1
|
Dias G, Rocca L, Ferrari HZ, Bernard FL, Brandão FG, Pereira L, Einloft S. Cationic Imidazolium-Urethane-Based Poly(Ionic Liquids) Membranes for Enhanced CO 2/CH 4 Separation: Synthesis, Characterization, and Performance Evaluation. MEMBRANES 2024; 14:151. [PMID: 39057659 PMCID: PMC11279342 DOI: 10.3390/membranes14070151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 07/02/2024] [Accepted: 07/04/2024] [Indexed: 07/28/2024]
Abstract
The escalating emissions of CO2 into the atmosphere require the urgent development of technologies aimed at mitigating environmental impacts. Among these, aqueous amine solutions and polymeric membranes, such as cellulose acetate and polyimide are commercial technologies requiring improvement or substitution to enhance the economic and energetic efficiency of CO2 separation processes. Ionic liquids and poly(ionic liquids) (PILs) are candidates to replace conventional CO2 separation technologies. PILs are a class of materials capable of combining the favorable gas affinity exhibited by ionic liquids (ILs) with the processability inherent in polymeric materials. In this context, the synthesis of the IL GLYMIM[Cl] was performed, followed by ion exchange processes to achieve GLYMIM variants with diverse counter anions (NTf2-, PF6-, and BF4). Subsequently, PIL membranes were fabricated from these tailored ILs and subjected to characterization, employing techniques such as SEC, FTIR, DSC, TGA, DMA, FEG-SEM, and CO2 sorption analysis using the pressure decay method. Furthermore, permeability and ideal selectivity assessments of CO2/CH4 mixture were performed to derive the diffusion and solubility coefficients for both CO2 and CH4. PIL membranes exhibited adequate thermal and mechanical properties. The PIL-BF4 demonstrated CO2 sorption capacities of 33.5 mg CO2/g at 1 bar and 104.8 mg CO2/g at 10 bar. Furthermore, the PIL-BF4 membrane exhibited permeability and ideal (CO2/CH4) selectivity values of 41 barrer and 44, respectively, surpassing those of a commercial cellulose acetate membrane as reported in the existing literature. This study underscores the potential of PIL-based membranes as promising candidates for enhanced CO2 capture technologies.
Collapse
Affiliation(s)
- Guilherme Dias
- School of Technology, Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre 90619-900, RS, Brazil; (G.D.); (L.R.); (H.Z.F.); (F.L.B.)
- Post-Graduation Program in Materials Engineering and Technology, Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre 90619-900, RS, Brazil
| | - Laura Rocca
- School of Technology, Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre 90619-900, RS, Brazil; (G.D.); (L.R.); (H.Z.F.); (F.L.B.)
| | - Henrique Z. Ferrari
- School of Technology, Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre 90619-900, RS, Brazil; (G.D.); (L.R.); (H.Z.F.); (F.L.B.)
- Post-Graduation Program in Materials Engineering and Technology, Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre 90619-900, RS, Brazil
| | - Franciele L. Bernard
- School of Technology, Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre 90619-900, RS, Brazil; (G.D.); (L.R.); (H.Z.F.); (F.L.B.)
| | - Fernando G. Brandão
- Petrobras/CENPES, Ilha do Fundão Qd. 07, Rio de Janeiro 21941-915, RJ, Brazil; (F.G.B.); (L.P.)
| | - Leonardo Pereira
- Petrobras/CENPES, Ilha do Fundão Qd. 07, Rio de Janeiro 21941-915, RJ, Brazil; (F.G.B.); (L.P.)
| | - Sandra Einloft
- School of Technology, Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre 90619-900, RS, Brazil; (G.D.); (L.R.); (H.Z.F.); (F.L.B.)
| |
Collapse
|
2
|
Arshad N, Batool SR, Razzaq S, Arshad M, Rasheed A, Ashraf M, Nawab Y, Nazeer MA. Recent advancements in polyurethane-based membranes for gas separation. ENVIRONMENTAL RESEARCH 2024; 252:118953. [PMID: 38636643 DOI: 10.1016/j.envres.2024.118953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 03/30/2024] [Accepted: 04/14/2024] [Indexed: 04/20/2024]
Abstract
Gas separation membranes are critical in a variety of environmental research and industrial applications. These membranes are designed to selectively allow some gases to flow while blocking others, allowing for the separation and purification of gases for a variety of applications. Therefore, the demand for fast and energy-efficient gas separation techniques is of central interest for many chemical and energy production diligences due to the intensified levels of greenhouse and industrial gases. This encourages the researchers to innovate techniques for capturing and separating these gases, including membrane separation techniques. Polymeric membranes play a significant role in gas separations by capturing gases from the fuel combustion process, purifying chemical raw material used for plastic production, and isolating pure and noncombustible gases. Polyurethane-based membrane technology offers an excellent knack for gas separation applications and has also been considered more energy-efficient than conventional phase change separation methodologies. This review article reveals a thorough delineation of the current developments and efforts made for PU membranes. It further explains its uses for the separation of valuable gases such as carbon dioxide (CO2), hydrogen (H2), nitrogen (N2), methane (CH4), or a mixture of gases from a variety of gas spillages. Polyurethane (PU) is an excellent choice of material and a leading candidate for producing gas-separating membranes because of its outstanding chemical chemistry, good mechanical abilities, higher permeability, and variable microstructure. The presence of PU improves several characteristics of gas-separating membranes. Selectivity and separation efficiency of PU-centered membranes are enhanced through modifications such as blending with other polymers, use of nanoparticles (silica, metal oxides, alumina, zeolite), and interpenetrating polymer networks (IPNs) formation. This manuscript critically analyzes the various gas transport methods and selection criteria for the fabrication of PU membranes. It also covers the challenges facing the development of PU-membrane-based separation procedures.
