRL and HDL on the one hand and mediated by lecithin-cholesterol acyltransferase (LCAT) and cholesteryl ester transfer protein (CETP) on the other hand. These findings provide novel opportunities to revisit our view of HDL in the framework of RRT.
Collapse
Affiliation(s)
| | - Viktoriia Lahovska
- Odessa National Technological University, 65000 Odessa, Ukraine; (S.S.); (V.L.)
| | - Aleksandr Bekshaev
- Physics Research Institute, I.I. Mechnikov Odessa National University, 65082 Odessa, Ukraine; (A.B.); (S.K.)
| | - Sergey Kontush
- Physics Research Institute, I.I. Mechnikov Odessa National University, 65082 Odessa, Ukraine; (A.B.); (S.K.)
| | - Wilfried Le Goff
- Unité de Recherche sur les Maladies Cardiovasculaires, Institut National de la Santé et de la Recherche Médicale (INSERM), le Métabolisme et la Nutrition, ICAN, Sorbonne Université, F-75013 Paris, France;
| | - Anatol Kontush
- Unité de Recherche sur les Maladies Cardiovasculaires, Institut National de la Santé et de la Recherche Médicale (INSERM), le Métabolisme et la Nutrition, ICAN, Sorbonne Université, F-75013 Paris, France;
- Correspondence: ; Tel.: +33-(1)-40-77-96-33; Fax: +33-(1)-40-77-96-45
| |
Collapse
|
7
|
Yu XH, Tang CK. ABCA1, ABCG1, and Cholesterol Homeostasis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1377:95-107. [PMID: 35575923 DOI: 10.1007/978-981-19-1592-5_7] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Cholesterol is a major component of mammalian cell membranes and plays important structural and functional roles. However, excessive cholesterol accumulation is toxic to cells and constitutes the molecular basis for many diseases, especially atherosclerotic cardiovascular disease. Thus, cellular cholesterol is tightly regulated to maintain a homeostasis. Reverse cholesterol transport (RCT) is thought to be one primary pathway to eliminate excessive cholesterol from the body. The first and rate-limiting step of RCT is ATP-binding cassette (ABC) transports A1 (ABCA1)- and ABCG1-dependent cholesterol efflux. In the process, ABCA1 mediates initial transport of cellular cholesterol to apolipoprotein A-I (apoA-I) for forming nascent high-density lipoprotein (HDL) particles, and ABCG1 facilitates subsequent continued cholesterol efflux to HDL for further maturation. In this chapter, we summarize the roles of ABCA1 and ABCG1 in maintaining cellular cholesterol homoeostasis and discuss the underlying mechanisms by which they mediate cholesterol export.
Collapse
Affiliation(s)
- Xiao-Hua Yu
- Institute of Clinical Medicine, The Second Affiliated Hospital of Hainan Medical University, Haikou, Hainan, China
| | - Chao-Ke Tang
- Institute of Cardiovascular Disease, Hengyang Medical School, University of South China, Hengyang, Hunan, China.
| |
Collapse
|
8
|
Ouweneel AB, Reiche ME, Snip OSC, Wever R, van der Wel EJ, Schaftenaar FH, Kauerova S, Lutgens E, Van Eck M, Hoekstra M. Apolipoprotein A1 deficiency in mice primes bone marrow stem cells for T cell lymphopoiesis. J Cell Sci 2022; 135:272619. [PMID: 34698355 PMCID: PMC8645231 DOI: 10.1242/jcs.258901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Accepted: 10/14/2021] [Indexed: 11/20/2022] Open
Abstract
The bone marrow has emerged as a potentially important target in cardiovascular disease as it generates all leukocytes involved in atherogenesis. In the current study, we evaluated whether a change in bone marrow functionality underlies the increased atherosclerosis susceptibility associated with high-density lipoprotein (HDL) deficiency. We found that HDL deficiency in mice due to the genetic lack of hepatocyte-derived apolipoprotein A1 (APOA1) was associated with an increase in the Lin−Sca-1+Kit+ (LSK) bone marrow stem cell population and lymphoid-primed multipotent progenitor numbers, which translated into a higher production and systemic flux of T cell subsets. In accordance with APOA1 deficiency-associated priming of stem cells to increase T lymphocyte production, atherogenic diet-fed low-density lipoprotein receptor knockout mice transplanted with bone marrow from APOA1-knockout mice displayed marked lymphocytosis as compared to wild-type bone marrow recipients. However, atherosclerotic lesion sizes and collagen contents were similar in the two groups of bone marrow recipients. In conclusion, systemic lack of APOA1 primes bone marrow stem cells for T cell lymphopoiesis. Our data provide novel evidence for a regulatory role of HDL in bone marrow functioning in normolipidemic mice. Summary: Changes in cholesterol metabolism, that is, in high-density lipoprotein levels, can significantly impact leukocyte numbers via modulating bone marrow functionality.
Collapse
Affiliation(s)
- Amber B Ouweneel
- Division of BioTherapeutics, Leiden Academic Centre for Drug Research, Leiden University, 2333CC Leiden, The Netherlands
| | - Myrthe E Reiche
- Department of Medical Biochemistry, Amsterdam Cardiovascular Sciences, Amsterdam University Medical Centers, University of Amsterdam, 1105AZ Amsterdam, The Netherlands
| | - Olga S C Snip
- Division of BioTherapeutics, Leiden Academic Centre for Drug Research, Leiden University, 2333CC Leiden, The Netherlands
| | - Robbert Wever
- Division of BioTherapeutics, Leiden Academic Centre for Drug Research, Leiden University, 2333CC Leiden, The Netherlands
| | - Ezra J van der Wel
- Division of BioTherapeutics, Leiden Academic Centre for Drug Research, Leiden University, 2333CC Leiden, The Netherlands
| | - Frank H Schaftenaar
- Division of BioTherapeutics, Leiden Academic Centre for Drug Research, Leiden University, 2333CC Leiden, The Netherlands
| | - Soňa Kauerova
- Laboratory for Atherosclerosis Research, Institute for Clinical and Experimental Medicine, 12111 Prague, Czech Republic
| | - Esther Lutgens
- Department of Medical Biochemistry, Amsterdam Cardiovascular Sciences, Amsterdam University Medical Centers, University of Amsterdam, 1105AZ Amsterdam, The Netherlands
| | - Miranda Van Eck
- Division of BioTherapeutics, Leiden Academic Centre for Drug Research, Leiden University, 2333CC Leiden, The Netherlands
| | - Menno Hoekstra
- Division of BioTherapeutics, Leiden Academic Centre for Drug Research, Leiden University, 2333CC Leiden, The Netherlands
| |
Collapse
|
9
|
Dutra LA, Lacerda MG, Destro Inácio M, Martins JW, Lopes Silva AC, Bento da Silva P, Chorilli M, Amato AA, Baviera AM, Passarelli M, Guido RV, Dos Santos JL. Discovery of (E)-4-styrylphenoxy-propanamide: A dual PPARα/γ partial agonist that regulates high-density lipoprotein-cholesterol levels, modulates adipogenesis, and improves glucose tolerance in diet-induced obese mice. Bioorg Chem 2022; 120:105600. [DOI: 10.1016/j.bioorg.2022.105600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 12/28/2021] [Accepted: 01/04/2022] [Indexed: 11/02/2022]
|
10
|
Grao-Cruces E, Lopez-Enriquez S, Martin ME, Montserrat-de la Paz S. High-density lipoproteins and immune response: A review. Int J Biol Macromol 2022; 195:117-123. [PMID: 34896462 DOI: 10.1016/j.ijbiomac.2021.12.009] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 12/01/2021] [Accepted: 12/02/2021] [Indexed: 01/04/2023]
Abstract
High-density lipoproteins (HDLs) are heterogeneous lipoproteins that modify their composition and functionality depending on physiological or pathological conditions. The main roles of HDL are cholesterol efflux, and anti-inflammatory and antioxidant functions. These functions can be compromised under pathological conditions. HDLs play a role in the immune system as anti-inflammatory molecules but when inflammation occurs, HDLs change their composition and carry pro-inflammatory cargo. Hence, many molecular intermediates that influence inflammatory microenvironments and cell signaling pathways can modulate HDLs structural modification and function. This review provides a comprehensive assessment of the importance of HDL composition and anti-inflammatory function in the onset and progression of atherosclerotic cardiovascular diseases. On the other hand, immune cell activation during progression of atheroma plaque formation can be influenced by HDLs through HDL-derived cholesterol depletion from lipid rafts and through HDL interaction with HDL receptors expressed on T and B lymphocytes. Cholesterol efflux is mediated by HDL receptors located in lipid rafts in peripheral cells, which undergo membrane structural modifications, and interferes with subsequent molecules interactions or intracellular signaling cascades. Regarding antigen-presentation cells such as macrophages or dendritic cells, HDL function may then modulate lymphocytes activation in immune response. Our review also contributes to the understanding of the effects exerted by HDLs in signal transduction associated to our immune cell population during chronic diseases progression.
