1
|
Azizi M, Mokhtari Z, Tavana S, Bemani P, Heidari Z, Ghazavi R, Rezaei M. A Comprehensive Study on the Prognostic Value and Clinicopathological Significance of Different Immune Checkpoints in Patients With Colorectal Cancer: A Systematic Review and Meta-Analysis. CURRENT THERAPEUTIC RESEARCH 2024; 101:100760. [PMID: 39434898 PMCID: PMC11492099 DOI: 10.1016/j.curtheres.2024.100760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 08/30/2024] [Indexed: 10/23/2024]
Abstract
Background The prognostic significance of immune checkpoint expression in the tumor microenvironment has been widely investigated in colorectal cancers. However, the results of these studies are inconsistent and limited to some immune checkpoints. Objective The study aimed to investigate the correlation between different immune checkpoint expression and clinicopathological features and prognostic parameters. Methods We conducted a systematic review and meta-analysis of the published literature in PubMed, Web of Science-Core Collection, Scopus, Embase, and Cochrane databases to summarize the association between various immune checkpoints expression on both tumor cells and immune cells with clinicopathological features and prognostic parameters in patients with colorectal cancer. Results One hundred four studies incorporating 22,939 patients were included in our meta-analysis. Our results showed that among the B7 family, the high expression of B7H3, B7H4, PD-1, and PD-L1 on tumor cells and tumor tissue was significantly associated with higher T stage, advanced tumor, node, metastasis (TNM) stage, presence of vascular invasion, and lymphatic invasion. In addition, patients with high expression of B7H3, B7H4, PD-1, PD-L1, and PD-L2 were associated with shorter overall survival. High expression of PD-1 and PD-L1 in immune cells correlated with the absence of lymph node metastasis, lower TNM stage, early T stage, poor overall survival, and disease-free survival, respectively. Moreover, we found significant positive correlations between CD70 and Galectin-3 expression with advanced T stage. HLA-II overexpression was correlated with the absence of lymph node metastasis (odds ratio = 0.21, 95% CI = 0.11-0.38, P < 0.001) and early TNM stage (odds ratio = 0.35, 95% CI = 0.26-0.47, P < 0.001). Conclusions Overexpression of B7H3, B7H4, PD-1, PD-L1, PD-L2, CD70, and Galectin-3 on tumors is significantly associated with unfavorable clinicopathological characteristics and poor prognostic factors. Hence, these immune checkpoints can serve as predictive biomarkers for prognosis and the clinicopathological features of colorectal cancer because this is essential to identify patients suitable for anticancer therapy with immune checkpoint inhibitors.
Collapse
Affiliation(s)
- Mahdieh Azizi
- Department of Immunology, Faculty of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Zahra Mokhtari
- Department of Immunology, Faculty of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Shirin Tavana
- Department of Immunology, Faculty of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Peyman Bemani
- Department of Immunology, Faculty of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Zahra Heidari
- Department of Biostatistics and Epidemiology, Faculty of Health, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Roghayeh Ghazavi
- Department of Knowledge and Information Science, Faculty of Education and Psychology, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Marzieh Rezaei
- Department of Immunology, Faculty of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
2
|
Xiao WW, Chen G, Gao YH, Lin JZ, Wu XJ, Luo HL, Lu ZH, Wang QX, Sun R, Cai PQ, Zhu CM, Liu M, Li JB, Wang YR, Jin Y, Wang F, Luo HT, Li CL, Pan ZZ, Xu RH. Effect of neoadjuvant chemoradiotherapy with or without PD-1 antibody sintilimab in pMMR locally advanced rectal cancer: A randomized clinical trial. Cancer Cell 2024; 42:1570-1581.e4. [PMID: 39094560 DOI: 10.1016/j.ccell.2024.07.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Revised: 05/26/2024] [Accepted: 07/08/2024] [Indexed: 08/04/2024]
Abstract
Neoadjuvant chemoradiotherapy (NACRT) was the standard treatment for patients with locally advanced rectal cancer (LARC) with proficient mismatch repair (pMMR) proteins. In this randomized phase 2 trial (ClinicalTrial.gov: NCT04304209), 134 pMMR LARC patients were randomly (1:1) assigned to receive NACRT or NACRT and the programmed cell death protein 1 (PD-1) antibody sintilimab. As the primary endpoint, the total complete response (CR) rate is 26.9% (18/67, 95% confidence interval [CI] 16.0%-37.8%) and 44.8% (30/67, 95% CI 32.6%-57.0%) in the control and experimental arm, respectively, with significant difference (p = 0.031 for chi-squared test). Response ratio is 1.667 (95% CI 1.035-2.683). Immunohistochemistry shows PD-1 ligand 1 (PD-L1) combined positive score is associated with the synergistic effect. The safety profile is similar between the arms. Adding the PD-1 antibody sintilimab to NACRT significantly increases the CR rate in pMMR LARC, with a manageable safety profile. PD-L1 positivity may help identify patients who might benefit most from the combination therapy.
Collapse
Affiliation(s)
- Wei-Wei Xiao
- Department of Radiation Oncology, Sun Yat-sen University Cancer Center, The State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Guangzhou, China; United Laboratory of Frontier Radiotherapy Technology of Sun Yat-sen University & Chinese Academy of Sciences Ion Medical Technology Co., Ltd, Guangzhou, China
| | - Gong Chen
- Department of Colorectal Surgery, Sun Yat-sen University Cancer Center, The State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Guangzhou, China
| | - Yuan-Hong Gao
- Department of Radiation Oncology, Sun Yat-sen University Cancer Center, The State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Guangzhou, China
| | - Jun-Zhong Lin
- Department of Colorectal Surgery, Sun Yat-sen University Cancer Center, The State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Guangzhou, China
| | - Xiao-Jun Wu
- Department of Colorectal Surgery, Sun Yat-sen University Cancer Center, The State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Guangzhou, China
| | - Hui-Long Luo
- Department of Radiation Oncology, Sun Yat-sen University Cancer Center, The State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Guangzhou, China
| | - Zhen-Hai Lu
- Department of Colorectal Surgery, Sun Yat-sen University Cancer Center, The State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Guangzhou, China
| | - Qiao-Xuan Wang
- Department of Radiation Oncology, Sun Yat-sen University Cancer Center, The State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Guangzhou, China
| | - Rui Sun
- Department of Radiation Oncology, Sun Yat-sen University Cancer Center, The State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Guangzhou, China
| | - Pei-Qiang Cai
- Department of Radiology, Sun Yat-sen University Cancer Center, The State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Guangzhou, China
| | - Chong-Mei Zhu
- Department of Pathology, Sun Yat-sen University Cancer Center, The State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Guangzhou, China
| | - Min Liu
- Department of Ultrasound, Sun Yat-sen University Cancer Center, The State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Guangzhou, China
| | - Ji-Bin Li
- Department of Statistics, Sun Yat-sen University Cancer Center, The State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Guangzhou, China
| | - Yi-Rui Wang
- Department of Radiation Oncology, Sun Yat-sen University Cancer Center, The State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Guangzhou, China
| | - Ying Jin
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, The State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Research Unit of Precision Diagnosis and Treatment for Gastrointestinal Cancer, Chinese Academy of Medical Sciences, Guangzhou, China
| | - Feng Wang
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, The State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Research Unit of Precision Diagnosis and Treatment for Gastrointestinal Cancer, Chinese Academy of Medical Sciences, Guangzhou, China
| | - Hai-Tao Luo
- Shenzhen Engineering Center for Translational Medicine of Precision Cancer Immunodiagnosis and Therapy, YuceBio Technology Co., Ltd, Shenzhen, China
| | - Cai-Ling Li
- Shenzhen Engineering Center for Translational Medicine of Precision Cancer Immunodiagnosis and Therapy, YuceBio Technology Co., Ltd, Shenzhen, China
| | - Zhi-Zhong Pan
- Department of Colorectal Surgery, Sun Yat-sen University Cancer Center, The State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Guangzhou, China
| | - Rui-Hua Xu
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, The State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Research Unit of Precision Diagnosis and Treatment for Gastrointestinal Cancer, Chinese Academy of Medical Sciences, Guangzhou, China.
| |
Collapse
|
3
|
Nobin H, Garvin S, Hagman H, Nodin B, Jirström K, Brunnström H. The prognostic value of programmed death-ligand 1 (PD-L1) expression in resected colorectal cancer without neoadjuvant therapy - differences between antibody clones and cell types. BMC Cancer 2024; 24:1051. [PMID: 39187798 PMCID: PMC11346183 DOI: 10.1186/s12885-024-12812-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 08/14/2024] [Indexed: 08/28/2024] Open
Abstract
BACKGROUND Programmed death-ligand 1 (PD-L1) expression on tumor cells is associated with poor prognosis in several malignancies, while partly contradictory and inconclusive results have been presented for colorectal cancer (CRC). This study aimed to evaluate PD-L1 as a prognostic biomarker in CRC by comparing three different antibody clones. METHODS Patients surgically treated for CRC between January 1st, 2007, and December 31st, 2015, in Kalmar County, Sweden, were retrospectively included. Tissue microarrays from 862 primary tumors without neoadjuvant treatment were assessed for immunohistochemical expression of PD-L1 in tumor cells (TC) and immune cells (IC) using clones 73-10, SP263, and 22C3. Cox regression proportional hazard models were used to estimate hazard ratios for overall survival (OS) and disease-free interval (DFI) in univariable and multivariable analyses, with 1% and 5% set as cut-offs for positive expression in TC and IC respectively. RESULTS PD-L1 expression in TC was found in 89 (10%) cases for clone 73-10, 76 (9%) for clone SP263, and 38 (4%) for clone 22C3, while the numbers for IC were 317 (37%) cases for clone 73-10, 264 (31%) for clone SP263, and 89 (10%) for clone 22C3. PD-L1 expression in IC was associated with prolonged OS and DFI in univariable analysis for all three clones. The link to prolonged DFI remained in multivariable analysis for 73-10 and SP263, but only for 73-10 regarding OS. PD-L1 expression in TC was not prognostic of OS in any analysis, while it was associated with prolonged DFI for SP263, and a trend was seen for 73-10. The link to prolonged DFI remained for SP263 and was strengthened for 73-10 in multivariable analysis. CONCLUSIONS The prognostic value of PD-L1 expression in both IC and TC differs between antibody clones, with 73-10 and SP263 being more reliable for prognostic information than 22C3 in resected CRC.
Collapse
Affiliation(s)
- Hampus Nobin
- Department of Pathology, Region Kalmar, Kalmar County Hospital, Kalmar, Sweden.
- Department of Clinical Sciences Lund, Division of Pathology, Lund University, Lund, Sweden.
| | - Stina Garvin
- Department of Clinical Pathology, Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Helga Hagman
- Department of Clinical Sciences Lund, Division of Oncology and Therapeutic Pathology, Lund University, Lund, Sweden
| | - Björn Nodin
- Department of Clinical Sciences Lund, Division of Oncology and Therapeutic Pathology, Lund University, Lund, Sweden
| | - Karin Jirström
- Department of Clinical Sciences Lund, Division of Oncology and Therapeutic Pathology, Lund University, Lund, Sweden
- Department of Genetics, Pathology, and Molecular Diagnostics, Regional University Laboratories, Skåne University Hospital, Lund, Sweden
| | - Hans Brunnström
- Department of Clinical Sciences Lund, Division of Pathology, Lund University, Lund, Sweden
- Department of Genetics, Pathology, and Molecular Diagnostics, Regional University Laboratories, Skåne University Hospital, Lund, Sweden
| |
Collapse
|
4
|
Baş Y, Yilmaz B, Acar SF, Karadağ İ. Programmed Cell Death Ligand 1 Expression in CD163 + Tumor-associated Macrophages in Cancer Gland Rupture Microenvironment. Appl Immunohistochem Mol Morphol 2024; 32:176-182. [PMID: 38314768 DOI: 10.1097/pai.0000000000001186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 01/15/2024] [Indexed: 02/07/2024]
Abstract
In this study, we aimed to examine the relationship among cancer gland rupture microenvironment, programmed cell death ligand 1 (PD-L1) expression in CD163 + tumor-associated macrophages (TAMs), and prognosis in colon adenocarcinoma. A total of 122 patients were diagnosed with colon adenocarcinoma between 2010 and 2019. PD-L1 + (clone 22C3) "macrophage scores" in the microenvironment of cancer gland rupture were calculated. The effects of these variables on prognosis were statistically analyzed. CD163 + TAMs were denser in the cancer gland rupture microenvironment. PD-L1 + TAMs were observed in the tumor periphery, and there was a significant difference between the rates of PD-L1 expression in TAMs and survival time (log-rank = 10.46, P = 0.015), clinical stage 2 ( P = 0.038), and primary tumor 3 and primary tumor 4 cases ( P = 0.004, P = 0.013). The risk of mortality was 4.070 times higher in patients with a PD-L1 expression rate of ≥1% in CD163 + TAMs. High PD-L1 expression in CD163 + TAMs is associated with poor overall survival. Therefore, blocking PD-L1 in CD163 + TAMs can be used as a target for immunotherapy.
Collapse
Affiliation(s)
- Yilmaz Baş
- Department of Pathology, Faculty of Medicine
| | | | | | - İbrahim Karadağ
- Department of Oncology, Erol Olçok Education and Research Hospital, Hitit University, Çorum, Turkey
| |
Collapse
|
5
|
Kina Kilicaslan U, Aru B, Aydin Aksu S, Vardar Aker F, Yanikkaya Demirel G, Gurleyik MG. Relationship between immune checkpoint proteins and neoadjuvant chemotherapy response in breast cancer. Surg Oncol 2024; 52:102037. [PMID: 38290327 DOI: 10.1016/j.suronc.2024.102037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Revised: 01/02/2024] [Accepted: 01/19/2024] [Indexed: 02/01/2024]
Abstract
INTRODUCTION Following major developments in cancer immunotherapy, treatments targeting immune checkpoint proteins (ICP) gained interest in breast cancer, though studies mostly focus on patients with metastatic disease as well as patients nonresponsive to the conventional treatments. Herein, we aimed to investigate the levels of ICP in tumor stroma and tumor infiltrating lymphocytes, and tumor tissue prior to neoadjuvant chemotherapy administration to evaluate the relationship between ICP levels, clinicopathological parameters, and NAC response. MATERIALS AND METHODS This study was conducted with 51 patients where PD-1, PD-L1, CTLA-4, TIM-3, CD24 and CD44 levels were investigated in CD45+ cells while CD326, CD24, CD44 and PD-L1 protein expression levels were investigated in CD45- population. In addition, CD44 and CD24 levels were evaluated in the tumor stroma. TIL levels were investigated according to the TILS Working Group. Treatment responses after NAC were evaluated according to the MD Anderson RCB score. RESULTS Our results revealed positive correlation between CTLA-4 and CD44 expression in cases with high TIL levels as well as TIL levels and CTLA-4 expression in cases with partial response. Similarly, positive correlation was detected between TIM3 and PD-L1 levels in cases with good response. In addition, a negative correlation between TILs after NAC and PD-1/PD-L1 expression in lymphocytes in cases with partial complete response. CONCLUSIONS Our study provides preliminary data about the correlation between ICP and clinicopathological status and NAC response in breast cancer, in addition to underlining the requirement for further research to determine their potential as therapeutic targets.
Collapse
Affiliation(s)
- Umut Kina Kilicaslan
- Department of General Surgery, Istanbul Haydarpasa Numune Training and Research Hospital, University of Health Sciences Turkey, İstanbul, Turkey
| | - Basak Aru
- Department of Immunology, Faculty of Medicine, Yeditepe University, Istanbul, Turkey
| | - Sibel Aydin Aksu
- Department of Radiology, Istanbul Haydarpasa Numune Training and Research Hospital, University of Health Sciences Turkey, İstanbul, Turkey
| | - Fugen Vardar Aker
- Department of Pathology, Istanbul Haydarpasa Numune Training and Research Hospital, University of Health Sciences Turkey, İstanbul, Turkey
| | | | - Meryem Gunay Gurleyik
- Department of General Surgery, Istanbul Haydarpasa Numune Training and Research Hospital, University of Health Sciences Turkey, İstanbul, Turkey.