Collapse
Affiliation(s)
- Noureen Arshad
- School of Engineering and Technology, National Textile University, Faisalabad, 37610, Pakistan; Liberty Mills Limited, Karachi, 75700, Pakistan.
| | - Syeda Rubab Batool
- School of Engineering and Technology, National Textile University, Faisalabad, 37610, Pakistan
| | - Sadia Razzaq
- School of Engineering and Technology, National Textile University, Faisalabad, 37610, Pakistan
| | - Mubeen Arshad
- Department of Prosthodontics, Baqai Medical University, Karachi, 74600, Pakistan
| | - Abher Rasheed
- School of Engineering and Technology, National Textile University, Faisalabad, 37610, Pakistan
| | - Munir Ashraf
- School of Engineering and Technology, National Textile University, Faisalabad, 37610, Pakistan; Functional Textile Research Group, National Textile University, Faisalabad, 37610, Pakistan
| | - Yasir Nawab
- School of Engineering and Technology, National Textile University, Faisalabad, 37610, Pakistan; National Center for Composite Materials, National Textile University, Faisalabad, 37610, Pakistan
| | - Muhammad Anwaar Nazeer
- School of Engineering and Technology, National Textile University, Faisalabad, 37610, Pakistan; Biomaterials and Tissue Engineering Research Laboratory, National Textile University, Faisalabad, 37610, Pakistan.
| |
Collapse
|
3
|
Abdollahi SA, Andarkhor A, Pourahmad A, Alibak AH, Alobaid F, Aghel B. Simulating and Comparing CO 2/CH 4 Separation Performance of Membrane-Zeolite Contactors by Cascade Neural Networks. MEMBRANES 2023; 13:membranes13050526. [PMID: 37233587 DOI: 10.3390/membranes13050526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 05/02/2023] [Accepted: 05/17/2023] [Indexed: 05/27/2023]
Abstract
Separating carbon dioxide (CO2) from gaseous streams released into the atmosphere is becoming critical due to its greenhouse effect. Membrane technology is one of the promising technologies for CO2 capture. SAPO-34 filler was incorporated in polymeric media to synthesize mixed matrix membrane (MMM) and enhance the CO2 separation performance of this process. Despite relatively extensive experimental studies, there are limited studies that cover the modeling aspects of CO2 capture by MMMs. This research applies a special type of machine learning modeling scenario, namely, cascade neural networks (CNN), to simulate as well as compare the CO2/CH4 selectivity of a wide range of MMMs containing SAPO-34 zeolite. A combination of trial-and-error analysis and statistical accuracy monitoring has been applied to fine-tune the CNN topology. It was found that the CNN with a 4-11-1 topology has the highest accuracy for the modeling of the considered task. The designed CNN model is able to precisely predict the CO2/CH4 selectivity of seven different MMMs in a broad range of filler concentrations, pressures, and temperatures. The model predicts 118 actual measurements of CO2/CH4 selectivity with an outstanding accuracy (i.e., AARD = 2.92%, MSE = 1.55, R = 0.9964).
Collapse
Affiliation(s)
| | - AmirReza Andarkhor
- Department of Chemistry, Payam Noor University (Bushehr Branch), Bushehr 1688, Iran
| | - Afham Pourahmad
- Department of Polymer Engineering, Amirkabir University of Technology, Tehran 1591634311, Iran
| | - Ali Hosin Alibak
- Chemical Engineering Department, Faculty of Engineering, Soran University, Soran 44008, Iraq
- Faculty of Chemical and Petroleum Engineering, University of Tabriz, Tabriz 5166616471, Iran
| | - Falah Alobaid
- Institut Energiesysteme und Energietechnik, Technische Universität Darmstadt, Otto-Berndt-Straße 2, 64287 Darmstadt, Germany
| | - Babak Aghel
- Institut Energiesysteme und Energietechnik, Technische Universität Darmstadt, Otto-Berndt-Straße 2, 64287 Darmstadt, Germany
- Department of Chemical Engineering, Faculty of Energy, Kermanshah University of Technology, Kermanshah 6715685420, Iran
| |
Collapse
|
4
|
Salahshoori I, Asghari M, Namayandeh Jorabchi M, Wohlrab S, Rabiei M, Raji M, Afsari M. Methylene diisocyanate - aided tailoring of nanotitania for dispersion engineering through polyurethane mixed matrix membranes: experimental investigations. ARAB J CHEM 2023. [DOI: 10.1016/j.arabjc.2023.104792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/13/2023] Open
|
5
|
Tan X, Robijns S, Thür R, Ke Q, De Witte N, Lamaire A, Li Y, Aslam I, Van Havere D, Donckels T, Van Assche T, Van Speybroeck V, Dusselier M, Vankelecom I. Truly combining the advantages of polymeric and zeolite membranes for gas separations. Science 2022; 378:1189-1194. [PMID: 36520897 DOI: 10.1126/science.ade1411] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Mixed-matrix membranes (MMMs) have been investigated to render energy-intensive separations more efficiently by combining the selectivity and permeability performance, robustness, and nonaging properties of the filler with the easy processing, handling, and scaling up of the polymer. However, truly combining all in one single material has proven very challenging. In this work, we filled a commercial polyimide with ultrahigh loadings of a high-aspect ratio, CO2-philic Na-SSZ-39 zeolite with a three-dimensional channel system that precisely separates gas molecules. By carefully designing both zeolite and MMM synthesis, we created a gas-percolation highway across a flexible and aging-resistant (more than 1 year) membrane. The combination of a CO2-CH4 mixed-gas selectivity of ~423 and a CO2 permeability of ~8300 Barrer outperformed all existing polymer-based membranes and even most zeolite-only membranes.
