1
|
Bilgin B, Adam M, Hekim MG, Bulut F, Ozcan M. Gadolinium-based contrast agents aggravate mechanical and thermal hyperalgesia in a nitroglycerine-induced migraine model in male mice. Magn Reson Imaging 2024; 111:67-73. [PMID: 38604348 DOI: 10.1016/j.mri.2024.04.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 03/26/2024] [Accepted: 04/05/2024] [Indexed: 04/13/2024]
Abstract
In the diagnosis of migraine, which is a neurovascular disease, gadolinium-based contrast agents (GBCAs) are used to rule out more serious conditions. On the other hand, it remains unclear as a scientific gap whether GBCAs may trigger migraine-related pain. The aim of this study was to investigate the effect of GBCAs on mechanical and thermal pain behaviour in a nitroglycerin (NTG)-induced migraine model in mice. NTG (10 mg/kg) was administered intraperitoneally to adult (6-8weeks old) BALB/c mice 2 h before behavioral tests 5 times every other day on days 1st, 3rd, 5th and 9th to induce migraine model (N = 50). As GBCAs, gadobenate dimeglumine (linear-ionic), Gadodiamide (linear-nonionic), and gadobutrol (macrocyclic-nonionic) were delivered intravenously through the tail vein of mice for 5 days on test days. Mechanical pain threshold (plantar and facial withdrawal threshold) was evaluated by plantar von Frey and periorbital von Frey tests on days 1st, 5th, and 9th, and thermal pain threshold (latency) was evaluated by hot plate and cold plate tests on days 3rd and 7th. There was a statistically significant increase in mechanical and thermal hyperalgesia in NTG administered groups compared to the control group. Gadodiamide, gadobutrol and gadobenate dimeglumine administration significantly decreased latency, paw and facial withdrawal threshold (0.18 ± 0.05, 0.17 ± 0.07, 0.16 ± 0.09; 9th day values respectively) compared to NTG group (0.27 ± 0.05). The results of this in vivo study show that GBCAs produce effects that may trigger migraine attacks in migraine. It is recommended that these effects be further investigated and supported by further clinical studies.
Collapse
Affiliation(s)
- Batuhan Bilgin
- Gaziantep Islam Science and Technology University Faculty of Medicine, Department of Biophysics, Gaziantep, Turkey.
| | - Muhammed Adam
- Firat University Faculty of Medicine, Department of Biophysics, Elazig, Turkey
| | | | - Ferah Bulut
- Firat University Faculty of Medicine, Department of Biophysics, Elazig, Turkey
| | - Mete Ozcan
- Firat University Faculty of Medicine, Department of Biophysics, Elazig, Turkey
| |
Collapse
|
2
|
Deneke T, Kutyifa V, Hindricks G, Sommer P, Zeppenfeld K, Carbucicchio C, Pürerfellner H, Heinzel FR, Traykov VB, De Riva M, Pontone G, Lehmkuhl L, Haugaa K. Pre- and post-procedural cardiac imaging (computed tomography and magnetic resonance imaging) in electrophysiology: a clinical consensus statement of the European Heart Rhythm Association and European Association of Cardiovascular Imaging of the European Society of Cardiology. Europace 2024; 26:euae108. [PMID: 38743765 PMCID: PMC11104536 DOI: 10.1093/europace/euae108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 04/11/2024] [Indexed: 05/16/2024] Open
Abstract
Imaging using cardiac computed tomography (CT) or magnetic resonance (MR) imaging has become an important option for anatomic and substrate delineation in complex atrial fibrillation (AF) and ventricular tachycardia (VT) ablation procedures. Computed tomography more common than MR has been used to detect procedure-associated complications such as oesophageal, cerebral, and vascular injury. This clinical consensus statement summarizes the current knowledge of CT and MR to facilitate electrophysiological procedures, the current value of real-time integration of imaging-derived anatomy, and substrate information during the procedure and the current role of CT and MR in diagnosing relevant procedure-related complications. Practical advice on potential advantages of one imaging modality over the other is discussed for patients with implanted cardiac rhythm devices as well as for planning, intraprocedural integration, and post-interventional management in AF and VT ablation patients. Establishing a team of electrophysiologists and cardiac imaging specialists working on specific details of imaging for complex ablation procedures is key. Cardiac magnetic resonance (CMR) can safely be performed in most patients with implanted active cardiac devices. Standard procedures for pre- and post-scanning management of the device and potential CMR-associated device malfunctions need to be in place. In VT patients, imaging-specifically MR-may help to determine scar location and mural distribution in patients with ischaemic and non-ischaemic cardiomyopathy beyond evaluating the underlying structural heart disease. Future directions in imaging may include the ability to register multiple imaging modalities and novel high-resolution modalities, but also refinements of imaging-guided ablation strategies are expected.