| |
Collapse
|
6
|
Challoner BR, Woolston A, Lau D, Buzzetti M, Fong C, Barber LJ, Anandappa G, Crux R, Assiotis I, Fenwick K, Begum R, Begum D, Lund T, Sivamanoharan N, Sansano HB, Domingo-Arada M, Tran A, Pandha H, Church D, Eccles B, Ellis R, Falk S, Hill M, Krell D, Murugaesu N, Nolan L, Potter V, Saunders M, Shiu KK, Guettler S, Alexander JL, Lázare-Iglesias H, Kinross J, Murphy J, von Loga K, Cunningham D, Chau I, Starling N, Ruiz-Bañobre J, Dhillon T, Gerlinger M. Genetic and immune landscape evolution in MMR-deficient colorectal cancer. J Pathol 2024; 262:226-239. [PMID: 37964706 DOI: 10.1002/path.6228] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 09/17/2023] [Accepted: 10/10/2023] [Indexed: 11/16/2023]
Abstract
Mismatch repair-deficient (MMRd) colorectal cancers (CRCs) have high mutation burdens, which make these tumours immunogenic and many respond to immune checkpoint inhibitors. The MMRd hypermutator phenotype may also promote intratumour heterogeneity (ITH) and cancer evolution. We applied multiregion sequencing and CD8 and programmed death ligand 1 (PD-L1) immunostaining to systematically investigate ITH and how genetic and immune landscapes coevolve. All cases had high truncal mutation burdens. Despite pervasive ITH, driver aberrations showed a clear hierarchy. Those in WNT/β-catenin, mitogen-activated protein kinase, and TGF-β receptor family genes were almost always truncal. Immune evasion (IE) drivers, such as inactivation of genes involved in antigen presentation or IFN-γ signalling, were predominantly subclonal and showed parallel evolution. These IE drivers have been implicated in immune checkpoint inhibitor resistance or sensitivity. Clonality assessments are therefore important for the development of predictive immunotherapy biomarkers in MMRd CRCs. Phylogenetic analysis identified three distinct patterns of IE driver evolution: pan-tumour evolution, subclonal evolution, and evolutionary stasis. These, but neither mutation burdens nor heterogeneity metrics, significantly correlated with T-cell densities, which were used as a surrogate marker of tumour immunogenicity. Furthermore, this revealed that genetic and T-cell infiltrates coevolve in MMRd CRCs. Low T-cell densities in the subgroup without any known IE drivers may indicate an, as yet unknown, IE mechanism. PD-L1 was expressed in the tumour microenvironment in most samples and correlated with T-cell densities. However, PD-L1 expression in cancer cells was independent of T-cell densities but strongly associated with loss of the intestinal homeobox transcription factor CDX2. This explains infrequent PD-L1 expression by cancer cells and may contribute to a higher recurrence risk of MMRd CRCs with impaired CDX2 expression. © 2023 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
| | - Andrew Woolston
- Barts Cancer Institute, Queen Mary University of London, London, UK
| | - David Lau
- The Royal Marsden NHS Foundation Trust, London, UK
| | - Marta Buzzetti
- Barts Cancer Institute, Queen Mary University of London, London, UK
| | | | - Louise J Barber
- Barts Cancer Institute, Queen Mary University of London, London, UK
| | | | - Richard Crux
- The Royal Marsden NHS Foundation Trust, London, UK
| | | | | | | | - Dipa Begum
- The Institute of Cancer Research, London, UK
- The Royal Marsden NHS Foundation Trust, London, UK
| | - Tom Lund
- The Institute of Cancer Research, London, UK
- The Royal Marsden NHS Foundation Trust, London, UK
| | - Nanna Sivamanoharan
- The Institute of Cancer Research, London, UK
- The Royal Marsden NHS Foundation Trust, London, UK
| | | | | | - Amina Tran
- The Royal Marsden NHS Foundation Trust, London, UK
| | | | - David Church
- Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Bryony Eccles
- University Hospitals Dorset NHS Foundation Trust, Bournemouth, UK
| | | | - Stephen Falk
- University Hospitals Bristol NHS Foundation Trust, Bristol, UK
| | - Mark Hill
- Maidstone and Tunbridge Wells NHS Trust, Maidstone, UK
| | - Daniel Krell
- Royal Free London NHS Foundation Trust, London, UK
| | - Nirupa Murugaesu
- St George's University Hospitals NHS Foundation Trust, London, UK
- Genomics England, London, UK
| | - Luke Nolan
- Hampshire Hospitals NHS Foundation Trust, Winchester, UK
| | - Vanessa Potter
- University Hospitals Coventry and Warwickshire NHS Trust, Coventry, UK
| | | | - Kai-Keen Shiu
- University College London Hospitals NHS Foundation Trust, London, UK
| | | | | | | | | | - Jamie Murphy
- Imperial College Healthcare NHS Trust, London, UK
| | - Katharina von Loga
- The Institute of Cancer Research, London, UK
- The Royal Marsden NHS Foundation Trust, London, UK
| | | | - Ian Chau
- The Royal Marsden NHS Foundation Trust, London, UK
| | | | - Juan Ruiz-Bañobre
- University Clinical Hospital of Santiago de Compostela, Santiago de Compostela, Spain
- University of Santiago de Compostela, Santiago de Compostela, Spain
| | - Tony Dhillon
- Royal Surrey Hospital NHS Foundation Trust, Guildford, UK
| | - Marco Gerlinger
- Barts Cancer Institute, Queen Mary University of London, London, UK
- St Bartholomew's Hospital Cancer Centre, London, UK
| |
Collapse
|
7
|
Takasu C, Morine Y, Yoshikawa K, Nakao T, Tokunaga T, Nishi M, Kashihara H, Wada Y, Yoshimoto T, Shimada M. Role of stromal PD-L1 expression in colorectal liver metastasis. BMC Cancer 2024; 24:97. [PMID: 38233811 PMCID: PMC10795256 DOI: 10.1186/s12885-024-11869-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Accepted: 01/11/2024] [Indexed: 01/19/2024] Open
Abstract
BACKGROUND AND AIM The outcomes of immune checkpoint blockade for colorectal cancer (CRC) treatment are unsatisfactory. Furthermore, the efficacy of immune checkpoint blockade for liver metastasis of various cancer is poor. Here, we investigated the relationship between stromal programmed death-ligand 1 (PD-L1) expression and the prognosis of patients with colorectal cancer liver metastasis (CRLM). METHODS The present study enrolled 84 CRLM patients who underwent surgery (R0) for CRC. Immunohistochemistry was performed to analyze stromal PD-L1 expression in CRLM. RESULTS Stromal PD-L1 was expressed in 52.3% of CRLM samples, which was associated with fewer not optimally resectable metastases (p = 0.04). Stromal PD-L1 also tended to associate with a lower tumor grade (p = 0.08). Stromal PD-L1-positive patients had longer overall survival (p = 0.003). Multivariate analysis identified stromal PD-L1 expression (p = 0.008) and poorer differentiation (p < 0.001) as independent prognostic indicators. Furthermore, stromal PD-L1 expression was correlated to a high number of tumor-infiltrating lymphocytes (TILs). Stromal PD-L1- and low TIL groups had shorter OS than stromal PD-L1 + and high TIL groups (46.6% vs. 81.8%, p = 0.05) Stromal PD-L1-positive patients had longer disease-free survival (DFS) (p = 0.03) and time to surgical failure (p = 0.001). Interestingly, stromal PD-L1 expression was positively related to the desmoplastic subtype (p = 0.0002) and inversely related to the replacement subtype of the histological growth pattern (p = 0.008). CONCLUSIONS Stromal PD-L1 expression may be a significant prognostic marker for CRLM.
Collapse
Affiliation(s)
- Chie Takasu
- Department of Surgery, Tokushima University, Tokushima, Japan.
| | - Yuji Morine
- Department of Surgery, Tokushima University, Tokushima, Japan
| | - Kozo Yoshikawa
- Department of Surgery, Tokushima University, Tokushima, Japan
| | - Toshihiro Nakao
- Department of Surgery, Tokushima University, Tokushima, Japan
| | - Takuya Tokunaga
- Department of Surgery, Tokushima University, Tokushima, Japan
| | - Masaaki Nishi
- Department of Surgery, Tokushima University, Tokushima, Japan
| | | | - Yuma Wada
- Department of Surgery, Tokushima University, Tokushima, Japan
| | | | - Mitsuo Shimada
- Department of Surgery, Tokushima University, Tokushima, Japan
| |
Collapse
|
8
|
Griffith BD, Lazarus J, McGue J, Krishnan S, D’Angelica MI, Shia J, Dobrosotskaya I, Shi J, Edwards J, Rao A, Frankel TL. Unique characteristics of the tumor immune microenvironment in young patients with metastatic colorectal cancer. Front Immunol 2023; 14:1289402. [PMID: 38152402 PMCID: PMC10751347 DOI: 10.3389/fimmu.2023.1289402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 11/17/2023] [Indexed: 12/29/2023] Open
Abstract
Introduction Metastatic colorectal cancer (mCRC) remains a common and highly morbid disease, with a recent increase in incidence in patients younger than 50 years. There is an acute need to better understand differences in tumor biology, molecular characteristics, and other age-related differences in the tumor microenvironment (TME). Methods 111 patients undergoing curative-intent resection of colorectal liver metastases were stratified by age into those <50 years or >65 years old, and tumors were subjected to multiplex fluorescent immunohistochemistry (mfIHC) to characterize immune infiltration and cellular engagement. Results There was no difference in infiltration or proportion of immune cells based upon age, but the younger cohort had a higher proportion of programmed death-ligand 1 (PD-L1)+ expressing antigen presenting cells (APCs) and demonstrated decreased intercellular distance and increased cellular engagement between tumor cells (TCs) and cytotoxic T lymphocytes (CTLs), and between TCs and APCs. These trends were independent of microsatellite instability in tumors. Discussion Age-related differences in PD-L1 expression and cellular engagement in the tumor microenvironment of patients with mCRC, findings which were unrelated to microsatellite status, suggest a more active immune microenvironment in younger patients that may offer an opportunity for therapeutic intervention with immune based therapy.
Collapse
Affiliation(s)
- Brian D. Griffith
- Department of Surgery, University of Michigan, Ann Arbor, MI, United States
| | - Jenny Lazarus
- Department of Surgery, University of Michigan, Ann Arbor, MI, United States
| | - Jake McGue
- Department of Surgery, University of Michigan, Ann Arbor, MI, United States
| | - Santhoshi Krishnan
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, United States
- Department of Electrical and Computer Engineering, Rice University, Houston, TX, United States
| | - Michael I. D’Angelica
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, United States
| | - Jinru Shia
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, United States
| | - Irina Dobrosotskaya
- Division of Hematology and Oncology, Department of Medicine, University of Michigan, Ann Arbor, MI, United States
| | - Jaiqi Shi
- Department of Radiation Oncology, University of Michigan, Ann Arbor, MI, United States
| | - Jacob Edwards
- Department of Surgery, University of Michigan, Ann Arbor, MI, United States
| | - Arvind Rao
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, United States
- Department of Electrical and Computer Engineering, Rice University, Houston, TX, United States
- Department of Radiation Oncology, University of Michigan, Ann Arbor, MI, United States
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, United States
- Department of Biostatistics, University of Michigan, Ann Arbor, MI, United States
| | - Timothy L. Frankel
- Department of Surgery, University of Michigan, Ann Arbor, MI, United States
| |
Collapse
|
9
|
Baş Y, Yılmaz B, Güney G, Şahin HHK, Özçerezci T, Rençber E, Koçak Ö, Helvacı K, Şahiner İT. Clinicopathological and prognostic significance of PD-L1 expression in colon adenocarcinoma tumor budding. Ann Diagn Pathol 2023; 67:152202. [PMID: 37689039 DOI: 10.1016/j.anndiagpath.2023.152202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 08/13/2023] [Accepted: 08/14/2023] [Indexed: 09/11/2023]
Abstract
OBJECTIVE In this study, we investigated the relationship between programmed cell death ligand 1 (PD-L1) and programmed cell death protein 1 (PD-1) expression in colon adenocarcinoma tumor budding. METHODS This study included 122 patients with colon adenocarcinomas. The largest sample of formaldehyde-fixed paraffin-embedded tumor tissues was selected for analysis. Expression of membranous PD-L1 (clone 22C3) and the Combined Positive Score (CPS) in tumor tissues was calculated and graded according to the percentages of peritumoral and intratumoral tumor cells (0 %, 1 %, 1-5 %, >5 %). The effects of these factors on the prognosis were analyzed. RESULTS Tumor budding was associated with adverse clinicopathological features and poor overall survival. PD-L1 (CPS%) peritumoral tumor budding (1 %/<1 %) was statistically significant in the univariate model (p = 0.004). Age, organ metastases (liver, lung, liver, lung, and peritoneum), and metastases were statistically significant in the multivariate model (p = 0.001, p = 0.004, p = 0.001, p = 0.002, p = 0.004, and p = 0.032, respectively). PD-L1 positive staining was mostly observed around the tumor and during tumor budding. PD-L1 peritumoral tumor budding rates and patients' survival rates differed significantly (log-rank = 12.07, p = 0.007). CONCLUSION We found that patients with PD-L1 (CPS%) > 1 % in tumor budding had a shortened life expectancy and demonstrated the importance of including tumor budding areas in the samples used for biomarker evaluation. We previously reported that PD-L1 expression in tumor budding is associated with more aggressive cancer biology and poor survival, although overall survival is of limited statistical significance.
Collapse
Affiliation(s)
- Yılmaz Baş
- Department of Pathology, Hitit University Faculty of Medicine, Çorum, Turkey.
| | - Bayram Yılmaz
- Department of Pathology, Hitit University Erol Olçok Education and Research Hospital, Çorum, Turkey
| | - Güven Güney
- Department of Pathology, Hitit University Faculty of Medicine, Çorum, Turkey
| | | | - Tuğba Özçerezci
- Department of Pathology, Hitit University Erol Olçok Education and Research Hospital, Çorum, Turkey
| | - Emin Rençber
- Department of Public Health, Head of Community Health, Provincial Health Directorate, Çorum, Turkey
| | - Özgür Koçak
- Department of Gynecology and Obstetrics, Hitit University Faculty of Medicine, Çorum, Turkey
| | - Kaan Helvacı
- Department of Oncology, Hitit University Faculty of Medicine, Çorum, Turkey
| | | |
Collapse
|
10
|
Sharma A, Raphael V, Lyngdoh BS, Harris C, Jagtap VK. Role of Mismatch Repair Deficiency Status and Microsatellite Instability in Relation to the Expression of Immune Checkpoint Proteins in Colorectal Cancer. Cureus 2023; 15:e43571. [PMID: 37719521 PMCID: PMC10503400 DOI: 10.7759/cureus.43571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/15/2023] [Indexed: 09/19/2023] Open
Abstract
Introduction Colorectal cancer (CRC) is the third most common cancer in the world among men and second among women worldwide. One of the major molecular pathways responsible for the development of colorectal cancer (CRC) is the microsatellite instability (MSI) pathway. During carcinogenesis, the tumor cells express programmed death ligand-1 (PD-L1), which reduces the immunogenicity leading to the escape of immune attack. Anti-PD-L1 interaction is an upcoming line of research for the treatment of colorectal carcinoma patients. Materials and methods The present study was an ambispective study where the mismatch repair deficiency status (MMR) and programmed death ligand-1 (PD-L1) expression were studied using immunohistochemistry and then later analyzed and compared with the clinicopathological parameters and MSI status in relation to the expression of programmed death ligand-1 (PD-L1) in neoplastic and immune cells in a total of 55 biopsy specimen. MMR expression was reported as retained or loss of nuclear staining, and PD-L1 expression was taken as positive with a cut-off of more than or equal to 5% membranous positivity in both tumor cells and immune cells. Results The analysis showed a significant correlation of microsatellite instability (MSI) status with two of the clinicopathological parameters, which were the site of the tumor (p-value<0.001) and M stage (p-value<0.001). PD-L1 expression in neoplastic cells showed no significant correlation with the clinicopathological parameters, whereas PD-L1 expression in immune cells showed a significant association with gender (p-value=0.043). Also, MSI status showed a significant association with PD-L1 expression in tumor cells (p-value <0.001).
Collapse
Affiliation(s)
- Antariksha Sharma
- Pathology, North Eastern Indira Gandhi Regional Institute of Health and Medical Sciences, Shillong, IND
| | - Vandana Raphael
- Pathology, North Eastern Indira Gandhi Regional Institute of Health and Medical Sciences, Shillong, IND
| | - Bifica S Lyngdoh
- Pathology, All India Institute of Medical Sciences, Guwahati, IND
| | - Caleb Harris
- Surgical Oncology, North Eastern Indira Gandhi Regional Institute of Health and Medical Sciences, Shillong, IND
| | - Vikas K Jagtap
- Radiation Oncology, North Eastern Indira Gandhi Regional Institute of Health and Medical Sciences, Shillong, IND
| |
Collapse
|
11
|
Djermane R, Nieto C, Vega MA, Del Valle EMM. Antibody-Loaded Nanoplatforms for Colorectal Cancer Diagnosis and Treatment: An Update. Pharmaceutics 2023; 15:pharmaceutics15051514. [PMID: 37242756 DOI: 10.3390/pharmaceutics15051514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 05/12/2023] [Accepted: 05/15/2023] [Indexed: 05/28/2023] Open
Abstract
At present, colorectal cancer (CRC) is the second deadliest type of cancer, partly because a high percentage of cases are diagnosed at advanced stages when tumors have already metastasized. Thus, there is an urgent need to develop novel diagnostic systems that allow early detection as well as new therapeutic systems that are more specific than those currently available. In this context, nanotechnology plays a very important role in the development of targeted platforms. In recent decades, many types of nanomaterials with advantageous properties have been used for nano-oncology applications and have been loaded with different types of targeted agents, capable of recognizing tumor cells or biomarkers. Indeed, among the different types of targeted agents, the most widely used are monoclonal antibodies, as the administration of many of them is already approved by the main drug regulatory agencies for the treatment of several types of cancer, including CRC. In this way, this review comprehensively discusses the main drawbacks of the conventional screening technologies and treatment for CRC, and it presents recent advances in the application of antibody-loaded nanoplatforms for CRC detection, therapy or theranostics applications.
Collapse
Affiliation(s)
- Rania Djermane
- Chemical Engineering Department, University of Salamanca, Plaza de los Caídos s/n, 37008 Salamanca, Spain
| | - Celia Nieto
- Chemical Engineering Department, University of Salamanca, Plaza de los Caídos s/n, 37008 Salamanca, Spain
- Biomedical Research Institute of Salamanca (IBSAL), University Care Complex of Salamanca, Paseo de San Vicente 58, 37007 Salamanca, Spain
| | - Milena A Vega
- Chemical Engineering Department, University of Salamanca, Plaza de los Caídos s/n, 37008 Salamanca, Spain
- Biomedical Research Institute of Salamanca (IBSAL), University Care Complex of Salamanca, Paseo de San Vicente 58, 37007 Salamanca, Spain
| | - Eva M Martín Del Valle
- Chemical Engineering Department, University of Salamanca, Plaza de los Caídos s/n, 37008 Salamanca, Spain
- Biomedical Research Institute of Salamanca (IBSAL), University Care Complex of Salamanca, Paseo de San Vicente 58, 37007 Salamanca, Spain
| |
Collapse
|
12
|
Elomaa H, Ahtiainen M, Väyrynen SA, Ogino S, Nowak JA, Lau MC, Helminen O, Wirta EV, Seppälä TT, Böhm J, Mecklin JP, Kuopio T, Väyrynen JP. Spatially resolved multimarker evaluation of CD274 (PD-L1)/PDCD1 (PD-1) immune checkpoint expression and macrophage polarisation in colorectal cancer. Br J Cancer 2023; 128:2104-2115. [DOI: 10.1038/s41416-023-02238-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 03/14/2023] [Accepted: 03/15/2023] [Indexed: 04/03/2023] Open
Abstract
Abstract
Background
The CD274 (PD-L1)/PDCD1 (PD-1) immune checkpoint interaction may promote cancer progression, but the expression patterns and prognostic significance of PD-L1 and PD-1 in the colorectal cancer microenvironment are inadequately characterised.
Methods
We used a custom 9-plex immunohistochemistry assay to quantify the expression patterns of PD-L1 and PD-1 in macrophages, T cells, and tumour cells in 910 colorectal cancer patients. We evaluated cancer-specific mortality according to immune cell subset densities using multivariable Cox regression models.
Results
Compared to PD-L1– macrophages, PD-L1+ macrophages were more likely M1-polarised than M2-polarised and located closer to tumour cells. PD-L1+ macrophage density in the invasive margin associated with longer cancer-specific survival [Ptrend = 0.0004, HR for the highest vs. lowest quartile, 0.52; 95% CI: 0.34–0.78]. T cell densities associated with longer cancer-specific survival regardless of PD-1 expression (Ptrend < 0.005 for both PD-1+ and PD-1– subsets). Higher densities of PD-1+ T cell/PD-L1+ macrophage clusters associated with longer cancer-specific survival (Ptrend < 0.005).
Conclusions
PD-L1+ macrophages show distinct polarisation profiles (more M1-like), spatial features (greater co-localisation with tumour cells and PD-1+ T cells), and associations with favourable clinical outcome. Our comprehensive multimarker assessment could enhance the understanding of immune checkpoints in the tumour microenvironment and promote the development of improved immunotherapies.