Collapse
Affiliation(s)
- Xiaoyu Tan
- Centre for Membrane Separations, Adsorption, Catalysis and Spectroscopy for Sustainable Solutions (cMACS), KU Leuven, Celestijnenlaan 200F, 3001 Leuven, Belgium
| | - Sven Robijns
- Center for Sustainable Catalysis and Engineering, KU Leuven, Celestijnenlaan 200F, 3001 Leuven, Belgium
| | - Raymond Thür
- Centre for Membrane Separations, Adsorption, Catalysis and Spectroscopy for Sustainable Solutions (cMACS), KU Leuven, Celestijnenlaan 200F, 3001 Leuven, Belgium
| | - Quanli Ke
- Center for Sustainable Catalysis and Engineering, KU Leuven, Celestijnenlaan 200F, 3001 Leuven, Belgium
| | - Niels De Witte
- Department of Chemical Engineering, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels, Belgium
| | - Aran Lamaire
- Center for Molecular Modeling, Ghent University, Tech Lane Ghent Science Park, Technologiepark 46, 9052 Zwijnaarde, Belgium
| | - Yun Li
- Centre for Membrane Separations, Adsorption, Catalysis and Spectroscopy for Sustainable Solutions (cMACS), KU Leuven, Celestijnenlaan 200F, 3001 Leuven, Belgium
| | - Imran Aslam
- Centre for Membrane Separations, Adsorption, Catalysis and Spectroscopy for Sustainable Solutions (cMACS), KU Leuven, Celestijnenlaan 200F, 3001 Leuven, Belgium
| | - Daan Van Havere
- Centre for Membrane Separations, Adsorption, Catalysis and Spectroscopy for Sustainable Solutions (cMACS), KU Leuven, Celestijnenlaan 200F, 3001 Leuven, Belgium
| | - Thibaut Donckels
- Center for Sustainable Catalysis and Engineering, KU Leuven, Celestijnenlaan 200F, 3001 Leuven, Belgium
| | - Tom Van Assche
- Department of Chemical Engineering, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels, Belgium
| | - Veronique Van Speybroeck
- Center for Molecular Modeling, Ghent University, Tech Lane Ghent Science Park, Technologiepark 46, 9052 Zwijnaarde, Belgium
| | - Michiel Dusselier
- Center for Sustainable Catalysis and Engineering, KU Leuven, Celestijnenlaan 200F, 3001 Leuven, Belgium
| | - Ivo Vankelecom
- Centre for Membrane Separations, Adsorption, Catalysis and Spectroscopy for Sustainable Solutions (cMACS), KU Leuven, Celestijnenlaan 200F, 3001 Leuven, Belgium
| |
Collapse
|
6
|
In-situ growth of ZIF-8 nanoparticles in Pebax-2533 for facile preparation of high CO2-selective mixed matrix membranes. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.130747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
7
|
Alibak AH, Alizadeh SM, Davodi Monjezi S, Alizadeh A, Alobaid F, Aghel B. Developing a Hybrid Neuro-Fuzzy Method to Predict Carbon Dioxide (CO 2) Permeability in Mixed Matrix Membranes Containing SAPO-34 Zeolite. MEMBRANES 2022; 12:membranes12111147. [PMID: 36422139 PMCID: PMC9699495 DOI: 10.3390/membranes12111147] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 11/11/2022] [Accepted: 11/14/2022] [Indexed: 05/31/2023]
Abstract
This study compares the predictive performance of different classes of adaptive neuro-fuzzy inference systems (ANFIS) in predicting the permeability of carbon dioxide (CO2) in mixed matrix membrane (MMM) containing the SAPO-34 zeolite. The hybrid neuro-fuzzy technique uses the MMM chemistry, pressure, and temperature to estimate CO2 permeability. Indeed, grid partitioning (GP), fuzzy C-means (FCM), and subtractive clustering (SC) strategies are used to divide the input space of ANFIS. Statistical analyses compare the performance of these strategies, and the spider graph technique selects the best one. As a result of the prediction of more than 100 experimental samples, the ANFIS with the subtractive clustering method shows better accuracy than the other classes. The hybrid optimization algorithm and cluster radius = 0.55 are the best hyperparameters of this ANFIS model. This neuro-fuzzy model predicts the experimental database with an absolute average relative deviation (AARD) of less than 3% and a correlation of determination higher than 0.995. Such an intelligent model is not only straightforward but also helps to find the best MMM chemistry and operating conditions to maximize CO2 separation.