Collapse
Affiliation(s)
- Thomas Deneke
- Clinic for Rhythmology at Klinikum Nürnberg Campus Süd, University Hospital of the Paracelsus Medical University, Nuremberg, Germany
| | | | | | | | - Katja Zeppenfeld
- Department of Cardiology, Leiden University Medical Center (LUMC), Leiden, The Netherlands
| | | | - Helmut Pürerfellner
- Department of Clinical Electrophysiology, Ordensklinikum Linz Elisabethinen, Linz, Austria
| | - Frank R Heinzel
- Städtisches Klinikum Dresden, Department of Cardiology, Angiology and Intensive Care Medicine, Dresden, Germany
| | - Vassil B Traykov
- Department of Invasive Electrophysiology and Cardiac Pacing, Acibadem City Clinic Tokuda Hospital, Sofia, Bulgaria
| | - Marta De Riva
- Department of Cardiology, Leiden University Medical Center (LUMC), Leiden, The Netherlands
| | - Gianluca Pontone
- Department of Perioperative Cardiology and Cardiovascular Imaging, Centro Cardiologico Monzino IRCCS, Milan, Italy
- Department of Biomedical, Surgical and Dental Sciences, University of Milan, Milan, Italy
| | - Lukas Lehmkuhl
- Department of Radiology, Heart Center RHÖN-KLINIKUM Campus Bad Neustadt, Germany
| | | |
Collapse
|
3
|
Bučić D, Hrabak-Paar M. Multimodality imaging in patients with implantable loop recorders: Tips and tricks. Hellenic J Cardiol 2024; 77:93-105. [PMID: 38096953 DOI: 10.1016/j.hjc.2023.12.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 12/09/2023] [Indexed: 12/26/2023] Open
Abstract
An implantable loop recorder (ILR) is a leadless rectangular device used for prolonged electrocardiographic monitoring for up to 3 years. This miniaturized device, inserted subcutaneously, allows clinicians to investigate possible cardiac rhythm disturbances in patients suffering from recurrent unexplained syncope. As the age of the population increases rapidly and the number of ILR patients amplifies, the clinical significance of ILRs is undeniable. Although radioopaque and easily seen on plain chest radiographs and other imaging modalities, ILRs may represent a challenge for clinicians and radiologists to recognize their classic appearance and differentiate them from numerous other cardiac devices. This article aims to summarize current literature on ILRs, their basic function, types, and indications for implantation, but most of all, it aims to familiarize clinicians and radiologists with common imaging features of these devices, safety issues, and artifact-reducing methods. Specifically, this review discusses the typical appearance of ILRs on major diagnostic imaging modalities, including chest X-ray, mammography, ultrasonography, computed tomography, and magnetic resonance imaging (MRI). Furthermore, optimization strategies to mitigate image artifacts and safety issues regarding MRI are discussed.
Collapse
Affiliation(s)
- Dinea Bučić
- School of Medicine, University of Zagreb, Zagreb, Croatia.
| | - Maja Hrabak-Paar
- School of Medicine, University of Zagreb, Zagreb, Croatia; Department of Diagnostic and Interventional Radiology, University Hospital Center Zagreb, Zagreb, Croatia.