Collapse
Affiliation(s)
- Elena Grao-Cruces
- Department of Medical Biochemistry, Molecular Biology, and Immunology, School of Medicine, University of Seville, Av. Sanchez Pizjuan s/n, 41009 Seville, Spain
| | - Soledad Lopez-Enriquez
- Department of Medical Biochemistry, Molecular Biology, and Immunology, School of Medicine, University of Seville, Av. Sanchez Pizjuan s/n, 41009 Seville, Spain
| | - Maria E Martin
- Department of Cell Biology, Faculty of Biology, University of Seville, Av. Reina Mercedes s/n, 41012 Seville, Spain
| | - Sergio Montserrat-de la Paz
- Department of Medical Biochemistry, Molecular Biology, and Immunology, School of Medicine, University of Seville, Av. Sanchez Pizjuan s/n, 41009 Seville, Spain.
| |
Collapse
|
11
|
Choi HY, Ruel I, Choi S, Genest J. New Strategies to Promote Macrophage Cholesterol Efflux. Front Cardiovasc Med 2022; 8:795868. [PMID: 35004908 PMCID: PMC8733154 DOI: 10.3389/fcvm.2021.795868] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 12/03/2021] [Indexed: 12/11/2022] Open
Abstract
The capacity of macrophages to dispose of cholesterol deposited in the atherosclerotic plaque depends on their ability to activate cholesterol efflux pathways. To develop athero-protective therapies aimed at promoting macrophage cholesterol efflux, cholesterol metabolism in THP-1 monocyte-derived macrophages has been extensively studied, but the intrinsic sensitivity of monocytes and the lack of a standardized procedure to differentiate THP-1 monocytes into macrophages have made it difficult to utilize THP-1 macrophages in the same or similar degree of differentiation across studies. The variability has resulted in lack of understanding of how the differentiation affects cholesterol metabolism, and here we review and investigate the effects of THP-1 differentiation on cholesterol efflux. The degree of THP-1 differentiation was inversely associated with ATP binding cassette A1 (ABCA1) transporter-mediated cholesterol efflux. The differentiation-associated decrease in ABCA1-mediated cholesterol efflux occurred despite an increase in ABCA1 expression. In contrast, DSC1 expression decreased during the differentiation. DSC1 is a negative regulator of the ABCA1-mediated efflux pathway and a DSC1-targeting agent, docetaxel showed high potency and efficacy in promoting ABCA1-mediated cholesterol efflux in THP-1 macrophages. These data suggest that pharmacological targeting of DSC1 may be more effective than increasing ABCA1 expression in promoting macrophage cholesterol efflux. In summary, the comparison of THP-1 macrophage subtypes in varying degrees of differentiation provided new insights into cholesterol metabolism in macrophages and allowed us to identify a viable target DSC1 for the promotion of cholesterol efflux in differentiated macrophages. Docetaxel and other pharmacological strategies targeting DSC1 may hold significant potential for reducing atherogenic cholesterol deposition.
Collapse
Affiliation(s)
- Hong Y Choi
- Cardiovascular Research Laboratories, Research Institute of the McGill University Health Center, Montreal, QC, Canada
| | - Isabelle Ruel
- Cardiovascular Research Laboratories, Research Institute of the McGill University Health Center, Montreal, QC, Canada
| | - Shiwon Choi
- Cardiovascular Research Laboratories, Research Institute of the McGill University Health Center, Montreal, QC, Canada
| | - Jacques Genest
- Cardiovascular Research Laboratories, Research Institute of the McGill University Health Center, Montreal, QC, Canada
| |
Collapse
|
12
|
Darabi M, Kontush A. High-density lipoproteins (HDL): Novel function and therapeutic applications. Biochim Biophys Acta Mol Cell Biol Lipids 2021; 1867:159058. [PMID: 34624514 DOI: 10.1016/j.bbalip.2021.159058] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 08/16/2021] [Accepted: 08/25/2021] [Indexed: 12/30/2022]
Abstract
The failure of high-density lipoprotein (HDL)-raising agents to reduce cardiovascular disease (CVD) together with recent findings of increased cardiovascular mortality in subjects with extremely high HDL-cholesterol levels provide new opportunities to revisit our view of HDL. The concept of HDL function developed to explain these contradictory findings has recently been expanded by a role played by HDL in the lipolysis of triglyceride-rich lipoproteins (TGRLs) by lipoprotein lipase. According to the reverse remnant-cholesterol transport (RRT) hypothesis, HDL critically contributes to TGRL lipolysis via acquirement of surface lipids, including free cholesterol, released from TGRL. Ensuing cholesterol transport to the liver with excretion into the bile may reduce cholesterol influx in the arterial wall by accelerating removal from circulation of atherogenic, cholesterol-rich TGRL remnants. Such novel function of HDL opens wide therapeutic applications to reduce CVD in statin-treated patients, which primarily involve activation of cholesterol flux upon lipolysis.
Collapse
Affiliation(s)
- Maryam Darabi
- National Institute for Health and Medical Research (INSERM), UMRS 1166 ICAN, Faculty of Medicine Pitié-Salpêtrière, Sorbonne University, Paris, France
| | - Anatol Kontush
- National Institute for Health and Medical Research (INSERM), UMRS 1166 ICAN, Faculty of Medicine Pitié-Salpêtrière, Sorbonne University, Paris, France.
| |
Collapse
|
13
|
Kudinov VA, Torkhovskaya TI, Zakharova TS, Morozevich GE, Artyushev RI, Zubareva MY, Markin SS. High-density lipoprotein remodeling by phospholipid nanoparticles improves cholesterol efflux capacity and protects from atherosclerosis. Biomed Pharmacother 2021; 141:111900. [PMID: 34328100 DOI: 10.1016/j.biopha.2021.111900] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 06/30/2021] [Accepted: 07/06/2021] [Indexed: 12/20/2022] Open
Abstract
The efficiency of cholesterol efflux from cells promoted by high-density lipoproteins (HDLs) depends on HDL concentration and functional properties. The term "dysfunctional HDL" describes HDLs with impaired protective properties. Cholesterol efflux capacity (CEC) of HDL is reduced in patients with atherosclerosis, but the exact mechanisms underlying this impairment are not well characterized. Enriching HDLs with phospholipids (PLs) improves CEC. Herein, we assessed the potential of PL nanoparticles in improving HDL functionality. We lipidated HDL subfractions by incubating with PL nanoparticles containing soybean polyunsaturated phosphatidylcholine. Incubating blood plasma with PL nanoparticles resulted in the dose-dependent lipidation of all HDL subfractions. Changes in apolipoprotein A1 (apoA-1) and PL concentrations were the most prominent in the HDL2 fraction. Concentrations of PL in the HDL3 fraction and the fraction with a density > 1.21 g/mL increased by 30-50%, whereas apoA-1 levels decreased. We hypothesized that PL nanoparticles may cause HDL remodeling that can improve their functions. The CECs of lipidated HDLs were analyzed by incubating apolipoprotein B (apoB)-depleted plasma with 3H-cholesterol-labeled THP-1 macrophages. The findings revealed a two-fold increase in cholesterol efflux compared with native apoB-depleted plasma. Moreover, intravenous administration of PL nanoparticles restored lipid profiles and effectively protected blood vessels from atherosclerosis progression in cholesterol-fed rabbits compared with that of fenofibrate and atorvastatin. PL nanoparticles also protected against atherosclerosis and decreased the atherogenic index. Altogether, these results indicate that PL nanoparticles can be used to correct the lipid composition and CEC of HDLs. DATA AVAILABILITY: Additional data can be provided upon reasonable request from the date of publication of this article within 5 years. The request should be sent to the author-correspondent at the address cd95@mail.ru.
Collapse
Affiliation(s)
- Vasily A Kudinov
- Scientific Group of Phospholipid Drugs, Institute of Biomedical Chemistry, 119121 Moscow, Russia; Laboratory of Cell Biology and Developmental Pathology, FSBSI Institute of General Pathology and Pathophysiology, 125315 Moscow, Russia.
| | - Tatiana I Torkhovskaya
- Laboratory of Phospholipid Transport Systems and Nanomedicines, Institute of Biomedical Chemistry, 119121 Moscow, Russia.
| | - Tamara S Zakharova
- Laboratory of Phospholipid Transport Systems and Nanomedicines, Institute of Biomedical Chemistry, 119121 Moscow, Russia.
| | - Galina E Morozevich
- Laboratory of Protein Biosynthesis, Institute of Biomedical Chemistry, 119121 Moscow, Russia.
| | - Rafael I Artyushev
- Scientific Group of Phospholipid Drugs, Institute of Biomedical Chemistry, 119121 Moscow, Russia.
| | - Marina Yu Zubareva
- Department of Atherosclerosis Problems, FSBI National Medical Research Center of Cardiology of the Ministry of Health of the Russian Federation, Moscow, Russia.
| | - Sergey S Markin
- Clinical Research Department, Institute of Biomedical Chemistry, 119121 Moscow, Russia.
| |
Collapse
|
14
|
Choi HY, Ruel I, Genest J. Identification of Docetaxel as a Potential Drug to Promote HDL Biogenesis. Front Pharmacol 2021; 12:679456. [PMID: 34093205 PMCID: PMC8176524 DOI: 10.3389/fphar.2021.679456] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Accepted: 05/07/2021] [Indexed: 12/13/2022] Open
Abstract
Objective: Our recent studies showed that desmocollin 1 (DSC1) binds to apoA-I in order to inhibit apoA-I-mediated high density lipoprotein (HDL) biogenesis in atherosclerotic plaques. To promote HDL biogenesis in the plaque, here we search for small molecules that block apoA-I-DSC1 interactions. Approach and Results: We combined mutational and computational mapping methods to show that amino acid residues 442-539 in the mature DSC1 protein form an apoA-I binding site (AIBS). Using a crystal structure of the AIBS, we carried out virtual screening of 10 million small molecules to estimate their binding affinities to the AIBS, followed by the selection of 51 high-affinity binding molecules as potential inhibitors of apoA-I-DSC1 interactions. Among the 51, the chemotherapy drug docetaxel showed the highest potency in promoting apoA-I-mediated HDL biogenesis in primary human skin fibroblasts with the half-maximal effective concentration of 0.72 nM. In silico docking studies suggest that the taxane ring in docetaxel binds to the AIBS and that the carbon-13 sidechain of the taxane tightens/stabilizes the binding. The HDL biogenic effect of docetaxel was also observed in two predominant cell types in atherosclerosis, macrophages and smooth muscle cells. Importantly, docetaxel promoted HDL biogenesis at concentrations much lower than those required for inducing cytotoxicity. Conclusion: Determination of the AIBS in DSC1 and AIBS structure-based virtual screening allowed us to identify docetaxel as a strong HDL biogenic agent. With the remarkable potency in promoting HDL biogenesis, a chemotherapy drug docetaxel may be repurposed to enhance atheroprotective HDL functions.