Collapse
Affiliation(s)
- Ali Hosin Alibak
- Chemical Engineering Department, Faculty of Engineering, Soran University, Soran 44008, Iraq
| | - Seyed Mehdi Alizadeh
- Petroleum Engineering Department, Australian University, West Mishref 11411, Kuwait
| | - Shaghayegh Davodi Monjezi
- Department of Environmental Science, Faculty of Natural Resources and Marine Science, Tarbiat Modares University, Nur 46414356, Iran
| | - As’ad Alizadeh
- Department of Civil Engineering, College of Engineering, Cihan University-Erbil, Erbil 44001, Iraq
| | - Falah Alobaid
- Institut Energiesysteme und Energietechnik, Technische Universität Darmstadt, Otto-Berndt-Straße 2, 64287 Darmstadt, Germany
| | - Babak Aghel
- Institut Energiesysteme und Energietechnik, Technische Universität Darmstadt, Otto-Berndt-Straße 2, 64287 Darmstadt, Germany
- Department of Chemical Engineering, Faculty of Energy, Kermanshah University of Technology, Kermanshah 6715685420, Iran
| |
Collapse
|
8
|
Investigation of the Gas Separation Properties of Polyurethane Membranes in Presence of Boehmite Nanoparticles. J Inorg Organomet Polym Mater 2022. [DOI: 10.1007/s10904-022-02480-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
9
|
Torre-Celeizabal A, Casado-Coterillo C, Garea A. Biopolymer-Based Mixed Matrix Membranes (MMMs) for CO2/CH4 Separation: Experimental and Modeling Evaluation. MEMBRANES 2022; 12:membranes12060561. [PMID: 35736267 PMCID: PMC9230895 DOI: 10.3390/membranes12060561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 05/24/2022] [Accepted: 05/26/2022] [Indexed: 11/16/2022]
Abstract
Alternative materials are needed to tackle the sustainability of membrane fabrication in light of the circular economy, so that membrane technology keeps playing a role as sustainable technology in CO2 separation processes. In this work, chitosan (CS)-based mixed matrix thin layers have been coated onto commercial polyethersulfone (PES) supports. The CS matrix was loaded by non-toxic 1-Ethyl-3-methylimidazolium acetate ionic liquid (IL) and/or laminar nanoporous AM-4 and UZAR-S3 silicates prepared without costly organic surfactants to improve CO2 permselectivity and mechanical robustness. The CO2/CH4 separation behavior of these membranes was evaluated experimentally at different feed gas composition (CO2/CH4 feed mixture from 20:80 to 70:30%), covering different separation applications associated with this separation. A cross-flow membrane cell model built using Aspen Custom Modeler was used to validate the process performance and relate the membrane properties with the target objectives of CO2 and CH4 recovery and purity in the permeate and retentate streams, respectively. The purely organic IL-CS and mixed matrix AM-4:IL-CS composite membranes showed the most promising results in terms of CO2 and CH4 purity and recovery. This is correlated with their higher hydrophilicity and CO2 adsorption and lower swelling degree, i.e., mechanical robustness, than UZAR-S3 loaded composite membranes. The purity and recovery of the 10 wt.% AM-4:IL-CS/PES composite membrane were close or even surpassed those of the hydrophobic commercial membrane used as reference. This work provides scope for membranes fabricated from renewable or biodegradable polymers and non-toxic fillers that show at least comparable CO2/CH4 separation as existing membranes, as well as the simultaneous feedback on membrane development by the simultaneous correlation of the process requirements with the membrane properties to achieve those process targets.
Collapse
|
10
|
Usman M. Recent Progress of SAPO-34 Zeolite Membranes for CO2 Separation: A Review. MEMBRANES 2022; 12:membranes12050507. [PMID: 35629833 PMCID: PMC9147644 DOI: 10.3390/membranes12050507] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 04/23/2022] [Accepted: 04/28/2022] [Indexed: 02/06/2023]
Abstract
In the zeolite family, the silicoaluminophosphate (SAPO)-34 zeolite has a unique chemical structure, distinctive pore size, adsorption characteristics, as well as chemical and thermal stability, and recently, has attracted much research attention. Increasing global carbon dioxide (CO2) emissions pose a serious environmental threat to humans, animals, plants, and the entire environment. This mini-review summarizes the role of SAPO-34 zeolite membranes, including mixed matrix membranes (MMMs) and pure SAPO-34 membranes in CO2 separation. Specifically, this paper summarizes significant developments in SAPO-34 membranes for CO2 removal from air and natural gas. Consideration is given to a variety of successes in SAPO-34 membranes, and future ideas are described in detail to foresee how SAPO-34 could be employed to mitigate greenhouse gas emissions. We hope that this study will serve as a detailed guide to the use of SAPO-34 membranes in industrial CO2 separation.
Collapse
Affiliation(s)
- Muhammad Usman
- Interdisciplinary Research Center for Hydrogen and Energy Storage (IRC-HES), King Fahd University of Petroleum & Minerals (KFUPM), Dhahran 31261, Saudi Arabia
| |
Collapse
|
11
|
Chen TY, Deng X, Lin LC, Ho WW. New sterically hindered polyvinylamine-containing membranes for CO2 capture from flue gas. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2021.120195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
12
|
n-Octyltrichlorosilane Modified SAPO-34/PDMS Mixed Matrix Membranes for Propane/Nitrogen Mixture Separation. SEPARATIONS 2022. [DOI: 10.3390/separations9030064] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
In this study, zeolite molecular sieve SAPO-34/polydimethylsiloxane (PDMS) mixed matrix membranes (MMMs) were prepared to recover propane. n-Octyltrichlorosilane (OTCS) was introduced to improve compatibility between SAPO-34 and PDMS, and enhance the separation performance of the MMMs. Physicochemical properties of the MMMs were characterized by scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD) and water contact angle (WCA). Results showed that, after modification, alkyl chains were successfully grafted onto SAPO-34 without changing its crystal structure, particles in the MMMs were evenly distributed in the base film, and the hydrophobicity of the MMMs was enhanced. Moreover, the effects of SAPO-34 filling content, operating pressure, and feed gas concentration on the separation performance was explored. This indicated that the modification with OTCS effectively enhanced the separation performance of SAPO-34/PDMS MMMs. When the filling content of modified SAPO-34 was 15%, the maximal separation factor of 22.1 was achieved, and the corresponding propane permeation rate was 101 GPU.
Collapse
|
13
|
Rajabloo T, De Ceuninck W, Van Wortswinkel L, Rezakazemi M, Aminabhavi T. Environmental management of industrial decarbonization with focus on chemical sectors: A review. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 302:114055. [PMID: 34768037 DOI: 10.1016/j.jenvman.2021.114055] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 10/31/2021] [Accepted: 10/31/2021] [Indexed: 06/13/2023]
Abstract
A considerable portion of fossil CO2 emissions comes from the energy sector for production of heat and electricity. The industrial sector has the second order in emission in which the main parts are released from energy-intensive industries, namely metallurgy, building materials, chemicals, and manufacturing. The decarbonization of industrial wastes contemplates the classic decarbonization through optimization of conventional processes as well as utilization of renewable energy and resources. The upgrading of existing processes and integration of the methodologies with a focus on efficiency improvement and reduction of energy consumption and the environment is the main focus of this review. The implementation of renewable energy and feedstocks, green electrification, energy conversion methodologies, carbon capture, and utilization, and storage are also covered. The main objectives of this review are towards chemical industries by introducing the potential technology enhancement at different subsectors. For this purpose, state-of-the-art roadmaps and pathways from the literature findings are presented. Both common and innovative renewable attempts are needed to reach out both short- and long-term deep decarbonization targets. Even though all of the innovative solutions are not economically viable at the industrial scale, they play a crucial role during and after the energy transition interval.