Collapse
|
13
|
Zhu Y, Zhu X, Diao W, Liang Z, Gao Z, Chen X. Correlation of immune makers with HPV 16 infections and the prognosis in oropharyngeal squamous cell carcinoma. Clin Oral Investig 2023; 27:1423-1433. [PMID: 36884083 PMCID: PMC10102146 DOI: 10.1007/s00784-023-04926-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 02/15/2023] [Indexed: 03/09/2023]
Abstract
OBJECTIVES This study aims to investigate the association of immune markers with high risk human papillomavirus 16 (HPV 16) infection status and to evaluate the prognostic value of programmed death ligand-1 (PD-L1) in patients with oropharyngeal squamous cell carcinoma (OPSCC). MATERIALS AND METHODS This retrospective study collected 50 cases of HPV positive and HPV negative OPSCC from January 2011 to December 2015. The correlation of CD8 + tumor infiltrating lymphocytes (TILs), programmed death-1 (PD-1), and PD-L1 expression with HPV 16 infection status was analyzed via immunofluorescent staining and quantitative real-time PCR. RESULTS There was no significant difference in the baseline data between the two groups. Patients with HPV + OPSCC had better prognosis compared to HPV - patients (5-year overall survival [OS], 66% vs. 40%, P = 0.003; 5-year disease specific survival [DSS], 73% vs. 44%, P = 0.001). The expressions of immunity related makers were significantly higher in the HPV + group than the HPV - group (CD8 + TIL: P = 0.039; PD-L1: P = 0.005; PD-1: P = 0.044). Positive CD8 + TIL and PD-L1 were independent factors for better prognosis of OPSCC (DSS, P < 0.001; OS, P < 0.001, respectively). Kaplan-Meier survival analysis indicated that patients with TILs of high HPV + /CD8 + expression were more likely to have better prognosis than those with TILs of low HPV + /CD8 + expression (DSS, P < 0.001; OS, P < 0.001), TILs of high expression of HPV - /CD8 + (DSS, P = 0.010; OS, P = 0.032), and TILs of low expression of HPV - /CD8 + (DSS, P < 0.001; OS, P < 0.001). Furthermore, HPV + /PD-L1 + OPSCC patients had significant better prognosis compared to patients with HPV + /PD-L1 - (DSS, P < 0.001; OS, P = 0.004), HPV - /PD-L1 + (DSS, P = 0.010; OS, P = 0.048) and HPV - /PD-L1 - (DSS, P < 0.001; OS, P < 0.001). CONCLUSIONS HPV + OPSCC had a significantly better prognosis, and PD-L1 expression was elevated in HPV + OPSCC. PD-L1 positivity might be related to the better prognosis of HPV + OPSCC. CLINICAL RELEVANCE This study provides a theoretical basis and baseline data for the application of immune checkpoint inhibitors in head and neck tumors.
Collapse
Affiliation(s)
- Yingying Zhu
- Department of Otolaryngology-Head and Neck Surgery, Peking Union Medical College and Chinese Academy of Medical Sciences, Peking Union Medical College Hospital, No.1, Shuaifuyuan, Beijing, 100730, Wangfujing, China
| | - Xiaoli Zhu
- Department of Otolaryngology-Head and Neck Surgery, Peking Union Medical College and Chinese Academy of Medical Sciences, Peking Union Medical College Hospital, No.1, Shuaifuyuan, Beijing, 100730, Wangfujing, China
| | - Wenwen Diao
- Department of Otolaryngology-Head and Neck Surgery, Peking Union Medical College and Chinese Academy of Medical Sciences, Peking Union Medical College Hospital, No.1, Shuaifuyuan, Beijing, 100730, Wangfujing, China
| | - Zhiyong Liang
- Department of Pathology, Peking Union Medical College and Chinese Academy of Medical Sciences, Peking Union Medical College Hospital, Beijing, 100730, China
| | - Zhiqiang Gao
- Department of Otolaryngology-Head and Neck Surgery, Peking Union Medical College and Chinese Academy of Medical Sciences, Peking Union Medical College Hospital, No.1, Shuaifuyuan, Beijing, 100730, Wangfujing, China
| | - Xingming Chen
- Department of Otolaryngology-Head and Neck Surgery, Peking Union Medical College and Chinese Academy of Medical Sciences, Peking Union Medical College Hospital, No.1, Shuaifuyuan, Beijing, 100730, Wangfujing, China.
| |
Collapse
|
14
|
Liu WN, So WY, Harden SL, Fong SY, Wong MXY, Tan WWS, Tan SY, Ong JKL, Rajarethinam R, Liu M, Cheng JY, Suteja L, Yeong JPS, Iyer NG, Lim DWT, Chen Q. Successful targeting of PD-1/PD-L1 with chimeric antigen receptor-natural killer cells and nivolumab in a humanized mouse cancer model. SCIENCE ADVANCES 2022; 8:eadd1187. [PMID: 36417514 PMCID: PMC9683725 DOI: 10.1126/sciadv.add1187] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Accepted: 10/05/2022] [Indexed: 06/12/2023]
Abstract
In recent decades, chimeric antigen receptor (CAR)-engineered immune effector cells have demonstrated promising antileukemic activity. Nevertheless, their efficacy remains unsatisfactory on solid cancers, plausibly due to the influence of tumor microenvironments (TME). In a novel mouse cancer model with a humanized immune system, tumor-infiltrating immunosuppressive leukocytes and exhausted programmed death protein-1 (PD-1)high T cells were found, which better mimic patient TME, allowing the screening and assessment of immune therapeutics. Particularly, membrane-bound programmed death ligand 1 (PD-L1) level was elevated on a tumor cell surface, which serves as an attractive target for natural killer (NK) cell-mediated therapy. Hematopoietic stem cell-derived CAR-NK (CAR pNK) cells targeting the PD-L1 showed enhanced in vitro and in vivo anti-solid tumor function. The CAR pNK cells and nivolumab resulted in a synergistic anti-solid tumor response. Together, our study highlights a robust platform to develop and evaluate the antitumor efficacy and safety of previously unexplored therapeutic regimens.
Collapse
Affiliation(s)
- Wai Nam Liu
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research, 138673, Singapore
| | - Wing Yan So
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research, 138673, Singapore
| | - Sarah L. Harden
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research, 138673, Singapore
| | - Shin Yie Fong
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research, 138673, Singapore
| | - Melissa Xin Yu Wong
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research, 138673, Singapore
| | - Wilson Wei Sheng Tan
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research, 138673, Singapore
| | - Sue Yee Tan
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research, 138673, Singapore
| | - Jessica Kai Lin Ong
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research, 138673, Singapore
| | - Ravisankar Rajarethinam
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research, 138673, Singapore
| | - Min Liu
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research, 138673, Singapore
| | - Jia Ying Cheng
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research, 138673, Singapore
| | | | - Joe Poh Sheng Yeong
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research, 138673, Singapore
| | - N. Gopalakrishna Iyer
- Duke-NUS Medical School, 169857, Singapore
- Department of Head and Neck Surgery, National Cancer Centre Singapore, 169610, Singapore
| | - Darren Wan-Teck Lim
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research, 138673, Singapore
- Division of Medical Oncology, National Cancer Center Singapore, 169610, Singapore
| | - Qingfeng Chen
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research, 138673, Singapore
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, 117593, Singapore
- Singapore Immunology Network, Agency for Science, Technology and Research, 138648, Singapore
| |
Collapse
|
15
|
Clinical and prognostic implications of CD47 and PD-L1 expression in surgically resected small-cell lung cancer. ESMO Open 2022; 7:100631. [PMID: 36399951 PMCID: PMC9808447 DOI: 10.1016/j.esmoop.2022.100631] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 09/28/2022] [Accepted: 10/09/2022] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND Pharmacological inhibition of the immune-checkpoint molecule CD47 has shown promising results in preclinical small-cell lung cancer (SCLC) models, whereas anti-programmed death-ligand 1 (PD-L1) inhibitors have been recently implemented in the standard of care of advanced-stage SCLC patients. Nevertheless, the expression pattern, clinical relevance and prognostic implication of both CD47 and PD-L1 are rather controversial in surgically treated SCLC patients. MATERIALS AND METHODS In total, 104 Caucasian SCLC patients from two Central European thoracic centers were included in this study. CD47 and PD-L1 expression as well as the expression of the four major SCLC molecular subtype markers (ASCL1, NEUROD1, YAP1 and POU2F3) were measured by immunohistochemistry. Expression levels were independently evaluated and statistically correlated with clinicopathological data and survival. RESULTS Positive CD47 and PD-L1 expressions were seen in 84.6% and 9.6% of the samples, respectively. Meanwhile, the tumor-associated stroma was positive for PD-L1 in 59.6% of the cases. Stromal PD-L1 expression correlated with longer overall survival (OS) (versus PD-L1-negative stroma; median OS was 42 versus 14 months, respectively, P = 0.003) and was confirmed as an independent predictor of favorable outcome upon multivariate analysis (hazard ratio 0.530, 95% confidence interval 0.298-0.943, P = 0.031). Notably, neither CD47 nor PD-L1 presence was related to a distinct molecular SCLC subtype. CONCLUSION CD47 shows a remarkably high expression while tumoral PD-L1 expression is generally low in surgically treated SCLC. Importantly, stromal PD-L1 expression may indicate a favorable clinical outcome and serve as a novel prognostic factor in these patients. Additional studies are warranted to further investigate the clinical impact of CD47 and PD-L1 expression in SCLC.
Collapse
|
16
|
Loss of SATB2 expression correlates with cytokeratin 7 and PD-L1 tumor cell positivity and aggressiveness in colorectal cancer. Sci Rep 2022; 12:19152. [PMID: 36351995 PMCID: PMC9646713 DOI: 10.1038/s41598-022-22685-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 10/18/2022] [Indexed: 11/11/2022] Open
Abstract
Colorectal carcinoma (CRC) is a disease that causes significant morbidity and mortality worldwide. To improve treatment, new biomarkers are needed to allow better patient risk stratification in terms of prognosis. This study aimed to clarify the prognostic significance of colonic-specific transcription factor special AT-rich sequence-binding protein 2 (SATB2), cytoskeletal protein cytokeratin 7 (CK7), and immune checkpoint molecule programmed death-ligand 1 (PD-L1). We analyzed a cohort of 285 patients with surgically treated CRC for quantitative associations among the three markers and five traditional prognostic indicators (i.e., tumor stage, histological grade, variant morphology, laterality, and mismatch-repair/MMR status). The results showed that loss of SATB2 expression had significant negative prognostic implications relative to overall survival (OS) and cancer-specific survival (CSS), significantly shortened 5 years OS and CSS and 10 years CSS in patients with CRC expressing CK7, and borderline insignificantly shortened OS in patients with PD-L1 + CRC. PD-L1 showed a significant negative impact in cases with strong expression (membranous staining in 50-100% of tumor cells). Loss of SATB2 was associated with CK7 expression, advanced tumor stage, mucinous or signet ring cell morphology, high grade, right-sided localization but was borderline insignificant relative to PD-L1 expression. CK7 expression was associated with high grade and SATB2 loss. Additionally, a separate analysis of 248 neoadjuvant therapy-naïve cases was performed with mostly similar results. The loss of SATB2 and CK7 expression were significant negative predictors in the multivariate analysis adjusted for associated parameters and patient age. In summary, loss of SATB2 expression and gain of CK7 and strong PD-L1 expression characterize an aggressive phenotype of CRC.
Collapse
|
17
|
Lee DY, Im E, Yoon D, Lee YS, Kim GS, Kim D, Kim SH. Pivotal role of PD-1/PD-L1 immune checkpoints in immune escape and cancer progression: Their interplay with platelets and FOXP3+Tregs related molecules, clinical implications and combinational potential with phytochemicals. Semin Cancer Biol 2022; 86:1033-1057. [PMID: 33301862 DOI: 10.1016/j.semcancer.2020.12.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 11/25/2020] [Accepted: 12/01/2020] [Indexed: 01/27/2023]
Abstract
Immune checkpoint proteins including programmed cell death protein 1 (PD-1), its ligand PD-L1 and cytotoxic T lymphocyte-associated antigen-4 (CTLA-4) are involved in proliferation, angiogenesis, metastasis, chemoresistance via immune escape and immune tolerance by disturbing cytotoxic T cell activation. Though many clinical trials have been completed in several cancers by using immune checkpoint inhibitors alone or in combination with other agents to date, recently multi-target therapy is considered more attractive than monotherapy, since immune checkpoint proteins work with other components such as surrounding blood vessels, dendritic cells, fibroblasts, macrophages, platelets and extracellular matrix within tumor microenvironment. Thus, in the current review, we look back on research history of immune checkpoint proteins and discuss their associations with platelets or tumor cell induced platelet aggregation (TCIPA) and FOXP3+ regulatory T cells (Tregs) related molecules involved in immune evasion and tumor progression, clinical implications of completed trial results and signaling networks by phytochemicals for combination therapy with immune checkpoint inhibitors and suggest future research perspectives.
Collapse
Affiliation(s)
- Dae Young Lee
- Department of Herbal Crop Research, National Institute of Horticultural and Herbal Science, RDA, Eumseong, 27709, Republic of Korea
| | - Eunji Im
- College of Korean Medicine, Kyung Hee University, Seoul, 02447, Republic of Korea
| | - Dahye Yoon
- Department of Herbal Crop Research, National Institute of Horticultural and Herbal Science, RDA, Eumseong, 27709, Republic of Korea
| | - Young-Seob Lee
- Department of Herbal Crop Research, National Institute of Horticultural and Herbal Science, RDA, Eumseong, 27709, Republic of Korea
| | - Geum-Soog Kim
- Department of Herbal Crop Research, National Institute of Horticultural and Herbal Science, RDA, Eumseong, 27709, Republic of Korea
| | - Donghwi Kim
- Department of Herbal Crop Research, National Institute of Horticultural and Herbal Science, RDA, Eumseong, 27709, Republic of Korea
| | - Sung-Hoon Kim
- College of Korean Medicine, Kyung Hee University, Seoul, 02447, Republic of Korea.
| |
Collapse
|
18
|
Mastracci L, Grillo F, Parente P, Gullo I, Campora M, Angerilli V, Rossi C, Sacramento ML, Pennelli G, Vanoli A, Fassan M. PD-L1 evaluation in the gastrointestinal tract: from biological rationale to its clinical application. Pathologica 2022; 114:352-364. [PMID: 36305021 PMCID: PMC9614301 DOI: 10.32074/1591-951x-803] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 09/20/2022] [Indexed: 11/06/2022] Open
Abstract
Immune-checkpoint inhibitors targeting the PD-1/PD-L1 axis have brought significant clinical benefit in many solid cancer types, including gastrointestinal malignancies. However, it has been estimated that only 20-40% of patients respond to treatment. The pattern of expression and potential predictive value of PD-L1 as an immunohistochemical biomarker has been extensively studied in gastrointestinal neoplasms. Until now, its predictive value has been demonstrated, and is currently in use only in upper gastrointestinal malignancies (gastroesophageal adenocarcinoma and esophageal squamous cell carcinoma). In this Review, we describe the technical aspects and challenges related to PD-L1 immunohistochemical assays, the current role of PD-L1 as a biomarker in clinical practice and we outline the main studies and clinical trials analyzing the prognostic and predictive value of PD-L1 in gastrointestinal cancers.
Collapse
Affiliation(s)
- Luca Mastracci
- IRCCS Ospedale Policlinico San Martino, Genoa, Italy.,Anatomic Pathology, Department of Surgical Sciences and Integrated Diagnostics (DISC), University of Genova, Italy
| | - Federica Grillo
- IRCCS Ospedale Policlinico San Martino, Genoa, Italy.,Anatomic Pathology, Department of Surgical Sciences and Integrated Diagnostics (DISC), University of Genova, Italy
| | - Paola Parente
- Unit of Pathology, Fondazione IRCCS Ospedale Casa Sollievo della Sofferenza, San Giovanni Rotondo, FG, Italy
| | - Irene Gullo
- Department of Pathology, Centro Hospitalar Universitário de São João (CHUSJ), Porto, Portugal.,Department of Pathology, Faculty of Medicine of the University of Porto (FMUP), Portugal.,i3S - Instituto de Investigação e Inovação em Saúde da Universidade do Porto, Portugal
| | - Michela Campora
- Public Healthcare Trust of the Autonomous Province of Trento, Santa Chiara Hospital, Department of Laboratory Medicine, Pathology Unit, Trento, Italy
| | - Valentina Angerilli
- Department of Medicine (DIMED), Surgical Pathology Unit, University Hospital of Padua, Padua (PD), Italy
| | - Chiara Rossi
- Anatomic Pathology Unit, Department of Molecular Medicine, University of Pavia, and IRCCS San Matteo Hospital, Pavia, Italy
| | - Maria Luisa Sacramento
- Department of Pathology, Centro Hospitalar Universitário de São João (CHUSJ), Porto, Portugal
| | - Gianmaria Pennelli
- Department of Medicine (DIMED), Surgical Pathology Unit, University Hospital of Padua, Padua (PD), Italy
| | - Alessandro Vanoli
- Anatomic Pathology Unit, Department of Molecular Medicine, University of Pavia, and IRCCS San Matteo Hospital, Pavia, Italy
| | - Matteo Fassan
- Department of Medicine (DIMED), Surgical Pathology Unit, University Hospital of Padua, Padua (PD), Italy.,Veneto Institute of Oncology IOV - IRCCS, Padua (PD), Italy
| |
Collapse
|
19
|
Mommersteeg MC, Yu BT, van den Bosch TPP, von der Thüsen J, Kuipers EJ, Doukas M, Spaander M, Peppelenbosch MP, Fuhler GM. Constitutive programmed death ligand 1 expression protects gastric G-cells from Helicobacter pylori-induced inflammation. Helicobacter 2022; 27:e12917. [PMID: 35899973 PMCID: PMC9542424 DOI: 10.1111/hel.12917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 05/20/2022] [Accepted: 06/23/2022] [Indexed: 12/09/2022]
Abstract
INTRODUCTION Gastric intestinal metaplasia (GIM) is a premalignant lesion, highly associated with Helicobacter pylori infection. Previous studies have shown that H. pylori is able to induce the expression of programmed death ligand 1 (PD-L1), an inhibitory immune modulator, in gastric cells. Our aim was to investigate whether tissues from GIM patients may exploit PD-L1 expression upon H. pylori infection to evade immunosurveillance. METHODS Immunohistochemistry was performed for PD-L1 and enteroendocrine markers somatostatin and gastrin on samples derived from a cohort of patients with known GIM, both before and after H. pylori eradication. To determine the identity of any observed PD-L1-positive cells, we performed multiplex immunofluorescent staining and analysis of single-cell sequencing data. RESULTS GIM tissue was rarely positive for PD-L1. In normal glands from GIM patients, PD-L1 was mainly expressed by gastrin-positive G-cells. While the D-cell and G-cell compartments were both diminished 2-fold (p = .015 and p = .01, respectively) during H. pylori infection in the normal antral tissue of GIM patients, they were restored 1 year after eradication. The total number of PD-L1-positive cells was not affected by H. pylori, but the percentage of PD-L1-positive G-cells was 30% higher in infected subjects (p = .011), suggesting that these cells are preferentially rescued from destruction. CONCLUSIONS Antral G-cells frequently express PD-L1 during homeostasis. G-cells seem to be protected from H. pylori-induced immune destruction by PD-L1 expression. GIM itself does not express PD-L1 and is unlikely to escape immunosurveillance via expression of PD-L1.