| |
Collapse
|
4
|
Kim D, Collins JD, White JA, Hanneman K, Lee DC, Patel AR, Hu P, Litt H, Weinsaft JW, Davids R, Mukai K, Ng MY, Luetkens JA, Roguin A, Rochitte CE, Woodard PK, Manisty C, Zareba KM, Mont L, Bogun F, Ennis DB, Nazarian S, Webster G, Stojanovska J. SCMR expert consensus statement for cardiovascular magnetic resonance of patients with a cardiac implantable electronic device. J Cardiovasc Magn Reson 2024; 26:100995. [PMID: 38219955 PMCID: PMC11211236 DOI: 10.1016/j.jocmr.2024.100995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 01/09/2024] [Indexed: 01/16/2024] Open
Abstract
Cardiovascular magnetic resonance (CMR) is a proven imaging modality for informing diagnosis and prognosis, guiding therapeutic decisions, and risk stratifying surgical intervention. Patients with a cardiac implantable electronic device (CIED) would be expected to derive particular benefit from CMR given high prevalence of cardiomyopathy and arrhythmia. While several guidelines have been published over the last 16 years, it is important to recognize that both the CIED and CMR technologies, as well as our knowledge in MR safety, have evolved rapidly during that period. Given increasing utilization of CIED over the past decades, there is an unmet need to establish a consensus statement that integrates latest evidence concerning MR safety and CIED and CMR technologies. While experienced centers currently perform CMR in CIED patients, broad availability of CMR in this population is lacking, partially due to limited availability of resources for programming devices and appropriate monitoring, but also related to knowledge gaps regarding the risk-benefit ratio of CMR in this growing population. To address the knowledge gaps, this SCMR Expert Consensus Statement integrates consensus guidelines, primary data, and opinions from experts across disparate fields towards the shared goal of informing evidenced-based decision-making regarding the risk-benefit ratio of CMR for patients with CIEDs.
Collapse
Affiliation(s)
- Daniel Kim
- Department of Radiology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA.
| | | | - James A White
- Departments of Cardiac Sciences and Diagnostic Imaging, Cummings School of Medicine, University of Calgary, Calgary, Canada
| | - Kate Hanneman
- Department of Medical Imaging, University Medical Imaging Toronto, Toronto General Hospital and Peter Munk Cardiac Centre, University of Toronto, Toronto, Canada
| | - Daniel C Lee
- Department of Medicine (Division of Cardiology), Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Amit R Patel
- Cardiovascular Division, University of Virginia, Charlottesville, VA, USA
| | - Peng Hu
- School of Biomedical Engineering, ShanghaiTech University, Shanghai, China
| | - Harold Litt
- Department of Radiology, Perelman School of Medicine of the University of Pennsylvania, Philadelphia, PA, USA
| | - Jonathan W Weinsaft
- Department of Medicine (Division of Cardiology), Weill Cornell Medicine, New York, NY, USA
| | - Rachel Davids
- SHS AM NAM USA DI MR COLLAB ADV-APPS, Siemens Medical Solutions USA, Inc., Chicago, Il, USA
| | - Kanae Mukai
- Salinas Valley Memorial Healthcare System, Ryan Ranch Center for Advanced Diagnostic Imaging, Monterey, CA, USA
| | - Ming-Yen Ng
- Department of Diagnostic Radiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, the Hong Kong Special Administrative Region of China
| | - Julian A Luetkens
- Department of Diagnostic and Interventional Radiology, University Hospital Bonn, Venusberg-Campus 1, Bonn, Germany
| | - Ariel Roguin
- Department of Cardiology, Hillel Yaffe Medical Center, Hadera and Faculty of Medicine. Technion - Israel Institute of Technology, Israel
| | - Carlos E Rochitte
- Heart Institute, InCor, University of São Paulo Medical School, São Paulo, SP, Brazil
| | - Pamela K Woodard
- Mallinckrodt Institute of Radiology, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
| | - Charlotte Manisty
- Institute of Cardiovascular Science, University College London, London, UK
| | - Karolina M Zareba
- Division of Cardiovascular Medicine, The Ohio State University, Columbus, OH, USA
| | - Lluis Mont
- Cardiovascular Institute, Hospital Clínic, University of Barcelona, Catalonia, Spain
| | - Frank Bogun
- Division of Cardiovascular Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Daniel B Ennis
- Department of Radiology, Stanford University, Stanford, CA, USA
| | - Saman Nazarian