Collapse
Affiliation(s)
- Talieh Rajabloo
- Hasselt University, Institute for Materials Research IMO, Wetenschapspark 1, B-3590, Diepenbeek, Belgium; IMEC vzw, Division IMOMEC, Wetenschapspark 1, B-3590, Diepenbeek, Belgium; EnergyVille, Thor park 8320, 3600, Genk, Belgium.
| | - Ward De Ceuninck
- Hasselt University, Institute for Materials Research IMO, Wetenschapspark 1, B-3590, Diepenbeek, Belgium; IMEC vzw, Division IMOMEC, Wetenschapspark 1, B-3590, Diepenbeek, Belgium; EnergyVille, Thor park 8320, 3600, Genk, Belgium
| | - Luc Van Wortswinkel
- EnergyVille, Thor park 8320, 3600, Genk, Belgium; Flemish Institute for Technology Research (VITO), Boeretang 200, 2400, Mol, Belgium
| | - Mashallah Rezakazemi
- Faculty of Chemical and Materials Engineering, Shahrood University of Technology, Shahrood, Iran
| | - Tejraj Aminabhavi
- School of Advanced Sciences, KLE Technological University, Hubballi, 580 031, India; Department of Chemistry, Karnatak University, Dharwad, 580 003, India.
| |
Collapse
|
14
|
Aqilah Ghazali A, Abd Rahman S, Abu Samah R. Factorial analysis on nanocomposite membranes for CO2, CH4 and N2. MATERIALS TODAY: PROCEEDINGS 2022; 57:1306-1314. [DOI: 10.1016/j.matpr.2021.12.400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
|
15
|
Zhang S, Zheng Y, Wu Y, Zhang B. Fabrication of Pebax/
SAPO
mixed matrix membranes for
CO
2
/
N
2
separation. J Appl Polym Sci 2021. [DOI: 10.1002/app.51336] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Suixin Zhang
- Liaoning Province Professional and Technical Innovation Center for Fine Chemical Engineering of Aromatics Downstream, School of Petrochemical Engineering Shenyang University of Technology Liaoyang China
| | - Yingfei Zheng
- Liaoning Province Professional and Technical Innovation Center for Fine Chemical Engineering of Aromatics Downstream, School of Petrochemical Engineering Shenyang University of Technology Liaoyang China
| | - Yonghong Wu
- Liaoning Province Professional and Technical Innovation Center for Fine Chemical Engineering of Aromatics Downstream, School of Petrochemical Engineering Shenyang University of Technology Liaoyang China
| | - Bing Zhang
- Liaoning Province Professional and Technical Innovation Center for Fine Chemical Engineering of Aromatics Downstream, School of Petrochemical Engineering Shenyang University of Technology Liaoyang China
| |
Collapse
|
16
|
Ahmadipouya S, Ahmadijokani F, Molavi H, Rezakazemi M, Arjmand M. CO2/CH4 separation by mixed-matrix membranes holding functionalized NH2-MIL-101(Al) nanoparticles: Effect of amino-silane functionalization. Chem Eng Res Des 2021. [DOI: 10.1016/j.cherd.2021.09.011] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
17
|
Gas transport properties of truxene-based network polyimide membrane with flexible hexyl side chains. POLYMER 2021. [DOI: 10.1016/j.polymer.2021.124325] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
18
|
Glover J, Besley E. A high-throughput screening of metal-organic framework based membranes for biogas upgrading. Faraday Discuss 2021; 231:235-257. [PMID: 34517410 DOI: 10.1039/d1fd00005e] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Applications of biomethane as a source of renewable energy and transport fuel rely heavily on successful implementation of purification methods capable of removing undesirable impurities from biogas and increasing its calorific content. Metal-organic frameworks (MOFs) are competitive candidates for biogas upgrading due to a versatile range of attractive physical and chemical properties which can be utilised in membrane materials. In this work, we present a high-throughput computational screening methodology for efficient identification of MOF structures with promising gas separation performance. The proposed screening strategy is based on initial structural analysis and predictions of the single-component permeation of CO2, CH4 and H2S from adsorption and diffusion calculations at infinite dilution. The identified top performing candidates are subject to further analysis of their gas separation performance at the operating conditions of 10 bar and 298 K, using grand canonical Monte Carlo and equilibrium molecular dynamics simulations on equimolar CO2/CH4 and H2S/CH4 mixtures. The Henry constant for the adsorption of H2O was also calculated to determine the hydrophobicity of MOF structures, as the presence of H2O often leads to membrane instability and performance limitations. For the considered gas mixtures, the top MOF candidates exhibit superior separation capabilities over polymer-, zeolite-, and mixed matrix-based membranes as indicated by the predicted values of selectivity and permeability. The proposed screening protocol offers a powerful tool for the rational design of novel MOFs for biogas upgrading.