Collapse
Affiliation(s)
- Michiel C. Mommersteeg
- Department of Gastroenterology and HepatologyErasmus MC University Medical CenterRotterdamThe Netherlands
| | - Bing Ting Yu
- Department of Gastroenterology and HepatologyErasmus MC University Medical CenterRotterdamThe Netherlands
| | | | | | - Ernst J. Kuipers
- Department of Gastroenterology and HepatologyErasmus MC University Medical CenterRotterdamThe Netherlands
| | - Michael Doukas
- Department of PathologyErasmus MC University Medical CenterRotterdamThe Netherlands
| | - Manon C. W. Spaander
- Department of Gastroenterology and HepatologyErasmus MC University Medical CenterRotterdamThe Netherlands
| | - Maikel P. Peppelenbosch
- Department of Gastroenterology and HepatologyErasmus MC University Medical CenterRotterdamThe Netherlands
| | - Gwenny M. Fuhler
- Department of Gastroenterology and HepatologyErasmus MC University Medical CenterRotterdamThe Netherlands
| |
Collapse
|
20
|
Yuan K, Wu J, Zhao Y, Lyu S, Zhou Q, Shi F, Li Y, Song Q. Consistent expression of PD-L1 in tumor microenvironment with peripheral PD-1/PD-L1 in circulating T lymphocytes of operable breast cancer: a diagnostic test. Diagn Pathol 2022; 17:68. [PMID: 36088412 PMCID: PMC9464389 DOI: 10.1186/s13000-022-01249-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 08/19/2022] [Indexed: 12/24/2022] Open
Abstract
Background The expression of PD-L1 in the immune microenvironment can guide the application of immunosuppressants. In order to monitor the immune status of the body, repeated biopsies have to be taken. Our research aims to find new and convenient means to evaluate this indicator. Methods Eighty-three cases of newly diagnosed operable breast cancer without receiving preoperative treatment, were recruited from Beijing Shijitan Hospital between November 2018 and November 2019. The expression of PD-1/PD-L1 on circulating T lymphocytes was detected by flow cytometry and the expression of PD-L1 on immune cells in tumor microenvironment was detected by immunohistochemistry. Results The median percentage of positive PD-1 and PD-L1 expression on circulating T lymphocytes was 15.2% and 0.7%, respectively. The peripheral PD-1 had no relationship with clinicopathological characteristics, but the peripheral PD-L1 expression had a correlation with lymph node metastasis (p = 0.005) and Her-2 expression (p = 0.034) (p < 0.05). The positive rate of PD-L1 expression was 32.9% in tumor microenvironment. PD-L1 expression in tumor microenvironment had a significant correlation with PD-1/PD-L1 expression on circulating T lymphocytes, the correlation coefficients being 0.24 (p < 0.05) and 0.26 (p < 0.05), respectively. To predict the PD-L1 expression in tumor microenvironment, the area under the receiver operating characteristic curve was 0.65 and 0.66 for peripheral PD-1 and PD-L1, respectively. High level of peripheral PD-1/PD-L1 expression was associated with the odds ratios of 5.42 and 4.76 for positive PD-L1 expression in tumor microenvironment. Conclusion Peripheral PD-1/PD-L1 expression had a significant consistency with PD-L1 expression in tumor microenvironment and could act as an alternative choice of tissue detection, for the patients intolerable of biopsy.
Collapse
|
21
|
Secinti IE, Ozgur T, Dede I. PD-L1 Expression in Colorectal Adenocarcinoma Is Associated With the Tumor Immune Microenvironment and Epithelial-Mesenchymal Transition. Am J Clin Pathol 2022; 158:506-515. [PMID: 35938631 DOI: 10.1093/ajcp/aqac077] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 05/18/2022] [Indexed: 12/30/2022] Open
Abstract
OBJECTIVES Colorectal carcinomas are the third-most common tumors in the world, and colorectal cancer ranks second in cancer-related deaths. Our aim in this study was to investigate the correlation between programmed cell death ligand 1 (PD-L1) expression and clinicopathologic parameters in colorectal carcinomas and their relationship to the tumor immune microenvironment, epithelial-mesenchymal transition (EMT), and microsatellite instability. We also investigated the predictive and prognostic role of PD-L1. METHODS One hundred patients with a diagnosis of colorectal adenocarcinoma who did not receive neoadjuvant therapy were included in the study. The relationships among the altered expression of PD-L1; vimentin; E-cadherin; mismatch repair status; and pathologic microenvironmental features, including the presence of tumor budding and CD8-positive tumor infiltrating lymphocytes (TILs), were assessed. RESULTS Increased PD-L1 expression in tumor cells was associated with increased TILs (P = .013), high histologic grade (P = .011), advanced pathologic T stage (P = .007), lymph node metastasis (P = .002), distant metastasis (P < .001), perineural invasion (P = .009), high bud score (P = .023), EMT (P < .001), and shorter disease-free survival (P = .029). CONCLUSIONS Overall, PD-L1 expression in colorectal carcinoma tumor cells is a marker of poor prognosis, and the positive correlation detected between EMT status and PD-L1 expression suggests that patients with the mesenchymal phenotype may be more likely to benefit from programmed cell death 1 protein/PD-L1 immunotherapy.
Collapse
Affiliation(s)
- Ilke Evrim Secinti
- Department of Pathology, School of Medicine, Hatay Mustafa Kemal University, Hatay, Turkey
| | - Tumay Ozgur
- Department of Pathology, School of Medicine, Hatay Mustafa Kemal University, Hatay, Turkey
| | - Isa Dede
- Department of Medical Oncology, School of Medicine, Hatay Mustafa Kemal University, Hatay, Turkey
| |
Collapse
|
22
|
Harper MM, Lin M, Cavnar MJ, Pandalai PK, Patel RA, Gao M, Kim J. Interaction of immune checkpoint PD-1 and chemokine receptor 4 (CXCR4) promotes a malignant phenotype in pancreatic cancer cells. PLoS One 2022; 17:e0270832. [PMID: 35797269 PMCID: PMC9262213 DOI: 10.1371/journal.pone.0270832] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Accepted: 06/20/2022] [Indexed: 12/25/2022] Open
Abstract
Despite recent therapeutic advances, pancreatic ductal adenocarcinoma (PDAC) remains a devastating disease with limited therapeutic options. Immune checkpoint inhibitors (ICIs) have demonstrated promising results in many cancers, but thus far have yielded little clinical benefit in PDAC. Based on recent combined targeting of programmed cell death protein-1 (PD-1) and C-X-C chemokine receptor 4 (CXCR4) in patient-derived xenografts (PDXs) and a pilot clinical trial, we sought to elucidate potential interactions between PD-1 and CXCR4. We observed concomitant expression and direct interaction of PD-1 and CXCR4 in PDAC cells. This interaction was disrupted upon CXCR4 antagonism with AMD3100 and led to increased cell surface expression of PD-1. Importantly, CXCR4-mediated PDAC cell migration was also blocked by PD-1 inhibition. Our work provides a possible mechanism by which prior studies have demonstrated that combined CXCR4 and PD-1 inhibition leads to decreased tumor growth. This is the first report investigating PD-1 and CXCR4 interactions in PDAC cells and our results can serve as the basis for further investigation of combined therapeutic targeting of CXCR4 and PD-1.
Collapse
Affiliation(s)
- Megan M. Harper
- Division of Surgical Oncology, University of Kentucky, Lexington, Kentucky, United States of America
| | - Miranda Lin
- Division of Surgical Oncology, University of Kentucky, Lexington, Kentucky, United States of America
| | - Michael J. Cavnar
- Division of Surgical Oncology, University of Kentucky, Lexington, Kentucky, United States of America
| | - Prakash K. Pandalai
- Division of Surgical Oncology, University of Kentucky, Lexington, Kentucky, United States of America
| | - Reema A. Patel
- Division of Medical Oncology, University of Kentucky, Lexington, Kentucky, United States of America
| | - Mei Gao
- Division of Surgical Oncology, University of Kentucky, Lexington, Kentucky, United States of America
| | - Joseph Kim
- Division of Surgical Oncology, University of Kentucky, Lexington, Kentucky, United States of America
| |
Collapse
|
23
|
Zhang L, Cai X, Dai Y, Chen Y, Yu J, Zhou Y. Targeting the lncRNA FGD5-AS1/miR-497-5p/PD-L1 Axis Inhibits Malignant Phenotypes in Colon Cancer (CC). BIOMED RESEARCH INTERNATIONAL 2022; 2022:1133332. [PMID: 35845947 PMCID: PMC9279048 DOI: 10.1155/2022/1133332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 04/19/2022] [Accepted: 04/28/2022] [Indexed: 11/17/2022]
Abstract
Long noncoding RNAs (lncRNAs) regulate cancer progression and drug resistance. However, the role of lncRNA FGD5-AS1 in regulating colon cancer (CC) progression is still largely unknown. Hence, this study investigated the role of lncRNA FGD5-AS1 in regulating colon cancer (CC) progression and found that lncRNA FGD5-AS1 regulated miR-497-5p/PD-L1 axis to promote cancer progression in CC cells in vitro and in vivo. Specifically, we found that lncRNA FGD5-AS1 and PD-L1 tended to be high-expressed, while miR-497-5p was low-expressed in CC tissues and cell lines compared to the normal adjacent tissues and cells. Next, we found that lncRNA FGD5-AS1 positively regulated PD-L1 in CC cells by sponging miR-497-5p. Finally, our gain- and loss-of-function experiments evidenced that the lncRNA FGD5-AS1/miR-497-5p/PD-L1 axis regulates CC progression. Functionally, the data suggested that lncRNA FGD5-AS1 positively regulated while miR-497-5p negatively modulated malignant phenotypes, including cell proliferation, viability, invasion, migration, epithelial-mesenchymal transition (EMT), and tumorigenesis in CC cells. Interestingly, the inhibiting effects of lncRNA FGD5-AS1 ablation on CC development were abrogated by both silencing miR-497-5p and upregulating PD-L1. This study found that lncRNA FGD5-AS1 sponged miR-497-5p to upregulate PD-L1, resulting in CC progression, and provided novel agents for CC diagnosis and prognosis.
Collapse
Affiliation(s)
- Lijuan Zhang
- The Department of Pathology, The Third Affiliated Hospital of Kunming Medical University (Yunnan Cancer Hospital), Kunzhou Road No. 519, Kunming City, 650100 Yunnan Province, China
| | - Xinyi Cai
- The Department of Colorectal Surgery, The Third Affiliated Hospital of Kunming Medical University (Yunnan Cancer Hospital), Kunzhou Road No. 519, Kunming City, 650100 Yunnan Province, China
| | - Youguo Dai
- The Department of Gastroenterology, The Third Affiliated Hospital of Kunming Medical University (Yunnan Cancer Hospital), Kunzhou Road No. 519, Kunming City, 650100 Yunnan Province, China
| | - Yun Chen
- The Department of Pathology, The Third Affiliated Hospital of Kunming Medical University (Yunnan Cancer Hospital), Kunzhou Road No. 519, Kunming City, 650100 Yunnan Province, China
| | - Jing Yu
- The Department of Gynecology, The Third Affiliated Hospital of Kunming Medical University (Yunnan Cancer Hospital), Kunzhou Road No. 519, Kunming City, 650100 Yunnan Province, China
| | - Yongchun Zhou
- Molecular Diagnosis Center of Yunnan Cancer Center, The Third Affiliated Hospital of Kunming Medical University (Yunnan Cancer Hospital), Kunzhou Road No. 519, Kunming City, 650100 Yunnan Province, China
| |
Collapse
|
24
|
Abdel-Salam LO, El Hanbuli H, Abdelhafez DN. Tumoral and Stromal Pdl1 and Pdl2 Checkpoints Immunohistochemical Expression in Pancreatic Ductal Adenocarcinoma, a Promising Field Of Study. Open Access Maced J Med Sci 2022. [DOI: 10.3889/oamjms.2022.9070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
Background: Pancreatic ductal adenocarcinoma (PDAC) is world-widely considered as one of the most malignant tumors. Programmed cell death protein 1 (PD-1), via its ligands PDL1 and PDL2 plays a critical role in cancer immunoediting. The ligands are expressed in many solid tumors and there is an emerging hope of using anti-PDL in cancer immunotherapy.
Material and methods:
This study included 40 patients with PDAC who underwent pancreaticoduodenectomy. PDL1 and PDL2 pancreatic expression were evaluated in these patients using immunohistochemical staining and correlated their expression levels with each patient’s reported clinicopathological features.
Results:
There were significant relations between high tumoral PDL1 expression and the PDAC tumor histologic grade (p= 0.021) and the tumor status (T) (p= 0.022), while the stromal expression of PDL1 showed non-significant relation with any of the studied features. There were significant relations between high tumoral PDL2 expression and tumor stage (p=0.012), while the stromal expression of PDL2 showed significant relation with tumor status, lymph node status, tumor stage and the presence lympho-vascular invasion with P value equal 0.001, 0.009, 0.009, 0.045 respectively.
Conclusion:
This study showed that in PDAC patients high tumoral PDL1 and PDL2 expression was associated with some important prognostic factors, while only stromal PDL2 expression was significantly associated with most of the studied prognostic features emphasizing a role of both markers in the prognosis of this neoplasm.
Collapse
|
25
|
Zhou H, Liu Z, Wang Y, Wen X, Amador EH, Yuan L, Ran X, Xiong L, Ran Y, Chen W, Wen Y. Colorectal liver metastasis: molecular mechanism and interventional therapy. Signal Transduct Target Ther 2022; 7:70. [PMID: 35246503 PMCID: PMC8897452 DOI: 10.1038/s41392-022-00922-2] [Citation(s) in RCA: 112] [Impact Index Per Article: 56.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 01/25/2022] [Accepted: 02/09/2022] [Indexed: 02/08/2023] Open
Abstract
Colorectal cancer (CRC) is one of the most frequently occurring malignancy tumors with a high morbidity additionally, CRC patients may develop liver metastasis, which is the major cause of death. Despite significant advances in diagnostic and therapeutic techniques, the survival rate of colorectal liver metastasis (CRLM) patients remains very low. CRLM, as a complex cascade reaction process involving multiple factors and procedures, has complex and diverse molecular mechanisms. In this review, we summarize the mechanisms/pathophysiology, diagnosis, treatment of CRLM. We also focus on an overview of the recent advances in understanding the molecular basis of CRLM with a special emphasis on tumor microenvironment and promise of newer targeted therapies for CRLM, further improving the prognosis of CRLM patients.
Collapse
Affiliation(s)
- Hui Zhou
- Department of General Surgery, Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan Province, China
| | - Zhongtao Liu
- Department of General Surgery, Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan Province, China
| | - Yongxiang Wang
- Department of General Surgery, Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan Province, China
| | - Xiaoyong Wen
- Department of General Surgery, Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan Province, China
| | - Eric H Amador
- Department of Physics, The University of Texas, Arlington, TX, 76019, USA
| | - Liqin Yuan
- Department of General Surgery, Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan Province, China
| | - Xin Ran
- Department of Dermatovenereology, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Li Xiong
- Department of General Surgery, Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan Province, China.
| | - Yuping Ran
- Department of Dermatovenereology, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Wei Chen
- Department of Physics, The University of Texas, Arlington, TX, 76019, USA.
- Medical Technology Research Centre, Chelmsford Campus, Anglia Ruskin University, Chelmsford, CM1 1SQ, UK.
| | - Yu Wen
- Department of General Surgery, Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan Province, China.
| |
Collapse
|
26
|
Xia C, Huang W, Chen YL, Fu HB, Tang M, Zhang TL, Li J, Lv GH, Yan YG, Ouyang ZH, Yao N, Wang C, Zou MX. Coexpression of HHLA2 and PD-L1 on Tumor Cells Independently Predicts the Survival of Spinal Chordoma Patients. Front Immunol 2022; 12:797407. [PMID: 35145510 PMCID: PMC8824251 DOI: 10.3389/fimmu.2021.797407] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 12/31/2021] [Indexed: 12/19/2022] Open
Abstract
Background Immunotherapy only achieves efficacy in some cancer patients, and less is known about other immune checkpoint molecules in chordoma. Here, we aimed to determine the expression of PD-L1, HHLA2, B7H3, IDO-1 and Galectin-9 in spinal chordoma and evaluated their association with tumor infiltrating lymphocytes (TILs), clinicopathological characteristics and survival of patients. Methods Using multiplexed quantitative immunofluorescence (QIF), we simultaneously measured the levels of five different immune checkpoint molecules and major TIL subsets in 92 human spinal chordoma samples. Results Tumor HHLA2 and PD-L1 were positive in 80.0% and 86.0% of cases, respectively. However, B7H3, IDO-1 and Galectin-9 positivity on tumor cells were only seen in 21.0% of cases, despite all showing predominantly stromal expression. Coexpression of these QIF markers in the tumor compartment was scarcely detected except for PD-L1 and HHLA2, which was observed in 69.6% of cases. While tumoral HHLA2 and stromal B7H3 expressions were associated with an aggressive tumor phenotype, suppressive immune response (specifically including elevated PD-1+ TILs level and decreased CD8+ TIL density) and poor prognosis, stromal levels of PD-L1 and Galectin-9 predicted the opposite outcomes. Importantly, HHLA2 and PD-L1 coexpression on tumor cells independently predicted both worse local recurrence-free survival and overall survival. Conclusion These data provide a better understanding of the immunosuppressive mechanism in chordoma and may be useful for the development of combination or novel immunotherapy approaches aiming to improve therapeutic efficacy and survival.