- Section of Cardiac Electrophysiology, Perelman School of Medicine of the University of Pennsylvania, Philadelphia, PA, USA
| | - Gregory Webster
- Department of Pediatrics (Cardiology), Ann & Robert H. Lurie Children's Hospital, Chicago, IL, USA
| | - Jadranka Stojanovska
- Department of Radiology, Grossman School of Medicine, New York University, New York, NY, USA
| |
Collapse
|
5
|
Chow BJ, Galiwango P, Poulin A, Raggi P, Small G, Juneau D, Kazmi M, Ayach B, Beanlands RS, Sanfilippo AJ, Chow CM, Paterson DI, Chetrit M, Jassal DS, Connelly K, Larose E, Bishop H, Kass M, Anderson TJ, Haddad H, Mancini J, Doucet K, Daigle JS, Ahmadi A, Leipsic J, Lim SP, McRae A, Chou AY. Chest Pain Evaluation: Diagnostic Testing. CJC Open 2023; 5:891-903. [PMID: 38204849 PMCID: PMC10774086 DOI: 10.1016/j.cjco.2023.09.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 09/01/2023] [Indexed: 01/12/2024] Open
Abstract
Chest pain/discomfort (CP) is a common symptom and can be a diagnostic dilemma for many clinicians. The misdiagnosis of an acute or progressive chronic cardiac etiology may carry a significant risk of morbidity and mortality. This review summarizes the different options and modalities for establishing the diagnosis and severity of coronary artery disease. An effective test selection algorithm should be individually tailored to each patient to maximize diagnostic accuracy in a timely fashion, determine short- and long-term prognosis, and permit implementation of evidence-based treatments in a cost-effective manner. Through collaboration, a decision algorithm was developed (www.chowmd.ca/cadtesting) that could be adopted widely into clinical practice.
Collapse
Affiliation(s)
- Benjamin J.W. Chow
- Department of Medicine (Cardiology), University of Ottawa Heart Institute, Ottawa, Ontario, Canada
- Department of Radiology, University of Ottawa, Ottawa, Ontario, Canada
| | - Paul Galiwango
- Department of Medicine, Scarborough Health Network and Lakeridge Health, University of Toronto, Toronto, Ontario, Canada
| | - Anthony Poulin
- Department of Medicine, Quebec Heart and Lung Institute, Laval University, Quebec, Quebec, Canada
| | - Paolo Raggi
- Department of Medicine, University of Alberta, Edmonton, Alberta, Canada
| | - Gary Small
- Department of Medicine (Cardiology), University of Ottawa Heart Institute, Ottawa, Ontario, Canada
| | - Daniel Juneau
- Department of Radiology and Nuclear Medicine, Centre Hospitalier de l'Université de Montréal, Montréal, Quebec, Canada
| | - Mustapha Kazmi
- Department of Cardiac Sciences, Libin Cardiovascular Institute, University of Calgary, Calgary, Alberta, Canada
| | - Bilal Ayach
- Department of Medicine, Lakeridge Health, Queen’s University, Kingston, Ontario, Canada
| | - Rob S. Beanlands
- Department of Medicine (Cardiology), University of Ottawa Heart Institute, Ottawa, Ontario, Canada
| | - Anthony J. Sanfilippo
- Department of Medicine, Lakeridge Health, Queen’s University, Kingston, Ontario, Canada
| | - Chi-Ming Chow
- Division of Cardiology, St. Michael’s Hospital, University of Toronto, Toronto, Ontario, Canada
| | - D. Ian Paterson
- Department of Medicine (Cardiology), University of Ottawa Heart Institute, Ottawa, Ontario, Canada
| | - Michael Chetrit
- Department of Cardiovascular Medicine, McGill University Health Centre, Montreal, Quebec, Canada
| | - Davinder S. Jassal
- Department of Physiology and Pathophysiology, Institute of Cardiovascular Sciences, St. Boniface Hospital Albrechtsen Research Centre, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Kim Connelly
- Division of Cardiology, St. Michael’s Hospital, University of Toronto, Toronto, Ontario, Canada
| | - Eric Larose
- Department of Medicine, Centre de recherche de l'Institut universitaire de cardiologie et de pneumologie de Québec, Université Laval, Québec, Quebec, Canada
| | - Helen Bishop
- Division of Cardiology, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Malek Kass
- Department of Internal Medicine, Rady Faculty of Health Sciences, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Todd J. Anderson
- Department of Cardiac Sciences, Libin Cardiovascular Institute, University of Calgary, Calgary, Alberta, Canada
| | - Haissam Haddad
- Division of Cardiology, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - John Mancini
- Department of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Katie Doucet
- Peterborough Regional Health Centre, Kawartha Cardiology Clinic, Peterborough, Ontario, Canada