Collapse
Affiliation(s)
- Joseph Glover
- School of Chemistry, University of Nottingham, Nottingham, NG7 2RD, UK.
| | - Elena Besley
- School of Chemistry, University of Nottingham, Nottingham, NG7 2RD, UK.
| |
Collapse
|
19
|
CO2 separation by mixed matrix membranes incorporated with carbon nanotubes: a review of morphological, mechanical, thermal and transport properties. BRAZILIAN JOURNAL OF CHEMICAL ENGINEERING 2021. [DOI: 10.1007/s43153-021-00165-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
20
|
Asghari M, Saadatmandi S, Afsari M. Graphene Oxide and its Derivatives for Gas Separation Membranes. CHEMBIOENG REVIEWS 2021. [DOI: 10.1002/cben.202000038] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Morteza Asghari
- University of Science and Technology of Mazandaran Separation Processes Research Group (SPRG) Behshahr Mazandaran Iran
| | | | - Morteza Afsari
- University of Technology Sydney (UTS) Center for Technology in Water and Wastewater (CTWW) School of Civil and Environmental Engineering 2007 Sydney NSW Australia
| |
Collapse
|
21
|
Haider B, Dilshad MR, Akram MS, Islam A, Kaspereit M. Novel Polydimethylsiloxane membranes impregnated with SAPO-34 zeolite particles for gas separation. CHEMICAL PAPERS 2021. [DOI: 10.1007/s11696-021-01790-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
22
|
Trentini A, da Silva Biron D, Duarte J, dos Santos V. Polyurethane membranes reinforced with calcium carbonate and oyster powder for application in the separation of CH4/CO2 from greenhouse gases. BRAZILIAN JOURNAL OF CHEMICAL ENGINEERING 2021. [DOI: 10.1007/s43153-021-00112-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
23
|
Fan ST, Qiu ZJ, Xu RY, Zhang SX, Chen ZH, Nie ZJ, Shu HR, Guo K, Zhang S, Li BJ. Ultrahigh Carbon Dioxide-Selective Composite Membrane Containing a γ-CD-MOF Layer. ACS APPLIED MATERIALS & INTERFACES 2021; 13:13034-13043. [PMID: 33719405 DOI: 10.1021/acsami.0c18861] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Mixed matrix membranes (MMMs) for CO2 separation have overcome the trade-off between gas permeability and gas selectivity to some extent. However, most MMMs still are prepared in lab- and pilot-scales since the permeability and selectivity of CO2 are not good enough to reach the economically available requirements. Moreover, the fabrication of few MMMs with good separation performance is time-consuming or need harsh conditions. In this study, a novel MOF-based composite membrane (PAN-γ-CD-MOF-PU membrane) was successfully fabricated by a facile and fast spin-coating method. In the two-step coating process, we applied a uniform selective layer of γ-cyclodextrin-MOF (γ-CD-MOF) on porous polyacrylonitrile and then coated a layer of polyurethane on the γ-CD-MOF layer. The entire membrane formation process was about 30 s. The formation of a unique γ-CD-MOF layer greatly improved the separation ability of CO2 (the CO2 permeability is 70.97 barrers; the selectivity to CO2/N2 and CO2/O2 are 253.46 and 154.28, respectively). The gas separation performance can exceed the Robeson upper limit obviously and the selectivity is better than other MOF-based composite membranes. In addition, the PAN-γ-CD-MOF-PU membrane is strong and flexible. Therefore, the PAN-γ-CD-MOF-PU membrane developed in this study has great potential in large-scale industrial separation of CO2.
Collapse
Affiliation(s)
- Shu-Ting Fan
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute of Sichuan University, Sichuan University, Chengdu 610065, China
| | - Zhen-Jiang Qiu
- Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ruo-Yu Xu
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute of Sichuan University, Sichuan University, Chengdu 610065, China
| | - Shao-Xia Zhang
- Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhi-Hui Chen
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute of Sichuan University, Sichuan University, Chengdu 610065, China
| | - Zi-Jun Nie
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute of Sichuan University, Sichuan University, Chengdu 610065, China
| | - Hao-Ran Shu
- College of Pharmacy, Southwest Minzu University, Chengdu 610041, China
| | - Kun Guo
- College of Pharmacy, Southwest Minzu University, Chengdu 610041, China
| | - Sheng Zhang
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute of Sichuan University, Sichuan University, Chengdu 610065, China
| | - Bang-Jing Li
- Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
| |
Collapse
|
24
|
He X, Lei L. Optimizing methane recovery: Techno-economic feasibility analysis of N2-selective membranes for the enrichment of ventilation air methane. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2020.118180] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
25
|
Greenhouse Gas Emissions from Solid Waste Management in Saudi Arabia—Analysis of Growth Dynamics and Mitigation Opportunities. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11041737] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The continuous growth in population, urbanization, and industrial development has been increasing the generation of solid waste (SW) in the Kingdom of Saudi Arabia. Consequently, the associated greenhouse gas (GHG) emission is also following an increasing trend. The collection and use of greenhouse gases emitted from solid waste management practices are still limited. A causality analysis examined the driving factors of the emissions from solid waste management. The methane (CH4) emissions from municipal solid waste (MSW) increased with an increase in gross domestic product (GDP) per capita and urban population, and an increase in foreign direct investment (FDI) inflows and literacy rate was likely to reduce CH4 emissions from municipal solid waste and vice versa. The CH4 emission generated from industrial solid wastes was found to be positively related to GDP per capita, urban population, and FDI inflows. However, a decrease in the unemployment rate was likely to increase CH4 emissions from industrial solid wastes. The future greenhouse gas emissions were projected under different possible socio-economic conditions. The scenario analysis based on different variations of population and GDP growth revealed that methane emission from total waste would increase at an average annual rate of 5.13% between 2020 and 2050, and is projected to reach about 4000 Gg by the end of the year 2050. Although the Kingdom has been taking some initiatives towards climate change mitigation, it has significant opportunities to adopt some of the best practices in solid waste management including reduction, recycling, composting and waste-to-energy, and carbon capture and utilization. This study also put emphasis on developing appropriate policy approaches for climate change mitigation based on the circular economy which is gaining momentum in the Kingdom.