Collapse
Affiliation(s)
- Chao Xia
- The First Affiliated Hospital, Health Management Center, Hengyang Medical School, University of South China, Hengyang, China.,Department of Spine Surgery, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, China
| | - Wei Huang
- The First Affiliated Hospital, Health Management Center, Hengyang Medical School, University of South China, Hengyang, China
| | - Yun-Liang Chen
- Shenzhen Audaque Data Technology Co., Ltd., Shenzhen, China
| | - Hai-Bin Fu
- Department of Spine Surgery, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, China
| | - Ming Tang
- Department of Spine Surgery, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, China
| | - Tao-Lan Zhang
- Department of Spine Surgery, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, China
| | - Jing Li
- Department of Spine Surgery, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Guo-Hua Lv
- Department of Spine Surgery, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Yi-Guo Yan
- Department of Spine Surgery, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, China
| | - Zhi-Hua Ouyang
- Department of Spine Surgery, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, China
| | - Nvzhao Yao
- Department of Spine Surgery, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, China
| | - Cheng Wang
- Department of Spine Surgery, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, China
| | - Ming-Xiang Zou
- Department of Spine Surgery, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, China
| |
Collapse
|
27
|
Kuo YT, Liao CK, Chen TC, Lai CC, Chiang SF, Chiang JM. A high density of PD-L1-expressing immune cells is significantly correlated with favorable disease free survival in nonmetastatic colorectal cancer. Medicine (Baltimore) 2022; 101:e28573. [PMID: 35060518 PMCID: PMC8772683 DOI: 10.1097/md.0000000000028573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Accepted: 12/23/2021] [Indexed: 01/05/2023] Open
Abstract
The impact of immune cells (ICs) expressing various markers remains poorly understood in nonmetastatic colorectal cancer patients who have undergone colectomy. Here, we aimed to clarify the correlation between IC density and clinical parameters and survival.Programmed death protein-1 (PD-1), programmed cell death protein ligand-1 (PD-L1), clusters of differentiation (CD)-3, CD-8, and CD45RO immunostaining was performed for 421 patients using tissue microarray and automatic counting. Tumor stroma area immune density was assessed in comparison to clinical histological factors and surgical outcomes.High-density CD-8 expression was significantly associated with current smoking habits or a smoking history (P = .006). High-density of PD-1 expression was correlated with Lynch syndrome patients (P < .001) and with patients who did not consume alcohol (P = .034). A significant decrease in CR45RO expression density was associated with aging (P = .002 and r = -0.014), and high-density CD-3, CD-8, and PD-1 expression was significantly associated with right colon tumor location (P < .001). High CD-3 and PD-L1 expression was significantly associated with early tumor T-staging (P = .018 and P = .002). High-density PD-1 expression was significantly correlated with mucinous type adenocarcinoma (P = .027) and poor differentiation (P < .001). For treatment outcomes, multivariate analysis confirmed that patients exhibiting high-density PD-L1 expression possessed significantly longer disease free survival (adjusted hazard ratio: 0.752, 95% confidence interval [CI]: 0.61-0.92, P = .006) and overall survival (adjusted hazard ratio: 0.872, 95% CI: 0.75-1.91, P = .064)Significantly varied density in IC subsets was related to distinct demographic or clinic-histological factors. The presence of high-density PD-L1-expressing ICs is an independent favorable prognostic factor for disease free survival and overall survival among stage I to III colorectal cancer patients.
Collapse
Affiliation(s)
- Ya-Ting Kuo
- Division of Colon and Rectal Surgery, Department of Surgery, Chang Gung Memorial Hospital, Lin-Kou Medical Center, Taoyuan, Taiwan
| | - Chun-Kai Liao
- Division of Colon and Rectal Surgery, Department of Surgery, Chang Gung Memorial Hospital, Lin-Kou Medical Center, Taoyuan, Taiwan
| | - Tse-ching Chen
- Chang Gung University, College of Medicine, Taoyuan, Taiwan
- Department of Pathology, Chang Gung Memorial Hospital, Lin-Kou Medical Center, Taoyuan, Taiwan
| | - Chen-Chou Lai
- Division of Colon and Rectal Surgery, Department of Surgery, Chang Gung Memorial Hospital, Lin-Kou Medical Center, Taoyuan, Taiwan
| | - Sum-Fu Chiang
- Division of Colon and Rectal Surgery, Department of Surgery, Chang Gung Memorial Hospital, Lin-Kou Medical Center, Taoyuan, Taiwan
| | - Jy-Ming Chiang
- Division of Colon and Rectal Surgery, Department of Surgery, Chang Gung Memorial Hospital, Lin-Kou Medical Center, Taoyuan, Taiwan
- Chang Gung University, College of Medicine, Taoyuan, Taiwan
| |
Collapse
|
28
|
Azcue P, Guerrero Setas D, Encío I, Ibáñez-Beroiz B, Mercado M, Vera R, Gómez-Dorronsoro ML. A Novel Prognostic Biomarker Panel for Early-Stage Colon Carcinoma. Cancers (Basel) 2021; 13:5909. [PMID: 34885019 PMCID: PMC8656725 DOI: 10.3390/cancers13235909] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 11/18/2021] [Accepted: 11/22/2021] [Indexed: 12/09/2022] Open
Abstract
Molecular characterization of colorectal cancer has helped us understand better the biology of the disease. However, previous efforts have yet to provide significant clinical value in order to be integrated into clinical practice for patients with early-stage colon cancer (CC). The purpose of this study was to assess PD-L1, GLUT-1, e-cadherin, MUC2, CDX2, and microsatellite instability (dMMR) and to propose a risk-panel with prognostic capabilities. Biomarkers were immunohistochemically assessed through tissue microarrays in a cohort of 144 patients with stage II/III colon cancer. A biomarker panel consisting of PD-L1, GLUT-1, dMMR, and potentially CDX2 was constructed that divided patients into low, medium, and high risk of overall survival or disease-free survival (DFS) in equally sized groups. Compared with low-risk patients, medium-risk patients have almost twice the risk of death (HR = 2.10 (0.99-4.46), p = 0.054), while high-risk patients have almost four times the risk (HR = 3.79 (1.77-8.11), p = 0.001). The multivariate goodness of fit was 0.756 and was correlated with Kaplan-Meier curves (p = 0.002). Consistent results were found for DFS. This study provides a critical basis for the future development of an immunohistochemical assessment capable of discerning early-stage CC patients as a function of their prognosis. This tool may aid with treatment personalization in daily clinical practice and improve survival outcomes.
Collapse
Affiliation(s)
- Pablo Azcue
- Department of Health Science, Public University of Navarra, 31008 Pamplona, Spain; (I.E.); (B.I.-B.)
| | - David Guerrero Setas
- Department of Pathology, University Hospital of Navarra, 31008 Pamplona, Spain; (D.G.S.); (M.M.)
- Campus Arrosadia, Public University of Navarra, 31006 Pamplona, Spain
- Molecular Pathology of Cancer Group–Navarrabiomed, 31008 Pamplona, Spain
- Department of Medical Oncology, University Hospital of Navarra, 31008 Pamplona, Spain;
| | - Ignacio Encío
- Department of Health Science, Public University of Navarra, 31008 Pamplona, Spain; (I.E.); (B.I.-B.)
- Institute for Health Research Navarra (IdISNA), 31008 Pamplona, Spain
| | - Berta Ibáñez-Beroiz
- Department of Health Science, Public University of Navarra, 31008 Pamplona, Spain; (I.E.); (B.I.-B.)
- Institute for Health Research Navarra (IdISNA), 31008 Pamplona, Spain
- Unit of Methodology-Navarrabiomed-University Hospital of Navarra, 31008 Pamplona, Spain
- Research Network on Health Services Research and Chronic Diseases (REDISSEC), 31008 Pamplona, Spain
| | - María Mercado
- Department of Pathology, University Hospital of Navarra, 31008 Pamplona, Spain; (D.G.S.); (M.M.)
| | - Ruth Vera
- Department of Medical Oncology, University Hospital of Navarra, 31008 Pamplona, Spain;
- Institute for Health Research Navarra (IdISNA), 31008 Pamplona, Spain
| | - María Luisa Gómez-Dorronsoro
- Department of Pathology, University Hospital of Navarra, 31008 Pamplona, Spain; (D.G.S.); (M.M.)
- Institute for Health Research Navarra (IdISNA), 31008 Pamplona, Spain
| |
Collapse
|
29
|
Wang W, Jing H, Liu J, Bu D, Zhang Y, Zhu T, Lu K, Xu Y, Cheng M, Liu J, Yao J, Huang S, Wang L. Correlation between schistosomiasis and CD8+ T cell and stromal PD-L1 as well as the different prognostic role of CD8+ T cell and PD-L1 in schistosomal-associated colorectal cancer and non-schistosomal-associated colorectal cancer. World J Surg Oncol 2021; 19:321. [PMID: 34743724 PMCID: PMC8573878 DOI: 10.1186/s12957-021-02433-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Accepted: 10/24/2021] [Indexed: 02/08/2023] Open
Abstract
Background The effect of schistosomiasis on CD8+ T cells and then on PD-L1 expression was unknown, and the utility of CD8+ TILs as a biomarker for schistosomal-associated colorectal cancer (SCRC) rarely has been reported. Methods Three hundred thirty-eight patients with colorectal cancer (CRC) were enrolled. Immunohistochemical analysis was conducted to evaluate the expression of PD-L1 and the infiltration of CD8+ T cells. Results In the total cohort, the results showed that CD8+ TIL density was positively correlated with tumoral (p = 0.0001) and stromal PD-L1 expression (p = 0.0102). But there were no correlation between schistosomiasis and CD8+ TILs and PD-L1. Furthermore, CD8+ TIL density (p = 0.010), schistosomiasis (p = 0.042) were independent predictive factors for overall survival (OS). Stromal PD-L1 (sPD-L1) was correlated with OS (p = 0.046), but it was not an independent predictor. In patients without schistosomiasis, CD8 + T cells (p = 0.002) and sPD-L1 (p = 0.005) were associated with better OS. In patients with schistosomiasis, CD8 + T cells were independent prognosis factor (p = 0.045). Conclusions The study showed that CD8+ TILs was an independent predictive factor for OS in CRC and SCRC patients. The expression of PD-L1 was positively associated with CD8 + TILs density. There were no correlation between schistosomiasis and CD8 + TILs and PD-L1. Stromal PD-L1 but not tPD-L1 was significantly associated with OS, whereas it was not an independent prognostic factor. Supplementary Information The online version contains supplementary material available at 10.1186/s12957-021-02433-w.
Collapse
Affiliation(s)
- Weixia Wang
- Department of Pathology, Qingpu Branch of Zhongshan Hospital, Fudan University, No. 1158 East Park Road, Qingpu District, Shanghai, 201700, People's Republic of China
| | - Hongyan Jing
- Department of Pathology, Qingpu Branch of Zhongshan Hospital, Fudan University, No. 1158 East Park Road, Qingpu District, Shanghai, 201700, People's Republic of China
| | - Jican Liu
- Department of Pathology, Qingpu Branch of Zhongshan Hospital, Fudan University, No. 1158 East Park Road, Qingpu District, Shanghai, 201700, People's Republic of China
| | - Dacheng Bu
- Department of Pathology, Qingpu Branch of Zhongshan Hospital, Fudan University, No. 1158 East Park Road, Qingpu District, Shanghai, 201700, People's Republic of China
| | - Yingyi Zhang
- Department of Pathology, Qingpu Branch of Zhongshan Hospital, Fudan University, No. 1158 East Park Road, Qingpu District, Shanghai, 201700, People's Republic of China
| | - Ting Zhu
- Department of Pathology, Qingpu Branch of Zhongshan Hospital, Fudan University, No. 1158 East Park Road, Qingpu District, Shanghai, 201700, People's Republic of China
| | - Kui Lu
- Department of Pathology, Qingpu Branch of Zhongshan Hospital, Fudan University, No. 1158 East Park Road, Qingpu District, Shanghai, 201700, People's Republic of China
| | - Yanchao Xu
- Department of Pathology, Qingpu Branch of Zhongshan Hospital, Fudan University, No. 1158 East Park Road, Qingpu District, Shanghai, 201700, People's Republic of China
| | - Meihong Cheng
- Department of Pathology, Qingpu Branch of Zhongshan Hospital, Fudan University, No. 1158 East Park Road, Qingpu District, Shanghai, 201700, People's Republic of China
| | - Jing Liu
- Department of Pathology, Qingpu Branch of Zhongshan Hospital, Fudan University, No. 1158 East Park Road, Qingpu District, Shanghai, 201700, People's Republic of China
| | - Junxia Yao
- Department of Pathology, Qingpu Branch of Zhongshan Hospital, Fudan University, No. 1158 East Park Road, Qingpu District, Shanghai, 201700, People's Republic of China
| | - Sinian Huang
- Department of Pathology, Qingpu Branch of Zhongshan Hospital, Fudan University, No. 1158 East Park Road, Qingpu District, Shanghai, 201700, People's Republic of China
| | - Limei Wang
- Department of Pathology, Qingpu Branch of Zhongshan Hospital, Fudan University, No. 1158 East Park Road, Qingpu District, Shanghai, 201700, People's Republic of China.
| |
Collapse
|
30
|
Gompertz-Mattar M, Perales J, Sahu A, Mondaca S, Gonzalez S, Uribe P, Navarrete-Dechent C. Differential expression of programmed cell death ligand 1 (PD-L1) and inflammatory cells in basal cell carcinoma subtypes. Arch Dermatol Res 2021; 314:777-786. [PMID: 34647186 DOI: 10.1007/s00403-021-02289-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 09/21/2021] [Accepted: 10/01/2021] [Indexed: 01/14/2023]
Abstract
Few studies have evaluated programmed cell death ligand (PD-L1) expression and lymphocytic infiltrates in Basal Cell Carcinoma (BCC). The objectives of this study are to assess PD-L1 expression and markers of local immune response in nodular, superficial, and morpheaform BCC, and compare it to normal, sun-exposed skin from the periphery of intradermal nevi. This was a retrospective study that included three histological subtypes of BCCs, and sun-exposed skin from the periphery of dermal nevi as quality controls. Tissue microarrays (TMA) were constructed with subsequent staining of H&E and immunohistochemistry (IHC) for CD4, CD8, FOXP3 and PD-L1. Non-automated quantification of the infiltrate in the intratumoral and stromal compartments on TMAs was performed. A total of 115 BCC (39 nodular, 39 morpheaform, and 37 superficial) and 41 sun-exposed skin samples were included (mean age 65.4 years; 52.6% females). BCC showed higher expression of PD-L1 (5.4 vs 0.7%, p < 0.001), CD8 (29.8 vs 19.7%, p = 0.002), and FOXP3 (0.3 vs 0.06%, p = 0.022) compared to sun-exposed skin. There was a higher PD-L1 expression in nodular BCC compared with other subtypes. Low-risk BCC subtypes (superficial and nodular) exhibited more PD-L1 expression in intratumoral and stromal immune infiltrates as compared to high-risk BCC subtypes. As a limitation, no immune cells function was evaluated in this study, only the presence/absence of T-lymphocyte sub-populations was recorded. Substantial differences in both PD-L1 expression and lymphocytic infiltrates were found amongst the histological subtypes of BCC and sun-exposed skin. Highest PD-L1 expression was found in nodular BCCs which suggests a potentially targetable strategy in the treatment of this most common BCC subtype.
Collapse
Affiliation(s)
- Matias Gompertz-Mattar
- Department of Dermatology, Escuela de Medicina, Pontificia Universidad Catolica de Chile, Diagonal Paraguay 362, 6th Floor, 8330077, Santiago, Chile
| | - Juan Perales
- Department of Dermatology, Escuela de Medicina, Pontificia Universidad Catolica de Chile, Diagonal Paraguay 362, 6th Floor, 8330077, Santiago, Chile
| | - Aditi Sahu
- Dermatology Service, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Sebastián Mondaca
- Department of Medical Oncology, Escuela de Medicina, Pontificia Universidad Catolica de Chile, Santiago, Chile.,Melanoma and Skin Cancer Unit, Escuela de Medicina, Pontificia Universidad Catolica de Chile, Santiago, Chile
| | - Sergio Gonzalez
- Department of Pathology, Escuela de Medicina, Pontificia Universidad Catolica de Chile, Santiago, Chile
| | - Pablo Uribe
- Department of Dermatology, Escuela de Medicina, Pontificia Universidad Catolica de Chile, Diagonal Paraguay 362, 6th Floor, 8330077, Santiago, Chile.,Melanoma and Skin Cancer Unit, Escuela de Medicina, Pontificia Universidad Catolica de Chile, Santiago, Chile
| | - Cristian Navarrete-Dechent
- Department of Dermatology, Escuela de Medicina, Pontificia Universidad Catolica de Chile, Diagonal Paraguay 362, 6th Floor, 8330077, Santiago, Chile. .,Melanoma and Skin Cancer Unit, Escuela de Medicina, Pontificia Universidad Catolica de Chile, Santiago, Chile.
| |
Collapse
|
31
|
The Role of Oncogenes and Redox Signaling in the Regulation of PD-L1 in Cancer. Cancers (Basel) 2021; 13:cancers13174426. [PMID: 34503236 PMCID: PMC8431622 DOI: 10.3390/cancers13174426] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 07/29/2021] [Accepted: 08/16/2021] [Indexed: 12/17/2022] Open
Abstract
Tumor cells can evade the immune system via multiple mechanisms, including the dysregulation of the immune checkpoint signaling. These signaling molecules are important factors that can either stimulate or inhibit tumor immune response. Under normal physiological conditions, the interaction between programmed cell death ligand 1 (PD-L1) and its receptor, programmed cell death 1 (PD-1), negatively regulates T cell function. In cancer cells, high expression of PD-L1 plays a key role in cancer evasion of the immune surveillance and seems to be correlated with clinical response to immunotherapy. As such, it is important to understand various mechanisms by which PD-L1 is regulated. In this review article, we provide an up-to-date review of the different mechanisms that regulate PD-L1 expression in cancer. We will focus on the roles of oncogenic signals (c-Myc, EML4-ALK, K-ras and p53 mutants), growth factor receptors (EGFR and FGFR), and redox signaling in the regulation of PD-L1 expression and discuss their clinical relevance and therapeutic implications. These oncogenic signalings have common and distinct regulatory mechanisms and can also cooperatively control tumor PD-L1 expression. Finally, strategies to target PD-L1 expression in tumor microenvironment including combination therapies will be also discussed.