| | - Jean-Sebastien Daigle
- Department of Internal Medicine, Dr Everett Chalmers Hospital, Fredericton, New Brunswick, Canada
| | - Amir Ahmadi
- Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Jonathan Leipsic
- Department of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
- Department of Radiology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Siok Ping Lim
- Mayfair Diagnostics, Saskatoon, Saskatchewan, Canada
| | - Andrew McRae
- Department of Cardiac Sciences, Libin Cardiovascular Institute, University of Calgary, Calgary, Alberta, Canada
| | - Annie Y. Chou
- Department of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
- Department of Radiology, St. Paul’s Hospital, Vancouver, British Columbia, Canada
| |
Collapse
|
6
|
Giacone HM, Dubin AM. Current Device Needs for Patients with Pediatric and Congenital Heart Disease. Card Electrophysiol Clin 2023; 15:527-534. [PMID: 37865525 DOI: 10.1016/j.ccep.2023.06.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2023]
Abstract
Pediatric electrophysiologists believe that there is a paucity of pediatric-specific cardiac implantable electronic devices (CIEDs) available for their patients. Specific patient characteristics such as vascular size, intracardiac anatomy, and expected somatic growth limit the types of CIED implants possible for pediatric and congenital heart disease (CHD) patients. These patients demonstrate higher CIED-related complication rates compared with adults. As the number of pediatric and CHD patients who require CIEDs increases, so does the need for advocacy. Fortunately, collaboration among the Food and Drug Administration, industry, and pediatric societies has led to the improvement of regulations and support for clinical trials.
Collapse
Affiliation(s)
- Heather M Giacone
- Department of Pediatric Cardiology, Lucile Packard Children's Hospital at Stanford University, 750 Welch Road, Palo Alto, CA 94304, USA.
| | - Anne M Dubin
- Department of Pediatric Cardiology, Lucile Packard Children's Hospital at Stanford University, 750 Welch Road, Palo Alto, CA 94304, USA
| |
Collapse
|
7
|
Arbelo E, Protonotarios A, Gimeno JR, Arbustini E, Barriales-Villa R, Basso C, Bezzina CR, Biagini E, Blom NA, de Boer RA, De Winter T, Elliott PM, Flather M, Garcia-Pavia P, Haugaa KH, Ingles J, Jurcut RO, Klaassen S, Limongelli G, Loeys B, Mogensen J, Olivotto I, Pantazis A, Sharma S, Van Tintelen JP, Ware JS, Kaski JP. 2023 ESC Guidelines for the management of cardiomyopathies. Eur Heart J 2023; 44:3503-3626. [PMID: 37622657 DOI: 10.1093/eurheartj/ehad194] [Citation(s) in RCA: 434] [Impact Index Per Article: 434.0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 08/26/2023] Open
|
8
|
Huang X, Jiang R, Xu X, Wang W, Sun Y, Li L, Shi H, Liu S. Gadolinium retention in the ischemic cerebrum: Implications for pain, neuron loss, and neurological deficits. Magn Reson Med 2022; 89:384-395. [DOI: 10.1002/mrm.29443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 08/12/2022] [Accepted: 08/12/2022] [Indexed: 11/11/2022]
Affiliation(s)
- Xin‐Xin Huang
- Department of Interventional Radiology The First Affiliated Hospital of Nanjing Medical University Nanjing China
| | - Run‐Hao Jiang
- Department of Interventional Radiology The First Affiliated Hospital of Nanjing Medical University Nanjing China
| | - Xiao‐Quan Xu
- Department of Interventional Radiology The First Affiliated Hospital of Nanjing Medical University Nanjing China
| | - Wei Wang
- Department of Interventional Radiology The First Affiliated Hospital of Nanjing Medical University Nanjing China
| | - Yu‐Qin Sun
- Neuroprotective Drug Discovery Key Laboratory, Jiangsu Key Laboratory of Neurodegeneration Nanjing Medical University Nanjing China
| | - Lei Li
- Neuroprotective Drug Discovery Key Laboratory, Jiangsu Key Laboratory of Neurodegeneration Nanjing Medical University Nanjing China
| | - Hai‐Bin Shi
- Department of Interventional Radiology The First Affiliated Hospital of Nanjing Medical University Nanjing China
| | - Sheng Liu
- Department of Interventional Radiology The First Affiliated Hospital of Nanjing Medical University Nanjing China
| |
Collapse
|
9
|
Mondésert B, Moore JP, Khairy P. Cardiac Implantable Electronic Devices in the Fontan Patient. Can J Cardiol 2022; 38:1048-1058. [PMID: 35588949 DOI: 10.1016/j.cjca.2022.04.024] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Revised: 04/18/2022] [Accepted: 04/19/2022] [Indexed: 12/22/2022] Open