Collapse
|
26
|
Harami HR, Amirkhani F, Abedsoltan H, Younas M, Rezakazemi M, Sheikh M, Shirazian S. Mixed Matrix Membranes for Sustainable Electrical Energy‐Saving Applications. CHEMBIOENG REVIEWS 2021. [DOI: 10.1002/cben.202000019] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Hossein Riasat Harami
- University of Kashan Department of Chemical Engineering P.O. Box 8731753153 Kashan Iran
| | - Farid Amirkhani
- University of Kashan Department of Chemical Engineering P.O. Box 8731753153 Kashan Iran
| | | | - Mohammad Younas
- University of Engineering and Technology, Peshawar Department of Chemical Engineering P.O. Box 814, University Campus 25120 Peshawar Pakistan
| | - Mashallah Rezakazemi
- Shahrood University of Technology Faculty of Chemical and Materials Engineering Shahrood Iran
| | - Mahdi Sheikh
- Escola d'Enginyeria de Barcelona Est (EEBE), Universitat Politècnica de Catalunya (BarcelonaTECH) Department of Chemical Engineering 08930 Barcelona Spain
| | - Saeed Shirazian
- Duy Tan University Institute of Research and Development 550000 Da Nang Viet Nam
- Duy Tan University The Faculty of Environmental and Chemical Engineering 550000 Da Nang Viet Nam
- South Ural State University 76 Lenin Prospekt 454080 Chelyabinsk Russia
| |
Collapse
|
27
|
Haider B, Dilshad MR, Atiq Ur Rehman M, Schmitz JV, Kaspereit M. Highly permeable novel PDMS coated asymmetric polyethersulfone membranes loaded with SAPO-34 zeolite for carbon dioxide separation. Sep Purif Technol 2020. [DOI: 10.1016/j.seppur.2020.116899] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
28
|
Dashti A, Raji M, Azarafza A, Rezakazemi M, Shirazian S. Computational Simulation of CO2 Sorption in Polymeric Membranes Using Genetic Programming. ARABIAN JOURNAL FOR SCIENCE AND ENGINEERING 2020. [DOI: 10.1007/s13369-020-04783-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
29
|
Esmaeili N, Boyd SE, Brown CL, Mac A Gray E, Webb CJ. Improving the Gas-Separation Properties of PVAc-Zeolite 4A Mixed-Matrix Membranes through Nano-Sizing and Silanation of the Zeolite. Chemphyschem 2019; 20:1590-1606. [PMID: 31062462 DOI: 10.1002/cphc.201900423] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2019] [Indexed: 11/08/2022]
Abstract
Mixed-matrix membranes containing synthesised nano-sized zeolite 4A and PVAc were fabricated to investigate the effect of zeolite loading on membrane morphology, polymer-filler interaction, thermal stability and gas separation properties. SEM studies revealed that, although the membranes with 40 wt % nano-sized zeolite particles were distributed uniformly through the polymer matrix without voids, the membranes with 15 wt % zeolite loading showed agglomeration. With increasing zeolite content, the thermal stability improved, the permeability decreased and the selectivity increased. The effect of silanation on dispersion of 15 wt % zeolite 4A nanoparticles through PVAc was investigated by post-synthesis modification of the zeolite with 3-Aminopropyl(diethoxy)methylsilane. Modification of the nanoparticles improved their dispersion in PVAc, resulting in higher thermal stability than the corresponding unmodified zeolite membrane. Modification also decreased the rigidity of the membrane. Partial pore blockage of the modified zeolite nanoparticles after silanation caused a further decrease in permeability, compared to the 15 wt % unmodified zeolite membrane.
Collapse
Affiliation(s)
- Nazila Esmaeili
- Queensland Micro- and Nanotechnology Centre, Griffith University, Nathan, 4111, Australia
| | - Sue E Boyd
- Environmental Futures Research Institute, Griffith University, Nathan, 4111, Australia
| | - Christopher L Brown
- Environmental Futures Research Institute, Griffith University, Nathan, 4111, Australia
| | - Evan Mac A Gray
- Queensland Micro- and Nanotechnology Centre, Griffith University, Nathan, 4111, Australia
| | - Colin J Webb
- Queensland Micro- and Nanotechnology Centre, Griffith University, Nathan, 4111, Australia
| |
Collapse
|
30
|
Riasat Harami H, Riazi Fini F, Rezakazemi M, Shirazian S. Sorption in mixed matrix membranes: Experimental and molecular dynamic simulation and Grand Canonical Monte Carlo method. J Mol Liq 2019. [DOI: 10.1016/j.molliq.2019.03.047] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
31
|
Hajilary N, Rezakazemi M. Ethylene glycol elimination in amine loop for more efficient gas conditioning. Chem Cent J 2018; 12:120. [PMID: 30470938 PMCID: PMC6768044 DOI: 10.1186/s13065-018-0493-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Accepted: 11/15/2018] [Indexed: 12/04/2022] Open
Abstract
The gas sweetening unit of phase 2 and 3 in South Pars Gas Field (Asalouyeh, Iran) was first simulated to investigate the effect of mono ethylene glycol (MEG) in the amine loop. MEG is commonly injected into the system to avoid hydrate formation while a few amounts of MEG is usually transferred to amine gas sweetening plant. This paper aims to address the points where MEG has negative effects on gas sweetening process and what the practical ways to reduce its effect are. The results showed that in the presence of 25% of MEG in amine loop, H2S absorption from the sour gas was increased from 1.09 to 3.78 ppm. Also, the reboiler temperature of the regenerator (from 129 to 135 °C), amine degradation and required steam and consequently corrosion (1.10 to 17.20 mpy) were increased. The energy consumption and the amount of amine make-up increase with increasing MEG loading in amine loop. In addition, due to increasing benzene, toluene, ethylbenzene and xylene (BTEX) and heavy hydrocarbon solubility in amine solution, foaming problems were observed. Furthermore, side effects of MEG presence in sulfur recovery unit (SRU) such as more transferring BTEX to SRU and catalyst deactivation were also investigated. The use of total and/or partial fresh MDEA, install insulation and coating on the area with the high potential of corrosion, optimization of operational parameters and reduction of MEG from the source were carried out to solve the problem. The simulated results were in good agreement with industrial findings. From the simulation, it was found that the problem issued by MEG has less effect when MEG concentration in lean amine loop was kept less than 15% (as such observed in the industrial plant). Furthermore, the allowable limit, source and effects of each contaminant in amine gas sweetening were illustrated.