Collapse
Affiliation(s)
- Hong Y Choi
- Cardiovascular Research Laboratories, Research Institute of the McGill University Health Center, Montreal, QC, Canada
| | - Isabelle Ruel
- Cardiovascular Research Laboratories, Research Institute of the McGill University Health Center, Montreal, QC, Canada
| | - Jacques Genest
- Cardiovascular Research Laboratories, Research Institute of the McGill University Health Center, Montreal, QC, Canada
| |
Collapse
|
15
|
Hydroxytyrosol Plays Antiatherosclerotic Effects through Regulating Lipid Metabolism via Inhibiting the p38 Signal Pathway. BIOMED RESEARCH INTERNATIONAL 2021; 2020:5036572. [PMID: 32685494 PMCID: PMC7330625 DOI: 10.1155/2020/5036572] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 04/25/2020] [Accepted: 05/16/2020] [Indexed: 02/07/2023]
Abstract
Purpose Hydroxytyrosol (HT) processes multiaspect pharmacological properties such as antithrombosis and antidiabetes. The aim of this study was to explore the antistherosclerotic roles and relevant mechanisms of HT. Methods Male apoE−/− mice were randomly divided into 2 groups: the control group and the HT group (10 mg/kg/day orally). After 16 weeks, blood tissue, heart tissue, and liver tissue were obtained to detect the atherosclerotic lesions, histological analysis, lipid parameters, and inflammation. And the underlying molecular mechanisms of HT were also studied in vivo and in vitro. Results HT administration significantly reduced the extent of atherosclerotic lesions in the aorta of apoE−/− mice. We found that HT markedly lowered the levels of serum TG, TC, and LDL-C approximately by 17.4% (p = 0.004), 15.2% (p = 0.003), and 17.9% (p = 0.009), respectively, as well as hepatic TG and TC by 15.0% (p < 0.001) and 12.3% (p = 0.003), respectively, while inducing a 26.9% (p = 0.033) increase in serum HDL-C. Besides, HT improved hepatic steatosis and lipid deposition. Then, we discovered that HT could regulate the signal flow of AMPK/SREBP2 and increase the expression of ABCA1, apoAI, and SRBI. In addition, HT reduced the levels of serum CRP, TNF-α, IL-1β, and IL-6 approximately by 23.5% (p < 0.001), 27.8% (p < 0.001), 18.4% (p < 0.001), and 19.1% (p < 0.001), respectively, and induced a 1.4-fold increase in IL-10 level (p = 0.014). Further, we found that HT might regulate cholesterol metabolism via decreasing phosphorylation of p38, followed by activation of AMPK and inactivation of NF-κB, which in turn triggered the blockade of SREBP2/PCSK9 and upregulation of LDLR, apoAI, and ABCA1, finally leading to a reduction of LDL-C and increase of HDL-C in the circulation. Conclusion Our results provide the first evidence that HT displays antiatherosclerotic actions via mediating lipid metabolism-related pathways through regulating the activities of inflammatory signaling molecules.
Collapse
|
16
|
High-Density Lipoproteins and Mediterranean Diet: A Systematic Review. Nutrients 2021; 13:nu13030955. [PMID: 33809504 PMCID: PMC7999874 DOI: 10.3390/nu13030955] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 03/08/2021] [Accepted: 03/12/2021] [Indexed: 12/15/2022] Open
Abstract
Cardiovascular disease (CVD) is the leading cause of global mortality and the study of high-density lipoproteins (HDL) particle composition and functionality has become a matter of high interest, particularly in light to the disappointing clinical data for HDL-cholesterol (HDL-C) raising therapies in CVD secondary prevention and the lack of association between HDL-C and the risk of CVD. Recent evidences suggest that HDL composition and functionality could be modulated by diet. The purpose of this systematic review was to investigate the effect of Mediterranean diet (MD) on changes in HDL structure and functionality in humans. A comprehensive search was conducted in four databases (PubMed, Scopus, Cochrane library and Web of Science) and 13 records were chosen. MD showed favorable effects on HDL functionality, particularly by improving HDL cholesterol efflux capacity and decreasing HDL oxidation. In addition, HDL composition and size were influenced by MD. Thus, MD is a protective factor against CVD associated with the improvement of HDL quality and the prevention of HDL dysfunctionality.
Collapse
|
17
|
Ma F, Darabi M, Lhomme M, Tubeuf E, Canicio A, Brerault J, Medadje N, Rached F, Lebreton S, Frisdal E, Brites F, Serrano C, Santos R, Gautier E, Huby T, El Khoury P, Carrié A, Abifadel M, Bruckert E, Guerin M, Couvert P, Giral P, Lesnik P, Le Goff W, Guillas I, Kontush A. Phospholipid transfer to high-density lipoprotein (HDL) upon triglyceride lipolysis is directly correlated with HDL-cholesterol levels and is not associated with cardiovascular risk. Atherosclerosis 2021; 324:1-8. [PMID: 33798922 DOI: 10.1016/j.atherosclerosis.2021.03.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 02/05/2021] [Accepted: 03/04/2021] [Indexed: 10/22/2022]
Abstract
BACKGROUND AND AIMS While low concentrations of high-density lipoprotein-cholesterol (HDL-C) represent a well-established cardiovascular risk factor, extremely high HDL-C is paradoxically associated with elevated cardiovascular risk, resulting in the U-shape relationship with cardiovascular disease. Free cholesterol transfer to HDL upon lipolysis of triglyceride-rich lipoproteins (TGRL) was recently reported to underlie this relationship, linking HDL-C to triglyceride metabolism and atherosclerosis. In addition to free cholesterol, other surface components of TGRL, primarily phospholipids, are transferred to HDL during lipolysis. It remains indeterminate as to whether such transfer is linked to HDL-C and cardiovascular disease. METHODS AND RESULTS When TGRL was labelled with fluorescent phospholipid 1,1'-dioctadecyl-3,3,3',3'-tetramethylindocarbocyanine perchlorate (DiI), time- and dose-dependent transfer of DiI to HDL was observed upon incubations with lipoprotein lipase (LPL). The capacity of HDL to acquire DiI was decreased by -36% (p<0.001) in low HDL-C patients with acute myocardial infarction (n = 22) and by -95% (p<0.001) in low HDL-C subjects with Tangier disease (n = 7), unchanged in low HDL-C patients with Type 2 diabetes (n = 17) and in subjects with high HDL-C (n = 20), and elevated in subjects with extremely high HDL-C (+11%, p<0.05) relative to healthy normolipidemic controls. Across all the populations combined, HDL capacity to acquire DiI was directly correlated with HDL-C (r = 0.58, p<0.001). No relationship of HDL capacity to acquire DiI with both overall and cardiovascular mortality obtained from epidemiological studies for the mean HDL-C levels observed in the studied populations was obtained. CONCLUSIONS These data indicate that the capacity of HDL to acquire phospholipid from TGRL upon LPL-mediated lipolysis is proportional to HDL-C and does not reflect cardiovascular risk in subjects widely differing in HDL-C levels.
Collapse
Affiliation(s)
- Feng Ma
- National Institute for Health and Medical Research (INSERM) UMR_S 1166, Faculty of Medicine Pitie-Salpetriere, 91 Bld de L'Hopital, 75013, Paris, France; Sorbonne University, Paris, France.
| | - Maryam Darabi
- National Institute for Health and Medical Research (INSERM) UMR_S 1166, Faculty of Medicine Pitie-Salpetriere, 91 Bld de L'Hopital, 75013, Paris, France; Sorbonne University, Paris, France
| | - Marie Lhomme
- Institute of Cardiometabolism and Nutrition (ICAN), Paris, F-75013, France
| | - Emilie Tubeuf
- National Institute for Health and Medical Research (INSERM) UMR_S 1166, Faculty of Medicine Pitie-Salpetriere, 91 Bld de L'Hopital, 75013, Paris, France; Sorbonne University, Paris, France
| | - Aurélie Canicio
- National Institute for Health and Medical Research (INSERM) UMR_S 1166, Faculty of Medicine Pitie-Salpetriere, 91 Bld de L'Hopital, 75013, Paris, France; Sorbonne University, Paris, France
| | - Jean Brerault
- National Institute for Health and Medical Research (INSERM) UMR_S 1166, Faculty of Medicine Pitie-Salpetriere, 91 Bld de L'Hopital, 75013, Paris, France; Sorbonne University, Paris, France
| | - Narcisse Medadje
- National Institute for Health and Medical Research (INSERM) UMR_S 1166, Faculty of Medicine Pitie-Salpetriere, 91 Bld de L'Hopital, 75013, Paris, France; Sorbonne University, Paris, France
| | - Fabiana Rached
- National Institute for Health and Medical Research (INSERM) UMR_S 1166, Faculty of Medicine Pitie-Salpetriere, 91 Bld de L'Hopital, 75013, Paris, France; Sorbonne University, Paris, France; Heart Institute-InCor, University of Sao Paulo, Sao Paulo, Brazil
| | | | - Eric Frisdal
- National Institute for Health and Medical Research (INSERM) UMR_S 1166, Faculty of Medicine Pitie-Salpetriere, 91 Bld de L'Hopital, 75013, Paris, France; Sorbonne University, Paris, France
| | - Fernando Brites
- Laboratory of Lipids and Atherosclerosis, Department of Clinical Biochemistry, INFIBIOC, University of Buenos Aires, CONICET. Buenos Aires, Argentina
| | - Carlos Serrano
- Heart Institute-InCor, University of Sao Paulo, Sao Paulo, Brazil
| | - Raul Santos
- Heart Institute-InCor, University of Sao Paulo, Sao Paulo, Brazil
| | - Emmanuel Gautier
- National Institute for Health and Medical Research (INSERM) UMR_S 1166, Faculty of Medicine Pitie-Salpetriere, 91 Bld de L'Hopital, 75013, Paris, France; Sorbonne University, Paris, France
| | - Thierry Huby
- National Institute for Health and Medical Research (INSERM) UMR_S 1166, Faculty of Medicine Pitie-Salpetriere, 91 Bld de L'Hopital, 75013, Paris, France; Sorbonne University, Paris, France
| | - Petra El Khoury
- Laboratory of Biochemistry and Molecular Therapeutics, Faculty of Pharmacy, Pôle Technologie-Santé, Saint Joseph University, Beirut, Lebanon; INSERM LVTS U1148, Hôpital Bichat-Claude Bernard, Paris, France
| | - Alain Carrié
- National Institute for Health and Medical Research (INSERM) UMR_S 1166, Faculty of Medicine Pitie-Salpetriere, 91 Bld de L'Hopital, 75013, Paris, France; Sorbonne University, Paris, France
| | - Marianne Abifadel