Abstract
As a result of remarkable progress in operative techniques and cardiology care during childhood, Fontan patients continue to age and require team-based multidisciplinary expertise to manage complications encountered in adulthood. They face particular challenges in terms of altered hemodynamic stressors, cardiac and hepatic failure, and arrhythmias. Arrhythmias in Fontan patients are highly prevalent and associated with underlying anatomy, surgical technique, and postoperative sequelae. Diagnostic tools, treatments, and device strategies for arrhythmias in Fontan patients should be adapted to the specific anatomy, type of surgical repair, and clinical status. Great strides in our understanding of arrhythmia mechanisms, options and techniques to obtain access to relevant cardiac structures, and application of both old and new technologies have contributed to improving cardiac implantable electronic device (CIED) therapies for this unique population. In this state-of-the-art review, we discuss the various arrhythmias encountered in Fontan patients, their diagnosis, and options for treatment and prevention, with a focus on CIEDs. Throughout, access challenges particular to the Fontan circulation are considered. Recently developed technologies, such as the sub-cutaneous implantable cardioverter defibrillator carry the potential to be transformative but require awareness of Fontan-specific issues. Moreover, new leadless pacing technology represents a promising strategy that may soon become applicable to Fontan patients with sinus node dysfunction. CIEDs are essential tools in managing Fontan patients but the complex clinical scenarios that arise in this patient population are among the most challenging for the congenital electrophysiologist.
Collapse
Affiliation(s)
- Blandine Mondésert
- Adult Congenital Heart Disease Center, Montreal Heart Institute, Medicine Department, Université de Montréal, Montreal, Canada.
| | - Jeremy P Moore
- Division of Cardiology, Department of Medicine, Ahmanson/UCLA Adult Congenital Heart Disease Center, Los Angeles, CA; UCLA Cardiac Arrhythmia Center, UCLA Health System, Los Angeles, CA; Division of Cardiology, Department of Pediatrics, UCLA Health System, Los Angeles, CA
| | - Paul Khairy
- Adult Congenital Heart Disease Center, Montreal Heart Institute, Medicine Department, Université de Montréal, Montreal, Canada
| |
Collapse
|
10
|
Amaral AP, Montgomery JA. Remote Programming of Cardiac Implantable Electronic Devices for MRI: Are We Ready to Change the Channel? J Cardiovasc Electrophysiol 2022; 33:1010-1012. [PMID: 35245404 DOI: 10.1111/jce.15438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Accepted: 02/28/2022] [Indexed: 11/30/2022]
Abstract
Magnetic resonance imaging (MRI) has become an indispensable diagnostic tool across many fields of clinical medicine. Although reprogramming of cardiac implantable electronic devices (CIEDs) for MRI is now routine at most institutions, early experiences were notable for potential adverse effects such as device-related heating, device or lead movement, and device malfunction. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Ansel Philip Amaral
- Division of Cardiovascular Medicine, Vanderbilt University Medical Center, Nashville, TN
| | - Jay Alan Montgomery
- Division of Cardiovascular Medicine, Vanderbilt University Medical Center, Nashville, TN
| |
Collapse
|
11
|
Motazedian P, Prosperi-Porta G, Ahmed M, Hafeez M, Merchant N, Heydari B. Stress perfusion cardiac MRI with a 3.0 Tesla Scanner for myocardial viability in a patient with a conditional pacemaker. CJC Open 2022; 4:581-584. [PMID: 35734513 PMCID: PMC9207775 DOI: 10.1016/j.cjco.2022.02.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 02/17/2022] [Indexed: 12/02/2022] Open
Abstract
Cardiac magnetic resonance (CMR) imaging provides images with high spatial and temporal resolution, with high diagnostic and prognostic performance. An abundance of data indicate the safety and efficacy of noncardiac magnetic resonance imaging at both 1.5 Tesla (T) and 3T in patients with cardiac implantable electronic devices (CIEDs). Safety and efficacy have also been evaluated for stress perfusion (SP)-CMR for pateints with CIEDs, using 1.5T scanners, but no previous reports have been made of SP-CMR using 3T scanners. Herein, we report a case of a patient with a CIED who successfully and safely underwent SP-CMR imaging using a 3T scanner.