Collapse
|
32
|
Möller K, Blessin NC, Höflmayer D, Büscheck F, Luebke AM, Kluth M, Hube-Magg C, Zalewski K, Hinsch A, Neipp M, Mofid H, Lárusson H, Daniels T, Isbert C, Coerper S, Ditterich D, Rupprecht H, Goetz A, Bernreuther C, Sauter G, Uhlig R, Wilczak W, Simon R, Steurer S, Minner S, Burandt E, Krech T, Perez D, Izbicki JR, Clauditz TS, Marx AH. High density of cytotoxic T-lymphocytes is linked to tumoral PD-L1 expression regardless of the mismatch repair status in colorectal cancer. Acta Oncol 2021; 60:1210-1217. [PMID: 34092167 DOI: 10.1080/0284186x.2021.1933585] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
BACKGROUND Immune checkpoint-inhibitors targeting the PD-1/PD-L1 system are FDA approved in microsatellite instable (MSI) or mismatch repair deficient (dMMR) colorectal cancer (CRC). PD-L1 expression is tightly linked to features connected to immune checkpoint inhibitor response, but studies on large subsets of cancers analyzing the correlation between different status of MSI/dMMR, tumor infiltrating lymphocytes and PD-L1 expression are still lacking. METHODS More than 1800 CRC were analyzed for PD-L1 by immunohistochemistry in a tissue microarray format. Data were compared to MMR, the number of intratumoral CD8+ cytotoxic T-cells, and adverse clinico-pathological parameters. Different cutoff levels for defining PD-L1 positivity in tumor cells (1%, 5%, 10%, and 50%) yielded comparable results. RESULTS At a cutoff level of 5%, PD-L1 positivity was seen in 5.1% of tumors. PD-L1 was more often positive in dMMR (18.6%) than in MMR proficient (pMMR) cancers (4.1%; p < 0.0001). The number of intratumoral CD8+ lymphocytes was strikingly higher in PD-L1 positive (939.5 ± 118.2) than in PD-L1 negative cancers (310.5 ± 24.8). A higher number of intratumoral CD8+ lymphocytes was found in dMMR CRC (PD-L1 positive: 1999.7 ± 322.0; PD-L1 negative: 398.6 ± 128.0; p < 0.0001) compared to pMMR CRC (PD-L1 positive: 793.2 ± 124.8; PD-L1 negative: 297.2 ± 24.2; p < 0.0001). In dMMR and pMMR CRC, PD-L1 expression in tumor cells was unrelated to tumor stage, lymph node status or lymphatic/venous invasion. PD-L1 positivity in tumor associated immune cells was seen in 47.5% of cases and was significantly linked to high numbers of tumor infiltrating CD8+, low tumor stage, and absence of lymph node metastasis and lymphatic/venous invasion (p < 0.0001 each). CONCLUSION The data support the previously suggested fact that PD-L1 expression in tumor cells is driven by extensive cytotoxic T-cell infiltration in highly immunogenic dMMR and pMMR CRC. Frequent and intense PD-L1 expression in tumor cells of dMMR CRC may contribute to the high response rates of dMMR CRC to immune checkpoint-inhibitors.
Collapse
Affiliation(s)
- Katharina Möller
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Niclas C. Blessin
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Doris Höflmayer
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Franziska Büscheck
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Andreas M. Luebke
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Martina Kluth
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Claudia Hube-Magg
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Katarzyna Zalewski
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Andrea Hinsch
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Michael Neipp
- General, Vascular and Visceral Surgery Clinic, Itzehoe Medical Center, Itzehoe, Germany
| | - Hamid Mofid
- General, Visceral Thoracic and Vascular Surgery Clinic, Regio Clinic Pinneberg, Pinneberg, Germany
| | - Hannes Lárusson
- General, Visceral Thoracic and Vascular Surgery Clinic, Regio Clinic Pinneberg, Pinneberg, Germany
| | - Thies Daniels
- General, Visceral and Tumor Surgery Clinic, Albertinen Hospital, Hamburg, Germany
| | - Christoph Isbert
- Department of General, Gastrointestinal and Colorectal Surgery, Amalie Sieveking Hospital, Hamburg, Germany
| | - Stephan Coerper
- Department of Surgery, General Hospital Martha-Maria Hospital Nuernberg, Nuernberg, Germany
| | - Daniel Ditterich
- Departement of Surgery, General Hospital Neustadt/Aisch, Neustadt an der Aisch, Germany
| | - Holger Rupprecht
- Department of Thoracic Surgery, Academic Hospital Neumarkt, Neumarkt/Oberpfalz, Germany
| | - Albert Goetz
- Department of Surgery, General Hospital Roth, Roth, Germany
| | - Christian Bernreuther
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Guido Sauter
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Ria Uhlig
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Waldemar Wilczak
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Ronald Simon
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Stefan Steurer
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Sarah Minner
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Eike Burandt
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Till Krech
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Institute of Pathology, Clinical Center Osnabrueck, Osnabrueck, Germany
| | - Daniel Perez
- General, Visceral and Thoracic Surgery Department and Clinic, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Jakob R. Izbicki
- General, Visceral and Thoracic Surgery Department and Clinic, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Till S. Clauditz
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Andreas H. Marx
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Department of Pathology, Academic Hospital Fuerth, Fuerth, Germany
| |
Collapse
|
33
|
LAG-3 Expression Predicts Outcome in Stage II Colon Cancer. J Pers Med 2021; 11:jpm11080749. [PMID: 34442393 PMCID: PMC8398428 DOI: 10.3390/jpm11080749] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 07/20/2021] [Indexed: 12/30/2022] Open
Abstract
INTRODUCTION LAG-3 is an inhibitory immune checkpoint molecule that suppresses T cell activation and inflammatory cytokine secretion. T cell density in the tumor microenvironment of colon cancer plays an important role in the host's immunosurveillance. We therefore hypothesized that LAG-3 expression on tumor-infiltrating lymphocytes (TILs) predicts outcome in patients with stage II colon cancer. PATIENTS AND METHODS Immunohistochemical staining for LAG-3 was performed on tissue microarrays (TMAs) of formalin-fixed paraffin-embedded tissue from 142 stage II colon cancer patients. LAG-3 expression was assessed in TILs within both the tumor front and tumor center and scored as either positive or negative. The primary endpoint was disease-free survival (DFS). RESULTS In patients diagnosed with stage II colon cancer, the presence of LAG-3 expression on TILs was significantly associated with better 5-year DFS (HR 0.34, 95% CI 0.14-0.80, p = 0.009). The effect on DFS was mainly due to LAG-3-positive TILs in the tumor front (HR 0.33, 95% CI 0.13-0.82, p = 0.012). CONCLUSION Assessment of LAG-3 might help to predict outcomes in patients with stage II colon cancer and potentially identify those patients who might benefit from adjuvant chemotherapy. Therefore, LAG-3 may serve as a prognostic biomarker in stage II colon cancer.
Collapse
|
34
|
Sun L, Patai ÁV, Hogenson TL, Fernandez-Zapico ME, Qin B, Sinicrope FA. Irreversible JNK blockade overcomes PD-L1-mediated resistance to chemotherapy in colorectal cancer. Oncogene 2021; 40:5105-5115. [PMID: 34193942 DOI: 10.1038/s41388-021-01910-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 06/11/2021] [Accepted: 06/15/2021] [Indexed: 11/09/2022]
Abstract
Colorectal cancer (CRC) cells have low or absent tumor cell PD-L1 expression that we previously demonstrated can confer chemotherapy resistance. Here, we demonstrate that PD-L1 depletion enhances JNK activity resulting in increased BimThr116 phosphorylation and its sequestration by MCL-1 and BCL-2. Activated JNK signaling in PD-L1-depeted cells was due to reduced mRNA stability of the CYLD deubiquitinase. PD-L1 was found to compete with the ribonuclease EXOSC10 for binding to CYLD mRNA. Thus, loss of PD-L1 promoted binding and degradation of CYLD mRNA by EXOSC10 which enhanced JNK activity. An irreversible JNK inhibitor (JNK-IN-8) reduced BimThr116 phosphorylation and unsequestered Bim from MCL-1 and BCL-2 to promote apoptosis. In cells lacking PD-L1, treatment with JNK-IN-8, an MCL-1 antagonist (AZD5991), or their combination promoted apoptosis and reduced long-term clonogenic survival by anticancer drugs. Similar effects of the JNK inhibitor on cell viability were observed in CRC organoids with suppression of PD-L1. These data indicate that JNK inhibition may represent a promising strategy to overcome drug resistance in CRC cells with low or absent PD-L1 expression.
Collapse
Affiliation(s)
- Lei Sun
- Gastrointestinal Research Unit, Mayo Clinic, Rochester, MN, USA.,Department of Gastrointestinal Surgery, Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Árpád V Patai
- Gastrointestinal Research Unit, Mayo Clinic, Rochester, MN, USA
| | - Tara L Hogenson
- Schulze Center for Novel Therapeutics, Division of Oncology Research, Department of Oncology, Mayo Clinic, Rochester, MN, USA
| | - Martin E Fernandez-Zapico
- Schulze Center for Novel Therapeutics, Division of Oncology Research, Department of Oncology, Mayo Clinic, Rochester, MN, USA
| | - Bo Qin
- Gastrointestinal Research Unit, Mayo Clinic, Rochester, MN, USA.
| | - Frank A Sinicrope
- Gastrointestinal Research Unit, Mayo Clinic, Rochester, MN, USA. .,Departments of Medicine and Oncology, Mayo Clinic, Rochester, MN, USA. .,Mayo Comprehensive Cancer Center, Rochester, MN, USA.
| |
Collapse
|
35
|
Abstract
INTRODUCTION Chemokines and their cognate receptors play a major role in modulating inflammatory responses. Depending on their ligand binding, chemokine receptors can stimulate both immune activating and inhibitory signaling pathways. The CC chemokine receptor 5 (CCR5) promotes immune responses by recruiting immune cells to the sites of inflammation/tumor, and is involved in stimulating tumor cell proliferation, invasion and migration through various mechanisms. Moreover, CCR5 also contributes to an immune-suppressive tumor microenvironment by recruiting regulatory T cells and myeloid-derived suppressor cells facilitating tumor development and progression. In summary, cells expressing CCR5 modulate immune response and tumor progression. Expression of CCR5 is increased in various malignancies and associated with poor outcome. Experimental data show promising efficacy signals with CCR5 antagonists in preclinical tumor models. Therefore, CCR5 has been recognized as a potential therapeutic target for cancer. AREAS COVERED In this review, we focus on the role of CCR5 in cancer progression and discuss its impact and potential as a therapeutic target for cancer. EXPERT OPINION Beyond immune-checkpoint inhibitors, potentially synergistic immune-modulatory drugs such as CCR5 antagonists are a promising approach to enlarge our treatment armamentarium against cancer.
Collapse
Affiliation(s)
- Hossein Hemmatazad
- Department of Radiation Oncology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Martin D Berger
- Department of Medical Oncology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| |
Collapse
|
36
|
Liu X, Xing Y, Li M, Zhang Z, Wang J, Ri M, Jin C, Xu G, Piao L, Jin H, Zuo H, Ma J, Jin X. Licochalcone A inhibits proliferation and promotes apoptosis of colon cancer cell by targeting programmed cell death-ligand 1 via the NF-κB and Ras/Raf/MEK pathways. JOURNAL OF ETHNOPHARMACOLOGY 2021; 273:113989. [PMID: 33677006 DOI: 10.1016/j.jep.2021.113989] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 02/10/2021] [Accepted: 03/01/2021] [Indexed: 06/12/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Glycyrrhiza glabra L., a traditional medicinal, has a history of thousands of years. It is widely used in clinic and has been listed in Chinese Pharmacopoeia. Licochalcone A is a phenolic chalcone compound and a characteristic chalcone of Glycyrrhiza glabra L. It has many pharmacological activities, such as anti-cancer, anti-inflammatory, anti-viral and anti-angiogenic activities. AIM OF THE STUDY In this study, we explored the anti-tumor activity and potential mechanism of licochalcone A in vitro and in vivo. MATERIALS AND METHODS In vitro, the mechanism of licochalcone A at inhibiting PD-L1 expression was investigated by molecular docking, western blotting, RT-PCR, flow cytometry, immunofluorescence and immunoprecipitation assays. The co-culture model of T cells and tumor cells was used to detect the activity of cytotoxic T lymphocytes. Colony formation, EdU labelling and apoptosis assays were used to detect changes in cellular proliferation and apoptosis. In vivo, anti-tumor activity of licochalcone A was assessed in a xenograft model of HCT116 cells. RESULTS In the present study, we found that licochalcone A suppressed the expression of programmed cell death ligand-1 (PD-L1), which plays a key role in regulating the immune response. In addition, licochalcone A inhibited the expressions of p65 and Ras. Immunoprecipitation experiment showed that licochalcone A suppressed the expression of PD-L1 by blocking the interaction between p65 and Ras. In the co-culture model of T cells and tumor cells, licochalcone A pretreatment enhanced the activity of cytotoxic T lymphocytes and restored the ability to kill tumor cells. In addition, we showed that licochalcone A inhibited cell proliferation and promoted cell apoptosis by targeting PD-L1. In vivo xenograft assay confirmed that licochalcone A inhibited the growth of tumor xenografts. CONCLUSION In general, these results reveal the previously unknown properties of licochalcone A and provide new insights into the anticancer mechanism of this compound.
Collapse
Affiliation(s)
- Xueshuang Liu
- Molecular Medicine Research Center, College of Pharmacy, Yanbian University, Yanji, 133002, Jilin Province, China
| | - Yue Xing
- Molecular Medicine Research Center, College of Pharmacy, Yanbian University, Yanji, 133002, Jilin Province, China
| | - Mingyue Li
- Molecular Medicine Research Center, College of Pharmacy, Yanbian University, Yanji, 133002, Jilin Province, China
| | - Zhihong Zhang
- Molecular Medicine Research Center, College of Pharmacy, Yanbian University, Yanji, 133002, Jilin Province, China
| | - Jingying Wang
- Molecular Medicine Research Center, College of Pharmacy, Yanbian University, Yanji, 133002, Jilin Province, China
| | - MyongHak Ri
- Molecular Medicine Research Center, College of Pharmacy, Yanbian University, Yanji, 133002, Jilin Province, China
| | - Chenghua Jin
- Molecular Medicine Research Center, College of Pharmacy, Yanbian University, Yanji, 133002, Jilin Province, China
| | - Guanghua Xu
- Molecular Medicine Research Center, College of Pharmacy, Yanbian University, Yanji, 133002, Jilin Province, China
| | - Lianxun Piao
- Molecular Medicine Research Center, College of Pharmacy, Yanbian University, Yanji, 133002, Jilin Province, China
| | - Honglan Jin
- Molecular Medicine Research Center, College of Pharmacy, Yanbian University, Yanji, 133002, Jilin Province, China
| | - Hongxiang Zuo
- Molecular Medicine Research Center, College of Pharmacy, Yanbian University, Yanji, 133002, Jilin Province, China.
| | - Juan Ma
- Molecular Medicine Research Center, College of Pharmacy, Yanbian University, Yanji, 133002, Jilin Province, China.
| | - Xuejun Jin
- Molecular Medicine Research Center, College of Pharmacy, Yanbian University, Yanji, 133002, Jilin Province, China.
| |
Collapse
|
37
|
Xu J, Yang X, Mao Y, Mei J, Wang H, Ding J, Hua D. Removal of N-Linked Glycosylation Enhances PD-L1 Detection in Colon Cancer: Validation Research Based on Immunohistochemistry Analysis. Technol Cancer Res Treat 2021; 20:15330338211019442. [PMID: 34060360 PMCID: PMC8173990 DOI: 10.1177/15330338211019442] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
In recent years, immunotherapies have emerged as effective therapeutic strategies for treating human cancers. However, accumulating evidence has revealed an inconsistency between the response to immune checkpoint inhibitors and programmed death ligand 1 (PD-L1) expression status detected by immunohistochemistry staining. Recent research has revealed that the removal of N-Linked glycosylation significantly enhanced PD-L1 detection, resulting in both more accurate PD-L1 quantification and clinical outcome prediction. In the present study, we evaluated natural and deglycosylated PD-L1 expression in colon cancer using the PD-L1 28–8 antibody. The results of the present study validated the hypothesis that PD-L1 had a higher expression in colon cancer tissues compared with normal tissues. Additionally, colon tumors with defective mismatch repair tended to express higher PD-L1 than those without. Most importantly, the results of the present study indicated that the removal of N-linked glycosylation remarkably enhanced PD-L1 detection. Moreover, the PD-L1 signal intensity of samples with a low natural PD-L1 signal was enhanced more remarkably than that of samples with high signal intensity. Overall, our research provides an improved strategy for patient stratification for anti-PD-1/PD-L1 therapy, which deepens the clinical significance of this established strategy for treatment of colon cancer.
Collapse
Affiliation(s)
- Junying Xu
- Department of Oncology, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China.,Department of Oncology, Wuxi People's Hospital Affiliated to Nanjing Medical University, Wuxi, Jiangsu Province, China
| | - Xuejing Yang
- Department of Oncology, Wuxi People's Hospital Affiliated to Nanjing Medical University, Wuxi, Jiangsu Province, China
| | - Yong Mao
- Department of Oncology, Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu Province, China
| | - Jie Mei
- Department of Oncology, Wuxi People's Hospital Affiliated to Nanjing Medical University, Wuxi, Jiangsu Province, China
| | - Huiyu Wang
- Department of Oncology, Wuxi People's Hospital Affiliated to Nanjing Medical University, Wuxi, Jiangsu Province, China
| | - Junli Ding
- Department of Oncology, Wuxi People's Hospital Affiliated to Nanjing Medical University, Wuxi, Jiangsu Province, China
| | - Dong Hua
- Department of Oncology, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China.,Department of Oncology, Wuxi People's Hospital Affiliated to Nanjing Medical University, Wuxi, Jiangsu Province, China
| |
Collapse
|
38
|
Ma R, Qu X, Che X, Yang B, Li C, Hou K, Guo T, Xiao J, Liu Y. Comparative Analysis and in vitro Experiments of Signatures and Prognostic Value of Immune Checkpoint Genes in Colorectal Cancer. Onco Targets Ther 2021; 14:3517-3534. [PMID: 34103942 PMCID: PMC8180296 DOI: 10.2147/ott.s304297] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Accepted: 05/10/2021] [Indexed: 12/19/2022] Open
Abstract
Purpose Immune checkpoints, as pivotal regulators of immune escape in cancer, can motivate the emergence of immune checkpoint inhibitors (ICIs). The aim of this study is to identify the expression of the immune checkpoint genes (ICGs) in colorectal cancer (CRC) and to relate their individual as well as combined expression to prognosis and therapeutic effectiveness in CRC. Methods RNA expression of 47 ICGs and clinical information of CRC patients were collected from two public databases to elucidate the expression levels and prognostic values of these ICGs in CRC. Then, the Shapiro–Wilk normality test was used to determine the normality of variables. Overall survival (OS) rates of each subset were found by Kaplan–Meier method, and the statistical significance was determined by the Log rank test (p < 0.05). Results The expression of 13 and 9 ICGs was significantly associated with CRC prognosis in The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) cohorts. A series of ICGs was found to be significantly associated with TMB, neoantigens and MMR in CRC indicating that the combination of immunotherapy treatment biomarkers and ICGs may achieve accurate prognostic stratification of CRC, and potentially identify CRC cases that might respond to checkpoint inhibitors (CPIs). The subsets of high or low PD1/PD-L1/IDO1 expression stratified by CD48 were accurately associated with prognosis in CRC. In addition, in vitro experiments confirmed that VTCN1(B7-H4)-KD increases anti-PD-L1-mediated NK cell cytotoxicity on CRC tumor cells. Conclusion Although the expression of a single immune-checkpoint molecule does not predict the efficacy of immunotherapy in CRC, our findings infer that subsets defined by ICGs are associated with prognosis and imply the possibility that VTCN1 and CD48 serve as new immunotherapeutic targets.