- Laboratory of Biochemistry and Molecular Therapeutics, Faculty of Pharmacy, Pôle Technologie-Santé, Saint Joseph University, Beirut, Lebanon; INSERM LVTS U1148, Hôpital Bichat-Claude Bernard, Paris, France
| | - Eric Bruckert
- National Institute for Health and Medical Research (INSERM) UMR_S 1166, Faculty of Medicine Pitie-Salpetriere, 91 Bld de L'Hopital, 75013, Paris, France; Sorbonne University, Paris, France; Institute of Cardiometabolism and Nutrition (ICAN), Paris, F-75013, France; AP-HP, Groupe Hospitalier Pitié-Salpétrière, Paris, F-75013, France
| | - Maryse Guerin
- National Institute for Health and Medical Research (INSERM) UMR_S 1166, Faculty of Medicine Pitie-Salpetriere, 91 Bld de L'Hopital, 75013, Paris, France; Sorbonne University, Paris, France
| | - Philippe Couvert
- National Institute for Health and Medical Research (INSERM) UMR_S 1166, Faculty of Medicine Pitie-Salpetriere, 91 Bld de L'Hopital, 75013, Paris, France; Sorbonne University, Paris, France
| | - Philippe Giral
- National Institute for Health and Medical Research (INSERM) UMR_S 1166, Faculty of Medicine Pitie-Salpetriere, 91 Bld de L'Hopital, 75013, Paris, France; Sorbonne University, Paris, France; Institute of Cardiometabolism and Nutrition (ICAN), Paris, F-75013, France; AP-HP, Groupe Hospitalier Pitié-Salpétrière, Paris, F-75013, France
| | - Philippe Lesnik
- National Institute for Health and Medical Research (INSERM) UMR_S 1166, Faculty of Medicine Pitie-Salpetriere, 91 Bld de L'Hopital, 75013, Paris, France; Sorbonne University, Paris, France
| | - Wilfried Le Goff
- National Institute for Health and Medical Research (INSERM) UMR_S 1166, Faculty of Medicine Pitie-Salpetriere, 91 Bld de L'Hopital, 75013, Paris, France; Sorbonne University, Paris, France
| | - Isabelle Guillas
- National Institute for Health and Medical Research (INSERM) UMR_S 1166, Faculty of Medicine Pitie-Salpetriere, 91 Bld de L'Hopital, 75013, Paris, France; Sorbonne University, Paris, France
| | - Anatol Kontush
- National Institute for Health and Medical Research (INSERM) UMR_S 1166, Faculty of Medicine Pitie-Salpetriere, 91 Bld de L'Hopital, 75013, Paris, France; Sorbonne University, Paris, France
| |
Collapse
|
18
|
Li YH, Tseng WK, Yin WH, Lin FJ, Wu YW, Hsieh IC, Lin TH, Sheu WHH, Yeh HI, Chen JW, Wu CC. Prognostic effect of high-density lipoprotein cholesterol level in patients with atherosclerotic cardiovascular disease under statin treatment. Sci Rep 2020; 10:21835. [PMID: 33318590 PMCID: PMC7736267 DOI: 10.1038/s41598-020-78828-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Accepted: 11/30/2020] [Indexed: 01/14/2023] Open
Abstract
In patients with atherosclerotic cardiovascular disease (ASCVD) under statin treatment, the influence of on-treatment level of high-density lipoprotein cholesterol (HDL-C) on cardiovascular (CV) events is controversial. Statin-treated patients were selected from the Taiwanese Secondary Prevention for patients with AtheRosCLErotic disease (T-SPARCLE) Registry, a multicenter, observational study of adult patients with ASCVD in Taiwan. Low HDL-C was defined as < 40 mg/dL for men and < 50 mg/dL for women. The primary outcome was a composite CV events including CV death, myocardial infarction (MI), stroke or cardiac arrest with resuscitation. A total of 3731 patients (mean age 65.6 years, 75.6% men) were included. Patients with on-treatment low HDL-C (44%, mean HDL-C 34.9 ± 6.8 mg/dL) were younger and with more diabetes and higher body weight. The mean follow-up time was 2.7 years. We used restricted cubic spline curves to examine the potential non-linear association between HDL-C and adverse outcomes. Decreased HDL-C levels were associated with a significantly increased risk of CV events in women (< 49 mg/dL in women) but not in men (< 42 mg/dL in men). However, the protective effect of elevated HDL-C levels was more prominent in men than in women. In ASCVD patients with statin therapy, low on-treatment HDL-C was common in Taiwan and associated with an increased risk of CV events in women. Higher HDL-C levels provided more protective effect in men than in women.
Collapse
Affiliation(s)
- Yi-Heng Li
- Division of Cardiology, Department of Internal Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Wei-Kung Tseng
- Department of Medical Imaging and Radiological Sciences, I-Shou University, Kaohsiung, Taiwan. .,Division of Cardiology, Department of Internal Medicine, E-Da Hospital, Kaohsiung, Taiwan.
| | - Wei-Hsian Yin
- National Yang Ming University School of Medicine, Taipei, Taiwan.,Division of Cardiology, Heart Center, Cheng-Hsin General Hospital, Taipei, Taiwan
| | - Fang-Ju Lin
- Graduate Institute of Clinical Pharmacy and School of Pharmacy, College of Medicine, National Taiwan University, Taipei, Taiwan.,Department of Pharmacy, National Taiwan University Hospital, Taipei, Taiwan
| | - Yen-Wen Wu
- Cardiology Division, Cardiovascular Medical Center, Far Eastern Memorial Hospital, New Taipei City, Taiwan.,Department of Medical Research and Education, Taipei Veterans General Hospital, Taipei, Taiwan.,Cardiology Division, Department of Internal Medicine, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan
| | - I-Chang Hsieh
- Division of Cardiology, Department of Internal Medicine, Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Taoyuan, Taiwan
| | - Tsung-Hsien Lin
- Division of Cardiology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan.,Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Wayne Huey-Herng Sheu
- Division of Endocrinology and Metabolism and Department of Medical Research, Taichung Veterans General Hospital, Taichung, Taiwan
| | - Hung-I Yeh
- Division of Cardiology, Department of Internal Medicine, Mackay Memorial Hospital, Mackay Medical College, New Taipei City, Taiwan
| | - Jaw-Wen Chen
- Institute of Pharmacology, National Yang Ming University, Taipei, Taiwan
| | - Chau-Chung Wu
- Cardiology Division, Department of Internal Medicine, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan. .,Graduate Institute of Medical Education and Bioethics, College of Medicine, National Taiwan University, Taipei, Taiwan.
| | | |
Collapse
|
19
|
Ma R, Qi Y, Zhao X, Li X, Sun X, Niu P, Li Y, Guo C, Chen R, Sun Z. Amorphous silica nanoparticles accelerated atherosclerotic lesion progression in ApoE -/- mice through endoplasmic reticulum stress-mediated CD36 up-regulation in macrophage. Part Fibre Toxicol 2020; 17:50. [PMID: 33008402 PMCID: PMC7531166 DOI: 10.1186/s12989-020-00380-0] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Accepted: 09/14/2020] [Indexed: 01/10/2023] Open
Abstract
Background The biosafety concern of silica nanoparticles (SiNPs) is rapidly expanding alongside with its mass production and extensive applications. The cardiovascular effects of SiNPs exposure have been gradually confirmed, however, the interaction between SiNPs exposure and atherosclerosis, and the underlying mechanisms still remain unknown. Thereby, this study aimed to explore the effects of SiNPs on the progression of atherosclerosis, and to investigate related mechanisms. Results We firstly investigated the in vivo effects of SiNPs exposure on atherosclerosis via intratracheal instillation of ApoE−/− mice fed a Western diet. Ultrasound microscopy showed a significant increase of pulse wave velocity (PWV) compared to the control group, and the histopathological investigation reflected a greater plaque burden in the aortic root of SiNPs-exposed ApoE−/− mice. Compared to the control group, the serum levels of total triglycerides (TG) and low-density lipoprotein cholesterol (LDL-C) were elevated after SiNPs exposure. Moreover, intensified macrophage infiltration and endoplasmic reticulum (ER) stress was occurred in plaques after SiNPs exposure, as evidenced by the upregulated CD68 and CHOP expressions. Further in vitro, SiNPs was confirmed to activate ER stress and induce lipid accumulation in mouse macrophage, RAW264.7. Mechanistic analyses showed that 4-PBA (a classic ER stress inhibitor) pretreatment greatly alleviated SiNPs-induced macrophage lipid accumulation, and reversed the elevated CD36 expression induced by SiNPs. Conclusions Our results firstly revealed the acceleratory effect of SiNPs on the progression of atherosclerosis in ApoE−/− mice, which was related to lipid accumulation caused by ER stress-mediated upregulation of CD36 expression in macrophage. Graphical abstract ![]()
Collapse
Affiliation(s)
- Ru Ma
- Department of Occupational Health and Environmental Health, School of Public Health, Capital Medical University, Beijing, 100069, China.,Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, China
| | - Yi Qi
- Department of Occupational Health and Environmental Health, School of Public Health, Capital Medical University, Beijing, 100069, China.,Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, China
| | - Xinying Zhao
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, China.,Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing, 100069, China
| | - Xueyan Li
- Department of Occupational Health and Environmental Health, School of Public Health, Capital Medical University, Beijing, 100069, China.,Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, China
| | - Xuejing Sun
- Department of Occupational Health and Environmental Health, School of Public Health, Capital Medical University, Beijing, 100069, China.,Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, China
| | - Piye Niu
- Department of Occupational Health and Environmental Health, School of Public Health, Capital Medical University, Beijing, 100069, China.,Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, China
| | - Yanbo Li
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, China. .,Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing, 100069, China.
| | - Caixia Guo
- Department of Occupational Health and Environmental Health, School of Public Health, Capital Medical University, Beijing, 100069, China. .,Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, China.