Collapse
|
12
|
Suinesiaputra A, Mauger CA, Ambale-Venkatesh B, Bluemke DA, Dam Gade J, Gilbert K, Janse MHA, Hald LS, Werkhoven C, Wu CO, Lima JAC, Young AA. Deep Learning Analysis of Cardiac MRI in Legacy Datasets: Multi-Ethnic Study of Atherosclerosis. Front Cardiovasc Med 2022; 8:807728. [PMID: 35127868 PMCID: PMC8813768 DOI: 10.3389/fcvm.2021.807728] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 12/24/2021] [Indexed: 12/23/2022] Open
Abstract
The Multi-Ethnic Study of Atherosclerosis (MESA), begun in 2000, was the first large cohort study to incorporate cardiovascular magnetic resonance (CMR) to study the mechanisms of cardiovascular disease in over 5,000 initially asymptomatic participants, and there is now a wealth of follow-up data over 20 years. However, the imaging technology used to generate the CMR images is no longer in routine use, and methods trained on modern data fail when applied to such legacy datasets. This study aimed to develop a fully automated CMR analysis pipeline that leverages the ability of machine learning algorithms to enable extraction of additional information from such a large-scale legacy dataset, expanding on the original manual analyses. We combined the original study analyses with new annotations to develop a set of automated methods for customizing 3D left ventricular (LV) shape models to each CMR exam and build a statistical shape atlas. We trained VGGNet convolutional neural networks using a transfer learning sequence between two-chamber, four-chamber, and short-axis MRI views to detect landmarks. A U-Net architecture was used to detect the endocardial and epicardial boundaries in short-axis images. The landmark detection network accurately predicted mitral valve and right ventricular insertion points with average error distance <2.5 mm. The agreement of the network with two observers was excellent (intraclass correlation coefficient >0.9). The segmentation network produced average Dice score of 0.9 for both myocardium and LV cavity. Differences between the manual and automated analyses were small, i.e., <1.0 ± 2.6 mL/m2 for indexed LV volume, 3.0 ± 6.4 g/m2 for indexed LV mass, and 0.6 ± 3.3% for ejection fraction. In an independent atlas validation dataset, the LV atlas built from the fully automated pipeline showed similar statistical relationships to an atlas built from the manual analysis. Hence, the proposed pipeline is not only a promising framework to automatically assess additional measures of ventricular function, but also to study relationships between cardiac morphologies and future cardiac events, in a large-scale population study.
Collapse
Affiliation(s)
- Avan Suinesiaputra
- Department of Anatomy and Medical Imaging, University of Auckland, Auckland, New Zealand
- Department of Biomedical Engineering, School of Biomedical Engineering and Imaging Sciences, King's College London, London, United Kingdom
| | - Charlène A. Mauger
- Department of Anatomy and Medical Imaging, University of Auckland, Auckland, New Zealand
| | | | - David A. Bluemke
- Department of Radiology, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States
| | - Josefine Dam Gade
- Department of Biomedical Engineering and Informatics, School of Medicine and Health, Aalborg University, Aalborg, Denmark
| | - Kathleen Gilbert
- Auckland Bioengineering Institute, University of Auckland, Auckland, New Zealand
| | - Markus H. A. Janse
- Department of Electrical Engineering, Eindhoven University of Technology, Eindhoven, Netherlands
| | - Line Sofie Hald
- Department of Biomedical Engineering and Informatics, School of Medicine and Health, Aalborg University, Aalborg, Denmark
| | - Conrad Werkhoven
- Auckland Bioengineering Institute, University of Auckland, Auckland, New Zealand
| | - Colin O. Wu
- Division of Intramural Research, National Heart, Lung and Blood Institute, National Institutes of Health, Baltimore, MD, United States
| | | | - Alistair A. Young
- Faculty of Life Sciences & Medicine, School of Biomedical Engineering & Imaging Sciences, King's College London, London, United Kingdom
- *Correspondence: Alistair A. Young
| |
Collapse
|