Collapse
Affiliation(s)
- Rui Ma
- Department of Medical Oncology, The First Hospital of China Medical University, Shenyang, 110001, People's Republic of China.,Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, The First Hospital of China Medical University, China Liaoning Province Clinical Research Center for Cancer, Shenyang, 110001, People's Republic of China.,Liaoning Province Clinical Research Center for Cancer, Shenyang, 110001, People's Republic of China.,Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, Shenyang, 110001, People's Republic of China
| | - Xiujuan Qu
- Department of Medical Oncology, The First Hospital of China Medical University, Shenyang, 110001, People's Republic of China.,Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, The First Hospital of China Medical University, China Liaoning Province Clinical Research Center for Cancer, Shenyang, 110001, People's Republic of China.,Liaoning Province Clinical Research Center for Cancer, Shenyang, 110001, People's Republic of China.,Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, Shenyang, 110001, People's Republic of China
| | - Xiaofang Che
- Department of Medical Oncology, The First Hospital of China Medical University, Shenyang, 110001, People's Republic of China.,Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, The First Hospital of China Medical University, China Liaoning Province Clinical Research Center for Cancer, Shenyang, 110001, People's Republic of China.,Liaoning Province Clinical Research Center for Cancer, Shenyang, 110001, People's Republic of China.,Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, Shenyang, 110001, People's Republic of China
| | - Bowen Yang
- Department of Medical Oncology, The First Hospital of China Medical University, Shenyang, 110001, People's Republic of China.,Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, The First Hospital of China Medical University, China Liaoning Province Clinical Research Center for Cancer, Shenyang, 110001, People's Republic of China.,Liaoning Province Clinical Research Center for Cancer, Shenyang, 110001, People's Republic of China.,Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, Shenyang, 110001, People's Republic of China
| | - Ce Li
- Department of Medical Oncology, The First Hospital of China Medical University, Shenyang, 110001, People's Republic of China.,Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, The First Hospital of China Medical University, China Liaoning Province Clinical Research Center for Cancer, Shenyang, 110001, People's Republic of China.,Liaoning Province Clinical Research Center for Cancer, Shenyang, 110001, People's Republic of China.,Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, Shenyang, 110001, People's Republic of China
| | - Kezuo Hou
- Department of Medical Oncology, The First Hospital of China Medical University, Shenyang, 110001, People's Republic of China.,Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, The First Hospital of China Medical University, China Liaoning Province Clinical Research Center for Cancer, Shenyang, 110001, People's Republic of China.,Liaoning Province Clinical Research Center for Cancer, Shenyang, 110001, People's Republic of China.,Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, Shenyang, 110001, People's Republic of China
| | - Tianshu Guo
- Department of Medical Oncology, The First Hospital of China Medical University, Shenyang, 110001, People's Republic of China.,Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, The First Hospital of China Medical University, China Liaoning Province Clinical Research Center for Cancer, Shenyang, 110001, People's Republic of China.,Liaoning Province Clinical Research Center for Cancer, Shenyang, 110001, People's Republic of China.,Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, Shenyang, 110001, People's Republic of China
| | - Jiawen Xiao
- Department of Medical Oncology, Shenyang Fifth People Hospital, Shenyang, People's Republic of China
| | - Yunpeng Liu
- Department of Medical Oncology, The First Hospital of China Medical University, Shenyang, 110001, People's Republic of China.,Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, The First Hospital of China Medical University, China Liaoning Province Clinical Research Center for Cancer, Shenyang, 110001, People's Republic of China.,Liaoning Province Clinical Research Center for Cancer, Shenyang, 110001, People's Republic of China.,Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, Shenyang, 110001, People's Republic of China
| |
Collapse
|
39
|
Wang G, Wang YZ, Yu Y, Yin PH, Xu K, Zhang H. The Anti-Tumor Effect and Mechanism of Triterpenoids in Rhus chinensis Mill. on Reversing Effector CD8+ T-cells Dysfunction by Targeting Glycolysis Pathways in Colorectal Cancer. Integr Cancer Ther 2021; 20:15347354211017219. [PMID: 34014135 PMCID: PMC8145606 DOI: 10.1177/15347354211017219] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Rhus chinensis Mill. is a traditional Chinese medicine (TCM)
which is commonly used for cancer treatments. Our previous work had proven that
triterpenoids of Rhus chinensis (TER) could effectively
regulate glycolysis involved in colorectal cancer (CRC) and play an important
role in the prevention of T-cells dysfunction. This study aimed to
systematically investigate the effects and mechanisms of TER on glucose
metabolism in CRC, while the regulatory mechanisms of TER on restoring T-cells
function and activity in CRC were explored as well. The extract of triterpenoids
from Rhus chinensis was obtained, and production of lactic acid
and glucose uptake were assayed. Also, the expression of CD8+ T-cells surface
markers, cytokines secreted by CD8+ T cells, and the expression of key
glycolytic enzymes and glucose deprivation induced by tumor cells were further
examined. Notably, results showed that TER prevented the dysfunction in CD8+ T
cells by enhancing mTOR activity and subsequent cellular metabolism.
Furthermore, our findings also demonstrated that TER promoted glycolytic gene
expression in CD8+ T cells in vivo, and significantly inhibited tumor growth.
Altogether, our studies suggested that TER not only reversed effector CD8+
T-cells dysfunction and enhanced T-cells recognition, but also improved tumor
microenvironment, thereby providing new insight into the prevention and
treatment of CRC with TCM.
Collapse
Affiliation(s)
| | - Yu-Zhu Wang
- Jiangsu University, Zhenjiang, Jiangsu, China
| | - Yang Yu
- Jiangsu University, Zhenjiang, Jiangsu, China
| | - Pei-Hao Yin
- Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Ke Xu
- Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Heng Zhang
- Southeast University, Nanjing, Jiangsu, China
| |
Collapse
|
40
|
RHAMM in liver metastases of stage IV colorectal cancer with mismatch-repair proficient status correlates with tumor budding, cytotoxic T-cells and PD-1/PD-L1. Pathol Res Pract 2021; 223:153486. [PMID: 34051513 DOI: 10.1016/j.prp.2021.153486] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 05/13/2021] [Accepted: 05/16/2021] [Indexed: 12/22/2022]
Abstract
BACKGROUND During the last decades, the management for metastatic colorectal cancer patients has improved due to novel therapeutic approaches. A mismatch-repair deficient status seems to favour a better response to checkpoint inhibitor therapy, but the question arises whether a specific subgroup of stage IV patients with mismatch-repair (MMR) proficient status should also be considered. RHAMM (Receptor for Hyaluronic Acid Mediated Motility/HAMMR/CD168) is characterized by tumor progression and immunogenicity. Therefore, the aim of this study is to determine whether RHAMM within the CRLM of MMR-proficient patients correlate with a more immunological microenvironment, represented by cytotoxic T-cells, PD-1 and PD-1. METHODS Two patient cohorts of liver metastases from MMR colorectal cancers were included into the study (n = 81 and 76) using ngTMA® technology and immunohistochemically analyzed for RHAMM, cytotoxic T-cells (CD8+), PD-1/PD-L1, intrametastatic budding (IMB) and perimetastatic budding (PMB). RESULTS RHAMM-positive IMB was linked to a higher PD-L1 expression (r = 0.32; p = 0.233 and r = 0.28; p = 0.044) in the center and periphery of the metastasis and RHAMM-positive PMB was associated with a higher expression of PD-1 (r = 0.33; p = 0.0297), and especially PD-L1 (r = 0.604; p < 0.0001 and r = 0.43; p = 0.003) in the center and periphery of the metastasis. IMB and PMB were additionally associated with a higher count of CD8+ T-cells (p < 0.0001; r = 0.58; p < 0.0001; r = 0.53). CONCLUSIONS The RHAMM status can be assessed in IMB/PMB either in biopsies or in resections of colorectal cancer liver metastases. A positive RHAMM status in IMB and/or PMB may be a potential indicator for a checkpoint inhibitor therapy for stage IV colorectal cancer patients with MMR proficient status.
Collapse
|
41
|
Azcue P, Encío I, Guerrero Setas D, Suarez Alecha J, Galbete A, Mercado M, Vera R, Gomez-Dorronsoro ML. PD-L1 as a Prognostic Factor in Early-Stage Colon Carcinoma within the Immunohistochemical Molecular Subtype Classification. Cancers (Basel) 2021; 13:1943. [PMID: 33920689 PMCID: PMC8073668 DOI: 10.3390/cancers13081943] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Revised: 04/10/2021] [Accepted: 04/12/2021] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND There is a patent need to better characterize early-stage colorectal cancer (CRC) patients. PD-1 ligand (PD-L1) expression has been proposed as a prognostic factor but yields mixed results in different settings. The Consensus Molecular Subtype (CMS) classification has yet to be integrated into clinical practice. We sought to evaluate the prognostic value of PD-L1 expression overall and within CMS in early-stage colon cancer patients, in the hope of assisting treatment choice in this setting. METHODS Tissue-microarrays were constructed from tumor samples of 162 stage II/III CRC patients. They underwent automatic immunohistochemical staining for PD-L1 and the proposed CMS panel. Primary endpoints were overall survival (OS) and disease-free survival (DFS). RESULTS PD-L1 expression was significantly and independently associated with better prognosis (HR = 0.46 (0.26-0.82), p = 0.009) and was mostly seen in immune cells of the tumor-related stroma. CMS4 five-folds the risk of mortalitycompared with CMS1 (HR = 5.58 (1.36, 22.0), p = 0.034). In the subgroup CMS2/CMS3 analysis, PD-L1 expression significantly differentiated individuals with better OS (p = 0.004) and DFS (p < 0.001). CONCLUSIONS Our study suggests that PD-L1 expression is an independent prognostic factor in patients with stage II/III colon cancer. Additionally, it successfully differentiates patients with better prognosis in the CMS2/CMS3 group and may prove significant for the clinical relevance of the CMS classification.
Collapse
Affiliation(s)
- Pablo Azcue
- Department of Health Science, Public University of Navarra (UPNA), 31008 Pamplona, Spain;
| | - Ignacio Encío
- Department of Health Science, Public University of Navarra (UPNA), 31008 Pamplona, Spain;
- Institute for Health Research Navarra (IdISNA), 31008 Pamplona, Spain; (A.G.); (R.V.)
| | - David Guerrero Setas
- Department of Molecular Pathology, Hospital Complex of Navarra (CHN), 31008 Pamplona, Spain; (D.G.S.); (M.M.)
- Campus Arrosadia, Public University of Navarra (UPNA), 31006 Pamplona, Spain
- Molecular Pathology of Cancer Group–Navarrabiomed, 31008 Pamplona, Spain
- Department of Medical Oncology, Hospital Complex of Navarra (CHN), 31008 Pamplona, Spain
| | - Javier Suarez Alecha
- Department of Surgery, Hospital Complex of Navarra (CHN), 31008 Pamplona, Spain;
| | - Arkaitz Galbete
- Institute for Health Research Navarra (IdISNA), 31008 Pamplona, Spain; (A.G.); (R.V.)
- Campus Arrosadia, Public University of Navarra (UPNA), 31006 Pamplona, Spain
- Navarrabiomed-Hospital Complex of Navarra (CHN), Redissec, 31008 Pamplona, Spain
| | - María Mercado
- Department of Molecular Pathology, Hospital Complex of Navarra (CHN), 31008 Pamplona, Spain; (D.G.S.); (M.M.)
| | - Ruth Vera
- Institute for Health Research Navarra (IdISNA), 31008 Pamplona, Spain; (A.G.); (R.V.)
- Department of Medical Oncology, Hospital Complex of Navarra (CHN), 31008 Pamplona, Spain
| | - Maria Luisa Gomez-Dorronsoro
- Institute for Health Research Navarra (IdISNA), 31008 Pamplona, Spain; (A.G.); (R.V.)
- Department of Molecular Pathology, Hospital Complex of Navarra (CHN), 31008 Pamplona, Spain; (D.G.S.); (M.M.)
| |
Collapse
|
42
|
Bian C, Wang Y, Lu Z, An Y, Wang H, Kong L, Du Y, Tian J. ImmunoAIzer: A Deep Learning-Based Computational Framework to Characterize Cell Distribution and Gene Mutation in Tumor Microenvironment. Cancers (Basel) 2021; 13:cancers13071659. [PMID: 33916145 PMCID: PMC8036970 DOI: 10.3390/cancers13071659] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 03/27/2021] [Accepted: 03/29/2021] [Indexed: 12/22/2022] Open
Abstract
Spatial distribution of tumor infiltrating lymphocytes (TILs) and cancer cells in the tumor microenvironment (TME) along with tumor gene mutation status are of vital importance to the guidance of cancer immunotherapy and prognoses. In this work, we developed a deep learning-based computational framework, termed ImmunoAIzer, which involves: (1) the implementation of a semi-supervised strategy to train a cellular biomarker distribution prediction network (CBDPN) to make predictions of spatial distributions of CD3, CD20, PanCK, and DAPI biomarkers in the tumor microenvironment with an accuracy of 90.4%; (2) using CBDPN to select tumor areas on hematoxylin and eosin (H&E) staining tissue slides and training a multilabel tumor gene mutation detection network (TGMDN), which can detect APC, KRAS, and TP53 mutations with area-under-the-curve (AUC) values of 0.76, 0.77, and 0.79. These findings suggest that ImmunoAIzer could provide comprehensive information of cell distribution and tumor gene mutation status of colon cancer patients efficiently and less costly; hence, it could serve as an effective auxiliary tool for the guidance of immunotherapy and prognoses. The method is also generalizable and has the potential to be extended for application to other types of cancers other than colon cancer.
Collapse
Affiliation(s)
- Chang Bian
- CAS Key Laboratory of Molecular Imaging, The State Key Laboratory of Management and Control for Complex Systems, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China; (C.B.); (Y.W.); (Y.A.); (H.W.); (L.K.)
- School of Artificial Intelligence, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yu Wang
- CAS Key Laboratory of Molecular Imaging, The State Key Laboratory of Management and Control for Complex Systems, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China; (C.B.); (Y.W.); (Y.A.); (H.W.); (L.K.)
- School of Artificial Intelligence, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhihao Lu
- Department of Gastrointestinal Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital & Institute, Beijing 100142, China;
| | - Yu An
- CAS Key Laboratory of Molecular Imaging, The State Key Laboratory of Management and Control for Complex Systems, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China; (C.B.); (Y.W.); (Y.A.); (H.W.); (L.K.)
- Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, School of Medicine Science and Engineering, Beihang University, Beijing 100191, China
| | - Hanfan Wang
- CAS Key Laboratory of Molecular Imaging, The State Key Laboratory of Management and Control for Complex Systems, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China; (C.B.); (Y.W.); (Y.A.); (H.W.); (L.K.)
- School of Life Science and Technology, Xidian University, Xi’an 710071, China
| | - Lingxin Kong
- CAS Key Laboratory of Molecular Imaging, The State Key Laboratory of Management and Control for Complex Systems, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China; (C.B.); (Y.W.); (Y.A.); (H.W.); (L.K.)
- School of Artificial Intelligence, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yang Du
- CAS Key Laboratory of Molecular Imaging, The State Key Laboratory of Management and Control for Complex Systems, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China; (C.B.); (Y.W.); (Y.A.); (H.W.); (L.K.)
- School of Artificial Intelligence, University of Chinese Academy of Sciences, Beijing 100049, China
- Correspondence: (Y.D.); (J.T.)
| | - Jie Tian
- CAS Key Laboratory of Molecular Imaging, The State Key Laboratory of Management and Control for Complex Systems, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China; (C.B.); (Y.W.); (Y.A.); (H.W.); (L.K.)
- School of Artificial Intelligence, University of Chinese Academy of Sciences, Beijing 100049, China
- Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, School of Medicine Science and Engineering, Beihang University, Beijing 100191, China
- School of Life Science and Technology, Xidian University, Xi’an 710071, China
- Correspondence: (Y.D.); (J.T.)
| |
Collapse
|
43
|
Mao R, Yang F, Wang Z, Xu C, Liu Q, Liu Y, Zhang T. Clinical Significance of a Novel Tumor Progression-Associated Immune Signature in Colorectal Adenocarcinoma. Front Cell Dev Biol 2021; 9:625212. [PMID: 33732694 PMCID: PMC7959763 DOI: 10.3389/fcell.2021.625212] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 01/13/2021] [Indexed: 12/13/2022] Open
Abstract
Background Some colorectal adenocarcinoma (CRC) patients are susceptible to recurrence, and they rapidly progress to advanced cancer stages and have a poor prognosis. There is an urgent need for efficient screening criteria to identify patients who tend to relapse in order to treat them earlier and more systematically. Methods We identified two groups of patients with significantly different outcomes by unsupervised cluster analysis of GSE39582 based on 101 significantly differentially expressed immune genes. To develop an accurate and specific signature based on immune-related genes to predict the recurrence of CRC, a multivariate Cox risk regression model was constructed with a training cohort composed of 519 CRC samples. The model was then validated using 129, 292, and 446 samples in the real-time quantitative reverse transcription PCR (qRT-PCR), test, and validation cohorts, respectively. Results This classification system can also be used to predict the prognosis in clinical subgroups and patients with different mutation states. Four independent datasets, including qRT-PCR and The Cancer Genome Atlas (TCGA), demonstrated that they can also be used to accurately predict the overall survival of CRC patients. Further analysis suggested that high-risk patients were characterized by worse effects of chemotherapy and immunotherapy, as well as lower immune scores. Ultimately, the signature was identified as an independent prognostic factor. Conclusion The signature can accurately predict recurrence and overall survival in patients with CRC and may serve as a powerful prognostic tool to further optimize cancer immunotherapy.