| | - Rui Chen
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, China.,Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing, 100069, China
| | - Zhiwei Sun
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, China.,Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing, 100069, China
| |
Collapse
|
20
|
Varela LM, Meseguer E, Lapergue B, Couret D, Amarenco P, Meilhac O. Changes in High-Density Lipoproteins Related to Outcomes in Patients with Acute Stroke. J Clin Med 2020; 9:jcm9072269. [PMID: 32708891 PMCID: PMC7408777 DOI: 10.3390/jcm9072269] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 07/11/2020] [Accepted: 07/16/2020] [Indexed: 12/18/2022] Open
Abstract
Modifications in high-density lipoprotein (HDL) particle sizes and HDL-binding proteins have been reported in stroke patients. We evaluated whether the lipoprotein profile, HDL composition and functionality were altered in stroke patients according to their clinical outcome using the modified Rankin Score at 3 months. Plasma samples were obtained from stroke patients treated with intravenous thrombolysis. Levels of cardiovascular and inflammatory markers in plasma were measured using the Human CVD Panel 1 (Milliplex® MAP). Lipoprotein subfractions from plasma were quantified by non-denaturing acrylamide gel electrophoresis, using the Lipoprint®-System (Quantimetrix®), and HDLs were isolated by ultracentrifugation. Relative amounts of paraoxonase-1 (PON1) and alpha-1 anti-trypsin (AAT) in the isolated HDLs were determined by Western blot. HDL anti-inflammatory function was evaluated in human blood-brain barrier endothelial cells stimulated with 100 ng/mL TNFα, and HDL antioxidant function was evaluated via their capacity to limit copper-induced low-density lipoprotein oxidation. Stroke patients with unfavorable outcomes had a lower proportion of small-sized HDLs and increased plasma levels of E-selectin (SELE) and the intercellular adhesion molecule 1 (ICAM1). HDLs from patients with unfavorable outcomes had lower levels of PON1 and displayed a blunted capacity to reduce the expression of SELE, interleukin 8 (IL8) and the monocyte chemoattractant protein-1 (MCP1) mRNA induced by TNFα in endothelial cells. These HDLs also had a reduced antioxidant capacity relative to HDLs from healthy donors. In conclusion, an increased ratio of large/small HDLs with impaired anti-inflammatory and antioxidant capacities was associated with unfavorable outcomes in stroke patients. Alteration of HDL functionality was mainly associated with a low amount of PON1 and high amount of AAT.
Collapse
Affiliation(s)
- Lourdes M. Varela
- Inserm U1148, Paris University, 75018 Paris, France
- Instituto de Biomedicina de Sevilla (IBiS)/Hospital Universitario Virgen del Rocío/CSIC/Departamento de Fisiología Médica y Biofísica-Universidad de Sevilla, 41013 Sevilla, Spain
- Correspondence: (L.M.V.); (O.M.)
| | - Elena Meseguer
- Department of Neurology and Stroke Center, Paris University, 75018 Paris, France; (E.M.); (P.A.)
| | - Bertrand Lapergue
- Department of Neurology, Stroke Center, Foch Hospital, 92150 Suresnes, France;
| | | | - Pierre Amarenco
- Department of Neurology and Stroke Center, Paris University, 75018 Paris, France; (E.M.); (P.A.)
| | - Olivier Meilhac
- CHU de La Réunion, 97410 Saint-Pierre, France;
- Université de La Réunion, Inserm U1188 DéTROI, F-97490 Sainte-Clotilde, France
- Correspondence: (L.M.V.); (O.M.)
| |
Collapse
|
21
|
Lemes RMR, Silva CADME, Marques MÂDM, Atella GC, Nery JADC, Nogueira MRS, Rosa PS, Soares CT, De P, Chatterjee D, Pessolani MCV, de Macedo CS. Altered composition and functional profile of high-density lipoprotein in leprosy patients. PLoS Negl Trop Dis 2020; 14:e0008138. [PMID: 32226013 PMCID: PMC7145193 DOI: 10.1371/journal.pntd.0008138] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 04/09/2020] [Accepted: 02/12/2020] [Indexed: 02/06/2023] Open
Abstract
The changes in host lipid metabolism during leprosy have been correlated to fatty acid alterations in serum and with high-density lipoprotein (HDL) dysfunctionality. This is most evident in multibacillary leprosy patients (Mb), who present an accumulation of host lipids in Schwann cells and macrophages. This accumulation in host peripheral tissues should be withdrawn by HDL, but it is unclear why this lipoprotein from Mb patients loses this function. To investigate HDL metabolism changes during the course of leprosy, HDL composition and functionality of Mb, Pb patients (paucibacillary) pre- or post-multidrug therapy (MDT) and HC (healthy controls) were analyzed. Mb pre-MDT patients presented lower levels of HDL-cholesterol compared to HC. Moreover, Ultra Performance Liquid Chromatography-Mass Spectrometry lipidomics of HDL showed an altered lipid profile of Mb pre-MDT compared to HC and Pb patients. In functional tests, HDL from Mb pre-MDT patients showed impaired anti-inflammatory and anti-oxidative stress activities and a lower cholesterol acceptor capacity compared to other groups. Mb pre-MDT showed lower concentrations of ApoA-I (apolipoprotein A-I), the major HDL protein, when compared to HC, with a post-MDT recovery. Changes in ApoA-I expression could also be observed in M. leprae-infected hepatic cells. The presence of bacilli in the liver of a Mb patient, along with cell damage, indicated hepatic involvement during leprosy, which may reflect on ApoA-I expression. Together, altered compositional and functional profiles observed on HDL of Mb patients can explain metabolic and physiological changes observed in Mb leprosy, contributing to a better understanding of its pathogenesis.
Collapse
Affiliation(s)
- Robertha Mariana R. Lemes
- Laboratório de Microbiologia Celular, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Carlos Adriano de M. e Silva
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado, United States of America
| | - Maria Ângela de M. Marques
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado, United States of America
| | - Georgia C. Atella
- Laboratório de Bioquímica de Lipídeos e Lipoproteínas, Instituto de Bioquímica Médica, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brazil
| | - José Augusto da C. Nery
- Ambulatório Souza Araújo, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Rio de Janeiro, Brazil
| | | | | | | | - Prithwiraj De
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado, United States of America
| | - Delphi Chatterjee
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado, United States of America
| | - Maria Cristina V. Pessolani
- Laboratório de Microbiologia Celular, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Cristiana S. de Macedo
- Laboratório de Microbiologia Celular, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Rio de Janeiro, Brazil
- Centro de Desenvolvimento Tecnológico em Saúde, Fundação Oswaldo Cruz, Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
22
|
Abstract
Cardiovascular disease, with atherosclerosis as the major underlying factor, remains the leading cause of death worldwide. It is well established that cholesterol ester-enriched foam cells are the hallmark of atherosclerotic plaques. Multiple lines of evidence support that enhancing foam cell cholesterol efflux by HDL (high-density lipoprotein) particles, the first step of reverse cholesterol transport (RCT), is a promising antiatherogenic strategy. Yet, excitement towards the therapeutic potential of manipulating RCT for the treatment of cardiovascular disease has faded because of the lack of the association between cardiovascular disease risk and what was typically measured in intervention trials, namely HDL cholesterol, which has an inconsistent relationship to HDL function and RCT. In this review, we will summarize some of the potential reasons for this inconsistency, update the mechanisms of RCT, and highlight conditions in which impaired HDL function or RCT contributes to vascular disease. On balance, the evidence still argues for further research to better understand how HDL functionality contributes to RCT to develop prevention and treatment strategies to reduce the risk of cardiovascular disease.
Collapse
Affiliation(s)
- Mireille Ouimet
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa Heart Institute, University of Ottawa, Canada (M.O.)
| | - Tessa J Barrett
- Division of Cardiology, Department of Medicine, New York University School of Medicine, New York (T.J.B., E.A.F.)
| | - Edward A Fisher
- Division of Cardiology, Department of Medicine, New York University School of Medicine, New York (T.J.B., E.A.F.)
| |
Collapse
|
23
|
High-Density Lipoprotein (HDL) Inhibits Serum Amyloid A (SAA)-Induced Vascular and Renal Dysfunctions in Apolipoprotein E-Deficient Mice. Int J Mol Sci 2020; 21:ijms21041316. [PMID: 32075280 PMCID: PMC7072968 DOI: 10.3390/ijms21041316] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Revised: 02/09/2020] [Accepted: 02/11/2020] [Indexed: 01/09/2023] Open
Abstract
Serum amyloid A (SAA) promotes endothelial inflammation and dysfunction that is associated with cardiovascular disease and renal pathologies. SAA is an apoprotein for high-density lipoprotein (HDL) and its sequestration to HDL diminishes SAA bioactivity. Herein we investigated the effect of co-supplementing HDL on SAA-mediated changes to vascular and renal function in apolipoprotein E-deficient (ApoE-/-) mice in the absence of a high-fat diet. Male ApoE-/- mice received recombinant human SAA or vehicle (control) by intraperitoneal (i.p.) injection every three days for two weeks with or without freshly isolated human HDL supplemented by intravenous (i.v.) injection in the two weeks preceding SAA stimulation. Aorta and kidney were harvested 4 or 18 weeks after commencement of treatment. At 4 weeks after commencement of treatment, SAA increased aortic vascular cell adhesion molecule (VCAM)-1 expression and F2-isoprostane level and decreased cyclic guanosine monophosphate (cGMP), consistent with SAA stimulating endothelial dysfunction and promoting atherosclerosis. SAA also stimulated renal injury and inflammation that manifested as increased urinary protein, kidney injury molecule (KIM)-1, and renal tissue cytokine/chemokine levels as well as increased protein tyrosine chlorination and P38 MAPkinase activation and decreased in Bowman's space, confirming that SAA elicited a pro-inflammatory phenotype in the kidney. At 18 weeks, vascular lesions increased significantly in the cohort of ApoE-/- mice treated with SAA alone. By contrast, pretreatment of mice with HDL decreased SAA pro-inflammatory activity, inhibited SAA enhancement of aortic lesion size and renal function, and prevented changes to glomerular Bowman's space. Taken together, these data indicate that supplemented HDL reduces SAA-mediated endothelial and renal dysfunction in an atherosclerosis-prone mouse model.