Collapse
Affiliation(s)
- Nasibeh Hajilary
- Department of Chemical Engineering, Faculty of Engineering, Golestan University, Gorgan, Iran.
| | - Mashallah Rezakazemi
- Faculty of Chemical and Materials Engineering, Shahrood University of Technology, Shahrood, Iran
| |
Collapse
|
32
|
Asghari M, Dashti A, Rezakazemi M, Jokar E, Halakoei H. Application of neural networks in membrane separation. REV CHEM ENG 2018. [DOI: 10.1515/revce-2018-0011] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
Artificial neural networks (ANNs) as a powerful technique for solving complicated problems in membrane separation processes have been employed in a wide range of chemical engineering applications. ANNs can be used in the modeling of different processes more easily than other modeling methods. Besides that, the computing time in the design of a membrane separation plant is shorter compared to many mass transfer models. The membrane separation field requires an alternative model that can work alone or in parallel with theoretical or numerical types, which can be quicker and, many a time, much more reliable. They are helpful in cases when scientists do not thoroughly know the physical and chemical rules that govern systems. In ANN modeling, there is no requirement for a deep knowledge of the processes and mathematical equations that govern them. Neural networks are commonly used for the estimation of membrane performance characteristics such as the permeate flux and rejection over the entire range of the process variables, such as pressure, solute concentration, temperature, superficial flow velocity, etc. This review investigates the important aspects of ANNs such as methods of development and training, and modeling strategies in correlation with different types of applications [microfiltration (MF), ultrafiltration (UF), nanofiltration (NF), reverse osmosis (RO), electrodialysis (ED), etc.]. It also deals with particular types of ANNs that have been confirmed to be effective in practical applications and points out the advantages and disadvantages of using them. The combination of ANN with accurate model predictions and a mechanistic model with less accurate predictions that render physical and chemical laws can provide a thorough understanding of a process.
Collapse
Affiliation(s)
- Morteza Asghari
- Separation Processes Research Group (SPRG), Department of Engineering , University of Kashan , Kashan 8731753153 , Iran
- Energy Research Institute , University of Kashan , Ghotb–e–Ravandi Avenue , Kashan , Iran
| | - Amir Dashti
- Separation Processes Research Group (SPRG), Department of Engineering , University of Kashan , Kashan 8731753153 , Iran
| | - Mashallah Rezakazemi
- Faculty of Chemical and Materials Engineering , Shahrood University of Technology , Shahrood , Iran
| | - Ebrahim Jokar
- Separation Processes Research Group (SPRG), Department of Engineering , University of Kashan , Kashan 8731753153 , Iran
| | - Hadi Halakoei
- Separation Processes Research Group (SPRG), Department of Engineering , University of Kashan , Kashan 8731753153 , Iran
| |
Collapse
|
33
|
Rezakazemi M, Maghami M, Mohammadi T. Wastewaters treatment containing phenol and ammonium using aerobic submerged membrane bioreactor. Chem Cent J 2018; 12:79. [PMID: 29987451 PMCID: PMC6037641 DOI: 10.1186/s13065-018-0450-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Accepted: 07/04/2018] [Indexed: 11/10/2022] Open
Abstract
Phenolic wastewater was treated using anaerobic submerged membrane bioreactor (ASMBR). Effect of different solids retention times on MBR performance was studied. Various ratios of carbon to nitrogen were used in the synthetic wastewaters. During the operation, phenol concentration of feed was changed from 100 to 1000 mg L-1. Phenol concentration was increased stepwise over the first 30 days and kept constant at 1000 mg L-1, thereafter. For the first 100 days, a chemical oxygen demand (COD) to N ratio of 100:5.0 was used and this resulted in phenol and COD removal more than 99 and 95%, respectively. However, the ammonium removal decreased from 95 to 40% by increasing the phenol concentration of feed, from 100 to 1000 mg L-1. For the last 25 days, a COD to N ratio of 100:2.1 was used due to the ammonium accumulation in the ASMBR. This led to the complete ammonium removal and no ammonium was detected in the ASMBR permeate. These results suggest that in the ASMBR at high phenol loading of 1000 mg L-1, COD to N ratio of the phenolic wastewater must be 100:2.1 for ammonium removal, while at low phenol loading, COD to N ratio of 100:5.0 can be used.
Collapse
Affiliation(s)
- Mashallah Rezakazemi
- Faculty of Chemical and Materials Engineering, Shahrood University of Technology, Shahrood, Iran.
| | - Mohsen Maghami
- Research and Technology Centre for Membrane Processes, Faculty of Chemical Engineering, Iran University of Science and Technology (IUST), Narmak, Tehran, Iran
| | - Toraj Mohammadi
- Research and Technology Centre for Membrane Processes, Faculty of Chemical Engineering, Iran University of Science and Technology (IUST), Narmak, Tehran, Iran
| |
Collapse
|