Collapse
Affiliation(s)
- Rui Mao
- The Center of Gastrointestinal and Minimally Invasive Surgery, Affiliated Hospital of Southwest Jiaotong University, Chengdu, China
| | - Fan Yang
- Emergency Department, Peking University Third Hospital, School of Medicine, Peking University, Beijing, China
| | - Zheng Wang
- Department of Colorectal Surgery, National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Chenxin Xu
- The Center of Gastrointestinal and Minimally Invasive Surgery, Affiliated Hospital of Southwest Jiaotong University, Chengdu, China
| | - Qian Liu
- Department of Colorectal Surgery, National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yanjun Liu
- The Center of Gastrointestinal and Minimally Invasive Surgery, Affiliated Hospital of Southwest Jiaotong University, Chengdu, China.,The Center of Gastrointestinal and Minimally Invasive Surgery, Department of General Surgery, The Third People's Hospital of Chengdu, Chengdu, China
| | - Tongtong Zhang
- The Center of Gastrointestinal and Minimally Invasive Surgery, Department of General Surgery, The Third People's Hospital of Chengdu, Chengdu, China.,Medical Research Center, The Third People's Hospital of Chengdu, The Affiliated Hospital of Southwest Jiaotong University, The Second Chengdu Hospital Affiliated to Chongqing Medical University, Chengdu, China
| |
Collapse
|
44
|
Song Q, Shi F, Xiao S, Li Y, Zhao Y, Chang H. The integration of proportion and cell counts of stromal, not intratumoral, PD-1+ tumor-infiltrating lymphocytes has prognostic significance in esophageal squamous cell carcinoma. Dis Esophagus 2021; 34:5835915. [PMID: 32395761 DOI: 10.1093/dote/doaa035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 03/31/2020] [Accepted: 04/17/2020] [Indexed: 12/11/2022]
Abstract
The present study aimed to investigate the prognostic effect of intratumoral and stromal exhausted tumor-infiltrating lymphocytes (TILs) on operable esophageal cancer patients. We performed a retrospective cohort study by consecutively recruiting 142 patients with esophageal cancer. The proportion and cell counts of intratumoral and stromal PD-1+ TILs in tumor microenvironment were independently evaluated by two pathologists. Neither proportion nor cell counts of intratumoral PD-1+ TILs was associated with prognosis (p > 0.05). However, patients with the proportion of stromal PD1+ TILs >20% had the median overall survival (OS) at 19 months, significantly longer than those with the proportion = 20%. The adjusted hazard ratio (HR) was 1.49 (95%CI 0.82, 2.69). Patients with cell counts of stromal PD1+ TILs = 18/ high-power field (HPF) had the median disease-free survival (DFS) at 10 months. However, patients with cell counts>18/HPF had the median DFS at 48 months (p = 0.037), and the adjusted HR was 0.59 (95%CI 0.35, 1.01). Compared with patients with proportion = 20% and cell counts >18/HPF of stromal PD1+ TILs, patients with proportion = 20% and cell counts = 18/HPF, proportion >20% and cell counts >18/HPF, and proportion >20% and cell counts = 18/HPF, had the adjusted HRs increased to 3.73, 3.36 and 3.99 for DFS (p for trend being 0.030) and the adjusted HRs increased to 2.95, 3.64 and 3.82 (p for trend being 0.015) for OS, respectively. The integration of proportion and cell counts of PD-1+ stromal TILs has a significant association with the relapse and overall survival of esophageal cancer patients. Further prospective studies are warranted.
Collapse
Affiliation(s)
- Qingkun Song
- Department of Clinical Epidemiology and Evidence-based Medicine, Beijing Shijitan Hospital, Capital Medical University, Beijing, China.,Beijing Key Laboratory of Cancer Therapeutic Vaccines, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| | - Feng Shi
- Department of Pathology, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| | - Shuo Xiao
- Department of Environmental Health Sciences, Arnold School of Public Health, University of South Carolina, Columbia, SC, USA
| | - Yuchen Li
- Sid Faithfull Brain Cancer Research Laboratory, QIMR Berghofer Medical Research Institute, Herston, QLD, Australia
| | - Yanjie Zhao
- Department of Medical Oncology, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| | - Hong Chang
- Department of Pathology, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
45
|
Lang-Schwarz C, Melcher B, Hartmann A, Bertz S, Dregelies T, Lang-Schwarz K, Vieth M, Sterlacci W. Programmed death ligand 1 (PD-L1) in colon cancer and its interaction with budding and tumor-infiltrating lymphocytes (TILs) as tumor-host antagonists. Int J Colorectal Dis 2021; 36:2497-2510. [PMID: 34170390 PMCID: PMC8505298 DOI: 10.1007/s00384-021-03985-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/16/2021] [Indexed: 02/04/2023]
Abstract
PURPOSE To analyze the role of programmed death ligand 1 (PD-L1) immunohistochemisty in the context of tumor microenvironment in colon cancer (CC) with focus on the interaction between tumor budding and tumor-infiltrating lymphocytes (TILs) and to elucidate its potential value for immunooncologic treatment decisions. METHODS Three hundred forty seven patients with CC, stages I to IV, were enrolled. PD-L1 immunohistochemistry was performed using two different antibodies (clone 22C3 pharmDx, Agilent and clone QR1, Quartett). Tumor proportion score (TPS) as well as immune cell score (IC) was assessed. Budding and TILs were assessed according to the criteria of the International Tumor Budding Consensus Conference (ITBCC) and International TILs Working Group (ITWG). Correlation analyses as well as survival analyses were performed. RESULTS PD-L1 positivity significantly correlated with TILs > 5% and MMR deficiency, and PD-L1-positive cases (overall and IC) showed significantly longer overall survival (OS) with both antibodies.The parameters "high grade," "right-sidedness," and "TILS > 5% regardless of MMR status" evolved as potential parameters for additional immunological treatment decisions. Additionally, TPS positivity correlated with low budding. More PD-L1-positive cases were seen in both high TIL groups. The low budding/high TIL group showed longer disease-free survival and longer OS in PD-L1-positive cases. CONCLUSION Overall, PD-L1 positivity correlated with markers of good prognosis. PD-L1 immunohistochemistry was able to identify parameters as additional potential candidates for immune therapy. Furthermore, it was able to stratify patients within the low budding/high TIL group with significant prognostic impact.
Collapse
Affiliation(s)
- Corinna Lang-Schwarz
- Institute of Pathology, Klinikum Bayreuth, Preuschwitzer Str. 101, 95445 Bayreuth, Germany ,Institute of Pathology, Friedrich-Alexander-University, Erlangen-Nuremberg, Krankenhausstr. 8-10, 91054 Erlangen, Germany
| | - Balint Melcher
- Institute of Pathology, Koblenz, Franz-Weis-Str. 13, 56073 Koblenz, Germany
| | - Arndt Hartmann
- Institute of Pathology, Friedrich-Alexander-University, Erlangen-Nuremberg, Krankenhausstr. 8-10, 91054 Erlangen, Germany
| | - Simone Bertz
- Institute of Pathology, Friedrich-Alexander-University, Erlangen-Nuremberg, Krankenhausstr. 8-10, 91054 Erlangen, Germany
| | - Theresa Dregelies
- Institute of Pathology, Klinikum Bayreuth, Preuschwitzer Str. 101, 95445 Bayreuth, Germany
| | - Klaus Lang-Schwarz
- Department of Anesthesiology, Klinikum Bayreuth, Preuschwitzer Str. 101, 95445 Bayreuth, Germany
| | - Michael Vieth
- Institute of Pathology, Klinikum Bayreuth, Preuschwitzer Str. 101, 95445 Bayreuth, Germany ,Institute of Pathology, Friedrich-Alexander-University, Erlangen-Nuremberg, Krankenhausstr. 8-10, 91054 Erlangen, Germany
| | - William Sterlacci
- Institute of Pathology, Klinikum Bayreuth, Preuschwitzer Str. 101, 95445 Bayreuth, Germany ,Institute of Pathology, Friedrich-Alexander-University, Erlangen-Nuremberg, Krankenhausstr. 8-10, 91054 Erlangen, Germany
| |
Collapse
|
46
|
Prognostic and clinicopathological value of PD-L2 in lung cancer: A meta-analysis. Int Immunopharmacol 2020; 91:107280. [PMID: 33370681 DOI: 10.1016/j.intimp.2020.107280] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 12/01/2020] [Accepted: 12/03/2020] [Indexed: 01/11/2023]
Abstract
OBJECTIVE The prognostic role of programmed death ligand-2 (PD-L2) expression in lung cancer has been widely studied, however, the results are controversial. Accordingly, we investigated the prognostic and clinicopathological value of PD-L2 in patients with lung cancer in this meta-analysis. METHODS Relevant studies were systematically searched in the PubMed, Web of Science, EMBASE, ClinicalTrials.gov., Scopus, and Cochrane Library until July 10, 2020. The hazard ratio (HR), odds ratio (OR), and their corresponding 95% confidence intervals (CIs) were calculated. RESULTS Thirteen studies with 3107 participants were included. High PD-L2 expression was associated with poor overall survival (OS) (HR 1.248, 95% CI: 1.071-1.455, p = 0.004) and worse disease-free survival (DFS)/progression-free survival (PFS)/relapse-free survival (RFS) (HR 1.224, 95% CI: 1.058-1.417, p = 0.007) in lung cancer. Furthermore, unfavorable OS was found in lung adenocarcinoma (HR 1.349, 95% CI: 1.051-1.731, p = 0.019), but not in other pathological types (HR 1.192, 95% CI: 0.982-1.447 p = 0.076) with higher PD-L2 expression in our subgroup analysis. Concerning the clinicopathological characteristics, high PD-L2 expression was associated with smoking (OR 0.725, 95% CI: 0.591-0.890, p = 0.002) and PD-L1 (OR 1.607, 95% CI:1.115-2.314, p = 0.011) and vascular invasion (OR 1.500, 95% CI: 1.022-2.203, p = 0.039). CONCLUSION PD-L2 overexpression might predict a poor prognosis in lung cancer patients after surgery. PD-L2 expression might be a potential biomarker for PD-1/PD-L1-targeted immunotherapy in lung cancer, which should be investigated in future studies.
Collapse
|
47
|
Chen D, Qin Y, Dai M, Li L, Liu H, Zhou Y, Qiu C, Chen Y, Jiang Y. BGN and COL11A1 Regulatory Network Analysis in Colorectal Cancer (CRC) Reveals That BGN Influences CRC Cell Biological Functions and Interacts with miR-6828-5p. Cancer Manag Res 2020; 12:13051-13069. [PMID: 33376399 PMCID: PMC7764722 DOI: 10.2147/cmar.s277261] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Accepted: 11/19/2020] [Indexed: 12/20/2022] Open
Abstract
Purpose We explored specific expression profiles of BGN and COL11A1 genes and studied their biological functions in CRC using bioinformatics tools. Patients and Methods A total of 68 pairs of cancer and non-cancerous tissues from CRC patients were enrolled in this study. Methods we used in this articles including: qRT-PCR, Western blot analysis, ELISA, GO and KEGG regulatory network analysis, tumor infiltration, luciferase reporter-based protein and etc. Results According to The Cancer Genome Atlas (TCGA) data, BGN and COL11A1 expression levels were significantly higher in CRC patient samples than in samples from healthy controls. Moreover, levels were much higher in late-stage CRC than in early-stage disease, warranting evaluation of these genes as CRC prognostic biomarkers. Subsequently, qRT-PCR, Western blot analysis, and ELISA results obtained from analyses of CRC cells, tissues, and patient sera aligned with TCGA results. GO and KEGG regulatory network analysis revealed BGN- and COL11A1-associated genes that were functionally related to extracellular matrix (ECM) receptor pathway activation, with transcription factor genes RELA and NFKB1 positively associated with BGN expression and CEBPZ and SIRT1 with COL11A1 expression. Meanwhile, BGN and COL11A1 expression were separately and significantly correlated to tumor infiltration by six immune cell types. Additionally, kinase genes PLK1 and LYN appeared to be downstream targets of differentially expressed BGN and COL11A1, respectively. In addition, the expression of PLK1 mRNA was down-regulated while BGN was down-regulated. Finally, BGN effects on CRC cell proliferation, cycle, apoptosis, invasion, and migration were studied using molecular biological methods, including luciferase reporter-based protein analysis, qRT-PCR, and Western blot results, which revealed that miR-6828-5p may regulate BGN expression. Conclusion We speculate that the use of BGN and COL11A1 as CRC biomarkers would improve CRC staging, while also providing several novel targets for use in the development of more effective CRC treatments.
Collapse
Affiliation(s)
- Danqi Chen
- State Key Laboratory of Chemical Oncogenomics, Key Laboratory of Chemical Biology, Tsinghua Shenzhen International Graduate School, Shenzhen, Guangdong, People's Republic of China
| | - Ying Qin
- Department of Gastrointestinal Surgery, Shenzhen Second People's Hospital, Shenzhen, Guangdong, People's Republic of China
| | - Mengmeng Dai
- State Key Laboratory of Chemical Oncogenomics, Key Laboratory of Chemical Biology, Tsinghua Shenzhen International Graduate School, Shenzhen, Guangdong, People's Republic of China
| | - Lulu Li
- State Key Laboratory of Chemical Oncogenomics, Key Laboratory of Chemical Biology, Tsinghua Shenzhen International Graduate School, Shenzhen, Guangdong, People's Republic of China
| | - Hongpeng Liu
- Department of Gastrointestinal Surgery, Shenzhen Second People's Hospital, Shenzhen, Guangdong, People's Republic of China
| | - Yaoyao Zhou
- National & Local United Engineering Laboratory for Personalized Anti-Tumor Drugs, Shenzhen Kivita Innovative Drug Discovery Institute, Tsinghua Shenzhen International Graduate School, Shenzhen, Guangdong, People's Republic of China
| | - Cheng Qiu
- National & Local United Engineering Laboratory for Personalized Anti-Tumor Drugs, Shenzhen Kivita Innovative Drug Discovery Institute, Tsinghua Shenzhen International Graduate School, Shenzhen, Guangdong, People's Republic of China
| | - Yan Chen
- State Key Laboratory of Chemical Oncogenomics, Key Laboratory of Chemical Biology, Tsinghua Shenzhen International Graduate School, Shenzhen, Guangdong, People's Republic of China
| | - Yuyang Jiang
- State Key Laboratory of Chemical Oncogenomics, Key Laboratory of Chemical Biology, Tsinghua Shenzhen International Graduate School, Shenzhen, Guangdong, People's Republic of China.,School of Pharmaceutical Sciences, Tsinghua University, Beijing 100084, People's Republic of China
| |
Collapse
|
48
|
Prognostic relevance of programmed cell death 1 ligand 2 (PDCD1LG2/PD-L2) in patients with advanced stage colon carcinoma treated with chemotherapy. Sci Rep 2020; 10:22330. [PMID: 33339860 PMCID: PMC7749140 DOI: 10.1038/s41598-020-79419-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Accepted: 12/09/2020] [Indexed: 12/18/2022] Open
Abstract
Colorectal cancer (CRC) is the leading cause of cancer-related mortality worldwide. Although the role of tumor programmed cell death 1 ligand 1 (PD-L1) in suppressing antitumor immunity has been validated in various malignances, the impact of PD-L2 (PD-L2/PDCD1LG2) within tumors remains elusive. Here, we examined tumor PD-L2 expression by immunohistochemical analysis and assessed its association with clinicopathological characteristics and the infiltration of intratumoral T lymphocytes in colon carcinoma patients (n = 1264). We found that tumor PD-L2 status was correlated with perineural invasion (PNI) and associated with survival outcome in colon carcinoma patients. The level of tumor PD-L2 was positively associated with tumor PD-L1 expression but inversely associated with the density of CD8+ tumor-infiltrating lymphocytes (TILs). Patients with elevated tumor PD-L2 levels had a favorable 5-year overall survival (OS) compared to patients with low PD-L2 levels (57% vs 40%, p < 0.001), especially in advanced stage colon carcinoma patients. Low tumor PD-L2 expression was associated with an increased 5-year OS risk among advanced stage colon carcinoma patients by univariate analysis [hazard ratio (HR) = 1.69, 95% CI 1.324–2.161, p < 0.001] and multivariate analysis [HR = 1.594, 95% CI 1.206–2.106, p = 0.001]. Moreover, tumor PD-L2 expression was inversely associated with the lymphocytic reaction in advanced stage colon carcinoma, suggesting that PD-L2 may be upregulated by a compensatory mechanism to inhibit T cell-mediated anticancer immunity. Taken together, these results show that tumor PD-L2 expression may be an independent prognostic factor for survival outcome in patients with advanced stage colon carcinoma.
Collapse
|
49
|
Alexander PG, McMillan DC, Park JH. A meta-analysis of CD274 (PD-L1) assessment and prognosis in colorectal cancer and its role in predicting response to anti-PD-1 therapy. Crit Rev Oncol Hematol 2020; 157:103147. [PMID: 33278675 DOI: 10.1016/j.critrevonc.2020.103147] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 10/24/2020] [Accepted: 10/29/2020] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND PD-1 checkpoint inhibitors are novel therapeutic agents in colorectal cancer (CRC). Immunohistochemical staining for CD274 assessment is standardised in upper GI cancer, but not in CRC. METHODS Methodologies of relevant studies were scrutinized and meta-analysis of survival and CD274/PDCD1 performed. Furthermore, anti-PD-1 therapy clinical trial results in CRC were assessed with particular emphasis on CD274 assessment. RESULTS 24 studies were included. CD274 on immune cells was associated with good prognosis. CD274 on tumour cells has heterogenous outcomes and does not meet requirements of a prognostic marker. As a marker of response to anti-PD-1 therapy, CD274 assessment is not standardised in CRC. CONCLUSION CD274 does not appear useful as a prognostic marker. As a marker of response to anti-PD-1 therapy, assessment methodology requires standardisation. As the Combined Positive Score (CPS) is used in upper GI cancer, this seems a logical method to adopt. Thresholds for CRC remain to be determined.
Collapse
Affiliation(s)
| | | | - James H Park
- School of Medicine, University of Glasgow, Glasgow, United Kingdom
| |
Collapse
|
50
|
Role of PD-L1 in Gut Mucosa Tolerance and Chronic Inflammation. Int J Mol Sci 2020; 21:ijms21239165. [PMID: 33271941 PMCID: PMC7730745 DOI: 10.3390/ijms21239165] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 11/25/2020] [Accepted: 11/27/2020] [Indexed: 12/11/2022] Open
Abstract
The gastrointestinal (GI) mucosa is among the most complex systems in the body. It has a diverse commensal microbiome challenged continuously by food and microbial components while delivering essential nutrients and defending against pathogens. For these reasons, regulatory cells and receptors are likely to play a central role in maintaining the gut mucosal homeostasis. Recent lessons from cancer immunotherapy point out the critical role of the B7 negative co-stimulator PD-L1 in mucosal homeostasis. In this review, we summarize the current knowledge supporting the critical role of PD-L1 in gastrointestinal mucosal tolerance and how abnormalities in its expression and signaling contribute to gut inflammation and cancers. Abnormal expression of PD-L1 and/or the PD-1/PD-L1 signaling pathways have been observed in the pathology of the GI tract. We also discuss the current gap in our knowledge with regards to PD-L1 signaling in the GI tract under homeostasis and pathology. Finally, we summarize the current understanding of how this pathway is currently targeted to develop novel therapeutic approaches.
Collapse
|