Collapse
|
24
|
Kutkiene S, Petrulioniene Z, Karciauskaite D, Laucevicius A, Matuzevicienė G, Staigyte J, Mikulskiene AS, Gargalskaite U, Skiauteryte E, Kovaite M. Lower than average HDL cholesterol efflux capacity in Lithuanian population. Lipids Health Dis 2019; 18:186. [PMID: 31655593 PMCID: PMC6815013 DOI: 10.1186/s12944-019-1124-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Accepted: 09/30/2019] [Indexed: 11/21/2022] Open
Abstract
Background The aim of our study was to evaluate high-density lipoprotein cholesterol (HDL-C) efflux capacity in healthy controls and patients with severe dyslipidemia. Evaluation of HDL function may be beneficial for better understanding of cardiovascular diseases, as well as for taking actions to minimize residual cardiovascular risk. Methods During 2016–2017 a total of 93 participants – 48 (51.6%) women and 45 (48.4%) men – were included in this cross-sectional study. Data of 45 (48.4%) participants with severe dyslipidemia (SD) and 48 (51.6%) controls without dyslipidemia was used for statistical analysis. Total lipid panel, concentration of lipoprotein (a) and apolipoproteins were measured, data about cardiovascular risk factors were collected and detailed evaluation of HDL-C quality was performed for all patients. Results Increased HDL-C concentration was associated with higher ApoA1 (r = 0.866 in controls, r = 0.63 in SD group), ApoA2 (r = 0.41 in controls, r = 0.418 in SD group) and LDL-C concentrations (r = − 0.412 in SD group), lower ApoE (r = − 0.314 in SD group) and TG concentrations (r = − 0.38 in controls, r = − 0.608 in SD group), lower ApoB/ApoA1 ratio (r = − 0.567 in control group), below average HDL-C efflux capacity (r = − 0.335 in SD group), lower BMI (r = − 0.327 in controls, r = − 0.531 in SD group) and abdominal circumference (r = − 0.309 in women with SD). Below-average HDL-C efflux capacity was found in 67.7% (N = 63) of participants. It was more often found among patients with normal weight or BMI 30–31 kg/m2. HDL-C efflux capacity was inversely associated with HDL-C concentration (r = − 0.228). Conclusion Abnormal HDL function may be associated with residual cardiovascular risk in Lithuanian population.
Collapse
Affiliation(s)
- Sandra Kutkiene
- Faculty of Medicine, Vilnius University, Santariškių 2, LT-08661, Vilnius, Lithuania. .,Faculty of Medicine, Clinic of Cardiac and Vascular Diseases, Vilnius University, Vilnius, Lithuania. .,Vilnius University Hospital Santaros Klinikos, Vilnius, Lithuania.
| | - Zaneta Petrulioniene
- Faculty of Medicine, Vilnius University, Santariškių 2, LT-08661, Vilnius, Lithuania.,Faculty of Medicine, Clinic of Cardiac and Vascular Diseases, Vilnius University, Vilnius, Lithuania.,Vilnius University Hospital Santaros Klinikos, Vilnius, Lithuania
| | - Dovile Karciauskaite
- Faculty of Medicine, Vilnius University, Santariškių 2, LT-08661, Vilnius, Lithuania.,Vilnius University Hospital Santaros Klinikos, Vilnius, Lithuania.,Faculty of Medicine, Department of Physiology, Biochemistry, Microbiology and Laboratory Medicine, Vilnius University, Vilnius, Lithuania
| | - Aleksandras Laucevicius
- Faculty of Medicine, Vilnius University, Santariškių 2, LT-08661, Vilnius, Lithuania.,Faculty of Medicine, Clinic of Cardiac and Vascular Diseases, Vilnius University, Vilnius, Lithuania.,Vilnius University Hospital Santaros Klinikos, Vilnius, Lithuania
| | - Gabija Matuzevicienė
- Faculty of Medicine, Vilnius University, Santariškių 2, LT-08661, Vilnius, Lithuania.,Vilnius University Hospital Santaros Klinikos, Vilnius, Lithuania
| | - Justina Staigyte
- Faculty of Medicine, Vilnius University, Santariškių 2, LT-08661, Vilnius, Lithuania.,Vilnius University Hospital Santaros Klinikos, Vilnius, Lithuania
| | - Akvilė Saulyte Mikulskiene
- Faculty of Medicine, Vilnius University, Santariškių 2, LT-08661, Vilnius, Lithuania.,Vilnius University Hospital Santaros Klinikos, Vilnius, Lithuania
| | | | - Egle Skiauteryte
- Faculty of Medicine, Vilnius University, Santariškių 2, LT-08661, Vilnius, Lithuania.,Vilnius University Hospital Santaros Klinikos, Vilnius, Lithuania
| | - Milda Kovaite
- Vilnius University Hospital Santaros Klinikos, Vilnius, Lithuania
| |
Collapse
|
25
|
Kostić T, Deljanin Ilić M, Perišić Z, Milić D, Đorđević M, Golubović M, Koraćević G, Šalinger Martinović S, Ćirić Zdravković S, Živić S, Lazarević M, Stanojević D, Dakić S, Lilić J, Veselinović A. Design and development of novel therapeutics for coronary heart disease treatment based on cholesteryl ester transfer protein inhibition - in silico approach. J Biomol Struct Dyn 2019; 38:2304-2313. [PMID: 31215331 DOI: 10.1080/07391102.2019.1630319] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Cholesteryl ester transfer protein (CETP) belongs to the group of enzymes which inhibition have the application in the treatment of cardiovascular diseases. This study presents QSAR modeling for a set of compounds acting as CETP inhibitors based on the Monte Carlo optimization with SMILES notation and molecular graph-based descriptors, and field-based 3D modeling. A 3D QSAR model was developed for one random split into the training and test sets, whereas conformation independent QSAR models were developed for three random splits, with the results suggesting there is an excellent correlation between them. Various statistical approaches were used to assess the statistical quality of the developed models, including robustness and predictability, and the obtained results were very good. This study used a novel statistical metric known as the index of ideality of correlation for the final assessment of the model, and the results that were obtained suggested that the model was good. Also, molecular fragments which account for the increases and/or decreases of a studied activity were defined and then used for the computer-aided design of new compounds as potential CETP inhibitors. The final assessment of the developed QSAR model and designed inhibitors was done using molecular docking, which revealed an excellent correlation with the results from QSAR modeling.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Tomislav Kostić
- Clinic for Cardiovascular Disease, Clinical Center Nis, Nis, Serbia
| | - Marina Deljanin Ilić
- Institute for Cardiovascular Prevention and Rehabilitation Niska Banja, Nis, Serbia
| | - Zoran Perišić
- Clinic for Cardiovascular Disease, Clinical Center Nis, Nis, Serbia
| | - Dragan Milić
- Clinic for Cardiovascular Surgery, Clinical Center Nis, Nis, Serbia
| | - Miodrag Đorđević
- Clinic for Endocrine Surgery and Breast Surgery, Clinical Center Nis, Nis, Serbia
| | - Mladjan Golubović
- Clinic for Anesthesiology and Intensive Care, Clinical Center Nis, Nis, Serbia
| | - Goran Koraćević
- Clinic for Cardiovascular Disease, Clinical Center Nis, Nis, Serbia
| | | | | | - Saša Živić
- Clinic for Cardiovascular Surgery, Clinical Center Nis, Nis, Serbia
| | - Milan Lazarević
- Clinic for Cardiovascular Surgery, Clinical Center Nis, Nis, Serbia
| | | | - Sonja Dakić
- Clinic for Cardiovascular Disease, Clinical Center Nis, Nis, Serbia
| | - Jelena Lilić
- Clinic for Anesthesiology and Intensive Care, Clinical Center Nis, Nis, Serbia
| | | |
Collapse
|
26
|
Abstract
PURPOSE OF REVIEW Plasma levels of HDL cholesterol are a biomarker of cardiovascular health but not a therapeutic target, as demonstrated by the failure of pharmacological modulation of HDL cholesterol to prevent or treat atherosclerotic cardiovascular disease. In health, HDL particles exert pleiotropic effects against atherosclerosis, including cholesterol removal from foam cells, vasodilatory effects through vascular endothelial cell nitric oxide production, decreased vascular inflammation and oxidative damage, endothelial cell proliferation and antiapoptotic effects. RECENT FINDINGS These functional effects of HDL are independent of the cholesterol mass and are related to the proteome and lipidome. In disease states and with the ageing process, HDL components are extensively modified and may no longer play a beneficial role but are retained in the atheroma and contribute to atherosclerosis. We have recently shown that desmocollin 1 (DSC1) acts as an apolipoprotein (apo) A-I binding protein that is highly expressed in atherosclerotic plaques and inhibits atheroprotective HDL functions by retaining apoA-I. The apoA-I retention hypothesis proposes that macrophages express DSC1 in a maladaptive process that renders apoA-I inactive and contributes to atherosclerosis. SUMMARY HDL loses their beneficial properties in ageing and disease states. Novel pathways may present new therapeutic avenues to restore their biological functions.
Collapse
|
27
|
Genest G, Genest J. High-Density Lipoproteins and Inflammatory Diseases: Full Circle Ahead. Clin Chem 2019; 65:607-608. [PMID: 30872374 DOI: 10.1373/clinchem.2019.302364] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Accepted: 02/22/2019] [Indexed: 12/20/2022]
Affiliation(s)
- Genevieve Genest
- Department of Internal Medicine, Division of Allergy and Clinical Immunology, McGill University, Montreal, Quebec, Canada
| | - Jacques Genest
- Department of Medicine, Division of Cardiology, McGill University Health Center, Montreal, Quebec, Canada.
| |
Collapse
|
28
|
ABCA1 Agonist Mimetic Peptide CS-6253 Induces Microparticles Release From Different Cell Types by ABCA1-Efflux-Dependent Mechanism. Can J Cardiol 2019; 35:770-781. [PMID: 31151713 DOI: 10.1016/j.cjca.2019.02.018] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Revised: 02/18/2019] [Accepted: 02/18/2019] [Indexed: 11/22/2022] Open
Abstract
BACKGROUND Small peptides based on the C-terminal domain of apo E have recently been proposed as ATP-binding cassette transporter A1 (ABCA1) agonist with therapeutic potential. Previous work has shown that a novel synthetic peptide, CS-6253, acts synergistically with apolipoprotein A-I or alone to generate high-density lipoprotein (HDL) particles; we have also shown that cells can release microparticles (50-350 nm in apparent diameter) in an ABCA1- and apolipoprotein A-I-dependent manner. The purpose of this study was to explore the ability of a novel synthetic peptide CS-6253 to induce microparticle release from various cell lines in the process of HDL biogenesis. METHODS The effects of CS-6253 on microparticle formation through the ABCA1 transporter were examined in vitro using cell-based systems and pharmacologic manipulations. RESULTS In cell-based systems combined with fast performance liquid chromatography and nano-sight-tracking analysis, we show that ABCA1 and CS-6253 mediate and increase the production of microparticles containing cholesterol. CS-6253 in baby hamster kidney cells not expressing ABCA1 (baby hamster kidney mock cells) did not alter cholesterol removal across the plasma membrane in the absence of ABCA1 expression even at high concentrations. We report that CS-6253 is not cytotoxic. CONCLUSIONS The present study shows that CS-6253 generates cholesterol containing microparticles with size heterogeneity (100-350 nm) in an ABCA1-dependent manner. We show that microparticles contribute to cell cholesterol efflux from monocyte-macrophage cells. At high doses, CS-6253 is not able to extract cholesterol from cells not expressing ABCA1, indicating that CS-6253 requires ABCA1 cooperation for cholesterol mobilization. We conclude that CS-6253 is an ABCA1 agonist peptide that promotes cellular cholesterol efflux through HDL biogenesis and microparticle formation.
Collapse
|
29
|
Karjalainen JP, Mononen N, Hutri-Kähönen N, Lehtimäki M, Juonala M, Ala-Korpela M, Kähönen M, Raitakari O, Lehtimäki T. The effect of apolipoprotein E polymorphism on serum metabolome - a population-based 10-year follow-up study. Sci Rep 2019; 9:458. [PMID: 30679475 PMCID: PMC6346097 DOI: 10.1038/s41598-018-36450-9] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Accepted: 11/21/2018] [Indexed: 12/12/2022] Open
Abstract
Apolipoprotein E (apoE) is the key regulator of plasma lipids, mediating altered functionalities in lipoprotein metabolism - affecting the risk of coronary artery (CAD) and Alzheimer's diseases, as well as longevity. Searching pathways influenced by apoE prior to adverse manifestations, we utilized a metabolome dataset of 228 nuclear-magnetic-resonance-measured serum parameters with a 10-year follow-up from the population-based Young Finns Study cohort of 2,234 apoE-genotyped (rs7412, rs429358) adults, aged 24-39 at baseline. At the end of our follow-up, by limiting FDR-corrected p < 0.05, regression analyses revealed 180/228 apoE-polymorphism-related associations with the studied metabolites, in all subjects - without indications of apoE x sex interactions. Across all measured apoE- and apoB-containing lipoproteins, ε4 allele had consistently atherogenic and ε2 protective effect on particle concentrations of free/esterified cholesterol, triglycerides, phospholipids and total lipids. As novel findings, ε4 associated with glycoprotein acetyls, LDL-diameter and isoleucine - all reported biomarkers of CAD-risk, inflammation, diabetes and total mortality. ApoE-subgroup differences persisted through our 10-year follow-up, although some variation of individual metabolite levels was noticed. In conclusion, apoE polymorphism associate with a complex metabolic change, including aberrations in multiple novel biomarkers related to elevated cardiometabolic and all-cause mortality risk, extending our understanding about the role of apoE in health and disease.
Collapse
Affiliation(s)
- Juho-Pekka Karjalainen
- Department of Clinical Chemistry, Fimlab Laboratories and Finnish Cardiovascular Research Center-Tampere, Faculty of Medicine and Life Sciences, University of Tampere, Tampere, Finland.
| | - Nina Mononen
- Department of Clinical Chemistry, Fimlab Laboratories and Finnish Cardiovascular Research Center-Tampere, Faculty of Medicine and Life Sciences, University of Tampere, Tampere, Finland
| | - Nina Hutri-Kähönen
- Department of Pediatrics, Tampere University Hospital and Faculty of Medicine and Life Sciences, University of Tampere, Tampere, Finland
| | - Miikael Lehtimäki
- Department of Clinical Chemistry, Fimlab Laboratories and Finnish Cardiovascular Research Center-Tampere, Faculty of Medicine and Life Sciences, University of Tampere, Tampere, Finland
| | - Markus Juonala
- Department of Medicine, University of Turku, and Division of Medicine, Turku University Hospital, Turku, Finland, Murdoch Children's Research Institute, Melbourne, Victoria, Australia
| | - Mika Ala-Korpela
- Computational Medicine, Faculty of Medicine, University of Oulu and Biocenter Oulu, Oulu, Finland.,NMR Metabolomics Laboratory, School of Pharmacy, University of Eastern Finland, Kuopio, Finland.,Medical Research Council Integrative Epidemiology Unit at the University of Bristol, Bristol, UK.,Population Health Science, Bristol Medical School, University of Bristol, Bristol, UK.,Systems Epidemiology, Baker Heart and Diabetes Institute, Melbourne, VIC, Australia.,Department of Epidemiology and Preventive Medicine, School of Public Health and Preventive Medicine, Faculty of Medicine, Nursing and Health Sciences, The Alfred Hospital, Monash University, Melbourne, VIC, Australia
| | - Mika Kähönen
- Department of Clinical Physiology, Tampere University Hospital, and Finnish Cardiovascular Research Center - Tampere, Faculty of Medicine and Life Sciences, University of Tampere, Tampere, Finland
| | - Olli Raitakari
- Department of Clinical Physiology and Nuclear Medicine, Turku University Hospital, and Research Centre of Applied and Preventive Cardiovascular Medicine, University of Turku, Turku, Finland
| | - Terho Lehtimäki
- Department of Clinical Chemistry, Fimlab Laboratories and Finnish Cardiovascular Research Center-Tampere, Faculty of Medicine and Life Sciences, University of Tampere, Tampere, Finland
| |
Collapse
|
30
|
Dansinger M, Williams PT, Superko HR, Asztalos BF, Schaefer EJ. Effects of weight change on HDL-cholesterol and its subfractions in over 28,000 men and women. J Clin Lipidol 2018; 13:308-316. [PMID: 30665769 DOI: 10.1016/j.jacl.2018.12.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Revised: 10/25/2018] [Accepted: 12/09/2018] [Indexed: 10/27/2022]
Abstract
BACKGROUND Changes in body mass index (ΔBMI) have well-established relationships to changes in high-density lipoprotein (ΔHDL)-cholesterol concentrations; however, their relationships to ΔHDL subfractions are less well understood. OBJECTIVE Assess the associations between ΔHDL and ΔBMI in a very large cohort. METHOD Age and sex-adjusted Δapo A1 concentrations were measured within 10 HDL subfractions in 14,121 women and 13,969 men using two-dimensional HDL-mapping. Significance was identified at .01 < P ≤ .05 (*), .001 < P ≤ .01 (†), .0001 < P ≤ .001 (‡), and P ≤ .0001 (§). RESULTS ΔBMI was significantly associated with Δα-1 (very large HDL, slope ± SE, females: -0.39 ± 0.07§; males: -0.51 ± 0.05§), Δα-3 (medium HDL, females: 0.18 ± 0.04§; males: 0.19 ± 0.04§), and Δα-4 (small HDL, females: 0.14 ± 0.03§; males: 0.15 ± 0.04§ mg/dL per kg/m2). As a percent of baseline, the changes in α-1 per ΔBMI were nearly twice as great as the changes in HDL-cholesterol per ΔBMI in both males (-1.53% vs -0.77%) and females (-0.79% vs -0.42%). HDL-cholesterol decreased significantly in healthy-weight patients who became overweight, overweight patients who became class I or class II obese, class I obese patients who became class II obese, and class II obese patients who became class III. In contrast, HDL-cholesterol increased in class III obese patients who became class II or class I, class II obese patients who became class I or overweight, class I patients who became overweight or healthy weight, overweight patients who became healthy weight, and healthy weight patients who became underweight. CONCLUSIONS Weight change significantly affects HDL-cholesterol concentrations throughout the obesity spectrum. ΔBMI's effect on Δα-1 was nearly twice as great as its effect on HDL-cholesterol.
Collapse
Affiliation(s)
- Michael Dansinger
- Division of Endocrinology, Diabetes and Metabolism, Boston Heart Diagnostics, Framingham, MA, USA; Division of Endocrinology, Diabetes and Metabolism, Tufts Medical Center, Boston, MA, USA.
| | - Paul T Williams
- Division of Endocrinology, Diabetes and Metabolism, Boston Heart Diagnostics, Framingham, MA, USA
| | - H Robert Superko
- Division of Endocrinology, Diabetes and Metabolism, Boston Heart Diagnostics, Framingham, MA, USA
| | - Bela F Asztalos
- Cardiovascular Nutrition Laboratory, USDA Human Nutrition Research Center at Tufts University, Boston, MA
| | - Ernst J Schaefer
- Division of Endocrinology, Diabetes and Metabolism, Boston Heart Diagnostics, Framingham, MA, USA; Cardiovascular Nutrition Laboratory, USDA Human Nutrition Research Center at Tufts University, Boston, MA
| |
Collapse
|
31
|
Yu XH, Zhang DW, Zheng XL, Tang CK. Cholesterol transport system: An integrated cholesterol transport model involved in atherosclerosis. Prog Lipid Res 2018; 73:65-91. [PMID: 30528667 DOI: 10.1016/j.plipres.2018.12.002] [Citation(s) in RCA: 136] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Revised: 10/30/2018] [Accepted: 12/01/2018] [Indexed: 02/07/2023]
Abstract
Atherosclerosis, the pathological basis of most cardiovascular disease (CVD), is closely associated with cholesterol accumulation in the arterial intima. Excessive cholesterol is removed by the reverse cholesterol transport (RCT) pathway, representing a major antiatherogenic mechanism. In addition to the RCT, other pathways are required for maintaining the whole-body cholesterol homeostasis. Thus, we propose a working model of integrated cholesterol transport, termed the cholesterol transport system (CTS), to describe body cholesterol metabolism. The novel model not only involves the classical view of RCT but also contains other steps, such as cholesterol absorption in the small intestine, low-density lipoprotein uptake by the liver, and transintestinal cholesterol excretion. Extensive studies have shown that dysfunctional CTS is one of the major causes for hypercholesterolemia and atherosclerosis. Currently, several drugs are available to improve the CTS efficiently. There are also several therapeutic approaches that have entered into clinical trials and shown considerable promise for decreasing the risk of CVD. In recent years, a variety of novel findings reveal the molecular mechanisms for the CTS and its role in the development of atherosclerosis, thereby providing novel insights into the understanding of whole-body cholesterol transport and metabolism. In this review, we summarize the latest advances in this area with an emphasis on the therapeutic potential of targeting the CTS in CVD patients.
Collapse
Affiliation(s)
- Xiao-Hua Yu
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Medical Research Experiment Center, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, Hunan 421001, China
| | - Da-Wei Zhang
- Department of Pediatrics and Group on the Molecular and Cell Biology of Lipids, University of Alberta, Alberta, Canada
| | - Xi-Long Zheng
- Department of Biochemistry and Molecular Biology, Libin Cardiovascular Institute of Alberta, Cumming School of Medicine, University of Calgary, Health Sciences Center, 3330 Hospital Dr NW, Calgary, Alberta T2N 4N1, Canada
| | - Chao-Ke Tang
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Medical Research Experiment Center, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, Hunan 421001, China.
| |
Collapse
|
32
|
Potential causal associations of serum 25-hydroxyvitamin D with lipids: a Mendelian randomization approach of the HUNT study. Eur J Epidemiol 2018; 34:57-66. [PMID: 30465296 DOI: 10.1007/s10654-018-0465-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2018] [Accepted: 11/16/2018] [Indexed: 12/17/2022]
Abstract
Observational studies have shown consistent associations between higher circulating 25-hydroxyvitamin D [25(OH)D] levels and favorable serum lipids. We sought to investigate if such associations were causal. A Mendelian randomization (MR) study was conducted on a population-based cohort comprising 56,435 adults in Norway. A weighted 25(OH)D allele score was generated based on vitamin D-increasing alleles of rs2282679, rs12785878 and rs10741657. Linear regression analyses of serum lipid levels on the allele score were performed to assess the presence of causal associations of serum 25(OH)D with the lipids. To quantify the causal effects, the inverse-variance weighted method was used for calculating MR estimates based on summarized data of individual single-nucleotide polymorphisms. The MR estimate with 95% confidence interval (CI) represents percentage difference in the lipid level per genetically determined 25 nmol/L increase in 25(OH)D. The 25(OH)D allele score demonstrated a clear association with high-density lipoprotein (HDL) cholesterol (p = 0.007) but no association with total or non-HDL cholesterol or triglycerides (p ≥ 0.27). The MR estimate showed 2.52% (95% CI 0.79-4.25%) increase in HDL cholesterol per genetically determined 25 nmol/L increase in 25(OH)D, which was stronger than the corresponding estimate of 1.83% (95% CI 0.85-2.81%) from the observational analysis. The MR estimates for total cholesterol (0.60%, 95% CI - 0.73 to 1.94%), non-HDL cholesterol (0.04%, 95% CI - 1.79 to 1.88%) and triglycerides (- 2.74%, 95% CI - 6.16 to 0.67%) showed no associations. MR analysis of data from a population-based cohort suggested a causal and positive association between serum 25(OH)D and HDL cholesterol.
Collapse
|
33
|
Dyslipidemias in clinical practice. Clin Chim Acta 2018; 487:117-125. [PMID: 30201369 DOI: 10.1016/j.cca.2018.09.010] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2018] [Revised: 09/06/2018] [Accepted: 09/06/2018] [Indexed: 01/14/2023]
Abstract
Most dyslipidemic conditions have been linked to an increased risk of cardiovascular disease. Over the past few years major advances have been made regarding the genetic and metabolic basis of dyslipidemias. Detailed characterization of the genetic basis of familial lipid disorders and knowledge concerning the effects of environmental factors on the expression of dyslipidemias have increased substantially, contributing to a better diagnosis in individual patients. In addition to these developments, therapeutic options to lower cholesterol levels in clinical practice have expanded even further in patients with familial hypercholesterolemia and in subjects with cardiovascular disease. Finally, promising upcoming therapeutic lipid lowering strategies will be reviewed. All these advances will be discussed in relation to current clinical practice with special focus on common lipid disorders including familial dyslipidemias.
Collapse
|
34
|
Abstract
PURPOSE OF REVIEW The major cardio-protective function of HDL is to remove excess cellular cholesterol in the process of HDL particle formation and maturation. The HDL biogenic procedure requiring protein-lipid interactions has been incompletely understood, and here we discuss recent progress and insights into the mechanism of HDL biogenesis. RECENT FINDINGS The initial and rate-limiting step of HDL biogenesis is the interaction between apoA-I and plasma membrane microdomains created by ATP-binding cassette transporter A1 (ABCA1) transporter. Computer simulation of molecular dynamics suggests that ABCA1 translocates phospholipids from the inner to the outer leaflet of the plasma membrane to create a transbilayer density gradient leading to the formation of an exovesiculated plasma membrane microdomain. The cryo-electron microscopy structure of ABCA1 suggests that an elongated hydrophobic tunnel formed by the extracellular domain of ABCA1 may function as a passageway to deliver lipids to apoA-I. In contrast to ABCA1-created plasma membrane microdomains, desmocollin 1 (DSC1) contained in a cholesterol-rich plasma membrane microdomain binds apoA-I to prevent HDL biogenesis. The identification of DSC1-containing plasma membrane microdomains as a negative regulator of HDL biogenesis may offer potential therapeutic avenues. SUMMARY Isolation and characterization of plasma membrane microdomains involved in HDL biogenesis may lead to a better understanding of the molecular mechanism of HDL biogenesis.
Collapse
Affiliation(s)
- Jacques Genest
- Division of Cardiology, Research Institute of the McGill University Health Center, Montréal, Québec, Canada
| | | | | |
Collapse
|
35
|
Abstract
PURPOSE OF REVIEW High-density lipoproteins (HDL) are thought to exert a protective role against atherosclerosis. The measurement of the cholesterol mass within HDL (HDL-C) represents a good biomarker of cardiovascular health, but HDL-C appears to be a poor therapeutic target. Here, we discuss new targets for the development of HDL-directed therapies. RECENT FINDINGS Among cardio-protective functions of HDL particles, the ability of HDL to remove cholesterol from cells involved in the early stages of atherosclerosis is considered one of the most important functions. This process, termed "HDL biogenesis," is initiated by the formation of highly specialized plasma membrane micro-domains by the ATP-binding cassette transporter A1 (ABCA1) and the binding of apolipoproteins (apo) such as apoA-I, the major protein moiety of HDL, to the micro-domains. Although early strategies aimed at increasing HDL biogenesis by upregulating ABCA1 or apoA-I gene expression have not met with clinical success, recent advances in understanding transcriptional, post-transcriptional, and post-translational regulatory pathways propose new targets for the promotion of HDL biogenesis. We have recently reported that a novel apoA-I-binding protein desmocollin 1 (DSC1) prevents HDL biogenesis and that inhibition of apoA-I-DSC1 interactions promotes HDL biogenesis by stabilizing ABCA1. This new HDL regulation pathway nominates DSC1 as an attractive pharmacological target. In the absence of clinically useful therapy to increase HDL biogenesis, finding novel targets to unlock the therapeutic potential of HDL is highly desired. Modulation of apoA-I-DSC1 interactions may be a viable strategy.
Collapse
Affiliation(s)
- Jacques Genest
- The Research Institute of the McGill University Health Center, 1001 boul. Decarie Bloc E, Office EM12212, Montreal, Québec, H4A 3J1, Canada
| | - Hong Y Choi
- The Research Institute of the McGill University Health Center, 1001 boul. Decarie Bloc E, Office EM12212, Montreal, Québec, H4A 3J1, Canada.
| |
Collapse
|
36
|
Jacobs DM, Smolders L, Lin Y, de Roo N, Trautwein EA, van Duynhoven J, Mensink RP, Plat J, Mihaleva VV. Effect of Theobromine Consumption on Serum Lipoprotein Profiles in Apparently Healthy Humans with Low HDL-Cholesterol Concentrations. Front Mol Biosci 2017; 4:59. [PMID: 28971099 PMCID: PMC5609577 DOI: 10.3389/fmolb.2017.00059] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Accepted: 08/04/2017] [Indexed: 11/28/2022] Open
Abstract
Scope: Theobromine is a major active compound in cocoa with allegedly beneficial effect on high-density-lipoprotein-cholesterol (HDL-CH). We have investigated the effect of theobromine (TB) consumption on the concentrations of triglyceride (TG) and cholesterol (CH) in various lipoprotein (LP) subclasses. Methods: In a randomized, double-blind, placebo-controlled, cross-over study, 44 apparently healthy women and men (age: 60 ± 6 years, BMI: 29 ± 3 kg/m2) with low baseline HDL-CH concentrations consumed a drink supplemented with 500 mg/d theobromine for 4 weeks. TG and CH concentrations in 15 LP subclasses were predicted from diffusion-edited 1H NMR spectra of fasting serum. Results: The LP phenotype of the subjects was characterized by low CH concentrations in the large HDL particles and high TG concentrations in large VLDL and chylomicron (CM) particles, which clearly differed from a LP phenotype of subjects with normal HDL-CH. TB only reduced CH concentrations in the LDL particles by 3.64 and 6.79%, but had no effect on TG and CH in any of the HDL, VLDL and CM subclasses. Conclusion: TB was not effective on HDL-CH in subjects with a LP phenotype characterized by low HDL-CH and high TG in VLDL.
Collapse
Affiliation(s)
| | - Lotte Smolders
- Department of Human Biology, School of Nutrition and Translational Research in Metabolism, Maastricht UniversityMaastricht, Netherlands
| | | | | | | | - John van Duynhoven
- Unilever R&DVlaardingen, Netherlands.,Laboratory of Biophysics, Wageningen UniversityWageningen, Netherlands
| | - Ronald P Mensink
- Department of Human Biology, School of Nutrition and Translational Research in Metabolism, Maastricht UniversityMaastricht, Netherlands
| | - Jogchum Plat
- Department of Human Biology, School of Nutrition and Translational Research in Metabolism, Maastricht UniversityMaastricht, Netherlands
| | | |
Collapse
|